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SPECTRAL OPTIMIZATION OF INHOMOGENEOUS PLATES

ELISA DAVOLI, IDRISS MAZARI, AND ULISSE STEFANELLI

Abstract. This article is devoted to the study of spectral optimisation for inhomogeneous plates. In
particular, we optimise the first eigenvalue of a vibrating plate with respect to its thickness and/or
density. Our result is threefold. First, we prove existence of an optimal thickness, using fine tools
hinging on topological properties of rearrangement classes. Second, in the case of a circular plate, we
provide a characterisation of this optimal thickness by means of Talenti inequalities. Finally, we prove a
stability result when assuming that the thickness and the density of the plate are linearly related. This
proof relies on H-convergence tools applied to biharmonic operators.

1. Introduction

The study of eigenmodes optimisation is central to the theory of inhomogeneous elastic plates and is
of great applicative relevance. A vast literature has been devoted to the analysis of spectral optimisation
problems for biharmonic operators, modelling plates of varying density and thickness under different
settings [3, 4, 6, 8, 9, 10, 11, 14, 18, 19]. In addition, several contributions are devoted to inverse
problems arising in the study of such inhomogeneous plates [17, 25, 26]. In the latter context, the main
objective is to identify some structural descriptors of the plate under consideration, such as its thickness
or its bending stiffness, and the outlook on the problem is mostly computational.

The goal of this article is to provide answers to several theoretical questions that, to the best of our
knowledge, have not received a mathematical treatment so far. We focus on the optimization of thickness
and/or density with respect to the first eigenvalue. For fixed density, we prove the existence of an optimal
thickness. This calls for the implementation of a delicate argument, based on rearrangements. We then
investigate the symmetry of the optimal solution in specific geometries, showing analogies with previously
studied cases [3, 4]. Eventually, we prove a stability result for the case in which the thickness and the
density of the plate are linearly related.

In order to make the discussion more precise, let Ω be a bounded domain in R2 with C 2 boundary,
representing the reference mid-surface configuration of a thin plate at rest, and let D, g ∈ L∞(Ω). The
function D describes the varying thickness of the plate. Its lower bound is normalized by assuming
that D ≥ 1, where the inequality is meant to hold almost everywhere in Ω. The function g accounts
for the heterogeneity of the plate. We are hence led to consider the first eigenvalue associated with the
natural vibration of the plate. In variational terms, this eigenvalue admits the following Rayleigh-quotient
representation

Λ̃(D, g) = inf
u∈W 2,2(Ω)∩W

1,2

0 (Ω), u6=0

´

Ω
D (∆u)

2

´

Ω gu
2

. (1.1)

The associated eigenfunction vD,g satisfies the following elliptic problem

{

∆(D∆vD,g) = Λ̃(D, g)gvD,g in Ω,

vD,g = ∆vD,g = 0 on ∂Ω.
(1.2)
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The most general formulation of the optimisation problem under consideration, covering questions from
[3, 4, 6, 14, 18, 19], is the study of the qualitative properties of solutions to the minimisation problem

inf
D,g

Λ̃(D, g). (1.3)

From the modeling viewpoint, the reference application consists in reinforcing the plate locally by
adding a layer of material, hence increasing the thickness, or by combining two materials, hence increasing
the density. These cases translate in the choice

D = 1 + β01ω, g = 1 + δ01ω′ (1.4)

for two measurable subsets ω, ω′ on which we can act, where 1 is the corresponding characteristic function.
This in turn leads to considering L∞ and L1 constraints on D and g. We hence introduce the following
admissible classes for thickness and heterogeneity, where β0, δ0, D0, g0 are fixed positive parameters:

N (Ω) :=

{

D ∈ L∞(Ω) : 1 ≤ D ≤ 1 + β0,

ˆ

Ω

D = D0

}

, (1.5)

N ′(Ω) :=

{

g ∈ L∞(Ω) : 1 ≤ g ≤ 1 + δ0,

ˆ

Ω

g = g0

}

. (1.6)

The main minimization problem (1.3) is then specified as follows

inf
D∈N (Ω), g∈N ′(Ω)

Λ̃(D, g). (1.7)

