
HAL Id: hal-04320229
https://hal.science/hal-04320229

Submitted on 14 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards filling the gaps around recurrent events in high
dimensional framework: a systematic literature review

and application
Juliette Murris, Anais Charles-Nelson, Abir Tadmouri Sellier, Audrey Lavenu,

Sandrine Katsahian

To cite this version:
Juliette Murris, Anais Charles-Nelson, Abir Tadmouri Sellier, Audrey Lavenu, Sandrine Katsahian.
Towards filling the gaps around recurrent events in high dimensional framework: a systematic literature
review and application. Biostatistics & Epidemiology, 2023, 7 (1), �10.1080/24709360.2023.2283650�.
�hal-04320229�

https://hal.science/hal-04320229
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1 

 

Towards Filling the Gaps around Recurrent Events in High Dimensional 

Framework: A Systematic Literature Review and Application 

J. Murris1,2,3*, A. Charles-Nelson4,5, A. Tadmouri3, A. Lavenu6,7,8†, S. Katsahian1,2,4,5,9† 

 

1 Inserm, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, 

Paris, France;  

2 HeKA, Inria, PariSanté Campus, Paris, France;  

3 RWE & Data, Pierre Fabre, Boulogne-Billancourt, France;  

4 Unité de Recherche Clinique, Hôpital Européen Georges-Pompidou, Assistance Publique – 

Hôpitaux de Paris (AP-HP), APHP, Centre, Paris, France;  

5 Centre d'Investigation Clinique 1418 (CIC1418) Épidémiologie Clinique, Inserm, Paris, 

France;  

6 Faculté de Médecine, Rennes, Université de Rennes 1, France;  

7 Institut de Recherche Mathématique de Rennes (IRMAR), Rennes, France;  

8 Centre de Investigation Clinique (CIC) CIC 1414, Inserm, Université de Rennes 1, Rennes, 

France;  

9 Service d'Informatique Médicale, Biostatistiques et Santé Publique, Hôpital Européen 

Georges Pompidou, Assistance Publique – Hôpitaux de Paris (AP-HP), Paris, France 

 

*J. M. is the corresponding author, address: 33 Av. Emile Zola, 92100 Boulogne-Billancourt, 

France, phone: +33 6 73 52 36 39; e-mail: juliette.murris@pierre-fabre.com 

†A.L. and S.K. contributed equally. 

 

ORCID 

Juliette Murris, https://orcid.org/0000-0002-7017-9865 

Anaïs Charles-Nelson, https://orcid.org/0000-0001-6437-7059 

Audrey Lavenu, https://orcid.org/0000-0002-0049-2397 

Sandrine Katsahian, https://orcid.org/0000-0002-7261-0671 

 

Word count: 4,172 words 

Preprint available at https://arxiv.org/abs/2203.15694 

mailto:juliette.murris@pierre-fabre.com
https://orcid.org/0000-0002-7017-9865
https://orcid.org/0000-0001-6437-7059
https://orcid.org/0000-0002-0049-2397
https://orcid.org/0000-0002-7261-0671
https://arxiv.org/abs/2203.15694


2 

 

Towards Filling the Gaps around Recurrent Events in High-Dimensional 

Framework: A Systematic Literature Review and Application 

 

 Individuals may experience repeated events over time. However, there is no consensus 

about learning approaches to use in a high-dimensional framework for survival data (when the 

number of variables exceeds the number of individuals, i.e., p > n). The aim of this study was 

to identify learning algorithms for analyzing/predicting recurrent events, and to compare them 

to standard statistical models on simulated data. A systematic literature review was conducted 

to provide state-of-the-art methodology. Data was then simulated according to the number of 

variables, the proportion of active variables, and the number of events. The performance of the 

models was assessed using Harrell’s concordance index, Kim’s C-index, and error rate for 

active variables. Seven publications were identified, of which four were methodological 

studies, one an application paper and two were reviews. On simulated data, the standard models 

failed when p > n.  Penalized Andersen-Gill and frailty models outperformed, whereas 

RankDeepSurv gave poorer performances. With no current guidelines on a specific approach 

to use, this study deepens understanding of the mechanisms and limits of investigated methods 

in this context. 

Keywords: recurrent events; survival analysis; high-dimensional data; machine learning; 

simulated data 
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1. Introduction 

Individuals may experience repeated events over time, such as hospitalizations or 

cancer relapses. In either clinical trials or real-world settings, survival analysis usually focuses 

on modeling the time to the first event. However, variables may have a different effect on the 

first event and on subsequent occurrences. Thus, modeling recurrent events remains a big 

challenge (Figure 1). 

 

Figure 1. Recurrent Event Framework 

 

Indeed, two main problems arise when analyzing recurrent events. Firstly, 

interindividual heterogeneity emerges as some subjects may be more likely than others to 

experience the event. Secondly, events experienced by an individual are not independent, 

leading to intraindividual heterogeneity. Various methods have been developed to deal with 

these two issues and can be classified into marginal and conditional models. Marginal models 
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involve implicitly averaging over the history of previous recurrent events. Conditional models 

can condition on event past history.  

Furthermore, modern technologies enable data to be generated on thousands of 

variables or observations, as per genomics, medico-administrative databases, disease 

monitoring by intelligent medical devices, etc. While massive data describes large numbers of 

observations, high-dimensional data is defined as data with a number of variables of interest p 

greater than the number of individuals n. In this context, standard statistical models may no 

longer be applied, as they tend to face convergence problems and non-clinically relevant 

significance of the variables can arise. Machine learning methods have been developed to 

handle these problems. 

