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Abstract

This paper studies the monitoring of oak dieback in forests of the Centre-Val de Loire region,
France. Due to climate change, drought-induced forest dieback has become a major concern in
temperate forests, including our study area, where oak is a key species. In order to better assess
and adapt the actions needed to mitigate these impacts, access to accurate and regularly updated
maps of forest health has become essential. In this context, the main objective of the study is
to evaluate the interest of multispectral satellite time series for operational monitoring of forest
dieback. Thanks to the in-situ data collected from 2017 to 2022 on about 2700 oak plots, a multi-
year mapping of the analyzed region was performed using a supervised classification approach with
the Random Forest algorithm. The results show that it is possible to detect oak dieback accurately
(average overall accuracy = 80% and average balanced accuracy = 79%). More importantly, this
study highlights the importance of measuring the temporal stability of the classification model in
addition to standard cross-validation metrics. In this respect, the samples used for training are
selected using data augmentation and balancing techniques to achieve better generalization over
years. The learned model can also be used for predictive mapping of forest dieback in the coming
years, for which the balanced accuracy is slightly reduced to about 70%. A feature analysis is
also performed and shows that the shortwave infrared (SWIR) part of the spectrum is the most
important for mapping forest dieback. In addition, using the red-edge portion of the spectrum can
increase the stability of the model over time. We show that using only two vegetation indices based
on continuum removal (CR) of the red edge (CRre) and shortwave infrared (CRswir) parts of the
Sentinel-2 spectrum is sufficient to efficiently capture forest dieback. Overall, both in situ data and
model predictions showed evidence of forest decline in many areas of the study region. Moreover,
our results show that large areas of forest can decline over short periods of time, highlighting the
interest of satellite data to provide timely and accurate information on forest status at large scales.
This encourages the use and improvement of such approaches in the future.
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1 Introduction

Climate change is expected to increase the severity and frequency of forest disturbances, both
abiotic (e.g., fire, drought) and biotic (e.g., insects, pathogens). (Dale et al., 2001; Seidl et al.,
2017; Turner, 2010). Assessment and monitoring of such disturbances is essential due to the
central role of forests in the hydrological cycle (Zhang and Wei, 2021), carbon sequestration and



biodiversity conservation FAO (2020). Forests are also of great economic importance for example
by providing wood and timber (Krieger, 2001). As a result, their disturbance can cause significant
economic losses (Holmes et al., 2008). Finally, forests are often important in national low carbon
strategies (i.e., French Ministry for the Ecological and Solidary Transition (2020)). Management
measures (e.g., by reducing competition for water or promoting the establishment of species better
adapted to future conditions) are needed to facilitate and mitigate the impacts of this transition
on society (Millar and Stephenson, 2015).

In temperate forests, prolonged or exceptional droughts (also called “hotter droughts”) can push
forests beyond their sustainability threshold (Millar and Stephenson, 2015). The effects of hotter
droughts, exacerbated by climate change, range from forest dieback to increased tree mortality to
broad-scale forest die-off (Allen et al., 2015). Forest dieback is a complex and evolving phenomenon
with multifactorial causes that results in a progressive weakening of trees and stands vigor (Manion,
1981). The factors involved are of several types (predisposing, triggering and aggravating) and
partly interchangeable. The symptoms of dieback are essentially visible as a reduction in leaf area
and crown (see examples in Figure 1). It has been identified as a factor reducing the resilience of
ecosystems (Sangiiesa-Barreda et al., 2015). France, like most of the European continent, has been
affected by severe droughts in recent years (Moravec et al., 2021; Blauhut et al., 2022), resulting
in a generalized weakening of forest health. In particular, the French Department of Forest Health
has observed an accentuation of oak dieback on the national territory since 2018, which motivates
a timely and accurate mapping of oak dieback to help forest managers. This article focuses on the
monitoring of forest dieback using remote sensing satellite data, which is evaluated through a case
study conducted in the Centre-Val de Loire region of France, an area known for its oak forests,
which are a key component of the local economy and culture.

Figure 1: Illustration of different levels of forest dieback in the Orleans forest (oak trees, 2022). A
dead tree is in the center of the image, with declining trees around it.

Remote sensing has been widely recognized as a valuable tool for monitoring forest status
(Hansen et al., 2013; Huete, 2012; Torres et al., 2021; Stahl et al., 2023). The obvious advantage
of remote sensing satellite data is its ability to cover large areas in a consistent manner. For forest
health assessment, multispectral sensors have been most commonly used because they can effi-
ciently capture different types of information about vegetation behavior, i.e., visible, near infrared
(NIR), red-edge (RE) and shortwave infrared (SWIR) parts of the spectrum provide complemen-
tary information on vegetation status (Torres et al., 2021). In recent years, access to consistent
and freely available multispectral satellite data has been facilitated by the opening of the Landsat
archive in 2008 (Wulder et al., 2022) and the launch of the two Sentinel-2 (S2) satellites in 2015
and 2017 (Drusch et al., 2012). The arrival of S2 data has opened up unprecedented opportunities:
S2 data have a higher revisit time (~ 5 days with S2-A and S2-B) and a finer spatial resolution
(up to 10m) compared to Landsat data (revisit time ~ 7-16 days, spatial resolution up to 30m).



The interest of these improvements has been identified in some cases, for example Abdullah et al.
(2019) observed that S2 data were more effective than Landsat-8 data for early detection of bark
beetle attacks. Similarly, Barta et al. (2021) used S2 data for the same task in Norway. These
considerations, as well as operational reasons, motivated the use of S2 data in this study.

In the remote sensing literature related to the monitoring of the forest health, many studies
have focused on the detection of forest disturbances by looking at anomalies in the remote sensing
signal (Barta et al., 2022; Cai et al., 2023; Housman et al., 2018; Mitchell et al., 2017; Mulverhill
et al., 2023; Stahl et al., 2023; Yang et al., 2021). As pointed out in Barta et al. (2022), in that case
disturbances are characterized by monitoring the magnitude and duration of the remote sensing
signal changes. More formally, these approaches can be seen as prediction-based anomaly detection
techniques (Aggarwal, 2017, Chapter 9.2): they aim to model the normal behavior of the signal
based on historical data and define anomalies (or disturbances) as values that significantly deviate
from this modeling. Among the benchmark methods based on this idea, one can mention the Break
detection For Additive Seasonal Trends (BFAST) (Verbesselt et al., 2010) and the Landsat-based
Detection of Trends in Disturbance and Recovery (LandTrendr) (Kennedy et al., 2010) approaches.
More recently, the FORDEAD package (Dutrieux et al., 2021a) has been developed to detect bark
beetle outbreaks in spruce trees. The main drawback of such approaches is that they require
historical data to properly define what is normal behavior. In addition, Stahl et al. (2023) has
pointed out that such an approach can struggle to detect “diffuse” disturbances (i.e., subtle changes
in spectral reflectance), which is typically the case with drought-induced dieback of oak trees.