Let us start by removing a difficulty related to the definition of the eigenvalue, which is that the
potential term Λ̃(D, g)gvD,g in (1.2) appears in a multiplicative form. As it is customary in eigenvalue
optimisation, arguing as in [13, Theorem 13] we reformulate the problem by referring to the density
(excess) ρ of the plate instead of its heterogeneity. In particular, we introduce the class of admissible
densities

M(Ω) :=

{

ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1,

ˆ

Ω

ρ = ρ0

}

(1.8)

and, for D ∈ N (Ω), we define the first eigenvalue

Λ(D, ρ) := inf
u∈W 2,2(Ω)∩W

1,2
0 (Ω), u6=0

´

Ω
D (∆u)2 −

´

Ω
ρu2

´

Ω
u2

. (1.9)

Up to a scaling factor, proceeding along the lines of [13, Theorem 13], solving (1.7) is equivalent to finding
solutions to

inf
D∈N (Ω), ρ∈M(Ω)

Λ(D, ρ). (1.10)

We prefer to work with formulation (1.10), for the normalization term
´

Ω u
2 = 1 in the denominator in

(1.9) is independent of ρ (compare with (1.1)).

Most contributions on the minimization problem (1.10) focus on the case of fixed thickness D ≡ 1
and the optimisation is carried out with respect to ρ only, either under Navier boundary conditions, or
under clamped boundary conditions, see for instance [3, 4, 18]. In these contributions, rearrangements
arguments and Talenti inequalities are used in order to derive Faber-Krahn-like inequalities, delivering
information on the geometry of minimizers. On the other hand, the optimisation of the thickness D is
mostly treated numerically [6, 17, 25, 26] and the existence of a minimizer D∗ is usually not ascertained,
to the best of our knowledge. Let us stress that existence in this setting can be quite delicate to obtain.
As a matter of comparison, let us recall that in the somehow related case of optimisation of the first
eigenvalue of two-phases operators −∇ · (D∇) under the constraint D ∈ N (Ω), it is well-known [29, 12]
that no solution exists if Ω is not a ball.

The first main result of the paper is hence an existence proof for an optimal thickness D∗ for (1.10),
under fixed ρ ≡ 0. In particular, setting µ(D) := Λ(D, 0), we investigate the minimisation problem
inf

D∈N (Ω)
µ(D). We prove in Theorem 2.1 that, in any domain Ω, a minimiser exists. Note that it is in

sharp contrast with several other models involving heterogeneity in the leading term of the underlying
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elliptic operator (such as classical two-phases operators), where existence strongly depends on the choice
of the ambient space Ω. The proof of Theorem 2.1 relies on delicate topological properties of constraint
classes defined through rearrangements and we will make use of some related results from [2, 15].

Our second main result, Theorem 2.2, focuses on the case when Ω is a ball. In this case, we are able to
characterise the optimal thickness D∗ as being piecewise constant and radially symmetric. The argument
is in the spirit of [4, 3]. In particular, we use Talenti inequalities in combination with rearrangement
arguments.

In our last main result, Theorem 2.3, we investigate the case of coupled thickness and density. For
simplicity, we focus on the case of a linear relation between these two quantities, namely, D = 1 + αρ
for a small parameter α > 0. Albeit linear, this case already proves very challenging. By defining
λα(ρ) := Λ(1+αρ, ρ), we give a fine stability analysis in the case where Ω is a ball, α is small, and all the
functions involved are assumed to be radial. In particular we obtain a stationary result: the minimisers
ρ∗ in the case α = 0, which were already studied in [3, 4, 18], remain optimal for α > 0 small enough.
This proof relies on H-convergence-like tools, generalising to biharmonic operators a strategy developed
in [27].

The paper is organised as follows. In Section 2 we specify the precise assumptions for our analysis and
state our three main results. In Section 3 we collect some preliminary technical results. Sections 4–6 are
devoted to the proofs of Theorems 2.1–2.3. Eventually, Section 7 contains a summary of our findings.

2. Mathematical setting and results

Throughout the paper, inequalities will always be meant in the sense of L1 functions, namely almost
everywhere in the corresponding set where the different quantities are defined.

