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Abstract: 

The issue at play is to facilitate the deployment of renewable energy sources by coordinating 

privately owned batteries to also support local power systems. Battery systems most often 

exclusively answer the individual objective of their owner (e.g., a reduction in the energy bill). 

This study intends to explore whether both paradigms, (i) minimizing individual costs and (ii) 

mitigating network constraints, are achievable for individual battery systems, and if not, what 

trade-offs are available. Most studies in the literature take a subjective stand in their valuation 

of individual costs versus grid constraints. A set of Pareto optimal solutions is explored to 

provide a full picture of the aforementioned trade-off. As such, a novel Multi-Objective Optimal 

Power Flow (MO-OPF) algorithm is developed to solve a convexified battery control problem. 

Results show the ability of the proposed methodology to provide a frame of reference to 

compare online battery controllers, e.g., if a controller can exploit synergies between individual 

and collective objectives or not. Further, and for the proposed scenario, local energy 

communities provide a strictly better set of Pareto optimal solutions than individually operated 

systems. 

Key-words: 

Local energy communities, Optimal Power Flow, Multi-objective optimization, Second Order 

Cone Programming, Battery systems. 
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Nomenclature: 

Sets: Parameters: 

t T  set of time steps ( ) ( ),buy sellt t   retail buy/sell prices  

n N  set of users exchange  grid usage fees in €/kWh  

b B  set of buses ( )nunctrl t  uncontrolled netload in kW (load/gen.) 

bN N  set of users at bus b 
np  maximum grid power of user n 

l L  set of lines (from buses i to j) ,s s

n nE E  min/max storage state of charge of user n 

Variables:  
_s init

nE  initial storage state of charge of user n 

( ) ( ),s s

n np t p t+ −
 storage charge/discharge of user n s

np  maximum storage power of user n 

( )s

nE t  storage state of charge of user n  
s  battery charging/discharging efficiency 

( ) ( ),n np t p t+ −
 grid import/export power of user n ,

l

i jr  resistance of line l (from bus i to bus j) 

( )ncost t  energy cost of n at t in € ,

l

i jx  reactance of line l (from bus i to bus j) 

( )Ncost t  community cost at t in € upstream  efficiency of the upstream network 

( )bP t  active power at bus b (users Nb) cost  cost constrain value for trade-off 

( )bQ t  reactive power at bus b (users Nb) t  simulation time step 

( ),

l

i jp t  active flow in line l (buses i,j) Acronyms:  

( ),

l

i jq t  reactive flow in line l (buses i,j) OPF  Optimal Power Flow 

( )bu t  voltage at bus b SOCP  Second Order Conic Programming 

( ),

l

i jI t  square current in line l (buses i,j) EMS  Energy Management Strategy 

 

1. Introduction 

At the scale of individual retail consumers, commercial solutions exist to install ‘behind the 

meter’ battery systems. Often, those systems are supplied with an Energy Management System 

(EMS) that answers individual objectives such as an energy bill reduction or greater use of local 

renewable generation (i.e., self-consumption). However, those privately-owned battery systems 

could also address collective objectives when users are connected to the public distribution 

network. In particular, those individual systems can provide ancillary services to alleviate grid 

constraints on local distribution networks (Lokeshgupta et Sivasubramani 2019). As such, the 

study carried out in this paper intends to explore whether both paradigms: (i) minimizing 
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individual costs and (ii) mitigating network constraints, are compatible with a battery 

management strategy, and if not, what trade-offs are available. 

The issue at play is to facilitate the deployment of renewable energy sources by coordinating 

privately owned batteries to also support local power systems. The first goal of this research is 

to provide a frame of reference to compare the abilities of battery controllers: (i) to lower end-

users’ energy costs and (ii) to act in a direction that mitigates grid constraints. This is relevant 

to evaluate the marginal gains of battery controllers (Hossain et al. 2021) and, in particular, AI-

based controllers (Kang et al. 2023), which may not guarantee a global optimum. This work 

does not constitute an EMS as in (Ali et al. 2019) but it rather provides a theoretical bound on 

what can be achieved by an EMS within the aforementioned frame of reference.  

The second goal of the research is to assess the influence of end-users trading power within a 

local energy community on the distribution grid. This is particularly relevant with the rapid 

growth of local energy communities in Europe, e.g., in the form of Renewable Energy 

Community (REC) or “collective self-consumption” communities in France (Roy et al. 2023). 

Due to the additional community layer, the compromise between individual and collective 

objectives (e.g., related to network constraints, but also collective costs) is more pregnant than 

outside of communities. Further, if only individual objectives are considered when trading 

power, it may become a source of concern for Distribution System Operators (DSO) (Berg et 

al. 2023). 

Before diving into further modeling methodologies, it is worth noting that the two paradigms 

investigated (i.e., minimizing individual costs and collective network constraints) intrinsically 

share a common objective: to balance local production and local consumption at every moment, 

i.e., to self-consume electricity. On the one hand, individual costs are reduced as self-consumed 

electricity from local generation assets (e.g., renewable-based) is less expensive than electricity 

purchased from conventional energy providers. On the other, constraints on grid equipment are 
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reduced since self-consumed power remains behind the meter and, as such, never transits on 

the network (i.e., potentially reducing losses, and/or voltage fluctuations). 

Nonetheless, lower individual costs do not necessarily imply that grid constraints are perfectly 

mitigated. The two aforementioned paradigms have a fundamental difference. Minimizing 

individual costs depends on the cumulative values of power (i.e., energy), while grid 

constraints/performances depend on instantaneous values of power. Thus, from the perspective 

of a retail consumer, a lower energy bill does not imply a reduction of the network peak demand 

if it costs the same to reduce consumption during on or off-peak hours. In addition, using 

batteries to reduce the network peak demand incurs additional costs because of efficiency losses 

when batteries are charged from the grid. As such, lower energy bills are not strictly equivalent 

to fewer occurrences of grid constraints, even though some synergies exist between the two. 

1.1 Related work 

The trade-off problem of minimizing individuals’ energy costs and minimizing grid constraints 

can be seen as a multi-objective economic dispatch as it amounts to scheduling controllable 

loads to minimize several objectives, e.g., generation costs, tap change variation, voltage 

deviations, or line losses while fulfilling network constraints. 

