
HAL Id: hal-04320261
https://hal.science/hal-04320261

Submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highlighting PARCOACH Improvements on MBI
Philippe Virouleau, Emmanuelle Saillard, Marc Sergent, Pierre Lemarinier

To cite this version:
Philippe Virouleau, Emmanuelle Saillard, Marc Sergent, Pierre Lemarinier. Highlighting PARCOACH
Improvements on MBI. SC-W 2023 - Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, Nov 2023, Denver CO, United States. pp.238-241,
�10.1145/3624062.3624093�. �hal-04320261�

https://hal.science/hal-04320261
https://hal.archives-ouvertes.fr

Highlighting PARCOACH Improvements on MBI
Philippe Virouleau

Inria
Bordeaux, France

philippe.virouleau@inria.fr

Emmanuelle Saillard
Inria

Bordeaux, France
emmanuelle.saillard@inria.fr

Marc Sergent
Eviden

Echirolles, France
marc.sergent@eviden.com

Pierre Lemarinier
Eviden

Echirolles, France
pierre.lemarinier@eviden.com

ABSTRACT

PARCOACH is one of the few verification tools that mainly re-
lies on a static analysis to detect errors in MPI programs. First
focused on the detection of call ordering errors with collectives,
it has recently been extended to detect local concurrency errors
in MPI-RMA programs. Furthermore, the new version of the tool
fixes multiple errors and is easier to use. This paper presents the
improvements we made and the results we obtained on the MPI
Bugs Initiative.

CCS CONCEPTS

• Computing methodologies → Parallel programming lan-

guages; • Software and its engineering → Software testing

and debugging.

KEYWORDS

MPI, Verification, Static Analysis

ACM Reference Format:

Philippe Virouleau, Emmanuelle Saillard,Marc Sergent, and Pierre Lemarinier.
2023. Highlighting PARCOACH Improvements on MBI. InWorkshops of The
International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3624062.3624093

1 INTRODUCTION

PARCOACH [2, 3] is a MPI verification tool. It first detects poten-
tial call ordering errors during compile time and issues warnings.
Then, it verifies the potential errors during execution. This combi-
nation of static and dynamic analyses enables an early detection of
some errors, avoiding the execution of programs that can be time
consuming. First focused on call ordering errors with collectives,
PARCOACH has been recently extended to verify local and global
concurrency errors in MPI-RMA programs [5, 6]. The static analysis
now detects call ordering and local concurrency errors while the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624093

dynamic analysis verifies the errors detected at compile time and
checks for global concurrency errors.

In this paper, we present new results of PARCOACH on the
MPI Bugs Initiative (MBI) [4]. We compare two versions of the
tool: PARCOACH v1.2 and the last version of PARCOACH, released
recently (v2.4.0). Section 2 describes the differences between the
two versions. Section 3 presents the results we obtained against
MBI and Section 4 concludes this paper and details some future
works.

2 PARCOACH VERSIONS COMPARISON

MBI aims at assessing current status of verification tools in order to
help their developers improve these tools. For example, the results
of Laurent et al. highlighted two limitations we decided to tackle in
this paper: (1) a lack of RMA support in all existing verification tools,
and (2) a lot of compilation errors in PARCOACH. Additionally,
recent developments have allowed us to fix a lot of false positive
detection in codes involving loops.

2.1 Support for RMA

The Remote Memory Access (RMA) allows processes to expose a
part of their memory called window to perform one-sided commu-
nications (e.g., MPI_Put, MPI_Get). This feature of MPI is not yet
widely used, mainly because it is challenging to ensure correctness
of MPI-RMA programs. We developed a detection of local concur-
rency errors in MPI-RMA programs as part of a PhD thesis [1]. The
method uses both a static and a dynamic analysis to detect errors
[5, 6]. These analyses have been modernized and integrated into
PARCOACH to complement the errors it can detect.