2.1. Optimisation with respect to the thickness. We first investigate optimisation with respect to
the thickness of the plate. Given two positive parameters β0, D0, the admissible class of thicknesses
N (Ω) is defined in (1.5), where nonetheless we assume that D0 > Vol(Ω) in order to ensure that this
class is not empty or reduced to a single element. For any D ∈ N (Ω) we define the first eigenvalue µ(D)
given by the Rayleigh quotient

µ(D) = inf
u∈W

1,2
0 (Ω)∩W 2,2(Ω), u6=0

´

Ω
D (∆u)2
´

Ω
u2

, (2.1)

which is associated with the following eigenequation (where we have chosen a L2 normalisation):










∆(D∆uD) = µ(D)uD in Ω,

uD = ∆uD = 0 on ∂Ω,
´

Ω
u2D = 1.

(2.2)

We emphasise once again that this corresponds to problem (1.7) with g ≡ 1. The first optimisation
problem we consider is

inf
D∈N (Ω)

µ(D). (2.3)

Our first result establishes the existence of a solution:

Theorem 2.1 (Existence of minimisers). For any bounded domain Ω ⊂ R2 with C 2 boundary there exists
D∗ ∈ N (Ω) such that

inf
D∈N (Ω)

µ(D) = µ(D∗). (2.4)

Furthermore, there exists a measurable set ω∗ ⊂ Ω such that D∗ = 1 + β01ω∗ .

The proof of this theorem relies on rather fine topological arguments which yield compactness of
sequences of minimisers. Let us note that, as is classical in this class of problems, one can not use the
direct method in the calculus of variations: indeed, the best convergence one could get on a minimising
sequence {Dk}k∈N (and on the associated sequence of eigenfunctions {uk}k∈N) is the weak-∗ convergence
in L∞ of {Dk}k∈N and weak convergence of {uk}k∈N in W 2,2(Ω), thus forbidding to pass to the limit
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in the Rayleigh-quotient formulation (2.1) of {µ(Dk)}k∈N. This is a known conundrum in the study of
two-phases operators [29], impairing the proof of the existence of optimisers for general Ω. We present
here a way to circumvent this difficulty in the case of biharmonic operators.

In general domains, it is hopeless to give an explicit characterisation of the optimal thickness D∗.
In the case of a ball, however, using Talenti inequalities, we obtain an inequality of Faber-Krahn type.
Consider the case in which our plate coincides with the ball of radius R > 0 centered in the origin, i.e.
Ω = B(0;R). Define the function D# as follows:

D# = (1 + β0)1A + 1Ac (2.5)

where, in radial coordinates, A = {r0 < r < R} and Vol(A) = (D0 −Vol(Ω))/β0. Note that the set A is
uniquely defined and the volume constraint ensures that D# ∈ N (Ω). Our second result reads as follows.

Theorem 2.2 (The case of the ball). Let Ω = B(0;R) for some R > 0. Then, D# minimises µ in N (Ω),
namely,

µ(D#) ≤ µ(D) ∀D ∈ N (Ω). (2.6)

It should be noted that this is the exact opposite result with respect to the optimisation on the
density ρ (i.e. keeping D ≡ 1). In fact, by minimizing w.r.t. ρ it is shown in [3, 4] that the unique
optimal material density ρ∗ when Ω = B(0;R) corresponds to having a maximal density in the center,
and a minimal density close to the boundary: ρ∗ = 1B(0;r∗) with r∗ chosen so as to satisfy the volume
constraint. This observation motivates our interest in investigating optimality with respect to density
and thickness. We tackle this topic in the next subsection, by assuming a linear relation between ρ and
D.

2.2. Density-dependent thickness. In this subsection, we consider another version of (1.7)-(1.10), by
assuming a linear dependency of the thickness D of the plate with respect to the density of the material.
In other words, we consider a real parameter α ≥ 0, and assume that the thickness D depends on the
density of the material via the relation

D = 1 + αρ. (2.7)

Keeping in mind that ρ corresponds to the repartition of some material inside the elastic plate Ω, we
recall the admissible class M(Ω) of densities from (1.8) and, for any ρ ∈ M(Ω), we consider the first

eigenvalue λα(ρ) of u 7→ ∆
(

(1 + αρ)∆u
)

− ρu. In its Rayleigh-quotient formulation, this is givenby

λα(ρ) := inf
u∈W 2,2(Ω)∩W

1,2
0 (Ω), u6=0

´

Ω
(1 + αρ)(∆u)2 −

´

Ω
ρu2

´

Ω u
2

. (2.8)

Up to a L2 normalisation, the associated eigenfunction uα,ρ satisfies










∆((1 + αρ)∆uα,ρ) = λα(ρ)uα,ρ + ρuα,ρ in Ω,

uα,ρ = ∆uα,ρ = 0 on ∂Ω,
´

Ω uα,ρ
2 = 1.