Literature reviews  were previously  conducted on recurrent events, but none dealt with 

a high dimensional framework [1-3]. The aim of this article was to review innovative 

methodology available to analyze and predict high-dimensional recurrent events data. 

Simulations were performed to study properties of identified methods compared to standard 

methods, according to the number of variables at the modeling stage. 

Section 2 hereafter describes the methodological setting regarding both the literature 

review and the statistical approaches for modeling and evaluating the models as well as the 

data simulation scheme. Then, section 3 provides the findings of the review that enabled the 

identification of the adequate methods. Next, the application results on simulated data are 

reported. Section 4 finally relates the discussion and gives a contextual perspective based on 

related work and theoretical considerations. 
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2. Materials and method      

2.1. Systematic literature review 

A systematic literature review (SLR) was performed to identify high-dimensional 

survival methods for analyzing recurrent events.  

2.1.1. Data sources and search strategy 

A first search in PubMed, as recommended by Cochrane [4,5], was performed in 

October 2022  to identify published articles with the following concepts and index terms (MeSh 

terms) in the title or abstract: 

• Survival analysis, 

• Recurrent event, 

• High-dimensionality, 

• Machine Learning. 

Appendix 1 details the complete PubMed search strategy. 

Secondly,  hand searches were also carried out via research engines (Google, Google 

Scholar, Science direct, Web of Science) and conferences (International Society for Clinical 

Biostatistics, Association for Computing Machinery, Machine Learning Conference, Journées 

de Statistique, Medical and Health Informatics) to seek unpublished work such as conference 

abstracts, papers, and reviews [6]. The hand search strategy included the distinct concepts 

above that were combined using the following key terms: ‘survival’ or ‘survival analysis’ or 

‘time to event’, ‘recurrence’ ‘recurrent’ or ‘repeated events’ or ‘relapse’ or ‘hospitalization’, 

‘high-dimension’ or ‘machine learning’.  
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2.1.2. Eligibility criteria 

Only published articles in English or French were included. Inclusion criteria were 

systematic or observational studies that analyzed any recurrent outcome(s), as well as reviews 

and/or surveys. Exclusion criteria were any Bayesian approach and clinical trial design. The 

rationale behind this strategy was to ensure consistency with frequentist approaches and real-

world applications. Unstructured data such as textual or imaging data were not considered; in 

our opinion such data are disparate from structured data. Finally, no restrictions regarding the 

field of healthcare, medical indication or treatment were applied.   

2.1.3. Study selection 

Two reviewers assessed the eligibility of publications independently and any 

discrepancies were subsequently discussed. Forward and backward citation tracking was 

conducted to avoid missing any relevant literature. Eligible hits were subjected to title and 

abstracts screening after duplicate removal. The findings of this selection led to the next step 

in the systematic review process which was the full-text review.  

2.1.4. Study characteristics 

Study characteristics such as general study setting, location, sample size if applicable, 

research design, statistical/machine learning approaches, outcomes measured, metrics for 

evaluation, code availability / reproducibility and application of data (sample description if 

applicable) were extracted for each included study and summarized. Heterogeneity across 

studies was not assessed as it was deemed irrelevant to the objective. 
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2.2. Statistical analysis for application 

2.2.1. Notations 

Let 𝑿𝑖 be a p-dimensional vector of covariates, 𝛽 the associated regression coefficients, 

𝜆0(𝑡) the baseline hazard function, 𝑌𝑖(𝑡) an indicator of whether subject i is at risk at time t, 

𝛿𝑖 = 1 when the subject experienced the event (else 0). Let 𝐸𝑖 and 𝐶𝑖 be the time to event or 

censoring, 𝑇𝑖 = 𝐸𝑖 ∧ 𝐶𝑖 for the patient i, with 𝑎 ∧ 𝑏 = min⁡(𝑎, 𝑏). 𝑁𝑖
∗(𝑡) denoted the number 

of events over the interval [0, t]. Of note, i = 1, …, n, with n the number of subjects and 𝐗 ∈

ℝ𝒏∗𝒑 denoted the covariates matrix for all subjects. 

2.2.2. Standard statistical models for modeling recurrent events 

Andersen-Gill (AG) [7], Prentice, William and Peterson (PWP) [8], Wei-Lin-Weissfeld 

(WLW) [9] and the frailty models [10] were developed as extensions of the Cox model [11]. 