2.2 Improvements on Existing Results

Recent developments have allowed us to update PARCOACH from
LLVM 9 to LLVM 15, and benefit from recent developments in the
LLVM framework on various topics. First of all, writing the analy-
ses and transformation passes have been made significantly easier
thanks to numerous new helpers to inspect and manipulate the
LLVM IR. Then from an architecture point of view, LLVM intro-
duced new transformations and analyses managers. We migrated
PARCOACH to properly use them to benefit from LLVM analyses’
cache system and improve the tool performances. Finally, when it
comes to the tool features, we focused the analysis improvements
first on fixing compilations errors on the codes from MBI, and on

https://doi.org/10.1145/3624062.3624093
https://doi.org/10.1145/3624062.3624093

SC-W 2023, November 12–17, 2023, Denver, CO, USA Virouleau, et al.

Win_fence(0,win);

Get(buf ,target1 ,win);
Get(buf ,target2 ,win);

Win_fence(0,win);

(a) Example 1

Win_lock_all (0,win);

Put(buf , target , win);
buf = 8;

Win_unlock_all (0,win);

(b) Example 2

MPI_Datatype type = MPI_INT;

if(rank %2)
type = MPI_FLOAT;

Iallreduce (&buf , &sum , 1, type , op, com , &req);

(c) Example 3

Figure 1: Examples of MPI erroneous situations.

reducing the number of false positive errors. We managed to do
the latter by reworking the Breadth First Search algorithm used to
find out if MPI collectives are called in the appropriate order by all
MPI processes in a communicator: it had significant issues when
dealing with loops, and we managed to rewrite it to be able to track
the collectives called in (nested) loops.

Figure 1 shows three examples of MPI erroneous situations from
MBI. The first two examples are local concurrency errors with MPI
one-sided communications. In figure 1a, the two Get are writing
in the same buffer buf. As there is no guarantee the first Get is
finished before the second one, the result of buf is undefined. Fig-
ure 1b shows a similar situation where a Put reads buf while a
store is writing in the same memory address (buf=8). These two
local concurrency errors were not detected with PARCOACH v1.2
and are now detected with version 2.4.0. Figure 1c is an example
of a parameter matching error. Even ranks call Iallreduce with
MPI_FLOAT while the other ranks call the operation with MPI_INT.
This code produced a compilation error with PARCOACH version
1.2 because some MPI nonblocking collectives were not supported
in PARCOACH. The new version now supports all MPI functions.

2.3 User Experience Improvements

Over the past few months we also focused on improving the user
experience, on the following aspects.

2.3.1 Packaging. PARCOACH used to require users to compile it
from sources, and even sometimes to compile LLVM from sources.
Our releases now address several setup and package managers: they
include a shared library build (which assumes LLVM 15 is installed
on the system), a static library build (which basically includes ev-
erything, for setup where LLVM 15 cannot easily be installed), and
an RPM package. Since PARCOACH is also likely to be used in a
HPC context, we made PARCOACH available through Guix 1 in
the guix-hpc 2 channel.

2.3.2 Running PARCOACH. Users had to run PARCOACH by man-
ually loading a shared library (plugin) into the LLVM optimizer opt,
and manually running specific passes. We now provide a binary –
parcoachcc – which can be prepended to an existing compilation
command, and makes it easy to use either when manually compil-
ing a file or when used in build systems such as autotools or CMake.
For the latter, it allows running PARCOACH simply by changing
the CMAKE_<LANG>_COMPILER_LAUNCHER.

1https://guix.gnu.org/
2https://gitlab.inria.fr/guix-hpc/guix-hpc

2.3.3 Integrating PARCOACH in Existing Project. One key features
of PARCOACH is its dynamic analysis. Like for most instrumen-
tation tools, PARCOACH needs to first instrument the code, and
then make sure its dynamic library is linked into the instrumented
binary. We have improved the support for CMake users by provid-
ing a CMake package when installing PARCOACH, which makes
it usable through find_package, and provide a single function to
instrument a given CMake target.

These changes obviously made it easier to run the tool on the
MBI test cases.