Supervised classification approaches can be preferred when the phenomenon under study is
subtle and difficult to model (Torres et al., 2021). In recent years, methods based on machine
learning (ML) have been increasingly used because they can model complex behaviors and can be
easily deployed on a large scale. For example, in the systematic review made by Torres et al. (2021),
most of the techniques used to monitor forest health are classification or regression techniques.
Among them, the Random Forest (RF) algorithm (Breiman, 2001) was the most used, as it is
generally more flexible and provides a relatively more transparent interpretation than most other
ML algorithms. The same observation was made by Stahl et al. (2023) in their review related
to the attribution (or classification) of forest disturbance types, where it was found that the RF
algorithm was used in most cases. In addition, tree-based algorithm are known to be more easily
interpretable, which can be useful to better understand the problems being modeled (Huang et al.,
2022).

Based on this literature, we decided to tackle the problem of oak dieback detection (Quercus
robur and Quercus petraea) in the Centre-Val de Loire region using supervised ML approaches
with S2 data. Our main goals are 1) to separate healthy and declining areas as accurately as
possible and 2) to produce maps on a large scale and for several years in an operational monitoring
system.

The rest of this paper is organized as follows. Section 2 presents the study area as well as the
data used for the analysis (i.e., the reference data and the remote sensing data used to produce
the maps). In Section 3, the method used to map the forest dieback is provided, including details
on how to handle reference data coming from different years. In Section 4, classification results
are provided. In addition, we also study the temporal stability of the classification model and
show that such an analysis is crucial in our case since we aim to map forest dieback over different
years. An analysis of the features used (importance, temporal range, etc.) is also performed.
Section 5 discusses these results and provides some additional insights related to the problem at
hand. Finally, Section 6 summarizes and concludes this work.

2 Study Area and Data

2.1 Study Area

Our study area is the Centre-Val de Loire region of France and its surroundings. It was decided to
analyze all forests included in the S2 tiles covering the region (the S2 tiles are the one provided by
the Theia platform, (https://theia.cnes.fr, accessed on 1 March 2023). As shown in Figure 2,
the study area is centered approximately at 47°7’N latitude and 1°8’E longitude (Northern France),
and is relatively large (11 S2 tiles, 110000 km?, with 23% of deciduous forest according to the OSO
land cover map (Thierion et al., 2022)). The two major sets of soils of the region (base-rich or
acidic) affects forest cover distribution (dry or waterlogged variants). Acidic and dry soils support
oak forests (Quercus petraea, Quercus robur), accompanied by Hornbeam ( Carpinus betulus), Birch
(Betula pendula), Chestnut (Castanea sativa), and resinous (mainly planted) forests. Waterlogged


(https://theia.cnes.fr

soils have forests dominated by aspen (Populus tremula), alder (Alnus glutinosa), and willows
(Saliz sp.) (Cordier et al., 2021). This study focuses on oaks (Quercus robur and Quercus
petraea), which are a key species in the region. Centre-Val de Loire Region corresponds to a plateau
surrounded by shallow valleys (max. altitude 500m above sea level (ASL), avg. 140m ASL). It is
crossed by France’s largest river, the Loire, and its main tributaries (Allier, Cher, Indre, Vienne).
Moreover, the climate is temperate with an average annual temperatures of 11°C and less than
800 mm of precipitation per year. The few hilly areas (located in the northwest, east and south)
have lower temperatures and higher levels of precipitation (Cordier et al., 2021).

Figure 2: The extent of the studied area is delimited by the grey area (the boundaries between the 11
tiles is highlighted in lighter gray). The frontier of the region Centre-Val de Loire and its departments
is in white. Finally, the colored dots locate the reference data, with each color representing a labeling
year (for reference data labeled multiple times, the last labeling year is highlighted). The background
uses cloudless S2 images.

2.2 Reference data

This subsection provides details on the collection and distribution of reference data.

2.2.1 Labeling protocol

The health status of the reference data is assessed using the DEPERIS protocol (Goudet et al.,
2018). This protocol is used by the French Forest Health Service and is currently the official
protocol for forest dieback monitoring in France (DGAL, 2018).

The DEPERIS protocol assesses the health status of individual trees by combining the per-
centages of dead branches and missing ramifications. Each tree is assigned a score from “A” (very
healthy) to “F” (very declining or dead), with scores of “D” or higher corresponding to declining
trees with more than 50% of canopy loss (see examples in Goudet et al. (2018)). Forest mortality
is then characterized at the plot-level (a plot consists of 20 trees) by considering the percentage
of declining trees. As defined by the French Forest Health Service, a plot is declining if more
than 20% of its trees are declining, i.e., have a grade equal to or higher than “D”. While the main
objective of the analysis is to separate healthy from declining plots, for convenience we can add
another (optional) category: a plot is very declining if more than 50% of its trees are declining.
The labeling procedure is illustrated in Figure 3(a) with an example where 25% of the trees in
the plot have scores equal to or higher than “D” (declining plot), while Figure 3(b) gives concrete



examples in the forest of Orléans, illustrating that plots that are very close to each other can have
different labels.

CIRCULAR PLOT

INDIVIDUAL TREE

LABEL

%D+ < 20% : Healthy

Forest Dieback

%D+=25% <

20% < %D < 50% : Declining

%D+ > 50% : Very Declining

(b)

Figure 3: (a) Labeling procedure used to asses plot-level health status. Each tree has a grade from
A to F which is given by combining percentages of missing branches and ramifications. (b) Example
of plots in Orléans forest labeled in 2022, where cyan / orange / red colors correspond to healthy,
declining and very declining plots, respectively. A S2 image acquired in 2020 is used as background.

2.2.2 Distribution of the reference data

The distribution of the reference data with respect to the labeling year is given in Table 1. Over-
all, the proportion of healthy plots vs. plots with forest dieback (declining and very declining
plots) is about the same but can vary depending on the labeling year. More than half of the
plots were labeled in 2020: this year, a campaign was conducted in France after the successive
droughts of 2018,/2019/2020 to assess health status of oak forest by a random road sampling. The
other plots come from different research campaigns carried out by private or public foresters (see
Acknowledgements at the end of this document).



Table 1: 2738 plots were labeled between 2017 and 2022. For each year, the total number of reference
data is provided, along with the breakdown into the 3 categories defined in Figure 3.

Year # Plots Healthy Declining Very declining

2022 300 111 97 92
2021 433 81 131 221
2020 1685 1202 338 145
2019 135 46 40 49
2018 120 50 52 18
2017 65 37 25 3
TOTAL # 2738 1527 683 928
TOTAL % 100.00% 55.77%  24.95% 19.28%

Among the reference data, 4 forest massifs are worth mentioning, since a labeling was carried
out several years in a row (the number of labeled plots may vary slightly depending on the year
and the forestry interventions). The Fontainebleau massif (~ 55 plots) was labeled between 2017
and 2021. Orléans (~ 25 plots), Vierzon (~ 27 plots) and Marcénat (9 plots) forests were labeled
between 2019 and 2022. Figure 4 gives the percentage of healthy plots (Figure 4(a)) and very
declining plots (Figure 4(b)) for each massif over time. Looking at this figure, there is evidence of
a general increase in dieback. Moreover, the proportion of plots in severe decline is also increasing
over time for all these massifs.