This type of multi-objective problem is typically addressed by assigning a financial cost to each 

sub-objective to assess its relative importance. For instance, (Olivella-Rosell et al. 2020) 

proposed an optimization problem decomposed via an Alternating Direction Method of 

Multipliers (ADMM) to solve such economic dispatch. In this approach, grid constraints are 

indirectly mitigated through a flexibility reserve that the DSO can use. The optimal solution to 

such a problem partially depends on the rate of buying electricity versus the rate of providing 

flexibility reserve. In (Alrumayh et Bhattacharya 2019), grid constraints are explicitly 

represented with power flow equations, and the problem is solved through a bi-level non-linear 
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optimization to represent both end-users and the DSO. Instead of the previous cooperative 

approaches based on maximizing social welfare, (Guerrero et al. 2018) proposed a competitive 

approach between end-users. As such, a local energy market is defined where the impact of 

each bid on the network is considered in a market clearing mechanism. 

The previously cited literature focuses on providing a single optimal solution to the Multi-

Objective Optimal Power Flow (MO-OPF) problem, e.g., between minimizing individual costs 

and minimizing grid constraints, i.e., a single point on the red curve presented in Fig. 1. To 

provide a full picture – also referred to as the Pareto optimal solutions represented by the red 

curve in Fig. 1 – the MO-OPF problem is extended to cover all candidate optimal solutions. The 

Pareto optimal solutions of the MO-OPF problem provide a bounded domain for possible EMS 

outcomes in terms of energy costs and grid constraints. Further, the Pareto front reveals the 

synergies between sub-objectives, e.g., how much grid constraints can be mitigated without 

additional cost.  

MO-OPF problems, in themselves, are often challenging nonlinear problems as shown by the 

numerous meta-heuristic approaches proposed in the recent literature. To solve the Pareto 

optimal solutions of the MO-OPF problem two widely used approaches consist of the weighting 

method and the Ɛ-constraint method (Mavrotas 2009). The weighting method mixes both 

objective functions in a multi-criteria approach with a weighted sum of the objectives – 

introducing α and (1-α) coefficients (Salgado et Rangel 2012). Alternatively, the 𝜖-constraint 

method used in (Ahmadi-Nezamabad et al. 2019), proposes to model sub-objectives as 

constraints. In (Ali et al. 2023), a short literature review reveals at least 28 different meta-

heuristic algorithms to address the MO-OPF problem, but only a single reference for a convex 

optimization approach (Davoodi et al. 2018). 
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In (Ali et al. 2023), the Pareto front is determined through a multi-objective evolutionary 

algorithm using a hybrid weighting method. This approach enables complex objective functions 

mixing costs, greenhouse gas emissions, tap change variations, and more. In (Barakat et al. 

2020), a particle swarm optimization is proposed to consider three objectives: the cost of 

energy, the loss of power supply probability, and the renewable energy fraction. In (Chen et al. 

2018) a firefly algorithm is developed with a constraints-prior Pareto-domination approach to 

ensure a non-violation of various inequality constraints. In (Rawat et al. 2021), authors propose 

a mixed-integer second-order cone program associated with the 𝜖-constraint method. Those 

approaches enable solving an accurate version of the multi-objective economic dispatch, e.g., 

preserving the non-linearity of power flow equations. However, they do not guarantee to 

achieve a global optimum and additionally may prove computationally intensive. 

To guarantee the global optimality of Pareto solutions within a deterministic time (Davoodi et 

al. 2018, 2021; Ding et al. 2017) propose a convexified MO-OPF which minimizes a quadratic 

cost function at each node of the system. However, the semi-definite programming approach 

they propose was not extended to the problem of controlling a storage unit, and in particular to 

account for battery efficiency losses.  

Specifically to local energy communities, (Mustika et al. 2022) explores how individual and 

collective objectives are expressed within EMS, but also through 10 different rules for sharing 

local production. Further, (Norbu et al. 2021) proposes an EMS and sharing rules that include 

the notion of distribution grid constraints. However, even though those heuristics often 

constitute a good basis for operating battery systems, they do not provide an optimal Pareto 

front to assess the domain of all possible outcomes. 
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1.2 Contribution statement 

To the best of authors knowledge, the literature does not cover convex algorithms to determine 

the Pareto front of a MO-OPF when decision variables model the operation of a battery system. 

The first contribution of this research is to provide such an algorithm in an open-source and 

reproducible manner. This contribution is applied to finding a set of Pareto optimal battery 

controls (i.e., power schedules) for the offline trade-off problem of minimizing individual costs 

versus distribution grid constraints, as illustrated in Fig. 1.  

The second contribution of this research is to solve the trade-off problem when considering that 

end-users can exchange power within a community, e.g., within REC. This contributes to 

understanding the impact of REC schemes on distribution grid constraints - when users can 

share power within their community given some network fees. This contributes to answering if 

community schemes yield additional grid constraints compared to individually operated 

systems (e.g., single end-users).  

 

Fig. 1 - Contributions towards understanding the trade-off between individual energy costs and 

reducing collective network constraints. 
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This publication is divided into three sections. The proposed methodology is described and then 

illustrated on an open-source dataset from the SimBench library including network data and 

time-series consumption. Finally, the findings and limits of the approach are discussed to 

highlight when this Pareto analysis is pertinent. 

2. Methodology 

2.1 Problem description 

The methodology is organized into five sub-sections. The first section defines individual costs 

and collective network constraints in this framework. The following two sub-sections describe 

the minimization problems for both costs and network aspects. The fourth sub-section 

assembles both minimizations in a single trade-off problem. Finally, the last sub-section 

describes an alternative cost model when end-users are part of a local energy community. 

Individual costs are defined for retail consumers that may or may not produce energy on the 

distribution grid (i.e., equipped or not with energy resources behind the meter). Their energy 

bills typically consist of two main components, (i) a fixed connection rate in €/kW and (ii) a 

variable cost based on energy consumption. The latter includes a price for buying electricity 

𝜋𝑏𝑢𝑦(𝑡), and a price for selling any surplus of production 𝜋𝑠𝑒𝑙𝑙(𝑡) in c€/kWh. The fixed 

connection cost depends on the maximum power (i.e., subscribed power) a consumer can absorb 

or inject on the network denoted 𝑝𝑛̅̅ ̅. The fixed connection cost is considered set, and as such, 

consumers remain within the power bounds allowed by their contract. In essence, individual 

energy costs are therefore described by Eq. (1) over time – the typical billing period is one 

month: 

𝑐𝑜𝑠𝑡𝑛(𝑡) = (𝜋𝑏𝑢𝑦(𝑡) × 𝑝𝑛
+(𝑡) − 𝜋𝑠𝑒𝑙𝑙(𝑡) × 𝑝𝑛

−(𝑡)) × ∆𝑡      ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 

( 1 ) 
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Where 𝑝𝑛
+(𝑡) is the consumption of participant n at time t, and 𝑝𝑛

−(𝑡) is the production surplus 

of participant n. Note that those two power flows at time t transit through the energy meter and 

cannot be simultaneously positive. This cost equation is further completed in section 2.5 when 

power exchanges within a REC are allowed.  