Number of codes

Invalid Parameter

Parameter matching

Call ordering

Local Concurrency

Request lifecycle

Resource leak

Message Race

Global concurrency

Correct

0 200 400 600

Figure 2: Number of correct and incorrect codes per error

type in MBI

3 EXPERIMENTAL RESULTS

This section presents a comparison of PARCOACH v1.2 with PAR-
COACH v2.4.0 onMBI v1.0.0 (tag paper, commit 4ec1c8c4), available
on Gitlab at https://gitlab.com/MpiBugsInitiative. MBI v1.0.0 con-
tains 1691 codes including 697 correct codes and 994 incorrect codes.
Figure 2 depicts the number of codes for each category of error as
well as the number of correct codes.

The two versions of PARCOACH are compared regarding the
metrics defined in MBI. Table 1 shows the results obtained for the
two versions of PARCOACH. PARCOACH v2.4.0 is getting close
to the results of an ideal tool with a coverage and conclusiveness
of 1. All compilation errors have been fixed and the number of
false positives has been significantly reduced. The overall accuracy,
giving the proportion of correct diagnostics over all tests is equals
to 0.79. This means that despite there are still errors not detected
by the tool, PARCOACH is now able to correctly report several

https://guix.gnu.org/
https://gitlab.inria.fr/guix-hpc/guix-hpc
https://gitlab.com/MpiBugsInitiative

Highlighting PARCOACH Improvements on MBI SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 1: PARCOACH Evaluation against the MPI Bugs Initiative benchmark (v1.0.0). CE=Compilation Error, TO= Time Out,

RE=Runtime Error, TP=True Positive, TN=True Negative, FP=False Positive, FN=False Negative.

Tool

Errors Results Robustness Usefulness Overall

CE TO RE TP TN FP FN Coverage Conclusiveness Specificity Recall Precision F1 Score accuracy

PARCOACH v1.2 949 0 0 217 69 182 274 0.4388 0.4388 0.2749 0.442 0.5439 0.2486 0.1691
PARCOACH v2.4.0 0 0 0 670 679 18 324 1 1 0.9742 0.674 0.9738 0.801 0.7978
Ideal tool 0 0 0 994 697 0 0 1 1 1 1 1 1 1

errors. It is worth mentioning that we only compared the static
analyses of PARCOACH. However it is possible to instrument codes
in PARCOACH v2.4.0 to detect global concurrency errors during
execution. This does not appear in the results.

To compare the two versions of the tool, we slightly change the
docker image in MBI and the python script that builds and run
PARCOACH on the codes. The detailed results for PARCOACH
v1.2 (resp. v2.4.0) can be consulted on gitlab at https://parcoach.
gitlabpages.inria.fr/versions-comparison-on-MBI/1.2/ (resp. https:
//parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI/2.4.0/).

4 CONCLUSION

In this paper, we show significant improvement of PARCOACH
error detection on MBI. While PARCOACH v1.2 was only focused
on call ordering errors with collectives, PARCOACH v2.4.0 is able
to detect local concurrency errors, has no compilation failure and
is easier to use. The evaluation and assessment of a verification
tool are directly linked to the correctness benchmark used. We
noticed an unbalanced number of codes per error type which may
benefit tools focused on call ordering errors. The results presented
in this paper highlight further improvements that can be done in
PARCOACH to detect more errors. We plan to add a new analysis to
verify local concurrency errors with point-to-point communications
in the next version of PARCOACH.

REFERENCES

[1] Tassadit Aitkaci. 2022. Analyse et optimisations pour les applications HPC à mémoire
distribuée et adressable globalement. Ph. D. Dissertation. University of Bordeaux.

[2] Saillard Emmanuelle, Carribault Patrick, and Barthou Denis. 2014. PARCOACH:
Combining static and dynamic validation of MPI collective communications. IJH-
PCA 28, 4 (2014), 425–434.