== Orléans == Fontainebleau Vierzon == Marcenat 100.00 == Orléans == Fontainebleau Vierzon == Marcenat

60.00% Ty
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Figure 4: (a) Percentage of healthy plots and (b) percentage of very declining plots with respect to
the labeling year in the Orléans (blue), Fontainebleau (red), Vierzon (yellow) and Marcénat (black)
massifs. Note that for Marcénat, not data was labeled in 2021.

2.3 Satellite data

This study used data from the Sentinel-2 satellites (S2-A and S2-B). The S2 satellites are operated
by the European Space Agency (ESA) as part of the Copernicus mission, the European Union’s
Earth observation program. S2 satellites are multispectral imaging satellites with 13 spectral
bands covering the visible, the near infra-red (NIR) and the shortwave-infrared (SWIR) spectral
region and a spatial resolution of 10 to 20m (Drusch et al., 2012), as depicted in Table 2. The
MAJA processing chain (ITagolle et al., 2015) was used to produce level 2A images, which are
ortho-rectified products expressed in surface reflectance with cloud and shadow masks.



Table 2: Sentinel-2 multispectral bands used for the analysis.

Spectral bands Central wavelength (nm) Bandwith (nm) Resolution (m)
B2: Blue 490 65 10
B3: Green 560 35 10
B4: Red 665 30 10
B5: Vegetation Red Edge (RE) 705 15 20
B6: Vegetation Red Edge(RE) 740 15 20
BT7: Vegetation Red Edge(RE) 783 20 20
B8: Near Infrared (NIR) 842 115 10
B8A: Narrow Near Infrared (NIR) 865 20 20
B11: Shortwave Infrared (SWIR) 1610 90 20
B12: Shortwave Infrared (SWIR) 2190 180 20

3 Methods

The proposed approach for multi-year forest dieback mapping is summarized in Figure 5. The
remainder of this section details each of the methodological steps in this diagram.

Ground-truth Learning: multi-year and multi-tile classification model Prediction
~2700 oak plots.
fabalied between 2017 For each plot Mapping forest dieback
?:“152022 prcicoietng *Plot location * Y_lab = Labelling year e il pping
entinel-2 tiles Validation
Feature Multi-year Data Data fe"‘"mT"febélr'd
h L ) ’ temporal stabili
extraction slicing augmentation balancing e l .
Satellite Labelled
images . examples g
9 } -L Raw time 2-year > | Balanced Classification /
m‘ualgz[;eclrsl Sentinel 2 Ll series Ll Ll Sllces L Unlabe"ed training = mode| -
L| examples dataset
2016 — 2022 Y_lab-1 - Y_lab [
been done -
another year) Dieback mapping - Orléans Forest (2020)
Green / orange / red colors correspond to healthy /
decaying / very decaying forest

Figure 5: Diagram summarizing the proposed methodological steps for the classification of forest
dieback.

3.1 Feature extraction

3.1.1 S2 bands

In the feature extraction step, time series of each S2 band coming from each pixel within the
reference plots are extracted (see Figure 3(b) for examples of circular plots). This extraction is
done using the iota? software (Inglada et al., 2016b), which is a processing chain for the operational
production of land cover maps from remote sensing image time series. A linear interpolation (i.e.,
gapfilling) is performed to reconstruct missing data caused by clouds. Such approach is commonly
used in remote sensing and have been applied with success in many application (Inglada et al.,
2015; Fauvel et al., 2020; Vuolo et al., 2017). The main advantage of gapfilling is that it can be
applied on a large scale due to its low computational cost, which is well suited from an operational
point of view. Further analysis on that point is left to future work, see Section 5. During the
gapfilling step, the time series from different tiles are also interpolated on the same temporal grid
with one acquisition every 10 days for a total of 35 acquisitions per year, illustrating the high
temporal resolution of the S2 data. Finally, a road mask is applied to remove learning pixels that
were too close to the roads.

As a preliminary analysis, Figure 6 provides the spectral response of the S2 data (the acquisition
date is August 30 of the label year) with respect to the declining classes. It can be seen that forest
dieback affects the entire S2 spectrum. Looking at the scaled version in Figure 6(b), we can see
that pixels of declining plots have on average higher visible reflectances (B2, B3, B4) compared
to the healthy pixel. A similar observation can be made for the SWIR bands (B11 and B12).
Finally, for the red-edged part of the spectrum (B6, B7, B8a), declining pixels generally have a
lower reflectance compared to healthy pixels.
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Figure 6: S2 band values grouped by dieback class (a) in natural scale and (b) after robust scaling
(obtained by removing the median and scaling the data by the interquartile range). The acquisition
date is August 30th of the labeling year. The colors cyan / orange / red correspond respectively to
healthy, declining and very declining plots.

3.1.2 Additional features

In addition to the raw bands, it is classical to also compute more sophisticated features, i.e.,
vegetation indices (VIs), which can be used more efficiently by the classification algorithm since
they contain richer information. A classical example in remote sensing for vegetation analysis is
the Normalized Difference Vegetation Indice (NDVI), which is mainly related to the plant vigor
(Bannari et al., 1995; Rouse et al., 1974) and is used to detect anomalies in the BFAST Verbesselt
et al. (2010) or LandTrendr (Kennedy et al., 2010) algorithms mentioned in the introduction of
this article.

In the course of our experiments, we have tested many VIs from the literature, among which two
novel indices have been found particularly effective for the classification of forest dieback. These
two indices are continuum removal (CR) of the S2 spectrum and are referred to as CRswir and
CRre because they focus on the SWIR and RE portions of the spectrum, respectively. For the sake
of brevity, the many tests conducted with other indices are not fully detailed in the manuscript,
but a discussion is provided in Section 5. The CRswir and CRre formulas can be expressed as

follows:
B11
C}{swir - — (1)
B8a + ()\Bll — /\Sa) X (%)
B5
CR,e = — (2)
B4 + ()\Bg, — )\34) X (5]3667]3;\%1)

where Bn and \g,, are the reflectance and the wavelength in nanometers of the band n, respectively
(see Table 2 for the corresponding values). The CRswir was successfully used for the mapping of
bark beetle outbreaks in the FORDEAD package (Dutrieux et al., 2021a,b). Continuum removal
aims at isolating individual absorption of interest (Clark and Roush, 1984), and has been mainly
used with hyperspectral remote sensing image (Huang et al.,; 2004). Based on this idea, we propose
a similar indicator (CRre) that focuses on the RE part of the S2 spectrum. Potential interests of
such an indicator compared to normalized indices such as NDVI are 1) the fact that they combine
more than 2 spectral bands and 2) they are not normalized and therefore not subject to saturation
effects. They are also very easy and fast to compute when compared to more sophisticated indices.
A graphical illustration of CRre and CRswir is given in Figure 7. It can be seen that both indices
measure the absorbance of a specific band (B5 for CRre and B11 for CRswir) with respect to its
local “convex hull” (B4 and B6 for CRre and B8A and B12 for CRswir). These two indices have the
advantage of being complementary in the sense that they are sensitive to two important physical
properties of the canopy. The SWIR part of the spectrum is known to be sensitive to leaf water
content (Grabska et al., 2020; Olsen et al., 2013), while the red-edge part has been found to be
sensitive to canopy chlorophyll content (Bramich et al., 2021; Delegido et al.,; 2011; Zarco-Tejada
et al., 2018, 2003).
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Figure 7: Reflectance of a healthy plot (Orléans forest) in summer (29/06/2020) and its continuum
RE and SWIR (inspired by the figure in Dutricux et al. (2021h))

