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Abstract. This paper proposes a novel mitigation technique for soft error
effects on the attitude estimation (AE) processing for spacecrafts, especially
for satellites’ application. Specially, we are focused on the soft errors that oc-
cur in space and affect, for example, the quaternion Kalman filter, running on
the processor of control system of satellite, which leads to invert bits of the
estimated states, miscalculations and a decreased performance. The mitigation
technique detects first the presence of soft error effects on the AE algorithm
output using some residuals. Then the residuals are passed to a trained Ma-
chine Learning (ML) models to estimate the quaternion error that will be used
to correct the estimations. A supervised regression solution was proposed to
correct the soft error effects, in which a methodology for creating a dataset for
training classical ML models was developed. The results from the case-study
scenario show a high reduction of soft error effects, while adding little overhead
to the Kalman filter processing.

1. Introduction

Electronic components can be upset by radiation particles in space. It creates
transient faults able to invert memory bit elements of their circuits, characterizing
single-event upset (SEU), or even interrupt their operation requiring a software
reboot, defining a single event-functional interrupt (SEFI). Both of these events
are considered as soft single-event effects or simply soft errors [1]. High-energy
particles such as protons, electrons, and heavy ions, coming mainly from the Van
Allen radiation belt [2] are responsible for inducing soft errors in space environ-
ment.

Spacecrafts, such as satellites, utilize Attitude Determination and Control Sys-
tems (ADCS) to determine the vehicle’s attitude, throughout sensors’ measure-
ments, and subsequent control using actuators. The ADCS components are essen-
tially electronic systems, sometimes upset by soft errors, as shown in Figure 1. As
an example, the TDRS-1 is a satellite launched by NASA in April 1983 [3]. SEU
events were observed in the ADCS Random Access Memory (RAM), during its
trajectory to reach geosynchronous orbit. Some SEUs caused serious anomalies,
which required ground control to keep the satellite’s desired orientation.

Low Earth Orbit (LEO) spacecraft missions are also exposed to large radiation
risks, due to their orbital motion inside the Van Allen inner radiation belt (600-
10,000km of altitude), mainly when they pass over the South Atlantic Anomaly
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(SAA), a localized region where the radiation fluxes reach their highest intensities
[4]. Several factors can affect the SAA environment, such as geomagnetic storms,
which are able to increase the SEU rates up to 40% in the recovery phase in
relation to the initial phase of the storm [4]. In [5] a study for a circular orbit
with inclination of 63° and 1111km of altitude, which passes through the SAA, was
made to calculate the soft error rate caused by proton particles in the radiation
belts in a representative satellite. It was found that for a memory chip of 64
Mbits, a soft error rate of 104 bit/day could be observed. The effects of the
majority of the soft errors would not cause significant impact, acting just as an
extra noise. However, if a soft error occurs in a critical function, such as in
programs controlling actuators or in the data analyses, it could lead to dangerous
scenarios [5].

The Attitude Estimation (AE), one of the main components of the ADCS,
consists of determining the orientation of the spacecraft relative to a reference
frame using sensors’ measurements. The extended Kalman filter (EKF) is one
of the most applied algorithms for real-time spacecraft AE [6], [7], [8]. However,
this algorithm demands the linearization of the non-linear equations that relate
the sensors’ measurements with the current attitude (the measurement equation).
This linearization procedure can provoke undesirable effects such as sensitivity to
initial conditions, and also an increase in the computational load. Alternatively,
the authors in [9] propose a novel quaternion Kalman filter (NQKF) algorithm,
employing a special manipulation on the measurement equation, eliminating thus
the linearization step. The AE is a critical task that must be accomplished by

Figure 1. Satellite’s ADCS under soft errors caused by radiation
(VTS Timeloop software from Centre National d’Études Spatiales
(CNES)).
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the satellite’s ADCS. As aforementioned, this system can be upset by soft er-
rors caused by the radiation environment, especially for the processor where the
Kalman filter-based AE algorithms run. In our previous works [10, 11, 12] we
have already investigated the soft error effects on AE processing and exposed
results obtained during experimental radiation campaigns. Therefore, the soft
error effects should be mitigated for ensuring the system reliability.
A variety of works have addressed Kalman filter-based algorithms reliability
[13, 14, 15]. However these works deal with faults, outliers, external pertur-
bations, such as external accelerations[16, 17] or magnetic distortions [18], and
different kind of noises that may occur in the sensors’ measurements over time,
then are not appropriate to be used in this framework. Unlike, soft errors, more
specifically SEUs, are punctual events that occur when high energy particles hit
memory elements inverting its states, i.e. bit-flips. The SEU effects in a pro-
cessing system running an AE algorithm may result in miscalculations, hence
providing a wrong attitude estimation, as shown in [10]. Plenty of known mitiga-
tion techniques can be employed for addressing this issue. Redundancy is one of
the most common techniques, and can be applied replicating hardware, adding
check bits, and even running multiple processes of the same program [19]. Er-
ror detection and correction codes are also common methods applied in current
processors and memories architectures. However, these techniques are not com-
pletely fail-safe, they can increase the cost, processing time, and application’s
weight.