While energy costs modeled from Eq. ( 1 ) are often found in the literature (Mustika et al. 2022), 

grid constraints, on the other hand, may take various forms. They are typically represented as 

mathematical constraints in optimization problems and not necessarily embedded into an 

explicit objective. Indeed, grid constraints represent a multi-dimensional space that can hardly 

be boiled down to a single scalar metric. For instance, experience from distribution system 

operators shows that several aspects are relevant: 

• to keep voltage deviation at delivery nodes within some tolerance of a reference voltage,  

• to remain below the transformer rated power, 

• to reduce power losses on the lines, 

• to remain below line loading limits, 

• to avoid back feed power into the upper voltage level. 

Nonetheless, if one metric is to be selected to minimize most aspects of grid constraints, the 

literature shows different options. In (Le Floch et al. 2016), the square power consumption at 

the transformer is used to both lower the consumption (i.e., remain below the transformer-rated 

power) and flatten its shape in time (i.e., avoid/limit back feed power, reduce the system losses). 

This metric only considers the flows at the point of common coupling, and as such it simplifies 

power flow equations - yet it often positively improves network-dependent variables such as 

voltage deviations, line loading, or power losses. In (Guerrero et al. 2018), the authors consider 

a voltage sensitivity coefficient using an analytical derivation method to avoid running a full 

power flow every time the state of the network changes. In (Grover-Silva et al. 2018), the sum 
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of power losses on the lines is the representative metric being minimized in a convex optimal 

power flow.  

To include the complexity of the network topology, and potentially the heterogeneity of 

producers and consumers within a distribution feeder, the sum of power losses on the lines is 

defined as the metric to minimize grid constraints in this research. This option requires 

including load flow equations; however, it is possible to adopt a second-order cone 

programming method to convexify those equations (section 2.3). Further, line losses calculated 

for the network of interest are easily paired with estimated losses from the upstream network 

(i.e., beyond the slack bus) to include some representation of the complete transmission and 

distribution system. 

2.2 Minimizing individual costs 

Minimizing individual costs consists of an optimal operation of end-users’ assets, such as a 

battery system that charges from the most affordable electricity (e.g., from a surplus of solar 

production in the afternoon) and discharges when the price of electricity is the highest - which 

may vary with time of use pricing schemes. This problem is typically formulated as a convex 

optimization in Eqs. ( 2 ) to ( 5 ).  

Min. ∑ ∑ 𝑐𝑜𝑠𝑡𝑛(𝑡)

𝑛∈𝑁

 

𝑡∈𝑇

 

( 2 ) 

Subject to: Eq. ( 1 ) and: 

𝑝𝑛
+(𝑡) − 𝑝𝑛

−(𝑡) = 𝑢𝑛𝑐𝑡𝑟𝑙𝑛(𝑡) + (𝑝𝑛
𝑠+(𝑡) − 𝑝𝑛

𝑠−(𝑡))     ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 

( 3 ) 

− 𝑝𝑛 ≤ 𝑝𝑛
+(𝑡) − 𝑝𝑛

−(𝑡) ≤ 𝑝𝑛    ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 
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( 4 ) 

𝑝𝑛
+(𝑡) ≥ 0, and 𝑝𝑛

−(𝑡) ≥ 0   ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 

( 5 ) 

Where 𝑢𝑛𝑐𝑡𝑟𝑙𝑛(𝑡) corresponds to the uncontrolled netload at time t from participant n (i.e., the 

consumption minus any potential local production of participant n). The battery power charging 

and discharging are represented respectively by 𝑝𝑛
𝑠+(𝑡) and 𝑝𝑛

𝑠−(𝑡) for the battery of participant 

n. The charging and discharging powers are further constrained by the battery capabilities, 

expressed in Eq. ( 6 ) to Eq. ( 10 ): 

0 ≤ 𝑝𝑛
𝑠−(𝑡) ≤ 𝑝𝑛

𝑠 ,  and  0 ≤ 𝑝𝑛
𝑠+(𝑡) ≤ 𝑝𝑛

𝑠       ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 

( 6 ) 

𝐸𝑛
𝑠 ≤ 𝐸𝑛

𝑠(𝑡) ≤ 𝐸𝑛
𝑠     ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 

( 7 ) 

𝐸𝑛
𝑠(0) = 𝐸𝑛

𝑠(𝑇) = 𝐸𝑛
𝑠𝑖𝑛𝑖𝑡     ∀𝑛 ∈ 𝑁 

( 8 ) 

𝐸𝑛
𝑠(𝑡) = 𝐸𝑛

𝑠(𝑡 − 1) +
∆𝑡

60
× (𝑝𝑛

𝑠+(𝑡 − 1) × 𝜂𝑠 −
𝑝𝑛

𝑠−(𝑡 − 1)

𝜂𝑠
)    ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇 − {1}} 

( 9 ) 

𝑝𝑛
𝑠−(𝑇) = 0, and 𝑝𝑛

𝑠+(𝑇) = 0    ∀𝑛 ∈ 𝑁 

( 10 ) 
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Where 𝑝𝑛
𝑠−(𝑡) and 𝑝𝑛

𝑠+(𝑡) are limited by a maximum charging and discharging power 𝑝𝑛
𝑠 . 

Similarly, the energy in the battery 𝐸𝑛
𝑠(𝑡) is limited by minimum and maximum bounds 𝐸𝑛

𝑠 and 

𝐸𝑛
𝑠. The initial state of charge in kWh is defined as 𝐸𝑛

𝑠𝑖𝑛𝑖𝑡  and the evolution of the state of charge 

is defined in Eq. ( 9 ) where 𝜂𝑠 represents the charge and discharge efficiency of the battery. 