These methodologies commonly use models to handle recurrent event data. Their 

characteristics are summarized in Table 1. Further details on time scales and how models 

accounted for subject at risk can be found in Appendix 2. While other statistical approaches 

exist to model recurrent events, we focused on risk outputs to be able to compare 

methodologies to one another containing identical metrics. However, this statistical model can 

handle low-dimensional data only, i.e., when the number of individuals is lower than the 

number of variables. 
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Table 1. Standard Statistical Models for Recurrent Events Analyses 

Model Components and specificities 

AG 

Conditional model, accounts for the counting process as a time scale and unrestricted set 

for subjects at risk 

Recurrent events within individuals are independent and share a common baseline hazard 

function 

Intensity of the model: 𝜆𝑖(𝑡) = 𝑌𝑖(𝑡) × 𝜆0(𝑡) × exp(𝛽𝑡𝑋𝑖) 

PWP 

Conditional model, counting process as time scale and restricted set for subjects at risk 

Stratified AG, stratum k collects all the kth events of the individuals 

Hazard function for each event 

Hazard function: 𝜆𝑖𝑘(𝑡) = 𝑌𝑖(𝑡) × 𝜆0𝑘(𝑡) × exp(𝛽𝑘
𝑡𝑋𝑖) 

WLW 

Marginal model, also stratified, calendar time scale and semi-restricted set for subjects at 

risk 

Intra-subject dependence 

Hazard function: 𝜆𝑖𝑘(𝑡) = 𝑌𝑖(𝑡) × 𝜆0𝑘(𝑡) × exp(𝛽𝑘
𝑡𝑋𝑖) 

Frailty 

Extension of AG model 

Random term 𝑧𝑖 for each individual to account for unobservable or unmeasured 

characteristics 

Hazard function: 𝜆𝑖(𝑡) = 𝑌𝑖(𝑡) × 𝜆0(𝑡) × 𝑧𝑖 × exp(𝛽𝑡𝑋𝑖) 

AG, Andersen-Gill; PWP, Prentice, William and Peterson; WLW, Wei-Lin-Weissfeld. 

2.2.3. Evaluation criteria to measure performance 

Few methods are currently available to evaluate a model adjusted for recurrent events. 

This leads to a lack for model discrimination, i.e., the model cannot differentiate between high- 

and low-risk individuals who may be subject to the events. We selected the following three 

criteria to answer the study objectives: 

Harrell’s Concordance index. Harrell’s C-index is a common evaluation criterion in survival 

analysis [12]. This measure is the proportion of pairs of individuals for which the order of 

survival times are concordant with the order of the predicted risk. In the presence of censoring, 

the denominator is the number of pairs of individuals with an event. The C-index is estimated 

as follows 

ℂ̂ =
∑ 𝐼{𝜂𝑖<𝜂𝑗}⁡×⁡𝐼{𝑇𝑖>𝑇𝑗}⁡×⁡𝛿𝑗𝑖≠𝑗

∑ 𝐼{𝑇𝑖>𝑇𝑗}⁡×⁡𝛿𝑗𝑖≠𝑗
      (1) 
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With 𝜂𝑖 the risk of occurrence of the event. Of note, when two individuals are censored, 

we cannot know which of the two has the event first. This pair is not included in the calculation. 

In the same way, if one of the individuals is censored and its censoring time is lower than the 

event time of another individual, we cannot know which one has the event first. This pair is 

also not included in the C-index calculation. If the C-index is equal to 1, it means a perfect 

prediction, and if the C-index ≤ 0.5, it implies that the model behaves similarly or worse than 

random. Models with a C-index close to 1 are preferred. Harrell’s C-index was computed at 

each event. 

Kim’s C-index. Kim et al. [13] proposed a measure of concordance between observed and 

predicted event counts over a time interval of shared observations. It is the proportion of pairs 

of individuals for whom the risk prediction and the number of observed events is concordant: 

ℂ̂𝑟𝑒𝑐 =
∑ ∑ 𝐼{𝑁𝑖

∗(𝑇𝑖∧𝑇𝑗)>𝑁𝑗
∗(𝑇𝑖∧𝑇𝑗)}⁡×⁡𝐼{𝛽

𝑡𝑋𝑖>𝛽
𝑡𝑋𝑗}

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝐼{𝑁𝑖
∗(𝑇𝑖∧𝑇𝑗)>𝑁𝑗

∗(𝑇𝑖∧𝑇𝑗)}
𝑛
𝑗=1

𝑛
𝑖=1

    (2) 

This extension of the C-index implies: 

• Two individuals are comparable up to the minimum time of follow-up; 

• A pair contributes to the denominator if the two event counts are not equal. 

As per Harrell's C-index in Equation (1), a score closes to 1 indicates a better 

performance of the model. As opposed to Harrell’s C-index, Kim’s C-index was computed 

once across all the events. 

Error rate for active variables. When simulating the datasets, the active status of each variable 

is known. Methods report the significant variables with a p-value < 0.05 (except deep neural 

networks). Significant variables are considered as positive tests for their active status. Some 

active variables likely have a false negative test (𝐹𝑁), and some passive variables have a false 
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positive test (𝐹𝑃). The error rate (𝑒𝑟𝑟) is the proportion of misclassified variables after 

prediction: 

𝑒𝑟𝑟 = ⁡
𝐹𝑃+𝐹𝑁

𝑝
       (3) 

2.2.4. Simulation scheme 

The following assumptions were made: 

• Active variables were continuous, and have the same (non-zero) effect; 

• The variables do not vary over time; 

• Individuals were at risk continuously until end of follow-up; 

• Censoring is not informative. 

The generation of the covariate matrix, 𝐗⁡~⁡𝒩𝑚(𝜇, Σ(𝜌)). 𝜇 = (𝜇1…𝜇𝑝) = (𝑎…𝑎) 

and Σ(𝜌) was the covariance matrix with an autoregressive correlation structure and 𝜌 ∈ (0,1). 