(2.9)

We prove in Lemma 3.2 that λα(ρ) is a simple eigenvalue and that the associated first eigenfunction has
a constant sign.

For a fixed parameter α ≥ 0, we consider the optimisation problem

inf
ρ∈M(Ω)

λα(ρ). (2.10)

We assume that Ω = B(0;R) for some R > 0 and focus on the geometry of minimizers for α > 0 small.
Indeed, an explicit characterisation of the minimisers for α = 0 was given in [4]: if B∗ is the unique ball
centered in the origin, contained in Ω = B(0;R) with Vol(B∗) = ρ0, then the unique minimiser of λ0 in
M(Ω) is

ρ∗ = 1B∗ . (2.11)

On the other hand, Theorem 2.2 seems to indicate that, for α→ ∞, the optimal ρ should behave as 1A,
where A = {r0 < r < R} is the only annulus of volume ρ0.
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Theorem 2.3 (Stability for small α in the ball for radially symmetric distributions). Let Ω = B(0;R)
for some R > 0, and define ρ∗ := 1B∗ . Then, there exists α > 0 such that, for any 0 ≤ α ≤ α,

λα(ρ
∗) ≤ λα(ρ) ∀ρ ∈ M(B), ρ radially symmetric. (2.12)

The proof of this theorem relies on fine arguments inspired from H-convergence theory [1, 29], and can
be linked to some stationarity results in two-phases problems [23, 27]. In the proof, the radial symmetry
assumption of competitors is crucial.

3. Preliminary technical results

We first gather in this section several preliminary results that are used throughout the rest of the
paper.

Let us begin by presenting a straightforward application of the maximum principle.

Lemma 3.1 (Positivity principle). Let ρ ∈ M(Ω). Assume that u ∈ W 2,2
0 (Ω) satisfies, for some f ∈

L2(Ω),
{

∆((1 + αρ)∆u) = f ≥ 0 in Ω,

u = ∆u = 0 on ∂Ω.
(3.1)

Then

u ≥ 0 and (1 + αρ)∆u ≤ 0 in Ω. (3.2)

Proof of Lemma 3.1. Let ρ, u be as in the statement of the lemma. First of all, by elliptic regularity,

(1 + αρ)∆u ∈W 2,2(Ω).

Let us introduce z = −(1 + αρ)∆u. Then z ∈W 1,2
0 (Ω) satisfies

{

−∆z = f ≥ 0 in Ω,

z = 0 on ∂Ω.

As a consequence of the maximum principle for the Laplacian we obtain z ≥ 0 in Ω. Hence, ∆u ≤ 0. Since
u ∈ W 2,2(Ω), ∆u ∈ L2(Ω). We can then apply the maximum principle to the inequality −∆u ≥ 0 in Ω
to conclude that u ≥ 0 in Ω. �

In the next lemma we collect some basic facts about the underlying spectral and optimisation problems.

Lemma 3.2. (1) For any D ∈ N (Ω), α ≥ 0, and ρ ∈ M(Ω), the eigenfunctions uD and uα,ρ can be
assumed to have constant sign. Hence, the first eigenvalue is the only one whose eigenfunction is
constant in sign.

(2) There exists M > 0 such that, for any D ∈ N (Ω),

|µ(D)| , ‖uD‖W 2,2(Ω) ≤M. (3.3)

(3) For any α > 0, there exists M(α) such that, for any ρ ∈ M(Ω) and any α ∈ [0;α],

|λα(ρ)| , ‖uα,ρ‖W 2,2(Ω) ≤M(α). (3.4)