To ensure unit consistency between power values and energy values in kWh, ∆𝑡 is introduced 

which corresponds to the time resolution of time series in minutes. As the charging and the 

discharging power at T are never constrained by the remaining energy in the batterie in Eq. ( 9 

), 𝑝𝑛
𝑠−(𝑇) and 𝑝𝑛

𝑠+(𝑇) are ensured to be equal to zero. 

This implemented Linear Programming (LP) formulation minimizes the sum of individual 

costs. Note that this problem is equivalent to minimizing the cost of every participant taken 

individually. This can be easily shown as there are no contractual interactions between 

participants (e.g., no power exchanges, or no constraints from neighbours on the network). The 

overall cost is the sum of all the bills computed from the flows through every meter. In other 

words, the proposed optimization problem could be split into N optimizations without loss of 

optimality, as each participant n is solving an independent problem. Remind that at this stage, 

there are no questions of cost allocation and sharing between participants and/or mitigating 

system constraints. 

Before closing this section, it should also be noted that this LP formulation implicitly considers 

two linear complementary constraints (Yu et al. 2019), which would result in a nonconvex 

optimization if enforced explicitly. In particular, the problem implicitly considers orthogonality 

conditions for 𝑝𝑛
−(𝑡) ⊥ 𝑝𝑛

+(𝑡) and for 𝑝𝑛
𝑠−(𝑡) ⊥ 𝑝𝑛

𝑠+(𝑡). In other words, the netload of 

participant n cannot be positive and negative at the same time, and the battery cannot be charged 

and discharged at the same time t. This results in the following constraints, expressed in Eq. ( 

11 ): 
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𝑝𝑛
−(𝑡)𝑇 . 𝑝𝑛

+(𝑡) = 0,  and  𝑝𝑛
𝑠−(𝑡)𝑇 . 𝑝𝑛

𝑠+(𝑡) = 0    ∀(𝑛, 𝑡) ∈ {𝑁, 𝑇} 

( 11 ) 

In this LP formulation, a binary variable to enforce Eq. ( 11 ) is not necessary, as the optimal 

solution of the problem guarantees those conditions. Indeed, if the conditions are not met, two 

additional costs are incurred. First, an additional cost proportionally to 𝜋𝑏𝑢𝑦(𝑡) − 𝜋𝑠𝑒𝑙𝑙(𝑡), 

which implies that the price of buying electricity must be greater than the price of selling 

electricity 𝜋𝑏𝑢𝑦(𝑡) > 𝜋𝑠𝑒𝑙𝑙(𝑡), ∀𝑡 ∈ 𝑇. Secondly, simultaneously charging and discharging the 

batteries would incur an additional mathematical cost from battery losses due to the 

charging/discharging efficiency 𝜂𝑠 which is strictly positive. As the optimal solution does not 

benefit from additional costs the complementary constraints are then naturally respected. 

2.3 Minimizing power losses on a radial network 

The power loss minimization problem consists of scheduling batteries such that the magnitude 

of the power transiting on the network reduces losses over a time horizon T. However, the 

Optimal Power Flow (OPF) problem at t is nonconvex and NP-hard due to the nonlinear 

relationship between the powers and the voltages (Magnússon et al. 2014). Therefore, practical 

algorithms must rely on some approximations and model relaxations to converge faster and test 

a wide range of system setups. 

In this subsection, the steady-state network power flow is described in Eqs. ( 12 ) to ( 15 ) with 

the branch flow model first proposed by (Baran et Wu 1989), and schematically illustrated in 

Fig. 2, for radial grids. Given a directed graph 𝐺 = (B, 𝐿), a link in l is denoted by (i, j) if it 

points from a head node i to a tail node j. Constraints expressed in Eq. ( 13 ) and ( 14 ) describe 

nodal active power and reactive power balancing conditions, and Eq. ( 15 ) describes forward 

voltage drop on each line. This model is further explained by (Farivar et Low 2013). 
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𝑃𝑏(𝑡) = ∑ (𝑢𝑛𝑐𝑡𝑟𝑙𝑛(𝑡) + 𝑝𝑛
𝑠+(𝑡) − 𝑝𝑛

𝑠−(𝑡))

𝑛∈𝑁𝑏

    ∀𝑏 ∈ B 

( 12 ) 

𝑝𝑖,𝑗
𝑙 (𝑡) = 𝑃𝑗(𝑡) + 𝑟𝑖,𝑗

𝑙 ×
𝑝𝑖,𝑗

𝑙 (𝑡)2 + 𝑞𝑖,𝑗
𝑙 (𝑡)2

𝑢𝑖(𝑡)2
+ ∑ 𝑝𝑗,𝑘

𝑙 (𝑡)      ∀(𝑙, 𝑡) ∈ {𝐿, 𝑇}

𝑘∈ 𝜏(𝑗)

 

( 13 ) 

𝑞𝑖,𝑗
𝑙 (𝑡) = 𝑄𝑗(𝑡) + 𝑥𝑖,𝑗

𝑙 ×
𝑝𝑖,𝑗

𝑙 (𝑡)2 + 𝑞𝑖,𝑗
𝑙 (𝑡)2

𝑢𝑖(𝑡)2
+ ∑ 𝑞𝑗,𝑘

𝑙 (𝑡)

𝑘∈ 𝜏(𝑗)

     ∀(𝑙, 𝑡) ∈ {𝐿, 𝑇} 

( 14 ) 

𝑢𝑗(𝑡)2 = 𝑢𝑖(𝑡)2 − 2 (𝑟𝑖,𝑗
𝑙 × 𝑝𝑖,𝑗(𝑡) + 𝑥𝑖,𝑗

𝑙 × 𝑞𝑖,𝑗(𝑡))

+ (𝑟𝑖,𝑗
𝑙 2

+ 𝑥𝑖,𝑗
𝑙 2

) ×
𝑝𝑖,𝑗

𝑙 (𝑡)2 + 𝑞𝑖,𝑗
𝑙 (𝑡)2

𝑢𝑖(𝑡)2
     ∀(𝑙, 𝑡) ∈ {𝐿, 𝑇} 

( 15 ) 

Where 𝑃𝑏(𝑡) represents the total active power demand at bus b from the set of participants 𝑁𝑏 

connected to it. The total active power demand depends on uncontrolled net load profiles and 

control actions of batteries. The active power flow on line 𝑙 ∈ 𝐿 from node i to node j is denoted 