The coefficients 𝛽 = (𝛽1…𝛽𝑝) = (𝑏,… , 𝑏, 0, … ,0) were associated with the 𝑝 covariates. 𝑚 

coefficients were equal to a constant 𝑏⁡ ∈ ℝ (the value of the active coefficients) and 𝑝 − 𝑚 

coefficients were equal to zero. The sparse rate was described by  
𝑚

𝑝
. The baseline hazard 

function followed a Weibull distribution with scale 𝛼 > 0 and shape 𝛾 > 0, and 𝜆0(𝑡) =

𝛼𝛾𝑡𝛾−1. The cumulated baseline hazard function could be expressed as Λ0(𝑡) = ∫ 𝜆0(𝑠)ds
𝑡

0
=

𝛼𝑡𝛾. Hence the cumulative hazard function could be expressed as Λ(𝑡) = Λ0(𝑡)⁡exp⁡(𝛽
𝑡𝑋𝑖). 

Conditional baseline hazard function was then defined as Λ̃𝑡(𝑢) ≔⁡ Λ̃𝑖(𝑢|𝑇𝑖−1 = 𝑡) =

Λ(𝑢 + 𝑡) − Λ(𝑡). A frailty term 𝑧𝑖 i.i.d. was incorporated to account for heterogeneity.  

To maintain censoring rates, censored individuals were randomly drawn (censoring is 

not informative), as per Jahn-Eimermacher et al. [14]. The algorithm of Jahn-Eimermacher et 
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al. [15] was applied to simulate event times k for each subject i:  

𝑡𝑖,1 = Λ−1(𝑡)(− log(𝜀1))     (4) 

and 𝑡𝑖,𝑘+1 = 𝑡𝑖,𝑘 + Λ̃𝑖,𝑡𝑘
−1
(− log(𝜀𝑘+1)) with 𝜀𝑘~𝑈[0,1] 

Train-test split was employed with a 70-30% distribution. Datasets were generated 

with: 

• N = 100 subjects (low sample size) 

• Censoring rate of 20%  

• 𝜌 = 0.7 

• b = 0.15 

• 𝛼 = 1 and  𝛾 = 2  

• 𝑧⁡~⁡𝒢𝑎𝑚𝑚𝑎(0.25)  

Scenarios include variations of the number of covariates 𝑝 = 25, 50, 100, 150, and 200 

and the sparse rate = 0%, 25%, and 50%. For each one of the 15 scenarios, 100 datasets were 

generated to account for variability. 

3. Results 

3.1. Systematic literature review 

The search strategy is summarized in Figure 2. Extraction led to the identification of 

192 hits through electronic research on the PubMed database. Forty-one studies proceeded to 

the full-text review step, while the other 151 remaining papers were excluded for further 

consideration. Overall, after confirming the outcome of interest dealt with recurrence, the 

primary reason for exclusion was the non-consideration of recurrent events as time-to-event 
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for each occurrence. Recurrence was considered as a classifier (19/192), as a recurrence-free 

survival outcome (26/192), or as a time-to-first event (34/192). In this way, the challenge of 

recurrent data was avoided. The probability of the event was estimated without considering all 

available information (subsequent event occurrences were omitted in such cases), and were 

hence biased. 



13 

 

 

Figure 2. Flowchart of Included Publications via PubMed 

 

This may be the illustration of authors' caution when dealing with recurrent events in high 

(framework?) dimensions, as no published guidelines or recommendations are available as far 

as we know. In the field of medicine, the most frequent disease application was cancer (77/192) 

probably due to the high level of sustained interest in this condition. Among cancers, however, 

no type stood out (colon/colorectal cancer 34/192, breast cancer 20/192, lung cancer 15/192, 

other cancer 8/192). In addition, four full-text articles could not be reviewed as they were not 
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available. After title, abstract and full-text thorough review, four publications were included 

from the electronic database search. Three additional papers from the hand searches were 

identified. Subsequently, a total of seven relevant publications were selected (Table 2).  

The two first publications are literature reviews. Work from Wang et al. [16] and Bull 

et al. [17] are recent comprehensive surveys in which classical and contemporary methods of 

survival analysis are reported. They both underline the development over the last decade of 

more complex approaches to dealing with longitudinal data to predict survival outcomes, e.g., 

joint models and deep neural networks. Recurrent events may be seen as longitudinal outcomes 

but were not addressed per se and were only mentioned as specific data structure. 

Four methodological articles were also selected presenting a significant variation in 

methodology. Two articles describing learning algorithms for variable selection strategies were 

identified. Firstly, Wu [18] focused on accelerating coefficient estimation with a coordinated 

descent algorithm and penalizing partial likelihood, followed by Zhao et al. [19] work which 

provided an extension of Ridge penalization for estimating and selecting variables 

simultaneously. Finally, the other two selected articles are from Gupta et al. [20] and Jing et 

al. [21], and developed deep neural networks extensions for the analysis of recurrence.  

An additional paper was selected, which aimed at estimating time between two breast 

cancer recurrences using a Weibull Time To Event Recurrent Neural Network [22]. However, 

the methodology used was an extension of a recurrent neural network and was not published 

in any peer-reviewed journal [23].  