Machine Learning (ML) techniques have been successfully applied for improv-
ing the AE performance, or even replace the classical AE algorithms (estimation
without dynamic model). In [20] a reinforcement learning method was applied to
improve the performance of an EKF algorithm, addressing inaccurate initial esti-
mation, filter gains, and noise model. A method for training deep neural networks
was developed in [21] for enhancing the AE by a Kalman filter. In [22] a novel
attitude estimator model was conceived based on recurrent neural networks able
to eliminate sensor errors, while implementing dynamic AE. A long short-term
memory neural network was trained in [23] using real quadrotor sensors’ data for
AE, and high accuracy results were obtained. In [24] a magnetic field gradient-
based EKF is used along with a BiLSTM network to achieve better estimates of
the velocity of a moving body using inertial sensors.
To the best of our knowledge, the mitigation of SEU on AE processing is not well
addressed until now in the literature. More specifically, we deal with bit-flips
in the algorithm’s variables occurring in the processor during the computation
of quaternion from a set of measurements, that can lead to miscalculations and
consequently a wrong estimated attitude. The impact of learning approaches on
AE processing to mitigate soft error effects (SEU) has the merit to be studied
deeply, using residuals and a correction phase. A specific and realistic soft errors
injection on AE processing was proposed, followed by an effective methodology to
create a training dataset for mitigation, in which a satellite’s orbit and the char-
acteristics of sensors used for the mission need to be taken into account. Finally,
the paper gives a deep analysis of the effects of ML models on AE processing and
the improvement rates for mitigation of SEU effects in satellite applications.
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This paper is organized as follows: Section II explains the framework of the novel
technique developed for soft error effects mitigation, with some details on the
considered quaternion Kalman filter and the methodology for creating a training
dataset for ML models. Section III contains the ML models dataset generation
and training results, as well as the simulation results considering the AE algo-
rithm combined with the ML mitigation technique. Section IV presents a brief
discussion about the impacts of the proposed solution on the control strategy
inside the ADCS. Section V gives some conclusions of the work and possible per-
spectives. Finally, the Appendix I presents a brief description of three supervised
ML models we used as component of the mitigation technique.

2. Framework for Soft Error Effects Mitigation approach on
Quaternion Kalman filter for attitude estimation

This section describes the framework of the proposed ML-based technique
to mitigate soft error effects on the processor of ADCS, where the quaternion
Kalman filter is implemented. This framework is presented in Figure 2 and can
be summarized as follows:

Figure 2. ML-based AE processing for soft error mitigation.

(1) The NQKF, for AE processing, receives a set of measurements from the used
sensors. In this work we considered a 3-axis gyroscope and a star tracker as main
sensors. Their measurements are assumed not disturbed by soft errors.
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(2) The NQKF runs with this set of measurements using the processing resources
of the ADCS. It is assumed that a SEU occurs in any variable of the NQKF
during its processing, leading to miscalculations. The attitude quaternion q is
then estimated, then the residuals are calculated using q and yB. We consider
the star tracker will track the position of two stars, hence providing two vectors,
yB1 and yB2 that compose yB. Therefore, the res vector is calculated as:

res =

[
res1
res2

]
=

[
yB1 −A[q]rN1

yB2 −A[q]rN2

]
(2.1)

in which rN1 and rN2 are the reference vectors in N (see section 2.1).
(4) Each residual in res pass through an evaluation step, where its norm is
compared with a predefined threshold. If both residual norms are bigger than
the threshold (SEU detected), the res vector will be passed to a ML model,
already trained, to estimate the orientation error (qerror) caused by the soft
error. Otherwise, the ML model will not be activated (SEU not detected), hence
no correction will be applied. In that case, the NQKF will continue to run
normally and the next iteration starts.
(5) If the SEU is detected, q is multiplied by qerror throughout a quaternion
multiplication producing a corrected quaternion qc. The normalized qc will then
replace q, and also the error covariance matrix P is re-initialized as Pc = 0.1 · I4.

Detailed explanations of the variables in Figure 2, the NQKF algorithm, and
the ML methodology can be found in Sections 2.1 and 2.2.

2.1. Quaternion Kalman Filter for AE.

2.1.1. Preliminaries Necessary for AE. The objective of the AE is to determine
the orientation of a moving frame fixed to the body in the application (body frame
B) in relation to a reference frame (N) normally celestial or Earth-fixed, based
on at least two observation vectors (measurements). The observation equation
based on these vectors can be used in dynamic estimation approaches (NQKF for
example). It is defined as follows:

yB = y0
B + δyB = A[q]rN + δyB, (2.2)

where vectors y0
B ∈ R3×1 and rN ∈ R3×1 are the normalized projections of physical

vectors along the axes of B and N, respectively. The vector yB ∈ R3×1 represents
the output of sensors fixed on B, whereas rN is known from a physical model. The
vector δyB ∈ R3×1 is an additive measurement noise. The attitude is represented
in form of quaternion q ∈ R4×1, which is a hypercomplex vector as follows:

q =

[
ê
q4

]
=

[
n̂ · sin(α/2)
cos(α/2)

]
(2.3)

where q4 and ê = [q1 q2 q3]
T ∈ R3×1 are the quaternion real and complex com-

ponents, respectively. Also, the quatrenion can be decomposed in an angle of
rotation α and an unitary axis n̂ ∈ R3×1, that indicates the direction of rotation.
The attitude matrix A[q] ∈ R3×3, function of the quaternion, is represented by:

A[q] = (q24 − êT ê)I3 + 2êêT − 2q4S[ê]. (2.4)
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This matrix is able to convert a vector represented in the reference frame N into
the body frame B. The matrix S[e] ∈ R3×3 is the skew-symmetric matrix applied
to the quaternion complex part, as shown in Equation 2.5, and I3 ∈ R3×3 is an
identity matrix. Equation 2.4 is non-linear, thereby 2.2 as well.

S[e] =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (2.5)

2.1.2. Overview of the Novel Quaternion Kalman Filter (NQKF). The NQKF
algorithm studied in this paper was developped in [9]. The state vector x ∈ R4×1

is composed only by the attitude quaternion, the sensors’ biases are not estimated,
i.e. x = q. Manipulating Equation 2.2 is possible to establish a linear pseudo-
measurement equation that can be used in the Kalman filter algorithm, and
then the linearization process is skipped. The summary of the case-study NQKF
algorithm implemented is as follows:

• Time Propagation:
– Initialize the state vector x0/0 = q0/0 and the error covariance matrix
P0/0.