𝑝𝑖,𝑗
𝑙 (𝑡) and depends on the active demand at bus j, the losses in line l, and the power flow from 

lines downstream of node j. The reactive power flow on line l denoted 𝑞𝑖,𝑗
𝑙 (𝑡) follows the same 

logic, 𝜏(𝑏) represents a function that returns the set of busses downstream a given node b. In 

practice, the implemented equations embed matrixes that allow to map each user to a bus, they 

are not represented here for the sake of clarity. 
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The voltage magnitude at bus j at time t denoted 𝑢𝑗(𝑡) depends on the voltage magnitude at the 

previous node i, the impedance (𝑟𝑖,𝑗
𝑙 + j𝑥𝑖,𝑗

𝑙 ) and the power flow on line l. Note that this model 

is already a relaxed version of the full OPF as voltage angles are not considered. Nonetheless, 

(Farivar et Low 2013) show that this relaxed version is equivalent to the full problem for radial 

networks, which is the intended scope. 

 

Fig. 2 - Branch model in a radial distribution grid. 

To convexify power flow equations, the literature proposes several approaches (Molzahn et 

Hiskens 2019). One classic approach to solving those equations is to perform a relaxation of 

the nonlinear terms in the form of a Second Order Conic Program (Rigo-Mariani et Vai 2022). 

The symbol 𝐼𝑖,𝑗
𝑙 (𝑡) represents the square of the current magnitude on line l at time t. Similarly, 

for the voltages,   𝑈𝑏(𝑡) = 𝑢𝑏(𝑡)2 represents the square of the voltage magnitude at node b at 

time t. The equality constraint Eq. ( 16 ) for the current on a line is then converted into an 

inequality and rewritten following a second-order cone constraint Eq. ( 17 ). Lastly, lower and 

upper bounds 𝑢𝑏 and 𝑢𝑏 are added to constraint the square magnitude of voltages at each node 

in Eq. ( 18 ). 

𝑝𝑖,𝑗
𝑙 (𝑡)2 + 𝑞𝑖,𝑗

𝑙 (𝑡)2 = 𝑈𝑖(𝑡) × 𝐼𝑖,𝑗
𝑙 (𝑡)  ∀(𝑙, 𝑡) ∈ {𝐿, 𝑇} 

( 16 ) 

𝐼𝑖,𝑗
𝑙 (𝑡) + 𝑈𝑖(𝑡) ≥ ‖

2. 𝑝𝑖,𝑗
𝑙 (𝑡)

2. 𝑞𝑖,𝑗
𝑙 (𝑡)

𝐼𝑖,𝑗
𝑙 (𝑡) − 𝑈𝑖(𝑡)

‖

2

   ∀(𝑙, 𝑡) ∈ {𝐿, 𝑇} 
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( 17 ) 

𝑢𝑏
2 ≤ 𝑈𝑏(𝑡) ≤ 𝑢𝑏

2
   ∀(𝑏, 𝑡) ∈ {𝐵, 𝑇} 

( 18 ) 

Note that this relaxation requires an objective function that is convex and monotonically 

increasing with the square current 𝐼𝑖,𝑗
𝑙 (𝑡), which is coherent with the objective of minimizing 

line losses. In this study, in addition to power losses on the line, power losses from the upstream 

network are included to ensure that consumption at the point of common coupling would still 

involve some losses. In particular, without this upstream loss term, the power production at the 

edges of the radial network would be penalized from traveling a greater distance than the 

production from the upstream network. As such, the objective function of the loss minimization 

problem is ultimately formulated as follows from Eqs ( 19 ) to ( 22 ): 

Min. ∑ upstream
𝑙𝑜𝑠𝑠𝑒𝑠

(𝑡) + line𝑙𝑜𝑠𝑠𝑒𝑠(𝑡)

𝑡∈𝑇

 

( 19 ) 

line𝑙𝑜𝑠𝑠𝑒𝑠(𝑡) = ∑ 𝑟𝑖,𝑗
𝑙 × 𝐼𝑖,𝑗

𝑙

𝑙∈𝐿

(𝑡)   ∀(𝑙, 𝑡) ∈ {𝐿, 𝑇} 

( 20 ) 

upstream
𝑙𝑜𝑠𝑠𝑒𝑠

(𝑡) ≥ 𝜂𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚   ∑ 𝑝𝐻,𝑘
𝑙 (𝑡)

𝑘∈ 𝜏(𝐻)

,    ∀𝑡 ∈ 𝑇 

( 21 ) 

upstream
𝑙𝑜𝑠𝑠𝑒𝑠

(𝑡) ≥ 0 

( 22 ) 
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Where 𝑝𝐻,𝑘
𝑙 (𝑡) represents the active power flow from the slack bus denoted H to node k at time 

t. The efficiency of the upstream network is denoted 𝜂𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚. The value for this parameter is 

justified in section 3.1. Furthermore, the upstream losses term is ensured to remain positive. 

Since the possibility of negative losses from 𝑝𝐻,𝑘
𝑙 (𝑡) < 0 would encourage back feed power 

into the upstream network, which is not desirable. 

Last but not least, the optimization problem is subject to Eq. ( 6 ) – ( 10 ) representing the 

battery model as previously defined in the cost minimization. Once again this implies 

complementary constraints to ensure that 𝑝𝑛
𝑠−(𝑡)𝑇 . 𝑝𝑛

𝑠+(𝑡) = 0. However, in this optimization, 

complementarity may not be guaranteed in every case. Indeed, if a large surplus of solar power 

occurs, the optimal solution to reduce the current and losses in the lines may consist of 

simultaneously charging and discharging the battery at t to virtually create an additional load in 

the systems thanks to the battery’s efficiency. 

One option to ensure complementarity constraints is to add a binary variable to denote either 

the charging or discharging mode of the storage. However, this solution implies adding a binary 

variable at each time step and for each battery of the problem, which may result in a prohibitive 

computational time. As such, the efficiency of the battery 𝜂𝑠 is relaxed if complementarity 

constraints are not respected. Hence, the optimization problem is solved one more time with 

𝜂𝑠 = 1 if complementary constraints are not respected from a posteriori analysis of the first 

run. Note that those constraints are not respected only on days when production surplus is 

beyond the sum of battery capacities and there is a ‘mathematical’ need for an additional load 

to improve the objective. The hypothesis is made that, on those days, removing battery 

efficiency does not significantly impact costs as local production is in surplus. This hypothesis 

is later verified in Appendix A, where it is also suggested to reduce the battery capacity by 14 % 
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and the discharging power by 20 % to counterbalance the gain from relaxing battery efficiencies 

to 𝜂𝑠 = 1. 