Findings from the present review highlight the current gap in the literature and vast 

differences in the context and methods of interest. In particular, not all developed models 

were based on simulated data, as Jing et al. [21]. Additionally, none of the included 
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publications compared their performance to others. For instance, variable selection 

approaches were compared to standard statistical model only, while neural networks were 

compared to other neural networks or random forests. No head-to-head comparison across 

standard methods, learning algorithms and deep neural network seem to have been 

performed.
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Table 2. Papers Identified from the Literature Review 

# Year Author Title Type Description 
Data used for 

application 
Evaluation measure 

Code 

availability / 

reproducibility 

#1 2013 
Wu 

et al. 

Lasso penalized 

semiparametric 

regression on high-

dimensional recurrent 

event data via 

coordinate descent 

Variable 

selection 

Regularization method with penalization 

Use of the coordinated descent algorithm, 

which computes in a bi-directional way 

(forward and backward) the deviations of 

the optimization problem and updates the 

parameter value iteratively 

Chronic septic 

granulomatosis 

Number of selected 

predictor variables and 

regression coefficients 

No 

#2 2018 
Zhao et 

al. 

Variable selection for 

recurrent event data 

with broken adaptive 

ridge regression 

Variable 

selection 

Extension of the broken adaptive ridge 

method to recurrent events, involves 

repetition and reweighting of penalized L2 

models 

Simultaneous variable selection and 

parameter estimation, accounts for 

clustering effects 

Chronic septic 

granulomatosis 

MSE 

Number of predictor 

variables selected 

correctly, and number of 

predictor variables 

selected incorrectly 

Yes 

#3 2019 
Wang 

et al. 

Machine Learning for 

Survival Analysis: A 

Survey 

Literature 

review 

Introduction to survival analysis, overview 

of classical methods and overview of 

learning methods 

Recurrent events are mentioned, but ML 

methods are not developed 

/ / / 

#4 2019 
Gupta 

et al. 

CRESA: A Deep 

Learning Approach to 

Competing Risks, 

Recurrent Event 

Survival Analysis. 

Deep 

neural 

networks 

LSTM neural networks with the 

introduction of the cumulative incidence 

curve to take into account competitive 

and/or recurrent events 

MIMIC III 

Machine failure 

data 

Harrell’s C-index 

MAE 
No 
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LSTM, long short-term memory; MAE, mean absolute error. Articles were sorted by publication year. #1 to #3 were identified via hand searches and #4 to #7 

via PubMed. 

  

#5 2019 
Jing et 

al. 

A deep survival 

analysis method based 

on ranking 

Deep 

neural 

networks 

Extension of the DeepSurv model (neural 

networks for competitive events) with the 

use of ranking in the loss function on the 

differences between observed and 

predicted values 

Myocardial 

infarction 

Breast cancer 

omic data 

Harrell’s C-index Yes 

#6 2020 
Bull et 

al. 

Harnessing repeated 

measurements of 

predictor variables for 

clinical risk prediction: 

a review of existing 

methods 

Literature 

review 

Summary of existing methodology to 

provide clinical prediction depending on 

the nature on input data 

Both statistical and learning approaches are 

described, but no ML methods for recurrent 

events highlighted 

/ / / 

#7 2021 
Kim et 

al. 

Deep Learning-Based 

Prediction Model for 

Breast Cancer 

Recurrence Using 

Adjuvant Breast Cancer 

Cohort in Tertiary 

Cancer Center Registry 

Deep 

neural 

networks 

Use of Weibull Time To Event Recurrent 

Neural Network, an extension of recurrent 

neural network to sequentially estimate 

time to next event 

 

Breast cancer 

registry in 

Korea 

Harrell’s C-index 

MAE 
Yes 



 

 

3.2. Application to simulated data 

We proposed testing the identified methods on simulated data. Only two methods had 

open-sourced code: Variable selection from Zhao et al. [19] and the deep neural network 

RankDeepSurv from Jing et al. [21]. 

3.2.1. Methods selected 

Learning algorithms for variable selection  

A common approach to addressing high-dimension challenge is variable selection. 

Penalizing models helps to reduce the space of parameter coefficients, called shrinkage. Widely 

used for regression and classification problems, Lasso penalization accepts null coefficients to 

select variables [24] and Ridge helps to deal with multicollinearity in the data [25]. Both 

penalization approaches have been extended to Cox models in standard survival analysis 

framework [26,27]. The purpose is to solve a constrained optimization problem of the partial 

log-likelihood of the Cox model, which is written 

ℒ(𝛽) = ∑ 𝛿𝑖𝛽
𝑡𝑿𝑖 − ∑ 𝛿𝑖 ⁡× ⁡log∑ exp⁡(𝛽𝑡𝑿𝑖)

𝑛
𝑗∈ℛ(𝜏𝑖)

𝑛
𝑖=1

𝑛
𝑖=1     (5) 

With ℛ(𝑡) the set of individuals who are ‘at risk’ for the event at time t. For CoxLasso, 

regularization is performed using an 𝐿1 norm penalty and 𝛽̂ = argmax⁡𝛽⁡ℒ(𝛽), ||𝛽||1 ≤ 𝑠 and 

for CoxRidge an 𝐿2 norm penalty and 𝛽̂ = argmax⁡𝛽⁡ℒ(𝛽), ||𝛽||2 ≤ 𝑠, with 𝑠 ≥ 0. The lower 

the value of 𝑠, the stronger the penalization. Hyperparameters, named penalty coefficients, are 

used to determine its value, and enable the control of the impact of the penalty. 