– Given xk/k calculate the predicted state vector:

xk+1/k = Φkxk/k = e(1/2)O[wk]Tsxk/k,

where O[wk] = [−S[wk] wk;−wk
T 0] is a matrix operator, func-

tion of the angular velocity vector wk ∈ R3×1 measured at the in-
stant k, and the Ts is the sensors’ sampling time. S[wk] is the skew-
symmetric matrix applied to wk.

– Given Pk/k calculate the predicted error covariance matrix:

Pk+1/k = ΦkPk/kΦ
T
k

+ 0.25T 2
sE[xk/k]QE[xk/k]

T,

where E[xk/k] = [S[ek/k] + q4k/kI3;−ek/k
T ] is a quaternion-matrix

operator, and Q = σ2
wI3 is the noise covariance matrix of the state

qk, following a normal distribution ∼ N(0, σw).
• Measurement Update:

– Given yBk+1
and rNk+1

compute:

sk+1 = 0.5(yBk+1
+ rNk+1

).

dk+1 = 0.5(yBk+1
− rNk+1

).

– Build the observation matrix:

Hk+1 =

[
−S[sk+1] dk+1

−dk+1
T 0

]
.

– Compute the Kalman gain:

Kk+1 = Pk+1/kH
T
k+1

(Hk+1Pk+1H
T
k+1 +Rk+1)

−1,
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where Rk+1 = 0.25 T 2
s E[xk+1/k] R E[xk+1/k]

T is the measurement
noise covariance matrix, and R = σ2

vI3 is the covariance matrix as-
sociated to the measurement noise, assumed to have a normal distri-
bution ∼ N(0, σv).

– Calculate the estimated state vector:

xk+1/k+1 = xk+1/k −Kk+1Hk+1xk+1/k.

– Calculate the estimated error covariance matrix:

Pk+1/k+1 = (I4 −Kk+1Hk+1)Pk+1/k

(I4 −Kk+1Hk+1)
T

+Kk+1Rk+1K
T
k+1.

– Normalize the state vector (the quaternion):

xk+1/k+1 =
xk+1/k+1

||xk+1/k+1||
.

For the sake of simplicity, from now on the estimated state vector xk+1/k+1 will be
referred as just the quaternion q, the state predicted xk+1/k as qm, the predicted
covariance matrix Pk+1/k as Pm, the Kalman gain Kk+1 as K, and the estimated
covariance matrix Pk+1/k+1 as P.

2.2. ML Models and the Methodology for Creating a Training Dataset.
The ML model needs to accomplish the following task: given a set of residuals
(input), find the respective quaternion error (output) associated to these residu-
als. This scenario can be modeled as a supervised ML regression problem. Three
classical ML models used for this task were implemented and tested: Artificial
Neural Network (ANN), Decision Trees (DT), and Random Forest (RF) (see Ap-
pendix6 for detailed description of these models).
For implementing the proposed mitigation approach, it is necessary to train the
ML models with a training dataset. Due to the non-availability of real satel-
lite data under radiation effects and the complexity to obtain such dataset, a
methodology for creating a training dataset was conceived as follows: (1) Case-
study scenario definition; (2) Sensor measurements acquisition (3) Soft errors
injection on AE processing; (4) Training dataset samples generation.

2.2.1. Case-Study Scenario Definition. As aforementioned, the case-study sce-
nario we are considering is a satellite orbit. In Figure 3, three important refer-
ence frames for defining a satellite’s orbit are represented. The celestial frame is
an Earth-centered stationary reference frame. Usually, this frame has its X-axis
pointing to the fixed direction of the vernal equinox, Z-axis normal to the equa-
torial plane, and Y-axis completing the the orthogonal triad (XY contained in
the equatorial plane). The perifocal frame (N) lies on the orbital plane, having
its xN-axis pointing towards the periapsis point (see Figure 3), the location in
the orbit where the satellite is the closest to the Earth, zN-axis is normal to the
orbital plane, and yN-axis completes the orthogonal system. Finally, the body
frame (B) is fixed on the satellite center of mass.
The satellites’ orbits are actually ellipses, having one of its focuses located on the
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Figure 3. Satellite reference frames and orbital elements for
dataset generation.

planet’s center of mass. An orbit can be defined by six classical orbital elements
[25]. The ellipsoidal shape is defined by its eccentricity e and its semi-major axis
a. Moreover, the Euler angles Ω, i, ω, called right ascension, inclination, and
perigee argument respectively, indicate the orientation of N in relation to the
celestial frame. The last orbital element is called time of periapsis τ , which rep-
resents either the time that the satellite last passed by the periapsis point (τ < 0)
or the remaining time to reach the periapsis (τ ≥ 0). The satellite desired at-
titude in the present study depends on the satellite’s position over time in the
orbit. The defined attitude objective is: maintain the negative xB-axis pointing
towards the center of the Earth, while keeping thezB-axis aligned with the zN-axis
during all the orbit.