3.2 Multi-year slicing and creation of the feature matrix

To be correctly used by the classification model, the time series of the plots must be ordered
according to their different labeling years. The feature profiles from 2016 to 2022 are sliced
according to the labeling date. The length of the temporal slice, denoted Nycars, can cover for
example two years before labeling, as illustrated in Figure 8. These slices, with the same dates
(days/months) but different years, are superimposed to build a multi-year classification model. The
multi-year mix makes the resulting classification model more robust to seasonal changes between
years (e.g., phenological differences).

To illustrate these previous steps, Figure 9 provides time series of the median and interquartile
range of the CRswir and CRre indices acquired over 2 years before labeling (Nyears = 2) and
grouped by declining classes. As shown in Figure 8, the different years are mixed according to the
year of labeling Y1, (here, Y2 corresponds to Yia, and Y1 to Y. — 1), which correspond to the
features given during the training of the RF algorithm. It can be seen that, despite having data
from different years, clear trends are visible, with a gradation between healthy, declining and very
declining plots. For both CRswir and CRre, summer (June / September) is the period with the
most marked differences between classes. Interestingly, the budding period of the trees also seems
to be informative (April/May), with declining tree generally being delayed when compared to the
other tree. However, this last observation should be treated with caution due to the possible large
phenological variability during this period (see the discussion on this point in Section 5, which
provides a possible explanation for why data augmentation mitigates interseasonal variability).
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Figure 8: Illustration of the multi-year slicing used to create the feature matrix when using two time
series (CRre and CRswir). The left part of the image shows the CRswir (top line) and CRre (bottom

line) time series of two different plot over time. Depending on the labeling year of each plot (Yiap),

time series slices from different acquisition years (left part) are mixed together (right part) to create
the feature matrix. In the right part, median and interquartile range (shaded area) of the whole
dataset are displayed. For this example, the length of the slices is fixed to Nyears = 2.

Figure 9: Time series of (a) CRswir and (b) CRre indices of the learning dataset acquired over 2
years prior to labeling (Y1 is the first year of acquisition, Y2 is the year of labeling). The colors
cyan / orange / red correspond respectively to healthy, declining and very declining plots based on
the percentage of trees with grades lower than D (see detailed examples in Figure 3). The solid line

(b) CRre

corresponds to the median value of the class and the shaded area to its interquartile range.
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3.3 Data augmentation using unlabeled examples from previous and
next years

As highlighted in Table 1, the reference data is not uniformly distributed over the different years,
2020 being over represented. We have found that using the raw training data obtained after
Section 3.2 is sub-optimal since the classification model is likely to be optimized to classify correctly
the samples labeled in 2020 (this can be seen as an imbalance problem (He and Garcia, 2009)).
For better generalization, one can increase the number of available samples by using the remaining
unlabeled time series (e.g., plot labeled in 2020 but without labels for the other years). A simple
procedure with two conditions is applied to select new time series slices based on the available
labeling at year Yi,p:

1. A very healthy plot (percentage of declining trees lower than 10%) labeled year Yi., was
likely to be also healthy the years Y}, — 1 and Yi,p, — 2 and is added to the training set with
its corresponding time slice (Yiab — Nyears, Yiab — 1) and (Yian, — Nyears; Yiab — 1).

2. A declining plot (percentage of declining trees higher than 20%) labeled year Y., was likely
to be declining the years Yi., + 1 and Yi,p + 2 and is added to the dataset with its correspond
time slice (Yiab + ]-7 }/Iab + Nycars) and (Yiab + 2, }/lab + Nycars + ]-)

These two rules are based on the reasonable assumption that forest recovery from dieback is
relatively slow (i.e., a declining plot cannot become healthy within 2 years). This also mean that
we also assume that there was no silvicultural intervention during this period, or at least that it
concerns a limited amount of samples. Obviously, to avoid data leakage the plots already labeled
the years Yiap — 2, Yiab — 1, Ylab, Yiab + 1 and Yi,p + 2 are not duplicated in the dataset.

3.4 Data balancing

Another imbalance problem in our dataset comes from the label classes themselves. Depending
on the year, the different classes to be classified are not evenly distributed (it is especially true
after the data augmentation step since the labels of 2020 belong in majority to the healthy class).
A naive way to solve this problem might be to balance the global dataset, i.e., using an over- or
under-sampling strategy. Nevertheless, we have found that such an approach leads map production
potentially oscillating between optimistic and pessimistic predictions over time (see discussion in
Section 5). To that extent, we propose to balance the dataset each year independently using
the Synthetic Minority Oversampling Technique (SMOTE), which has been used successfully in
many applications (e and Garcia, 2009). In short, the SMOTE technique generates synthetic data
based on the similarity in feature space between existing minority instances. The main advantage
of over-sampling techniques over under-sampling techniques is that all available examples are kept
in the training set. Note that we also tried other variants of the SMOTE algorithm with no
improvement in our results (see Section 5). The SMOTE implementation used in this study is
the one provided in the Python library imbalance-learn (version 0.10.1) (Lemaitre et al., 2017).
Finally, it should be mentioned that data augmentation via time lag (i.e., duplication of the time
series with a small time lag) or using other sampling strategies (e.g., variants of SMOTE) were
also tested without success.

3.5 Classification

For the operational classification step, we used the RF algorithm (Breiman, 2001), which, as
presented in the introduction of this article, has shown very successful results when applied to
remote sensing data and is therefore widely used in this community (Torres et al., 2021). Note
that we also tested other state-of-the-art algorithms, such as XGBoost Chen and Guestrin (2016) or
deep learning approaches adapted to time series (Wang et al., 2017). Overall, all of these algorithms
provided comparable classification results, and further research on this part is left to future work.
From an operational point of view, it was decided to focus on the RF algorithm since a fast C++
implementation is available in the iota2 processing chain based on the shark machine learning
library (Igel et al., 2008). The RF algorithm has also the advantage of natively providing feature
importance, which is computed as the (normalized) total reduction in Gini impurity introduced by
a feature. Feature importance can be used to help us understand how our samples are classified.
For our validation experiments, we have used the scikit-learn implementation of RF (version 1.2)
since it provides feature importance (Pedregosa et al., 2011). Regarding the hyperparameters
chosen for the RF algorithm, which have the advantage of being easy to tune, the number of trees
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was set (by gridsearch) to ngrees = 1000 and the minimum number of samples in a node was set to
nodesize = 30 samples (i.e., if the number of samples in a node is less than this parameter, then
the node is not split). During our experiment, we found that the RF was robust in the choice of
its parameters, which confirms its ability to perform well without intensive tuning.