Zhao et al. [19] proposed an extension of these methods to recurrent events by 

developing the broken adaptive ridge (BAR) regression. The first iteration consists of a 

penalized 𝐿2 model 



 

 

𝛽̂(0) = argmin𝛽(−2⁡ℒ𝑚𝑜𝑑(𝛽) + 𝜉𝑛 ∑ 𝛽𝑗
2𝑝

𝑗=1 ), 𝜉𝑛 ≥ 0    (6) 

If penalization hyperparameter 𝜉𝑛 > 0, this is a Ridge penalty, and if 𝜉𝑛 = 0 then 𝛽̂(0) 

is not penalized. We update for each iteration 𝜔: 

𝛽̂(𝜔) = argmin𝛽 (−2⁡ℒ𝑚𝑜𝑑(𝛽) + 𝜗𝑛∑
𝛽𝑗
2

(𝛽̂𝑗
(𝜔−1)

)
2

𝑝
𝑗=1 ) ,𝜔 ≥ 1  (7) 

BAR estimates are defined by 𝛽̂ = lim
𝑘→∞

𝛽̂(𝜔). The estimator benefits from the oracle 

properties of both penalties for model covariate selection and estimation. Cross-validation is 

recommended to optimize values of hyperparameters 𝜉𝑛 and 𝜗𝑛. According to Kawaguchi et 

al. [28], estimates are not sensitive to variations of 𝜉𝑛 and optimization can be performed only 

on 𝜗𝑛. In the absence of a consensual single measure on cross-validation under recurrent 

events, two values for 𝜗𝑛 were studied in this paper, thereby covering two separate models. 

Such penalty was applied to models presented in the previous subsection. 

Deep neural network 

RankDeepSurv is a deep neural network proposed by Jing et al. [21] with fully 

connected layers (all neurons in one layer are connected to all neurons in another layer). The 

specificity of the RankDeepSurv neural network lies in the loss function adapted to survival, 

which results from the sum of two terms: one to constrain the survival model using an extension 

of the mean square error and the other to evaluate the rank error between observed and 

predicted values for two individuals. The loss function is written as 

𝐿𝑙𝑜𝑠𝑠(𝜃) = 𝛼1⁡𝐿1(𝜃) + 𝛼2⁡𝐿2(𝜃) + 𝜇⁡||𝜃||2
2    (8) 

with 



 

 

• 𝛼1, 𝛼2 > 0 constant values, 𝜃 the weights of the network, 𝜇 the regularization parameter 

for 𝐿2 ; 

•  𝐿1 =
1

𝑛
∑ (𝑦𝑗,𝑝𝑟𝑒𝑑 − 𝑦𝑗,𝑜𝑏𝑠)

2𝑛
𝑖=1,𝐼(𝑖)=1 , 𝐼(𝑖) = 1 if 𝑖 is censored or if the predicted time 

to event is before observed time, else 0; 

• 𝐿2 =
1

𝑛
∑ [(𝑦𝑗,𝑜𝑏𝑠 − 𝑦𝑖,𝑜𝑏𝑠) − (𝑦𝑗,𝑝𝑟𝑒𝑑 − 𝑦𝑖,𝑝𝑟𝑒𝑑)]

2𝑛
𝐼(𝑖,𝑗)=1 , 𝐼(𝑖, 𝑗) = 1 if 𝑦𝑗,𝑜𝑏𝑠 −

𝑦𝑖,𝑜𝑏𝑠 > 𝑦𝑗,𝑝𝑟𝑒𝑑 − 𝑦𝑖,𝑝𝑟𝑒𝑑, else 0. 

Gradient descent is utilized for solving the minimization of 𝐿𝑙𝑜𝑠𝑠.  

3.2.2. Results of the application 

Simulated datasets had identical characteristics in terms of number of individuals, 

structure of covariates, but differed across scenarios in terms of number of covariates and 

sparse rate. In the variance-covariance matrix, the covariates were highly correlated when they 

were close, then decreasingly correlated when they were further apart. Appendix Figure B 

captured this relationship across covariates with five datasets, regardless of the number of 

covariates. Figure 3 provides a visual representation of the history of nine individuals and their 

events over the follow-up period (and helps to understand Figure 1). 



 

 

 

Figure 3. History of the 9 First Simulated Individuals (for a given training set). A row referred 

to a patient with their event history. The time on the x-axis was the follow-up period. Solid 

circles corresponded to events and empty circles represented censoring. 

Impact of the number of covariates on the average C-index 

Average C-indices were computed across all 15 scenarios (Figure 4). As expected, the 

standard models failed as soon as p > n. Whereas the C-indices were also expected to be around 

0.5 when the sparse rate was zero, they increased as the sparse rate increased. The best 

performance was obtained using the frailty model. Other models showed similar trends, except 

for the WLW and RankDeepSurv models. The C-indices of these two models remained around 

the value of 0.5 (and even below) regardless of the scenario. The Kim’s C-index was more 

stable across the different number of covariates and sparse rates, although it tended to decrease 

as the number of covariates increased with sparse rate = 50%. Small differences across penalty 

values were noticed as 0.05 penalized models and 0.1 penalized models followed similar 

trends. 