2.2.2. Sensor’s Measurements Acquisition. In this work the sensor measurements
were obtained throughout simulation. The satellite’s positions and velocities in
a given orbit in relation to the celestial frame could be obtained by implement-
ing the equations of motion for the two-body problem exposed in [25]. Only the
Earth-satellite system was considered, being the Earth’s gravitational force the
only force acting on the satellite. For keeping the desired orientation, a control
system was designed. Knowing the satellite’s angular velocity and initial orienta-
tion (q0), the true quaternion representing the orientation of B with respect to
N can be calculated by solving:

qtrue = e(1/2)O[wtrue]tq0, (2.6)

where wtrue is the satellite’s true angular velocity (without any noise added), t is
the time, and the matrix operator O is defined in Section 2.1. The satellite’s true
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positions and orientations were used for generating the sensors’ measurements.
The gyroscope measurements were modeled as:

w = wtrue + δw (2.7)

where δw is an additive white Gaussian noise ∼ N(0, σw). The star tracker’s
measurement model was implemented for tracking the position of two stars, thus
generating two other references (as observations) for the NQKF. These references
are vectors pointing towards the chosen reference stars. Figure 4 illustrates the
process for obtaining the position vectors of the stars with respect to the satellite
in the perifocal frame (rN). Having the satellite’s and stars’ positions in the

Figure 4. Satallite’s and star’s position vectors.

celestial reference frame, RSAT and RSTAR respectively, it is possible to obtain
the relative position of the star with respect to the satellite in the perifocal frame
(rN) as:

r = RSTAR −RSAT

rN = C3(ω)C1(i)C3(Ω)r/||r||,
where C1 and C3 are the fundamental rotation matrices for rotating a vector in
the x and z axis respectively [25].
Finally for generating the star tracker measurements rB, the following model was
used:

rB = A[qtrue]rN + δs (2.8)

where δs is an additive white Gaussian noise ∼ N(0, σs). The gyroscope mea-
surements are used in the time propagation step of the NQKF, whereas the star
tracker signals in the measurement update step as:

yB =

[
rB1

rB2

]
=

[
A[qtrue]rN1 + δs
A[qtrue]rN2 + δs

]
(2.9)



10

in which rB1 and rB2 are the positions of the two stars provided by the star
tracker in B, whereas rN1 and rN2 are the position vectors of the same stars
represented in N.

2.2.3. Soft Errors Injection on AE processing. Among the different types of soft
errors that can be provoked by radiation particles in electronic systems, the SEUs
will be object of study. This kind of soft error is characterized by the inversion of
a single or multiple bits in a memory element at a time [26]. Modern processor
architectures usually handle variables with 32 or 64 bits. Arithmetic and logic
unities and floating-point unities are present in modern CPUs to perform floating
point operations, in which real numbers are usually expressed in the IEEE-754
standard [27]. Figure 5 shows the binary representation of a double precision
floating-point number in the IEEE-754 standard.

Figure 5. IEEE-754 double precision floating-point number bi-
nary representation.

The number is represented in a sequence of 64 bits, 1 bit dedicated to the sign,
11 bits to the exponent and 52 bits to the mantissa. Equation 2.10 can be used
to convert the binary number to decimal representation.

ndecimal = (−1)s · (1 +
i=52∑
i=1

b52−i2
−i) · 2E−1023 (2.10)

In Equation 2.10, s represents the sign bit, b inside the summation represents
the respective mantissa bit, and E is the decimal format of the exponent binary
representation. The value stored in the bits relative to the exponent has a bias
added to be possible storing both positive and negative exponents. For this
representation, a bias of 1023 is added. Consequently, when converting back to
decimal, a factor of 1023 needs to be subtracted from E, as Equation 2.10 shows.

It was necessary to observe the SEU effects directly on the algorithm’s response,
the faults could not be masked, and should be produced frequently. Therefore,
in this work a high level method for injecting soft errors on the AE algorithm’s
execution was adopted. The sensor’s measurements were split in windows of 5 sec
and then processed by the NQKF. During the computation, a SEU was injected
in a NQKF variable (such as one component of the Kalman gain or the error
covariance matrices, or even the estimated quaternion for example, cf. Section
2.1) right in the middle of the time window. The selected variable was firstly
converted into its binary double precision representation (cf. Figure 5), and then
a single bit was inverted. After, the variable was converted back to its decimal
representation using Equation 2.10, and passed to the algorithm to continue the
computation.
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2.2.4. Training Dataset Samples Generation. Finally, with the quaternions esti-
mated by the AE algorithm under SEU effects, the quaternion error could be
calculated through:

qerror = qtrue ∗ q−1 (2.11)

where ∗ represents the quaternion multiplication.
Furthermore, the residuals res (cf. Figure 2) are then computed using the esti-
mated quaternion q and the star tracker’s measurements from the two tracked
stars considered.

In conclusion, the training dataset is composed of samples made with the inputs
res ∈ R6×1 and the outputs qerror ∈ R4×1. It will be used for training the ML
models.

3. Main Results of the Mitigation Approach

In this section, we give the parameters defined for creating the training dataset,
show some results of the ML models selection/training, and finally propose a
performance evaluation of the ML-based AE technique for soft error effects mit-
igation.

3.1. Training Dataset Generation Results. The orbit used for generating the
training dataset samples for the ML models is defined by the following orbital
elements:e = 0.0001, a = Re+1111 km (Re is the Earth’s equatorial radius∼ 6371
km), τ = 1000 sec, Ω = 0°, i = 63°, ω = 0°. A Python program was implemented
for generating the orbital data, the sensors’ measurements and further soft error
injection, as described in Section 2. Figure 6 shows the attitude quaternions
obtained for a section of the reference orbit. The abrupt variation of quaternion
at the beginning of the simulation is due to the control’s action trying to direct
the satellite. Alpha Centauri and Sirius were the chosen stars for the star tracker
monitoring, considering their positions in the J2000 celestial referential, in which
the axis are oriented following the Earth’s mean vernal equinox and mean rotation
axis in the year 2000. The sampling time for the used sensors was chosen as 0.1
sec, and the noises for the gyroscope and star tracker following ∼ N(0, σw = 10−3

rad/s) and ∼ N(0, σs = 10−4), respectively. Moreover, the measurement error of
the attitude from the utilized star sensors was calculated theoretically to be about
20 arcsec, which is in accordance with the precision of commercial star trackers.
If different sensors are used in such application with different orbit parameters,
new data needs to be acquired and added to the database to train the ML models.