3.6 Validation procedure

3.6.1 Scoring metrics

Classification results are validated by repeated stratified cross-validation (CV): 3-fold stratified
CV are repeated 10 times, with stratification done to account for the proportion of each class.
Obviously, the training and test sets are separated at the plot-level to avoid data leakage, i.e.,
pixels of the same plot in both train and test sets. Since the RF algorithm works at the pixel level,
the labels of the plots are assigned by selecting the majority class among the pixels of the plots
(using the average probability gives similar results), allowing some heterogeneity in the prediction
of the pixels of a given plot.

Regarding the number of classes to be classified, our main goal is to classify as accurately
as possible forest dieback, i.e., optimize the binary classification between healthy forest and
forest dieback. However, from the users’ point of view, the feedback we received was formal in
highlighting the potential benefit of having 3 classes (as defined in Figure 3) for a more intuitive
appropriation of the generated maps. In this sense, we have evaluated both configurations, with
the 3-class problem being much more difficult, as highlighted in the next section. Note that in
the 2-class problem, the model is first learned with 3 classes and the predictions of the declining
classes are merged (using directly 2 classes lead to very close results).

Standard metrics were used, namely overall accuracy (OA) and F1 scores. OA provides
the percentage of correctly classified items, while F1 score is the harmonic mean of precision
(percentage of samples correctly labeled in class j) and recall (percentage of samples of class
j that were correctly labeled). We also used balanced accuracy (BA), which is defined as
the average of the recalls obtained for each class (Pedregosa et al. (2011)). Like OA, BA has
the advantage of providing a unique metric that is convenient for comparing different models or
feature sets. However, unlike OA, BA is not affected by unbalanced data sets, since the recall is
expressed as a percentage for each class. Finally, regarding the imbalance nature of our dataset,
we have found that it was not adapted (and misleading) to use global metrics calculated over all
test samples because such a metric gives more weight to the 2020 samples. Instead, we separated
the samples coming from each labeling year (a global score can be obtained by averaging the scores
from the different years).

3.6.2 Temporal stability

The standard CV results presented below can validate the accuracy of a given model to classify the
examples of our reference data. However, this validation does not take into account the temporal
stability of the model. In other words, a given prediction may be accurate for year Y, but it
may fluctuate in years Y-1 and/or Y+1. As an example, we can take a pixel that is classified as
“healthy” in 2020, but “declining” in 2019 (and 2021). Such a prediction is unlikely in practice,
especially if it is generalized to the whole mapping (e.g., pessimistic prediction for the whole region
in 2019 vs. optimistic prediction in 2020). Such behavior can be seen as a form of over-fitting
(Cawley and Talbot, 2010), i.e., the model is optimized on the (limited) available data used for
validation. This over-fitting is very difficult to mitigate, since it is not directly visible in the CV
results. However it is noticeable when comparing the resulting prediction maps over consecutive
years since in our case we know that the oak’s decline is a gradual process with some temporal
stability. Therefore, oscillations in health status are a sign of overfitting.

To measure the temporal stability of the different classification frameworks, we can analyze the
prediction of given pixels over time. More precisely, using the same CV procedure as before, we
classify the test pixels for the different years (2017 to 2022) and, even if we don’t know the exact
label of the pixels over time, we can measure for each year the percentage of declining pixels that
are classified as healthy the next year, i.e., the number of declining pixels year Y — 1 that
become healthy year Y divided by the number of declining pixels year Y — 1. Obviously,
to avoid data leakage, we make sure that all different years of a given test pixel are removed from
the training set.
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4 Results

This section presents experimental results that have been conducted to validate the proposed
method. First, classification performances and temporal stability of the proposed framework are
evaluated. Secondly, we focus on explaining these classification results and provide some insights
into the multispectral response of forest dieback. For the sake of brevity, this section will fo-
cus on the results obtained using the RF algorithm with a selection of features (a discussion of
complementary results is provided in Section 5).

4.1 Classification results

For different feature sets and classification frameworks, Table 3 provides the OA and BA averaged
over the labeling years with 95% confidence interval (CI). The so-called baseline framework consists
of naively training a model without data augmentation and yearly balancing, while the proposed
framework is the one provided in Figure 5. These results show that an accurate separation between
healthy and declining classes can be obtained using S2 data and the RF algorithm. More precisely,
it is possible to separate healthy forest and forest dieback (2 class scenario) with high accuracy (OA
and BA ~ 78% using the proposed framework). However, it is more difficult to separate declining
and very declining plots, hence the drop in accuracy with 3 classes. Looking at the F1 values of
each class (see Appendix A.1), we can see that the middle class (declining) is the most difficult to
classify, while the very declining class is more accurately detected. We can see that using 2 years
of data (instead of 1) improves the classification performance (similar results are obtained using 3
years, see Section 5). Finally, it can be observed that using only the CRswir index is sufficient to
obtain accurate classification results, indicating that this index is able to efficiently summarize the
S2 signal related to forest dieback (in Section 4.2, the potential interest of adding CRre to increase
the temporal stability is highlighted).

Table 3: Overall Accuracy (OA) and Balanced Accuracy (BA) averaged over the different labeling
years (confidence interval in parenthesis) for a classification with 3 classes (3 cl.) using the Random
Forest algorithm. Results obtained by merging the declining classes (2 cl.) are also provided. The
proposed and baseline frameworks are compared with different feature sets (best results in bold).

Framework Features Nyecars | OA -3 cl. BA -3 cl. OA -2cl BA -2 cl

Baseline CRswir, CRre 2 0.635 (0.007)  0.586 (0.008) | 0.792 (0.007) 0.749 (0.007)
Baseline S2 bands 2 0.617 (0.008)  0.582 (0.009) | 0.772 (0.007)  0.723 (0.007)
Baseline CRswir 2 0.624 (0.008)  0.572 (0.008) | 0.780 (0.004)  0.738 (0.005)
Proposed CRswir, CRre 2 0.653 (0.008) 0.606 (0.008) | 0.791 (0.007) 0.781 (0.007)
Proposed CRswir, CRre 1 0.642 (0.009)  0.596 (0.008) | 0.782 (0.007)  0.771 (0.007)
Proposed S2 bands 2 0.650 (0.010)  0.608 (0.012) | 0.778 (0.009)  0.773 (0.009)
Proposed CRswir 2 0.653 (0.010) 0.610 (0.010) | 0.792 (0.007) 0.779 (0.007)