2.4 Forming the trade-off problem 

Forming the trade-off problem consists of assembling both minimization problems to obtain a 

continuous domain of solutions from a cost minimization (section 2.2) to a loss minimization 

(section 2.3). To obtain the trade-off curve – also referred to as the set of Pareto optimal 

solutions –  two widely used approaches consist of the weighting method and the Ɛ-constraint 

method (Mavrotas 2009). The weighting method is problematic with the SOCP relaxation of 

power flow equations. As the SOCP relaxation requires the loss minimization sub-objective to 

be a dominant term in the overall trade-off objective, i.e., it is not possible to explore weights 

that give more importance to the cost minimization sub-objective.   

Instead of mixing loss and cost minimizations in the objective function, the Ɛ-constraint method 

proposes to model sub-objectives as constraints. Compared to the weighting method, the Ɛ-

constraint approach avoids the influence of scaling sub-objectives, and redundant runs from 

different weights leading to the same result (Mavrotas 2009). 

Following the Ɛ-constraint method, the trade-off problem corresponds to the loss minimization 

problem (section 2.3), to which an equality constraint Ɛ𝑐𝑜𝑠𝑡 is added, representing the sum of 

individual costs Eq. (. Note that the objective function of the trade-off problem is Eq. ( 19 ) 

unchanged from the loss minimization problem.  

Ɛ𝑐𝑜𝑠𝑡 = ∑ ∑ 𝜋𝑏𝑢𝑦(𝑡) × 𝑝𝑛
+(𝑡) − 𝜋𝑠𝑒𝑙𝑙(𝑡) × 𝑝𝑛

−(𝑡)

𝑛∈𝑁𝑡∈𝑇

  

( 23 ) 
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Where Ɛ𝑐𝑜𝑠𝑡 is a cost value between a lower bound (obtained from the cost minimization 

problem), and an upper bound (from the loss minimization problem). The complete process of 

drawing the trade-off between minimizing individual costs and collective network losses is 

summarized in Fig. 3. 

 

Fig. 3 - Construction of the trade-off curve between minimizing individual costs and minimizing 

network losses. 

The trade-off methodology consists of running a power losses minimization (step 1.1) and a 

cost minimization (step 1.2) to place the boundaries of the problem in the costs/losses diagram 

(step 1). Note that after a cost minimization, power losses are recovered via a traditional power 

flow algorithm (e.g., Newton-Raphson). Then, drawing the trade-off curve consists of solving 

the loss minimization while respecting a given cost within the trade-off’s bounds (step 2). Since 

solving the trade-off problem over an entire year is intractable, the trade-off problem is solved 

over a shorter interval of time, e.g., two days which covers the daily cycle of battery systems. 

Solving shorter intervals of time is then repeated and the results are summed to obtain trade-off 

results for an entire year. 
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2.5 Alternative cost formulation for a community 

In the previous formulation, for cost considerations, each consumer could buy power from or 

sell to an energy provider, but not from/to another consumer in the network. To account for 

potential exchanges and trading between users, notably within a REC, an alternative cost 

formulation is proposed. 

In a community setup, it is not only a question of coordinating batteries, but also of fairly 

sharing the value created among the community members. To avoid making assumptions about 

how power is shared within the community, the considered objective is to minimize the overall 

community cost as if the community is a single consumer, which is a necessary condition of the 

optimal sharing problem. As such the cost equation for the community is a function of energy 

imports from outside of the community and fees from using the distribution grid, Eq. ( 24 ). 

𝑐𝑜𝑠𝑡𝑁(𝑡) = 𝜋𝑏𝑢𝑦(𝑡) × max (0, ∑ 𝑝𝑛

𝑛∈𝑁

(𝑡)) − 𝜋𝑠𝑒𝑙𝑙(𝑡) × min (0, ∑ 𝑝𝑛

𝑛∈𝑁

(𝑡))

+ 𝜋𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 × [∑ max(0, 𝑝𝑛(𝑡)) − max (0, ∑ 𝑝𝑛

𝑛∈𝑁

(𝑡)) 

𝑛∈𝑁

] 

( 24 ) 

Where the cost of the energy exchanged within the community priced 𝜋𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 is simply the 

difference between energy imports of the community as a whole, max (0, ∑ 𝑝𝑛𝑛 (𝑡)), and the 

sum of individual members’ imports, ∑ max(0, 𝑝𝑛(𝑡))𝑛 . In the community version of the trade-

off problem, the cost Eq. ( 24 ) replaces Eq. ( 23 ), and in the cost minimization optimization, 

Eq. ( 1 ) is replaced by Eq. ( 24 ). 
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3. Results 

3.1 Case study and input data 

The objective of this section is to illustrate the proposed methodology in a realistic but 

hypothetical French scenario. Even though absolute results have a limited scope in this section, 

they demonstrate the types of questions that may be answered, as well as the perspectives 

opened when mixing individual and collective objectives. Inputs and outputs are summarized 

in Fig. 4. Note that the trade-off algorithm is deployed as an open-source Python package easily 

accessible on GitHub under “multi-obj-optimal-powerflow”. 

 

Fig. 4 - Overview of inputs and outputs of the proposed open-source algorithm. 

The methodology is applied to a network topology taken from the SimBench open-source 

dataset (Meinecke et al. 2020). A rural network is selected with 13 buses supplied by a 160 kVA 

transformer at a rated voltage of 0.4 kV. This network is illustrated in Fig. 5. The transformer 

is represented by an equivalent impedance corresponding to the copper losses in the windings. 

The voltage at the slack bus is set to 1 p.u. 
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Fig. 5 - Low-voltage network adapted from the SimBench dataset. 