For executing the soft errors injection procedure described in Section 2.2.3,
different NQKF variables were assessed. A testing dataset with 30 sec of simu-
lation for the same sensors previously defined and the same orbit was created,
with τ = 0. SEUs were injected following the procedure described each 5 sec,
i.e. a single bit of the different assessed variables was changed. For each variable,
500 simulations were performed, in which the bit (only signal and exponent)
and the variable component were chosen randomly. Table 1 shows the results
for simulations made to find the most critical variables to be disturbed by the
SEU effects. The performance of the NQKF algorithm under SEU effects was
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Figure 6. True quaternion and estimated one by the NQKF al-
gorithm without soft error effects for partial satellite’s orbit.

measured throughout the root mean square error (RMSE) defined as:

RMSE =

√√√√ N∑
i=1

(ytruei − yi)2

N
, (3.1)

where ytruei and yi represent the Euler angles obtained converting the estimated
quaternion q without and with the SEU effects, respectively, following the Yaw-
Pitch-Roll sequence. N is the number of points in the simulations. The RMSE
for each angle in each simulation was then averaged.

Table 1. NQKF RMSE results for SEUs injected in different variables.

Variables of NQKF RMSE ϕ(o) RMSE θ(o) RMSE ψ(o)
q 0.058624 0.035259 0.049740
K 0.006429 0.001981 0.006429
qm 0.051221 0.033385 0.038866
Pm 0.006440 0.002054 0.006436
P 0.006435 0.001992 0.006438
q4 0.167030 0.092891 0.150951
qm4 0.143919 0.088078 0.109431
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The most impacting effects were observed when injecting soft errors in the es-
timated quaternion q, more specifically in the real component q4, in which the
largest RMSEs were observed. Finally, the training dataset contains the data in
which SEUs were injected in the real components of the estimated quaternion,
in the bits b63, b61, b60, b59, and b58 (See Figure 5). A dataset 1 with 2000 sec
of simulation and a dataset 2 with multiple simulations of 70 sec each, were cre-
ated. Both are simulations for the same orbit, with the same sensors, and same
bits chosen for injecting SEUs. Nevertheless, Table 2 shows the parameters that
differentiate the two datasets. All the parameters combinations were simulated.
The final training dataset is a merge of these two, therefore containing the resid-
uals and quaternion errors for training the ML models. In total, the final training
dataset contained 310,000 samples, 100,000 from the dataset 1, and 210,000 from
the dataset 2.

Table 2. Different parameters for generating the training dataset.

Datasets
Initial orientation

(q0)
τ (sec)

Simulation
time (sec)

Dataset 1 [0,0,0,1] 1000 2000

Dataset 2
n̂ =

[[0,0,1], [0,1,0], [1,0,0]]
1000, 500,
0, -500, -800

70
α =

[-90o, -45o, 45o, 90o]

3.2. ML Models Training and Selection Results. In this work, Python
Keras 2.4.3/Tensorflow 2.3 alongside with scikit-learn 1.0.2 were used for train-
ing, testing and validation the ML models. Nested Cross-Validation (CV) (see 6)
was used for selecting the models’ hyper-parameters, and subsequently evaluate
the performance of each approach. The hyper-parameters tested are summarized
as follows:

• Artificial Neural Network (ANN):
– Number of hidden layers: [1, 2, 3]
– Batch size: [50, 100]
– Number of neurons in each hidden layer: [150, 200, 300]
– Dropout rate in between each layer: [10%, 20%]

• Decision Tree (DT):
– Max depth: [50, 100, 300, 500]
– Min samples leaf: [10, 25, 50]

• Random Forest (RF):
– Number of estimators: [25, 50, 100]
– Max depth: [50, 100, 300]
– Min samples leaf: [10, 25, 50]

The ”batch size” for the ANN training is the number of inputs that will be con-
sidered before the ANN weights are updated. The ”dropout” layers are used only
while training, and basically they randomly eliminate at each step a percentage
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of neurons to be considered, which helps preventing overfitting. The optimiza-
tion algorithm used was ”Adam”, and the rectified linear (”ReLU”) was set as
activation function for the neurons. For the DT model, the ”max depth” limits
the depth of the tree, whereas ”min samples leaf” defines the minimum number
of samples required to be at a leaf node. These hyper-parameters help to smooth
the model, preventing overfitting. The hyper-parameters tested for the RF model
were the same as for the DT with addition of the ”number of estimators”, that
defines the number of trees in the model. This range of hyper-parameters was
chosen through experimentation, trying to achieve the best performances with a
reasonable computation time, that will be further discussed.

Table 3 shows the results of the nested CV method. An outer loop using a
5-fold CV was used for measuring the ML models’ performances, considering the
mean squared error (MSE) as metric, whereas an inner-loop consisting of a 3-fold
CV was used to select the best hyper-parameters for each model. The scikit-learn
function ”GridSearchCV” was used to accomplish this task. This function per-
forms the CV, testing exhaustively the combinations of hyper-parameters under
test. Due to the large training dataset obtained, and the limited hardware re-
sources available, just half of the samples were used in the nested CV process,
i.e. the training dataset was copied taking one sample and ignoring the next.

Table 3. Cross-validation results of the implemented ML models.