For a more in depth analysis, Figure 10 provides the OA and BA obtained with 3 (a) and 2 (b)

classes of forest dieback when using the RF algorithm with CRswir and CRre features acquired
over 2 years before labeling. This results help us to understand the differences observed in the
averaged metrics presented in Table 3 and the interest of using BA over OA. The differences in
OA and BA are the most important in 2020 and 2021, which correspond to very imbalanced year
(~ 70% of healthy plots in 2020, while it is ~ 18% in 2021). In both cases, the high OA can
be misleading because it indicates a good classification of the majority class. When looking at
the BA, the results can be less optimistic, but better take into account the classification of the
minority samples. Therefore, the significantly better BA obtained with the proposed procedure
over the baseline procedure (see Figure 10(a and b)) indicates that the data augmentation and
balancing improve the classification model. These results have been confirmed visually during
the map production, see the discussion with a visual example in Section 5. Finally, note that
there is an exception in 2018 for the 3-class scenario: the better metrics obtained with 2 classes
indicate confusion between declining classes, but not between healthy and declining classes, which
are better separated by the proposed approach.
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Figure 10: Overall and Balanced accuracy obtained when using (a) 3 classes and (b) 2 classes of forest
dieback. The features used as input are the CRswir and CRre acquired over two years (Nyecars = 2).
The solid lines correspond to the results obtained with the proposed framework, the dashed line
corresponds to the results obtained with the baseline framework. Results are averaged using 3-fold
CV repeated 10 times.

4.2 Temporal stability

Previous results have confirmed the interest of S2 data for mapping forest dieback. However, as
explained in Section 3.6.2, there is still a risk that the predictions of the model will fluctuate
over years. To this end, Figure 11(a) measures the percentage of classified declining pixel that
are classified healthy the next year (see definition in Section 3.6.2) and Figure 11(b) provides
the percentage of classified declining pixels, using the baseline and proposed frameworks with the
CRswir and CRre indices acquired over 2 years before labeling.

The results displayed in Figure 11(a) show that using the baseline framework leads to potentially
very large oscillations, e.g., 40% of the reference pixels change from declining to healthy between
2019 and 2020, indicating that the map generated in 2019 was very pessimistic compared to the
one generated in 2020. On the other hand, the use of the proposed framework leads to much more
stable results, with a percentage of changes in the range 10-15%. Looking at Figure 11(b), we
can see that the percentage of declining pixels oscillates when using the baseline classification. In
addition, before 2020, these percentages are higher or close to the one obtained in 2020, which
does not correspond to the observations and feedback we received regarding the evolution of the
study area. Using the proposed framework, the percentage of declining pixels constantly increases
over time, which is more consistent with the successive droughts that started in 2018. Finally, it
is important to note that our dataset is not representative of the whole Centre-Val de Loire oak
forest, as many plots of our reference data were selected because they were in decline. This explains
why the number of pixels in decline is close to 50% in 2022. Looking at the pixels coming from the
random road sampling done in 2020 (see Section 2.2.2), which is more representative of the region,
the percentage of pixels classified as declining is close to 25%. These results (which can also be
appreciated visually, see Section 5) show that in addition to a better theoretical classification on our
reference data, using the proposed framework leads to a model with significantly better temporal
stability. Moreover, they also show that the use of standard classification metrics obtained via CV
may not be sufficient to have a complete overview of a model’s behavior.
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Figure 11: (a) Percentage of declining pixels classified healthy next year and (b) percentage of pixels
classified as declining. Results are averaged using 3-fold CV repeated 10 times. The features used are
the CRswir and CRre acquired over 2 years prior to labeling.

Figure 12 is similar to Figure 11 but focuses only on the proposed framework using either
CRswir, CRswir and CRre or all S2 bands as features. Figure 12(a) shows that using CRswir
and CRre together leads to higher overall temporal stability. Moreover, Figure 12(b) also shows
that using CRswir and CRre leads to the detection of a higher percentage of declining pixels, with
a constant increase over time. On the other hand, when using only CRswir, the percentage of
declining pixels oscillates slightly after 2020 without increasing, which is not consistent with our
knowledge of the study area (especially since 2022 was a particularly severe drought).
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Figure 12: (a) Percentage of declining pixels classified healthy next year and (b) percentage of pixels
classified as declining pixels. Results are averaged using 3-fold CV repeated 10 times. The proposed
framework is used with different set of features (CRswir, CRswir and CRre and all S2 bands) acquired
over 2 years prior to labeling.

4.3 Feature analysis

This section focuses on analyzing how S2 bands and spectral indices are used to detect forest
dieback. Note that as a complement, we also use the Python library SHAP (version 0.41.0) with
the Tree Explainer method proposed by Lundberg et al. (2020). The use of SHAP leads to similar
conclusions as the following results, therefore for the sake of simplicity we do not provide detailed
results here, but it is interesting to point out that both analyses agree.

15



The feature importance obtained using the CR indices (CRswir + CRre) or S2 bands are shown
in Figure 13(a) and Figure 13(b), respectively. The features are displayed in chronological order,
where Y7 is the first year of acquisition and Y3 the second year of acquisition (i.e., the year of
labeling). It can be seen that the SWIR information (B11 and B12 or CRswir) is largely used by
the RF algorithm. It also appears that the most important dates are in the summer, between June
and August (using the S2 bands, April and May also appear to be important). Finally, the two
years of acquisition are used, with great importance given to features of year Y7, indicating that
the decline is visible long before labeling.

CRswir
CRre

Figure 13: Log-feature importance obtained when training the model using a) CRswir and CRre
indices and b) S2 bands, acquired over 2 years before labeling. The features are ordered in temporal
order, Y1 being the first year of acquisition and Y2 the second year of acquisition, i.e., the labeling

year.

4.4 Mapping of the study area

Figure 14 provides a map example for the year 2020. The OSO land cover map (Thierion et al.,
2022)) is used to select deciduous trees (since no accurate oak mask was available, it was decided
to used a deciduous tree to avoid masking too much area). It can bee seen that the southernmost
forests are more affected by forest dieback. In the center of the map, the Sologne region is also
largely affected (this region mostly consist in small forest patches combined with management
objective based on hunting rather than production).



Figure 14: Final map production for the year 2020. The OSO. Healthy, declining and very declining
pixels are in cyan, orange and red, respectively. The deciduous trees OSO land cover map is used. A
de-zoomed version of the map is shown at the top right. Below is a zoomed version of the pink area,
in Orléans forest (see Figure 15.
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5 Discussion

5.1 Visual map comparison and interest of data augmentation

Figure 15 provides a visual comparison of mapping obtained with the baseline and the proposed
classification approaches. Without data augmentation and balancing, we observed that some areas
in the produced maps (especially those circled in pink) can vary significantly between years. On
the other hand, proper balancing of the training data can mitigate these variations and lead to
much more stable maps. We observed that with the baseline approach, the year 2019 and 2021
were pessimistic when compared to 2020, e.g., as visible in Figure 15(c). This is not in agreement
with feedbacks from foresters and the maps from 2020, e.g., it is very unlikely that an area in
decline in 2019 become healthy again in 2020 and so on. Finally, looking at these maps, some
well delimited red patches are clearly visible. Theses patches correspond to areas where trees have
been cut down due to forestry management (or in some cases roads).