At each bus of the network, two residential houses are connected with realistic load demands 

from an open-source database of residential load profiles. The database includes a collection of 

173 load profiles from France for a full year at a 15-min resolution (Quoilin et al. 2016). A 

collection of 26 profiles were selected with a yearly energy consumption between 8.5 MWh 

and 14 MWh which represent on average the consumption of an all-electric household between 

70 m2 and 100 m2 in France. This set of profiles leads to a maximum power demand of 115 kW 

which is below the transformer rated power. The reactive power consumption at each house 

follows the active power consumption with a constant power factor of 0.9 during the simulated 

year. However, power factors are not limited to static values and may vary in time to accurately 

represent a specific scenario. 

Separately, PV production data is extracted from the open-source PVGIS platform (Huld et al. 

2012) for Lyon, France. A fixed 3 kWp PV is considered per household. This PV capacity 
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installed per household ensures a sufficiently large production to justify having batteries for 

increased self-consumption. The battery capacity per household is set to 5 kWh which 

represents a mid-range commercial device with rated power for charging and discharging set to 

2.5 kW and an efficiency 𝜂 = 0.95. Electricity is considered to be bought and sold from an 

external energy provider at respectively 22.76 c€/kWh and 13 c€/kWh. 

 

Fig. 6 – Distribution of the total active power (i.e., total netload) for each hour of the day over a year. 

Each box spans from quartile 1 to quartile 3. The second quartile is marked by a line inside the box. 

By default, the whiskers correspond to the boxes' edges which is the farthest point within +/- 1.5 times 

the interquartile range. 

The difference between consumption and production for the 26 households over the year results 

in a netload profile summarized in Fig. 6. For each hour of the day, the distribution of netload 

values is represented by a box plot highlighting the median, lower, and upper 5 % quantiles. 

The dots outside of the box plot represent outliers not accounted for in the distribution. Fig. 6 

provides an overview of the power demand expected at the slack bus without control. In 

particular, households’ production leads to a 49 kW back-feed into the upstream network for 
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several days at 10 a.m. Further, Fig. 6 shows that 5 a.m. is the last hour where the netload is 

never negative; as such, it provides a good start time to solve the proposed optimization 

problems without risking cutting the diurnal pattern of solar production.  

In addition to the line losses within the distribution grid, upstream network losses are considered 

to represent 2 % of the demand at the slack bus. This value corresponds to the estimated losses 

by the French Transmission System Operator RTE in 2019 (RTE 2019). Note that all the 

datasets are available in open source. The Python code for the methodology presented, as well 

as the Jupyter Notebook to set up this illustrative example, are available online under the MIT 

license1. Optimization problems are written and solved using Pyomo and Gurobi on an Intel 

Core i5-1135G7 at 2.40 GHz with 16 Go of RAM. The Pareto analysis for a full year at a 

resolution of 15 minutes for a 13-bus network takes under 4 h. 

3.2 Results without local energy communities 

When batteries are coordinated to minimize individual costs (section 2.2), or alternatively to 

reduce grid losses (section 2.3) charging and discharging schedules differ. To illustrate those 

differences, Fig. 7 shows the amount of energy stored in batteries as a result of the two different 

optimization objectives. The schedules from the cost minimization show that batteries are not 

charging on the first day, as there is no surplus from local solar production. However, the 

schedules from the loss minimization show that batteries are incentivized to charge to flatten 

the netload as much as possible, hence reducing power losses. Any trade-off solutions then fall 

in between those two extreme scenarios depending on the cost constraint Ɛ𝑐𝑜𝑠𝑡 applied. Note 

that on the second day, both schedules for the costs and losses minimization are closer which 

shows the potential synergy between those two objectives. 

                                                           
1 https://github.com/Jonathan56/multi-obj-optimal-powerflow   

https://github.com/Jonathan56/multi-obj-optimal-powerflow
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Fig. 7 – Illustration of the trade-off between lowering network losses (orange line) and minimizing 

individual costs (blue line) in terms of the state of charge in kWh. The thinner grey line represents the 

total netload in kW on the same y-axis.  

Extending from those illustrative two days, Fig. 8 provides the full trade-off curve over a year. 

Firstly, it shows a strong synergy between cost and loss minimization, as the trade-off curves 

nearly achieve the best of both objectives (i.e., the lower left corner of the figure). In particular, 

there exists a solution denoted trade-off #2 in Fig. 8 which achieves 100 % of the maximum 

cost reduction and lowers overall network losses by 5.5 %. In other words, the minimum cost 

solution is not unique and can be oriented towards a solution that reduces grid constraints at 

little additional cost. 

It is important to note that the network losses are also a proxy for other constraints on the 

network. For instance, the cost minimization solution leads to 5.7 % of the lowest 95 % percent 

voltage under 0.95 p.u. and a power demand experienced at the transformer between 94.7 kW 

and -30.7 kW. On the other hand, the loss minimization solution leads to 0.5 % of the lowest 

95 % percent voltage under 0.95 p.u. and limits the power at the transformer between 59.9 kW 
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and -16.6 kW. Although the loss minimization improves the operation of the distribution grid, 

the outcomes of the cost minimization might be sufficient for the distribution grid operator.  

Overall, Fig. 8 illustrates the domain of possible outcomes for any EMS applied to the 

considered battery systems. It enables stakeholders to understand what outcomes are achievable 

in the best-case scenario, and further, to compare the performances of different EMS in a unified 

frame of reference. Note that in (Davoodi et al. 2018) where a convex methodology is also 

applied, the authors provide a similar cost versus loss figure, however, it focuses on “fuel cost” 

in $/h rather than the retail cost of electricity after operating battery systems.  

 

Fig. 8 – Trade-off curve for 5 kWh batteries and 3 kWp solar panels equipped at every household. 

The loss minimization problem tends to increase the overall cost. At the scale of end-users, 

some houses might participate more in the effort due to their position on the network and their 

uncontrolled netload. Fig. 9 illustrates the disparities of gains for each household relative to the 

scenario without batteries and for both cost and loss minimization problems. The cost 

minimization shows that all the houses are grouped around an average relative gain of 93 €/year, 
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whereas the losses minimization gains are evenly spread between -5 € and 80 €/year. The fact 

that one of the houses at bus 12 (denoted “n12” in Fig. 9) has a negative gain in the effort of 

limiting network losses is potentially unfair in comparison with other households. As such, the 

grey area in Fig. 9 represents the additional cost of minimizing grid constraints that should be 

shared among the different households for fair participation in grid support. 