ML model Average MSE Best hyper-parameters

ANN 0.012

Hidden layers: 3
Neurons: 200
Batch size: 100
Dropout: 10%

DT 0.008
Max depth: 50

Min samples leaf: 10

RF 0.008
Number of estimators: 50

Max depth: 100
Min samples leaf: 10

As Table 3 shows, the average MSE of the three models were similar, however
the RF and DT performed better. Using the best hyper-parameters obtained in
the nested CV process, the models were trained with the full training dataset.
As the CV was made shuffling the training dataset, the samples used in each fold
to evaluate each ML model were not the same. Because of this, the performances
given by the average MSE may be biased. For approaching this issue, a testing
dataset was created to evaluate the generalization performances of the NQKF
coupled to the ML models.

3.3. ML-based NQKF for Soft Error Mitigation Results. The trained ML
models were used in the framework of the NQKF, following the schema illustrated
in Figure 2. For testing the generalization of the resulting algorithms obtained
through the CV procedure, a testing dataset was created. This testing dataset
is based on the same orbit and sensors’ models previously defined, however, now
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the sensors are sampled with a frequency of 50 Hz for estimation purpose. Dif-
ferent combinations of initial satellite’s positions in the orbit and orientations are
considered. Remembering that the objective of the orientation is always pointing
the negative xB to the center of the Earth, keeping zB perpendicular to the orbit’s
plane. Table 4 shows the parameters for the testing dataset.

Table 4. Parameters for creating the testing dataset.

Initial orientation
(q0)

τ (sec)

n̂ =
[[1,0,0], [0,1,0], [0,0,1],

[1,1,1]/
√
3, [0,1,1]/

√
2

[1,0,1]/
√
2, [1,1,0]/

√
2]]

600, 300,
0, -300,
-600

α = 90o

In total 35 simulations of 60 sec composed the testing dataset, which were
executed 50 times for each ML-based NQKF while SEUs were injected in a com-
ponent of the estimated quaternion. The time instant, the quaternion component,
the amount of bit flips, and the target bits (considering only signal and exponent
bits) were chosen randomly. However, for the three ML models, SEUs were iden-
tical, i.e. they were injected at the same time, quaternion component, and bits
in the simulation. Moreover, it was ensured that the ML models were activated.
For the sake of having a better interpretation, the quaternions were converted
into Euler angles (following the Yaw-Pitch-Roll sequence), and the performance
was measured throughout the RMSE (Equation 3.1) and the mean absolute error
(MAE) calculated as:

MAE =
N∑
i=1

|ytruei − yi|
N

, (3.2)

where ytruei represents the Euler angle obtained by converting qtrue. The term yi
either represent the Euler angle obtained by converting q from the simulation of
the ML-based NQKF under SEU effects or the Euler angle calculated only with
the NQKF under the same effects. N represents the number of points in the
simulation. The simulations have 60 sec each, with a sampling time of 0.02 sec
(50Hz), N = 3000. Moreover, the RMSE and MAE were averaged considering the
total number of executions of the simulations in the testing dataset (35 different
simulations × 50 executions of each simulation = 1750 total executions for each
learning-based NQKF). The results are shown in Table 5.

Each column in Table 5 presents a different combination of the NQKF with
a ML technique for the metrics relative to each respective Euler angle in each
row. The values shown inside the parenthesis represent the error reduction of the
ML-based NQKF compared to the second column, where only the NQKF was
acting under the SEU effects. The three techniques acted very well, reducing
both the MAE and the RMSE in a similar percentage compared to the NQKF
alone. The MAE reduction for the ML-based NQKF reached a maximum of
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Table 5. Testing results of the ML models-based NQKF under
SEU effects.

Errors(o) NQKF NQKF+NN NQKF+DT NQKF+RF
RMSE ϕ 5.65 2.961(-47.6%) 2.999(-46.9%) 2.941(-47.9%)
RMSE θ 2.65 1.442(-45.6%) 1.37(-48.3%) 1.365(-48.5%)
RMSE ψ 5.78 2.516(-56.5%) 2.375(-58.9%) 2.363(-59.1%)
MAE ϕ 0.64 0.158(-75.4%) 0.157(-75.5%) 0.155(-75.7%)
MAE θ 0.54 0.097(-82.0%) 0.095(-82.5%) 0.095(-82.5%)
MAE ψ 0.65 0.134(-79.5%) 0.127(-80.5%) 0.127(-80.5%)

75.7%, 82.5%, and 80.5% for the angles ϕ, θ, and ψ, respectively, considering all
the ML models. For the sake of comparison and to demonstrate the efficiency
of the technique, another recent AE algorithm was also implemented within the
ML-based framework. The algorithm described in [28] is an invariant extended
Kalman filter (IEKF), which provides the attitude in the form of a rotation
matrix. The implementation of the IEKF can be found in [29]. As the mitigation
technique needs a quaternion attitude representation, the IEKF was normally
executed, and its outputs were converted into quaternions. The same framework
described in Figure 2 was implemented, as well as the same soft error injection
performed for the NQKF (see Table 5) was applied to generate the results in
Table 6.

Table 6. Testing results of the ML models-based IEKF under
SEU effects.

Errors (o) IEKF IEKF+NN IEKF+DT IEKF+RF
RMSE ϕ 3.924335 2.07(-47.2%) 2.05(-47.8%) 2.22(-43.5%)
RMSE θ 1.875859 1.12(-40.1%) 1.07(-42.9%) 1.04(-44.5%)

RMSE ψ 3.734788 2.22(-40.4%) 1.79(-52.0%) 1.84(-50.7%)
MAE ϕ 0.503304 0.16(-68.5%) 0.15(-71.0%) 0.15(-70.2%)
MAE θ 0.252329 0.08(-67.1%) 0.08(-69.0%) 0.07(-70.3%)
MAE ψ 0.447838 0.16(-64.3%) 0.13(-71.5%) 0.13(-70.6%)