 

 

 

Figure 4. Impact of the number of covariates on average C-indices with Sparse Rate Equal to 

0% (A), 25% (B) and 50% (C). 𝑝 the number of covariates. For each sparse rate, model and 

penalty, the average C-indices of the 100 simulated datasets were displayed over the number 

of covariates. The penalties were equal to 0 (unpenalized), 0.05 × log(𝑝)⁡and 0.1 × log(𝑝), 

respectively. Penalties > 0 were applicable only for standard statistical models, RankDeepSurv 

deep neural network was hence not penalized. Unpenalized standard statistical models did not 

converge as soon as 𝑝 > 𝑛, performance was therefore not available. AG: Andersen-Gill; PWP: 

Prentice, RDS: RankDeepSurv, William, and Peterson; WLW: Wei-Lin-Weissfeld. 



 

 

Focus on the variability of C-indices for two extreme scenarios  

Two extreme scenarios were thoroughly studied: one with no active variable and only 

25 variables (A), and another one in which models overall reported greater performance with 

a sparse rate of 25% and over 150 variables (B). Similar trends in variability were observed 

across these two scenarios and for each C-index (Appendix Figure C). Kim’s C-index was the 

less volatile across models and their penalties, with values ranging between 0.39 and 0.63 and 

0.28 and 0.76 for (A) and (B), respectively. Harrell's C-index was increasingly variable in the 

first event (A: min = 0.26 and max = 0.74; B: min = 0.24 and max = 0.81), second event (A: 

min = 0.30 and max = 0.75; B: min = 0.17 and max = 0.85), and third event (A: min = 1 and 

max = 0).  

Error rate for active variables 

Results regarding average error rates are displayed in Appendix Figure D. For scenarios 

where the sparse rate was equal to 0%, all models reported average error rates below 0.5, except 

penalized WLW with error rates around 0.75. Average error rates appeared similar when no 

penalty was applied. The AG model had the lowest average error rate for each p, with a 

minimum value of 0.018 for the penalized model at 0.1 × log(𝑝) and p = 200. Average error 

rate decreased when the penalty increased when p > n. For scenarios with a sparse rate equal 

to 25%, the unpenalized frailty model had the best performance, while the other models 

provided higher values. Similarly, penalties decreased the average error rate. Penalized AG 

models reported average error rates lower than 0.3. Finally, when the sparse rate was equal to 

50%, almost constant average error rates around 0.5 were observed for each model regardless 

of p.  



 

 

4. Discussion 

The present systematic literature review enabled the identification of emerging 

approaches. A total of seven publications were included, highlighting the limitation of available 

resources in this area. Methods herein identified were based on existing model extensions to 

the recurrent survival framework, which included variable selection approaches and neural 

networks. As with the standard models presented, they have both strengths and drawbacks. It 

is therefore necessary to tailor them to the clinical setting in order to meet the stated goals in a 

meaningful way. 

At the same time, these approaches had not tested against one another. This may lead 

to erratic behavior and confusion when researchers aim to conduct robust and reliable analyses 

in this context. The present study thus proposed to evaluate some of the available open-sourced 

innovative learning algorithms developed to solve the high-dimensional framework when 

considering recurrent events. The investigation of the beforementioned 15 scenarios on 

simulated data highlighted specificities of both the methodology and measures used for the 

evaluation of their performance.  

Firstly, unpenalized standard approaches failed as soon as p > n as expected, while 

penalized approaches helped to improve their performance when p < n. This was typically 

expected as standard statistical models were not designed for p > n cases. AG and PWP models 

reported equivalent performance, while the frailty model consistently had the best 

performance. This was due to the construction of the frailty term from the simulation scheme. 

The WLW model performed in an inferior manner, regardless of penalization or not. This 

finding was consistent with results in the literature, suggesting WLW models to be more 

appropriate with events of different types rather than recurrent events [29,30]. Nevertheless, 

these models, each with their own specificities, can respond to differing needs, especially 



 

 

related to the research questions [1,3,31]. Secondly, variable selection with penalties did not 

significantly increase performance, and few variables were even selected when the sparse rate 

was zero. Since only two values for the hyperparameter were explored, it seemed quite unlikely 

these would maximize model performance. The deep neural network reported poorer 

performance; one reason could be that the format of the data was not suitable for the code.  In 

this case, average error rates increased with the sparse rate. When the number of active 

variables was higher, models tended to select the wrong variables. It appears as if the models 

have a harder time learning and selecting the true active variables in the advent of a high sparse 

rate, however they managed to report better C-indices in this situation. This was related to the 

variance-covariance structure chosen for data simulation. With regards to evaluation metrics, 

Kim’s C-index has shown higher stability and robustness compared to other metrics and stood 

for a criterion evaluating the entire set of events. Harrell's C, on the other hand, was measured 

at each event, making it difficult to be interpreted in terms of global performance.  

Nevertheless, some limitations should be noted. The literature review presented several 

drawbacks. Publications whose objective was variable selection without explicit dimension 

reduction, such as Tong et al. [32] and Chen et al. [33] could not be captured because of the 

elaborated research strategy. In addition, it is not always simple to assess how the outcome was 

considered, especially for neural networks that make little mention of the expected structure to 

process the data. Furthermore, as mentioned above, the lack of hyperparameter optimization 

for variable selection made BAR approach inconclusive. Lastly, a cross-validation would have 

highlighted the robustness of the results [34].  