 

Fig. 9 - Relative gains per household compared to a scenario without batteries. The orange dots 

represent gains under a loss minimization whereas the blue dots represent gains with a cost 

minimization. The x-axis is denoted as such #bus ID (house ID at the bus). 

3.3 Results for a local energy community 

In this section, a similar MO-OPF Pareto is solved while considering the community setup from 

section 2.5 - i.e., households can share power production with their neighbors for a grid fee of 

3.15 c€/kWh as represented in the cost Eq. ( 24 ). In other words, households can sell their 

surplus power at 22.76 c€/kWh minus a network fee of 3.15 c€/kWh instead of selling to their 

energy supplier at 13 c€/kWh. As surplus power is more efficiently traded, REC necessarily 

lowers the overall cost of energy. However, their impact on grid constraints is uncertain. 
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Fig. 10 shows the trade-off curve from Fig. 8 along with the trade-off results from the 

methodology applied to the community setup. The trade-off curve from the community shows 

a minimum cost lowered by 500 € compared to the previous trade-off curve. The cost 

corresponding to the loss minimization case for the community is also closer to the minimum 

cost (i.e., the trade-off curve has a smaller vertical spam). This is due to a higher payoff when 

discharging batteries to support the network as this energy is also sold at a higher cost within 

the community.  

The resulting losses of the cost minimization in the community scheme are also reduced 

compared to the losses without community, as less power is imported from the upstream grid 

thanks to the coordination of batteries at the community level. Note that secondary metrics such 

as percentage of under voltages, and maximum and minimum power demands remain the same 

in both scenarios with and without community. For this illustrative test case, the community 

scheme has a higher potential, i.e., a lower energy cost for the same grid constraints. Overall, 

as local energy communities provide the additional flexibility of directly selling power to a 

neighbor, energy costs tend to be lowered, and less subjected to the volatility of energy 

suppliers. Potentially, additional gains from the community scheme could be redirected to 

support the missions of DSO, even if communities do not necessarily create more distribution 

grid constraints. 
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Fig. 10 - Theoretical trade-off curves for two scenarios: in blue each house is billed independently of 

the others (i.e., Fig. 8), and in green an energy community where power can be exchanged given a 

network fee. 

To further extend the scope of the presented research, both with and without local energy 

communities, the proposed MO-OPF is scalable to larger networks as demonstrated in 

(Venkatasubramanian et al. 2022), where the SOCP complexity is shown to grow linearly with 

the network’s size below 3000 nodes. Additionally, if three-phase unbalanced systems must be 

represented the proposed SOCP relaxation can be extended to such a model while keeping 

storage elements (Nazir et al. 2020). To complete the proposed framework, there exist multiple 

methodologies to select the best solution on a Pareto front (Kizielewicz et al. 2023). However, 

this is somewhat out of the scope of the paper as the Pareto front is seen as a theoretical bound 

to provide a reference for other EMS, rather than a series of solutions to choose from. 
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4. Conclusion 

In this paper, a convex Multi-Objective Optimal Power Flow (MO-OPF) algorithm is developed 

and illustrated to address the trade-off between minimizing individual energy costs and 

lowering collective grid constraints on a low-voltage network.  

For the illustrated scenario, providing grid support from battery systems is highly synergistic 

with reducing individual energy costs. Including network losses in the coordination of batteries 

can lower overall network losses by 5.5 % at no additional cost. Yet, from another perspective, 

the trade-off curve shows that network constraints remain within normal bounds of operation 

in any case. As such, for this scenario, this suggests that network constraints could be simplified 

to reduce the complexity of battery controllers.  

This trade-off approach provides a framework to compare the efficiency of any controller in a 

two-dimensional space with individual benefits versus collective constraints. In particular, this 

framework enables to assess the performance of data-driven approaches that do not provide a 

theoretical best-case reference. As local energy communities become more common, the 

importance of considering individual versus collective objectives grows, hence the proposed 

frame of reference becomes a key aspect towards the acceptability of EMS by end-users. 

In addition to operational control, this methodology is relevant at the planning stage to assess 

what placement of systems is relevant. In particular, what placement of resources would ensure 

that local energy communities are not at risk of increasing grid constraints when coordinated 

through a cost-minimization approach? 

A perspective of this work is to provide a larger analysis of networks, cost scenarios with time-

of-use pricing, and flexible devices like electric vehicles. This tool is available in open source. 
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Appendices A 

In this supplementary material, the impact of relaxing the battery efficiency to 𝜂𝑠 = 1 is 

assessed when otherwise binary constraints would have been needed to enforce the 

complementarity (i.e., 𝑝𝑛
𝑠−(𝑡)𝑇 . 𝑝𝑛

𝑠+(𝑡) = 0). Intuitively, any battery should be prevented from 

charging and discharging at the same time, which would create virtual losses if 𝜂𝑠 < 1. The 

objective function of the trade-off problem benefits from virtual losses when there is a surplus 

of solar power which creates additional losses on the lines. 

The selected hypothesis is that relaxing the battery efficiency (i.e., 𝜂𝑠 = 1) while decreasing 

the battery capacity (i.e., 𝐸𝑛
𝑠

′
= 0.86 × 𝐸𝑛

𝑠) and decreasing discharging power (i.e., 𝑝𝑛
𝑠 ′ =
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0.8 × 𝑝𝑛
𝑠) is a good solution to solve the optimization problem with efficiency 𝜂𝑠 = 0.95  

without adding binary variables (which render the problem much less tractable). 

To test the selected hypothesis, the relaxed problem and the “complete” problem are compared 

on days when complementary constraints are not problematic. From the potential days to test 

the hypothesis, the four days with the highest solar production are selected to resemble the 

conditions of a day when complementary constraints are problematic. 

Fig. 11 shows that simply relaxing battery efficiency without decreasing battery capacity 

provides an optimistic trade-off curve in terms of network losses compared to the “complete” 

problem. However, the solution which consists in relaxing the efficiency but decreasing the 

battery capacity by 14 % and discharging power by 20 % (values obtained through manual 

iterations) provides a result close to the full problem both in terms of individual costs and 

network losses.  
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Fig. 11 - Trade-off results in three different scenarios for four days without complementary constraints 

but with the highest solar production: (dash blue) no relaxation of battery efficiency (in red) relaxation 

of battery efficiency (in green) relaxation of battery efficiency and reduction of battery capacity by 14 % 

and discharging power by 20%. 