Proof of Lemma 3.2. To prove point 1 of the Lemma, we adapt [7, Lemma 16]. We detail this argument
for λα(ρ) only, for an analogous proof yields the conclusion for µ(D), as well. In order to prove point 1,

it suffices to establish the following fact: for any u ∈W 2,2(Ω) ∩W 1,2
0 (Ω) and any ρ ∈ M(Ω) there exists

w ∈ W 2,2(Ω) ∩W 1,2(Ω) such that

w ≥ 0,

ˆ

Ω

(1 + αρ)(∆w)2 − ρw2 ≤

ˆ

Ω

(1 + αρ)(∆u)2 − ρu2, and

ˆ

Ω

w2 ≥

ˆ

Ω

u2. (3.5)
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Indeed, since u ∈ W 2,2(Ω) does not imply |u| ∈ W 2,2(Ω), it is not possible to simply replace u by its

absolute value. Let us hence consider ρ ∈ M(Ω), α ≥ 0, u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) and define w as the

unique solution of
{

−∆w = |∆u| in Ω,

w = 0 on ∂Ω.
(3.6)

We first observe that
´

Ω
(1 + αρ)(∆w)2 =

´

Ω
(1 + αρ)(∆u)2. Besides, by the maximum principle, w ≥

0 in Ω. Furthermore, from the definition of w, we get that −∆w ≥ −∆u, −∆w ≥ ∆u, whence w ≥ u,
and w ≥ −u in Ω. As a consequence, w ≥ |u| in Ω. Thus,

´

Ω
w2 ≥

´

Ω
u2. Since ρ ≥ 0, we have that

ˆ

Ω

ρu2 ≤

ˆ

Ω

ρw2

which yields the conclusion. It should be noted that this construction proves that any eigenfunction
associated with the first eigenvalue has a constant sign, whence the simplicity of the first eigenvalues
µ(D) and λα(ρ).

We now proceed with the proof of point 2. Point 3 follows from the exact same arguments. Let us
consider D ∈ N (Ω). From the Rayleigh-quotient formulation (2.1) of µ(D), we get that µ(D) ≥ 0 (for
λα(ρ), we would get λα(ρ) ≥ −1). Let us consider the first eigenvalue η1(Ω) of the biharmonic operator
in Ω defined as

η1(Ω) := inf
u∈W 2,2(Ω)∩W

1,2
0 (Ω),

´

Ω
u2=1

ˆ

Ω

(∆u)
2
. (3.7)

Let w1 be an associated eigenfunction. Then

µ(D) ≤

ˆ

Ω

D (∆w1)
2 ≤ (1 + β0)

ˆ

Ω

(∆w1)
2
= (1 + β0)η1(Ω), (3.8)

which yields the required uniform bound on the eigenvalue. Next, by multiplying the eigenequation (2.2)
by uD and integrating by parts we obtain

ˆ

Ω

(∆uD)
2 ≤

ˆ

Ω

D (∆uD)
2
= µ(D) ≤ (1 + β0)η1(Ω).

Since, by elliptic regularity, for any u ∈W 1,2
0 (Ω),

‖uD‖W 2,2(Ω) ≤ C‖∆uD‖L2(Ω) (3.9)

we obtain the required bound. �

Henceforth, with no loss of generality we assume uD and uα,ρ to be nonnegative, up to multiplying
them by −1. Our next step is hence to establish the concavity of the eigenvalue maps.

Lemma 3.3. Let α ≥ 0 be fixed. The two maps

N (Ω) ∋ D 7→ µ(D), M(Ω) ∋ ρ 7→ λα(ρ) (3.10)

are concave.

Proof of Lemma 3.3. Each of these two maps is defined as an infimum of linear functionals in their
respective variables, so that they are concave. �

This concavity property enables one to write the seemingly naive but in fact crucial reformulation of
the eigenvalue problems in terms of bang-bang functions, which we now define.

Definition 3.4. A function D ∈ N (Ω) is called bang-bang if D = 1+ β01ω for some measurable subset
ω of Ω. Such functions are the extremal points of N (Ω) and are denoted Ext(N (Ω)).

A function ρ ∈ M(Ω) is called bang-bang if ρ = 1ω′ for some measurable subset ω′ of Ω. Such
functions are the extremal points of M(Ω) and are denoted Ext(M(Ω)).
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The definition of bang-bang functions in terms of extremal points is classical [16, Proposition 7.2.17].
As an immediate consequence of Lemma 3.3 and of the convexity of the admissible sets M(Ω) and N (Ω),
we obtain the following lemma:

Lemma 3.5. We have that

inf
D∈N (Ω)

µ(D) = inf
D∈Ext(N (Ω))

µ(D),

inf
ρ∈M(Ω)

λα(ρ) = inf
ρ∈Ext(M(Ω))

λα(ρ).