Other evaluation measures have been used in the literature, e.g., the mean square error, 

the mean absolute error, the log-likelihood [18,19,30]. An additional approach to investigating 

active variables would be to assess the importance of the variables by permutation [35]. When 



 

 

choosing a performance measure beforehand, this consists in permuting k times for the order 

of the covariates and calculating k times for the performance of the model. We note however 

that the simulations scheme itself presented several drawbacks. Covariates were not time-

dependent and shared the same effect on the outcome, which may seem implausible in real life 

and made the interpretation of the results difficult to generalize. Also, although the simulation 

of the data maintained censoring rates, it was not based on a distribution of censoring time, 

while one should be able to genuinely control [36,37]. 

5. Conclusion 

As far as we know, this is the first study to compare standard methods, variable 

selection algorithms, and a deep neural network in modeling recurrent events in a high-

dimensional framework, and to specifically measure the impact of the number of covariates.  

Progress in medical care is leading to the use of embedded artificial intelligence (AI) 

technologies, evidenced by the booming market for AI medical devices. In this context, these 

systems are typically designed to prevent the occurrence of events at the hospital, elderly care 

home or outpatient setting, for example. Where these events are likely to occur repeatedly, and 

all available data/knowledge is captured, then thorough, robust and appropriate analysis of 

recurrent events is crucial [38]. 

Overall, this work raises many concerns for recurrent event data analysis in high-

dimensional settings. In addition, it highlights the current need for developing further 

approaches in order to assess their performance in a relevant manner. 
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Appendix 1 – PubMed search strategy 

Table A. Search Strategies in PubMed Database 

Concept Research strategy keyword Research # Results 

Survival analysis "survival analysis"[MeSH Terms] OR "survival 

analysis"[Text Word] OR "time-to-event"[All 

Fields] 

# 1 338,066 

Recurrence ("recurren*"[All Fields] OR ("relapse"[All 

Fields] OR ("repeated"[All Fields] OR 

("multiple"[All Fields] AND ("event"[All 

Fields]))))) 

# 2 930,483 

High-dimension "high dimension*"[All Fields] #3 8,435 

Machine learning "machine learning"[MeSH Terms] OR "machine 

learning"[Text Word] 

#4 69,520 

Survival analysis 

for recurrent 

events 

#1 and #2 #5 75,826 

High-dimension or 

machine learning 

#3 or #4 #6 76,554 

Total #5 and #6 #7 192 

 

  



 

 

Appendix 2 – Data components for modeling recurrent events when using 

standard statistical approaches 

Set of individuals at risk 

Standard statistical models described do not encounter for individuals at risk in the 

same way. This induces prior data management for appropriate application. 

• The set of individuals at risk for the kth event comprised individuals who were at risk 

for the event. Different definition existed for the set of individuals at risk, mainly based 

on baseline hazard function: 

• The unrestricted set, in which each subject could be at risk for any event regardless of 

the number of events presented, at all-time intervals; 

• The restricted set contained only the time intervals for the kth event of subjects who 

had already presented 𝑘 − 1 events; 

• The semi-restricted set contained for the kth event the subjects who had 𝑘 − 1 or fewer 

events. 

Timescales 

Timescales also embody key components to address at the data management stage. 

Three common timescales are: 

• Calendar time, in which the times denotes the time since randomization/beginning of 

the study until an event occurs; 

• Gap time, or waiting scale, resets the time to zero when an event occurs, i.e., it 

corresponds to the time elapsed since the last event previously observed; 

• Counting process is constructed as per calendar time, although it enables late inclusions 

and/or censoring. 



 

 

Illustrations for timescales were provided in Figure A. 

Figure A. Timescales in Recurrent Events Analysis 



 

 

 

Figure B. Heatmaps of Correlation with Variations of the Number of Variables (25, 50, 100, 

150, 200). Each square provided the Pearson correlation coefficient between the covariate on 

the x-axis and the one on the y-axis. All coefficients on the diagonal were equal to 1 as it was 



 

 

the correlation coefficient between a covariate and itself.

 
Figure C. Variability of C-indices for Two Extreme Scenarios: Sparse Rate = 0%, 𝑝 = 25 (A) 

and Sparse Rate = 25%, 𝑝 = 150 (B). 𝑝 was the number of covariates. For each model and 

penalty, the C-indices of the 100 simulated datasets were summarized in a boxplot.  The 

penalties were equal to 0 (unpenalized), 0.05 × log(𝑝)⁡and 0.1 × log(𝑝), respectively. 

Penalties > 0 were applicable only for standard statistical models, RankDeepSurv deep neural 

network was hence not penalized. Unpenalized standard statistical models did not converge as 

soon as 𝑝 > 𝑛, performance was therefore not available. C- AG: Andersen-Gill; PWP: Prentice, 

William, and Peterson; RDS: RankDeepSurv, WLW: Wei-Lin-Weissfeld 



 

 

 

Figure D. Average Error Rates with Sparse Rate Equal to 0% (A), 25% (B) et 50% (C). 𝑝 was 

the number of covariates. For each sparse rate, model and penalty, the average error rates of 

the 100 simulated datasets were displayed over the number of covariates. The penalties were 

equal to 0 (unpenalized), 0.05 × log(𝑝)⁡and 0.1 × log(𝑝), respectively. Unpenalized standard 

statistical models did not converge as soon as 𝑝 > 𝑛, error rate assessment was therefore not 

available. AG: Andersen-Gill; PWP: Prentice, William and Peterson; RDS: RankDeepSurv,; 

WLW: Wei-Lin-Weissfeld. 