In the first column of Tables 5 and 6, only the AE algorithms were executed un-
der SEUs (without mitigation), we can see that the IEKF achieved lower RMSE
and MAE compared to the NQKF. But the final errors, when both algorithms
were implemented within the mitigation technique, were similar. The NQKF is
a classic linear AE algorithm, being simple to implement and fast to compute,
since the traditional linearization of the measurement equations are not necessary.
The IEKF is a recent algorithm successfully applied for AE, gyrocompass, and
camera localization [28], for example. However, its implementation and the con-
cepts behind the algorithm, which rely on Lie groups and the SO(3) orthogonal
groups, are quite complex and request higher computation time and cost, than
the NQKF. It is clear from this comparison that the NQKF, even if it becomes
old in the domain, is still competitive and efficient (especially when coupled to
the mitigation technique) and can continue to be used successfully within this
framework.
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The effects of the SEUs on the NQKF and IEKF are characterized as a peak
when the soft error occurs, and a settling time where the algorithm tries to re-
cover. Figure 7 shows an example of the SEU effects. In the schema of the
proposed work (see Fig. 2), the star sensors were used for correction and es-
timation of the state vector, followed by the injection of the soft errors in the
real component q4. Then the accuracy brought by these sensors in the estima-
tion/correction step is degraded by the injected soft errors after. Since the RMSE
in the two Tables are calculated including the observed peaks, the attitude errors
from the learning-based NQKF or the learning-based IEKF are little larger than
the accuracy of the star sensors. Without the injection of soft errors, the attitude
errors are found to be in the same range of star sensors’ accuracy.

Figure 7. Illustration of the SEU effects on the different ML
models-based NQKF.

Figure 7 is an example in which multiple SEUs were injected. It is important
to highlight that is very unlikely that multiple sequential SEUs will occur like in
this example, however this is just a theoretical simulation to illustrate the SEU
effects on different time instants of the orbit, and how the proposed technique
acts mitigating these effects. The true angle represents the ideal result of the
NQKF algorithm, without any compensation of the soft error effects, and the
other curves represent the ML trained models-based NQKF. The SEU injected
in the real component of the estimated quaternions q4, leads to change different
exponent or signal bits, which effects were reflected in the Euler angles obtained
by converting the estimated quaternions q. The time between each injected SEU
was 10 sec. Observing the blue curve, where just the NQKF was acting, each SEU
provoked a huge peak, resulting in large instantaneous errors. Most errors lasted
about 3 sec or even less before converging to zero, what explains why the values of
the MAE and RMSE are relatively low. For generating Table 5, simulations of 60
sec were considered, in which just one SEU was applied. As the errors naturally
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do not last more than 5 sec, the average error will be low. However the error
magnitudes surpassed 100° in many cases in Figure 7, which cannot be neglected.
Considering the other curves representing the ML models-based NQKF, all the
combinations practically mitigated completely the SEU effects after 50 sec of
simulation, period where the satellite’s orientation varied very slowly. During
the transitory phase, where the satellite was moving from a random orientation
trying to point to the center of the Earth, the performance of ML techniques is
less, specially the RF and DT, however in most cases better than the NQKF alone.
Here lies the importance of the block ”Evaluation” in Figure 2. The function of
this block is to activate or deactivate the ML model, for reducing the overload, and
also possible deterioration of the AE performance in case of multiple activation
of the ML models. This block monitors the residuals magnitude, calculated using
the star tracker information of the two stars considered. It was found throughout
simulations that when any of the two norms of residual’s vectors was bigger than
0.1, the ML models should be activated. This threshold provided was used for
producing the results in Table 5 and in Figure 7.

4. Implications of the Soft Error Mitigation Technique

An AE system does not act independently. Figure 8 shows a schema of an
ADCS, considering the AE and the control system.

Figure 8. Block diagram of ADCS.

Basically the objective of the ADCS is to determine and control the satellite’s
attitude based on a target/reference. The AE block provides outputs, calculated
based on the sensor’s measurements, that will be compared to the reference and
the error between them will serve as input for the control system. The control
system will send commands to the actuators, finally controlling the satellite’s
orientation. In this paper, only the AE algorithm under soft error effects was
studied. When the SEU disturbs directly the AE algorithm, it can cause large
errors that will be passed to the control system. The effects of these errors on
the control part need to be investigated, because the information that the control
system receives may be largely wrong, during the SEU effect periods, capable of
leading to dangerous scenarios in safety critical applications, such as satellites.
Another point important to be mentioned is the overhead caused by the ML
techniques in the AE algorithms. The impact of the ML in the processing time
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of the AE algorithms will be noticed just when the residuals norm surpassed the
threshold. The average execution time of the trained models is about 0.12 ms
for the NN, 7.7 ms for the RF, and 0.06 ms for the DT, whereas one iteration
of the NQKF is about 1.47 ms in the machine used for generating the results.
The NN and DT techniques are much faster than the NQKF itself, about 11 and
23 times respectively, unlike the RF. One solution would be to simply run again
the NQKF iteration in which a large residual error was observed. However, for
this it would be necessary to use values stored in the RAM memory from the
previous iteration. The SEUs are completely random, so it is difficult to identify
which variable is corrupted, being possible to use again a corrupted parameter
in the new NQKF iteration. The advantage of the proposed soft error mitigation
technique is that it only needs the orientation error information contained in the
residuals, not being necessary to monitor or protect the Kalman filter’s variables.

The chances of a particle strike provoke a soft error in the AE algorithm’s
calculation are much higher than in the residuals or in the ML calculation, since
the execution time of the Kalman filter-based algorithm is much higher, hence its
variables remain more time exposed to the radiation environment. However, if a
soft error occurs during the residuals calculation, a simple solution would be to
perform this step twice, and then to compare the residuals to decide if the resid-
uals are corrupted. Otherwise, if a soft error occurs in the ML calculations, the
new residual vector can be calculated with the corrected quaternion, provided by
the ML model, and compared with the first residuals (before the ML correction).
Some actions could be taken, for example, if the new residuals’ norm are higher
than the previous one, the old quaternions could feed the next AE algorithm’s
iteration, or the ML correction could be performed a second time.