[3] Pierre Huchant, Emmanuelle Saillard, Denis Barthou, Hugo Brunie, and Patrick
Carribault. 2018. PARCOACH Extension for a Full-Interprocedural Collectives
Verification. In Second International Workshop on Software Correctness for HPC
Applications.

[4] Mathieu Laurent, Emmanuelle Saillard, and Martin Quinson. 2021. The MPI Bugs
Initiative: a Framework for MPI Verification Tools Evaluation. In 2021 IEEE/ACM
5th International Workshop on Software Correctness for HPC Applications (Correct-
ness). 1–9. https://doi.org/10.1109/Correctness54621.2021.00008

[5] Emmanuelle Saillard, Marc Sergent, Tassadit Célia Aitkaci, and Denis Barthou.
2022. Static Local Concurrency Errors Detection in MPI-RMA Programs. In
Correctness 2022 - Sixth International Workshop on Software Correctness for HPC
Applications. Dallas, United States.

[6] Aitkaci Tassadit, Sergent Marc, Saillard Emmanuelle, Barthou Denis, and Guil-
laume Papaure. 2021. Dynamic Data Race Detection for MPI-RMA Programs. In
EuroMPI 2021.

A ARTIFACT DESCRIPTION

The following subsections give details on how to reproduce the
results presented in the paper.

A.1 Software Availability and Dependencies

For the experiments, we relied on the MBI framework. The sources
are available on gitlab at https://gitlab.inria.fr/parcoach/versions-
comparison-on-MBI/. The repository contains updated versions of
MBI v1.0.0 (commit ec1c8c4) to respectively use PARCOACH v1.2
and PARCOACH v2.4. PARCOACH is automatically installed in the
Docker image provided by MBI.

A.2 Installation

PARCOACH is automatically installed in theDocker image provided
in eachMBI version folder from the aforementioned repository used
for this paper. We changed the script parcoach.py in /script/tools/
to use the two versions of PARCOACH we wanted to compare. The
Dockerfile was also updated to get the right version of LLVM.

A.3 Data Generation

To launch PARCOACH, we used the following command in the
docker image:

python3 /MBI/MBI.py -c generate
python3 /MBI/MBI.py -x parcoach -c run

The first command generates the codes in a directory gencodes/.
The second command creates a directory logs/ containing the
results of all tests. The number of FP, FN, TP and TN, as well as the
metrics are computed with the following command:

python3 /MBI/MBI.py -x parcoach -c latex

A summary of the results in html format is available when launch-
ing the command:

python3 /MBI/MBI.py -x parcoach -c html

Figure 3: Screenshot of the dashboard

https://parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI/1.2/
https://parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI/1.2/
https://parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI/2.4.0/
https://parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI/2.4.0/
https://doi.org/10.1109/Correctness54621.2021.00008
https://gitlab.inria.fr/parcoach/versions-comparison-on-MBI/
https://gitlab.inria.fr/parcoach/versions-comparison-on-MBI/

SC-W 2023, November 12–17, 2023, Denver, CO, USA Virouleau, et al.

An online version of the results, as presented figure 3, can be con-
sulted at https://parcoach.gitlabpages.inria.fr/versions-comparison-
on-MBI.

A.3.1 PARCOACH v1.2. This version relies on LLVM 9 and builds
PARCOACH from sources. The script in scripts/tools/parcoach.py

clones PARCOACH repository and does a git checkout 6990ff4
to go back to version 1.2.

A.3.2 PARCOACH v2.4.0. This version requires LLVM 15. The
script in scripts/tools/parcoach.py retrieves the package of
the tool and uses prebuilt binaries to compile all codes in MBI.

https://parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI
https://parcoach.gitlabpages.inria.fr/versions-comparison-on-MBI

	Abstract
	1 Introduction
	2 PARCOACH Versions Comparison
	2.1 Support for RMA
	2.2 Improvements on Existing Results
	2.3 User Experience Improvements

	3 Experimental Results
	4 Conclusion
	References
	A Artifact Description
	A.1 Software Availability and Dependencies
	A.2 Installation
	A.3 Data Generation