(d) (f) Proposed - 2021

Figure 15: Maps produces in the Orléans forest without data augmentation and yearly balancing (a,b,c)
and with data augmentation and yearly balancing (d, e, f) using the RF algorithm with CRswir and
CRre indices (acquired over 2 years). Interesting areas are circled in pink. Healthy, declining and very
declining pixels are in cyan, orange and red, respectively.

To the best of our knowledge, the most important explanation for the difference in variability
with and without data augmentation and balancing is the influence of the budding period (April /
May) on the model prediction. To highlight this point, Figure 16 shows the feature importance (in
natural scale) obtained using the baseline framework (Figure 16(a)) and the proposed framework
(Figure 16(b)). One can clearly see the importance of the April/May period before labeling (Y2)
when using the baseline workflow (without data augmentation). On the other hand, the model
trained with balanced augmented data relies less on this period and focuses more on dates between
June and September.

To illustrate this point, Figure 17 provides the median CRswir and CRre time series of the
healthy pixels labeled in the Fontainebleau forest grouped by labeling year (we chose this forest
because we have the same area visited over time, allowing us to mitigate variations due to spatial
location). We can clearly see that the inflexion point in April/May can vary over the years, e.g.
the year 2020 was advanced while the year 2021 was delayed. Without a well-balanced dataset,
such year-specific differences can be used by the model to “learn” that a given year is (on average)
declining (e.g. 2021) or healthy (e.g. 2020). Note that the drop in CRswir in 2018/02/10 is due
to undetected clouds in the analyzed area. Finally, we also found that adding dates other than
summer (June/September) improve the classification results, which mean that there is interesting
information outside the summer period that can be used to detect forest dieback.
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Figure 16: Feature importance (in natural scale) obtained when training the model using CRswir and
CRre indices with a) the baseline framework and b) data augmentation and balancing. The features
are ordered in temporal order, Y1 being the first year of acquisition and Y2, corresponding to the
labeling year, the second year of acquisition.
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Figure 17: For the different labeling years, median of the CRre and CRswir for the healthy plots in
the Fontainebleau forest.

5.2 Spectro-temporal response of S2 data to forest dieback

Our study highlights the crucial importance of the SWIR part of the spectrum to map forest
dieback. This is in agreement with the literature, which had already identified this spectral zone.
For example, the interest of SWIR for mapping bark beetle attacks was found in Dutrieux et al.
(2021a), Barta et al. (2021) and Huo et al. (2021), while Sapes et al. (2022) found that adding
SWIR information increased the accuracy for oak wilt detection. Since drought-induced dieback
is associated with increased plant water stress (Allen et al., 2015), the importance of SWIR was
also expected in our case ying Huang et al. (2019).

In addition, our analysis shows that other parts of the spectrum (particularly RE) are also
affected by forest dieback. This seems also coherent with the literature, since losses in chlorophyll
content have been related to oak decline (e.g., Hornero et al. (2021) for Phytophthora-induced
symptoms in oak decline). In the case of bark beetle attacks, Zabihi et al. (2021) highlight the
potential interest of using RE instead of SWIR, but in our case this was not confirmed. The fact
that bark beetle attacks are much aggressive than drought-induced dieback could be an explanation
to the reduced importance of RE in our case. Even similar classification scores are obtained when
using CRswir only and CRswir with CRre, better stability is obtained when using both indices.
This is interesting and could indicate that the RE part of the spectrum can be used to “confirm” oak
dieback in certain cases. Other benchmark indices such as the NDVT or the normalized difference
water index (NDWT) (Gao, 1996), which combine bands 8A (red-edge) and 12 (SWIR) were tested
without improving the detection results (e.g., the results obtained using NDWI instead of CRswir
are very close but slightly worse).

Finally, using 2 years of data instead of only 1 year leads to better classification and stability
and is consistent with the fact that oak dieback is influenced by previous consecutive years of
drought (Rodriguez-Calcerrada et al., 2017). Nevertheless, the fact that acceptable results can be
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obtained with only 1 year of data is interesting. Furthermore, no significant gain was observed
when adding another year of data. One explanation could be that adding one year of data leads to
having too many features (curse of dimensionality) or that this new information is too correlated
with the other features.

5.3 Classification and pre-processing methods

Regarding the classification method to be used, we found that the RF algorithm is well suited and
provides good results without requiring intensive parameter tuning. The fact that all models tested
so far converged to similar results is encouraging (see Appendix A.2) and further research on that
point will be an interesting perspective. The study of unsupervised methods such as FORDEAD
Dutrieux et al. (2021b) is another perspective which is encouraged by the good results obtained
using only the CRswir index. Such methods have the advantage of being usable without reference
data. However, their implementation will be challenging given the problem at hand and the very
subtle changes observed for declining pixels (for bark beetle attacks, the changes in CRswir are
much faster and of higher magnitude).

Regarding the over-sampling technique, it was observed that using the standard SMOTE al-
gorithm lead to the best results. Using variants (e.g., Borderline SMOTE Han et al. (2005) or
ADASYN He et al. (2008)) lead to a deterioration of the results. One explanation for this de-
terioration could be related to potentially blurred class boundaries: while SMOTE over-samples
the entire minority class, the variants such as ADASYN focus more on the boundaries. Further
investigations on that point could be interesting, since our results highlight the importance of class
balancing.

For the imputation of missing values, more sophisticated methods than gapfilling have been
tested, e.g., Multiple Imputation by Chained Equations (MICE) (van Buuren and Groothuis-
Oudshoorn, 2011) or k-nearest neighbors (KNN) (Troyanskaya et al., 2001), but they did not
significantly improve the classification results and were much more time consuming. Further work
on that part is also an interesting perspective, since its interest had been reported in various studies
related to remote sensing Konrad Turlej et al. (2022); Mouret et al. (2022); Vuolo et al. (2017).

Finally, the greater confusion between declining and very declining plots may be explained
by the fact that both classes share the same type of trees, i.e., trees with grades equal to or
higher than “D” (see Section 2.2.1). The difference lies in the proportion of those trees in the
plot. Nevertheless, the possible separation between declining and very declining plots (even if not
perfect) is interesting from a user’s point of view. Moreover, the good results obtained in the
2-class scenario (healthy forest vs. forest dieback) indicate that forest dieback generally affects
the majority of the S2 pixels in the plot (conversely, the majority of pixels in healthy plots are
healthy). Working at the plot level (e.g. using the plot mean or median) was tested and resulted
in a degradation of the classification results, indicating that using all pixels of the plot leads to
better generalization.

6 Conclusion

This paper presents a supervised classification framework for the operational monitoring of forest
dieback using multispectral satellite imagery. Our analysis is conducted through a case study in
the Centre-Val de Loire region (France), which focus on the study of oaks, a key essence of the
region. Like other temperate forests, our study area has been affected by successive droughts in
recent years, and regular mapping of the forest health situation will become increasingly important
in the coming year to help the various stakeholders involved in forest management.