5. Conclusions

In this work three machine learning models were assessed in a framework for
mitigation of soft error effects in the AE processing, more specifically SEU ef-
fects. The results show that the learning-based technique combined with an AE
algorithm based on the Kalman filter, accomplished very well the task of min-
imizing the SEU effects, thus reducing the risks of passing large errors to the
control system. The performances of the trained neural network, decision tree,
and random forest models were quite similar, while adding little overhead to
the AE algorithm’s computation. Increasing the variety of samples data in the
training dataset, including different initial orientations and positions in the orbit,
probably will enhance the generalization capacity of the models, hence improv-
ing the SEU effects mitigation mainly in the phase in which the attitude varies
more abruptly. Furthermore, the re-initialization of the error covariance matrix
in this paper was made by only setting this matrix as a constant multiplied by
an identity matrix. Re-initializing the error covariance matrix with values that
reflect better the current states of the system is another point of improvement of
the mitigation framework.
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Appendix I: Overview on the selected Machine Learning (ML)
Models and Cross-Validation (CV)

This section discusses three ML models commonly used for both supervised
classification and regression tasks: Artificial Neural Networks, Decision Trees,
and Random Forests. Moreover, an overview of Cross-Validation for ML model
selection and evaluation is also presented.

Artificial Neural Networks (ANN). An ANN, more specifically a multi-
layer perceptron (MLP) consists of neurons arranged in layers and connected
by weights. The output of each layer serves as input to the next one. The inputs
are multiplied by the weights and passed through activation functions. The MLP
architecture, which combines nonlinear activation equations in each neuron, al-
lows the approximation of extremely complex functions [30]. To accomplish this
task it is necessary to train the network, i.e. adjust the weights and biases of each
layer so that the ANN is able to connect a set of input vectors (input dataset) to
a set of associated output vectors (output dataset). Backpropagation is the most
used algorithm for training neural networks [31]. In simple terms, the weights are
initialized, then a set of input vectors are forward propagated through the neural
network generating predictions. The error between the predictions and the actual
output vectors is accumulated in a cost function. It is then backward propagated,
obtaining the gradients of the cost function with respect to the weights and bi-
ases. The weights are adjusted trying to minimize the overall error, throughout an
optimization algorithm. ANNs may present a problem called overfitting, that is
when the model fits very well the training dataset, however it cannot perform well
on new data. Moreover, underffiting problems may occur, that unlike overfitting,
the model does not fit well even the training dataset. Regularization techniques,
different model structures, and more data might be required for solving this kind
of problems.

Decision Trees (DT). The DT is a ML algorithm that can perform both classi-
fication and regression tasks, and it is capable of training using complex datasets
[32]. It is composed of nodes and leaves. Each node has a decision boundary for
a determined feature. The DT structure, e.g. amount of nodes, tree height, and
leaves, is determined during the DT training. Usually the Classification And Re-
gression Tree (CART) algorithm [32] is used for training DT. Basically it starts
splitting the training dataset in two, based on the feature and threshold that
minimizes a cost function, that is usually the mean squared error for regression
tasks. The split subsets samples are assigned to its respective nodes, and the
same logic is applied recursively until a leaf is produced (due to constraints or
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the algorithm cannot reduce the cost). This algorithm is prone to overfitting, and
because of this, the constraints in the training may be applied, such as limiting
the tree maximum depth, and setting the minimum number of samples for split-
ting the nodes. For making a prediction with the training tree, the input needs to
traverse the DT nodes, being conducted by the decision rules of each node, until
it reaches a leaf. The resulting output, for regression tasks, will be the average
of the samples in the leaf.

Random Forests (RF). The RF model uses a technique called model ensem-
bling, that consists of combining multiple fundamental models in order to have
better predictions [33]. In the case of RF regression, multiple decision trees are
used as base models. Each tree is trained independently, as previously described,
and a method called bootstrap aggregating (bagging) is applied. In this method,
random sub-samples with replacement of the input dataset are used to build the
decision tree structure (creation of decision nodes and leaves). For RF regres-
sion, the predictions of the independent trees are averaged, providing the final
prediction. The bagging method provides to the RF training datasets with more
randomness, which can improve the generalization.

Cross-Validation for ML model selection. When training a ML model, a set
o parameters and hyper-parameters need to be adjusted so that the model will
be able to better fit the data. The training should be adapted in such a way the
model has enough examples to train on, but at the same time avoid overfitting the
training data, being able to make predictions on unseen data. Cross-validation
(CV) is the most common method used for evaluate the performance of ML
models [34]. Furthermore, CV can be used for model selection, in which several
ML models are compared and the one with the best performance is selected [35].
The CV consists of splitting the data, in which part of it is be used for training
and the remaining for testing and performance measurement. Many different
CV procedures exist, being one of the most common called k-fold CV. In this
method the data is divided into k folds of the same size. Training and testing
are done in k iterations, in which k-1 folds are used for training, leaving one fold
for testing. The performance in each iteration is calculated and the results are
averaged, providing the average model performance.

Nested CV is a method that consists on using two CV loops, one inside the
other. The inner loop is used to select the best model hyper-parameters in a given
set, whereas the outer loop computes the error. Instead of using CV for estimating
the performance of a single ML model, nested CV estimates the performance of
an optimized model, and it is a method that reduces the bias considerably [36],
providing a better estimate of the true error of a ML model. After selecting the
model through CV, the model parameters are then calculated using the entire
dataset for training.
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