Like all supervised models, the proposed framework is based on training a classification model
using reference data. The training is performed on time series slices acquired over two years prior
to labeling. We propose to use time series from two vegetation indices based on continuum removal
(CR) of the spectrum, namely CRre, which focuses on the red edge response of the spectrum, and
CRswir, which focuses on the shortwave infrared part of the spectrum. Since our reference data
are labeled in different years, the training features are also from different time periods. In order to
have a better generalization over time, i.e. to mitigate the influence of phenological variability over
years, we have found that data augmentation is a crucial step. In our case, we can take advantage
of the fact that 1) healthy pixels were likely healthy in the years prior to labeling, and 2) declining
pixels are likely to continue declining in the coming years, to increase the number of samples in our
training set. Finally, we oversample the minority class for each labeling year using the SMOTE
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algorithm. A random forest model is learned on this augmented dataset and can then be used to
predict forest dieback.

Our analysis shows that the use of multispectral data (here Sentinel-2 images) can be used
to accurately detect forest dieback (overall and balanced accuracy close to 79%). In the 3-class
scenario (healthy, declining, very declining), the separation of declining and very declining classes
remains challenging. Moreover, our study highlights the fact that standard cross-validation results
may not be sufficient to measure the stability of a classification framework over time. More
specifically, we have shown that without data augmentation, and despite relatively good cross-
validation results, map production may lack temporal stability across the different years analyzed.
A key factor that leads to oscillations between pessimistic and optimistic mapping of the study
area is the phenological variation over time, which can be interpreted by a classification model as a
sign of forest dieback (or health) without proper balancing of the data. Finally, a feature analysis
was carried out, highlighting the importance of the SWIR information for mapping forest dieback,
even if the whole S2 spectrum is affected. Other parts of the spectrum, especially the red edge,
can be used to increase the temporal stability of the model, but without significantly improving
the cross-validation classification results.

These results open up interesting perspectives. First of all, specific work on the classification
model could improve dieback detection, especially since interesting results have been obtained
using standard deep learning approaches. Other state-of-the-art models could be tested, such as
Sparse Gaussian Processes (Bellet et al., 2023) or deep learning models based on transformers such
as Lightweight Temporal Self-attention (Garnot and Landrieu, 2020). Since the data augmentation
and balancing steps were found to be important for better generalization, further work on this part
could increase model stability and performance, for example by using semi-supervised approaches
(van Engelen and Hoos, 2019). An advantage of using deep learning approach could also be the
potential application to other types of trees via transfer learning (Weiss et al., 2016), e.g. Pinus
sylvestris is another key essence of the studied area. Unsupervised detection is another interesting
perspective, especially since the detection does not rely on labeled data. Given the relatively
subtle response of oak trees to drought-induced mortality, a combination of both approaches may
be preferable. Finally, additional data coming from synthetic aperture radar using Sentinel-1
satellites could increase the classification performances and is encouraged by the interest found in
combining both type of data in many remote sensing applications (Inglada et al.; 2016a; Morin
et al., 2019).
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Appendix A Additional results

A.1 F1 scores

To complement the results provided in the main document, Table 4 provides the F1 scores for each
class. We can see that the proposed framework is better overall, with a significant improvement for
the healthy class. Furthermore, the use of all S2 bands leads to a decrease in the F1 score of the
middle class. Finally, when compared to the results presented in the main document (especially
BA and OA with 2 classes), the lower F1 score for the declining classes indicates a confusion
between these two classes and not between healthy and declining classes.

Table 4: F1 scores averaged over the different labeling years (confidence interval in parenthesis) using
the Random Forest algorithm for the 3 classes of forest dieback, namely healthy (health.), declining
(decl.) and very declining (v. decl.). The proposed and baseline frameworks are compared with
different feature sets.

Framework Features N year | F1 - health. F1 - decl. F1 - v. decl.

Baseline CRswir, CRre 2 0.699 (0.010)  0.500 (0.011) 0.557 (0.013)
Baseline S2 bands 2 0.663 (0.012)  0.489 (0.011)  0.581 (0.013)
Baseline  Crswir 2 0.684 (0.009)  0.489 (0.014)  0.55 (0.014)

Proposed CRswir, CRre 2 0.736 (0.010) 0.496 (0.013) 0.573 (0.014)
Proposed CRswir, CRre 1 0.732 (0.009) 0.467 (0.013) 0.575 (0.016)
Proposed S2 bands 2 0.741 (0.009) 0.457 (0.015)  0.581 (0.016)
Proposed CRswir 2 0.737 (0.010) 0.506 (0.011) 0.579 (0.016)

A.2 Results obtained with other classifiers

Table 5 provides the average OA and BA obtained with other classifiers than the RF algorithm,
when using the CRswir acquired over 2 years before labeling. The RF algorithm is compared to the
XGBoost algorithm (Chen and Guestrin, 2016) and a Fully Convolutional Network (FCN) (Wang
et al., 2017), which are adapted to time series. A minimal tuning was conducted by grid-search,
i.e., for XGBoost we set the learning rate, the tree depth and number of estimator to 0.1, 7 and
100, respectively. For the FCN, we used the baseline parameters provided in Wang et al. (2017),
i.e., a multi-channel convolutional network of size (128, 256, 128) with learning rate 0.001 and 30
epochs (Wang et al., 2017, Figure 1). Overall, RF algorithm provides the best results without a
need for intensive tuning. The results obtained with standard value for the FCN are encouraging
and could motivate future work on that point.

Table 5: Overall Accuracy (OA) and Balanced Accuracy (BA) averaged over the different labeling
years (confidence interval in parenthesis) for a classification with 3 classes (3 cl.). Results obtained by
merging the declining classes (2 cl.) are also provided. Various classifiers are compared using CRswir
index acquired over 2 years before labeling.

Classifier | OA - 3 cl. BA-3c. |OA-2cl BA - 2 cl.

RF 0.653 (0.010)  0.610 (0.010) | 0.792 (0.007) 0.779 (0.007)
XGBoost | 0.623 (0.009)  0.597 (0.011) | 0.777 (0.009)  0.760 (0.009)
FCN 0.660 (0.012) 0.610 (0.012) | 0.783 (0.009)  0.757 (0.008)

A.3 Forecasting study

To analyze the potential interest of the proposed model to classify future years, a forecasting study
was conducted by testing the model on a given year after training on the other years. Subset of
the analyzed were selected by repeating 10 times a stratified 3-fold CV. Average OA and BA (2
classes) are reported in Figure 18. One can see a drop in the accuracy, i.e., average BA over yers
is equal to 0.721 instead of 0.792 (see Figure 10(b)). This drop was expected, since the model is
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not calibrated on the year to be predicted and because less samples are available (particularly for
the years 2020, 2021 and 2022).

0.90

—— Overall Accuracy (2 cl.)

—— Balanced Accuracy (2 cl.)
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0.75 A

0.70 A

0.65 -
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Figure 18: Overall and Balanced accuracy obtained when using (a) 3 classes and (b) 2 classes of forest
dieback. The features used as input are the CRswir and CRre acquired over two years (Nyears = 2).
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