4. Proof of Theorem 2.1

The proof relies on several preliminary results that we recall in Subsection 4.1. The proof is then
presented in Subsection 4.2.

4.1. Preliminary material about rearrangements. Let us briefly recall the key concepts of the
Schwarz rearrangement. For a comprehensive introduction to rearrangements, we refer to [5, 21, 22]. For
a C 2 domain of R2, let Ω# = B(0;R#) be the centered ball with the same volume as Ω. For any function
ϕ ∈ L2(Ω), ϕ ≥ 0, the Schwarz rearrangement of ϕ is the unique non-increasing function ϕ# : Ω# → R+

such that, for any t ≥ 0,

Vol ({ϕ > t}) = Vol
(

{ϕ# > t}
)

. (4.1)

Of particular importance are the following properties of this rearrangement:

(1) Equimeasurability: for any ϕ ∈ L2(Ω), ϕ ≥ 0,

‖ϕ‖L2(Ω) = ‖ϕ#‖2L2(Ω#).

(2) Hardy-Littlewood inequality: for any non-negative functions ϕ0, ϕ1 ∈ L2(Ω),
ˆ

Ω

ϕ0ϕ1 ≤

ˆ

Ω#

ϕ#
0 ϕ

#
1 .

Another key tool is the Talenti inequality [31] which reads as follows.

Proposition 4.1 (Talenti inequality, [31, Theorem 1]). Let Ω be a Lipschitz bounded domain, and let B
be the ball centered in the origin and such that Vol(Ω) = Vol(B). Let ψ ∈ L2(Ω), ψ ≥ 0. Let φ ∈W 1,2(Ω)
be the solution of

{

−∆φ = ψ in Ω,

φ = 0 on ∂Ω,
(4.2)

and φ̃ be the solution of
{

−∆φ̃ = ψ# in B,

φ̃ = 0 on ∂B.
(4.3)

Then the inequality

φ# ≤ φ̃ (4.4)

holds pointwise in B.

The proof of Theorem 2.1 relies on some results of Alvino, Lions, and Trombetti [2]. These results
have been used to show existence properties for two-phases optimisation problems in the case of balls by
Conca, Mahadevan, and Sanz [15]. The strategy from [2] reads as follows: using a suitable rearrangement
one checks that, when Ω = B(0;R) for a suitable R > 0, one can restrict to minimising sequences
of radially symmetric functions. Such symmetry then enables to use a powerful compactness result to
obtain existence of a minimiser. What is notable in our approach is that the structure of the biharmonic
operator makes it so that we do not require any symmetry property of the domain, nor of the elements
of the minimising sequence.
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Let us introduce a comparison relation: for any two functions f, g ∈ L2(Ω), f, g ≥ 0, we write

f ≺ g (4.5)

if, for any r ∈ [0;R#],
ˆ

B(0;r)

f# ≤

ˆ

B(0;r)

g# (4.6)

and if
ˆ

B(0,R#)

f# =

ˆ

B(0,R#)

g#. (4.7)

Remark 4.2. It should be noted that if g is L∞, and if f ≺ g, then f is L∞ as well and ‖f‖L∞ ≤ ‖g‖L∞.

Let Ω# = B(0;R#), and let B∗ := B(0; r∗) be the only ball centered in the origin of volume

(D0 −Vol(Ω))/β0. We define D
#

as

D
#
= 1 + β01B∗ . (4.8)

First of all let us notice that for any D ∈ N (Ω) we have

D# ≺ D
#

and

ˆ

Ω

D =

ˆ

Ω#

D
#
. (4.9)

We define the class

C
(

D
#
)

:=
{

f ∈ L2(Ω) : f ≥ 0, f# = D
#
}

, (4.10)

which exactly corresponds to the set of bang-bang functions:

Ext(N (Ω)) = C
(

D
#
)

. (4.11)

This class C (ψ) is not closed under weak-∗ L∞ convergence. Its weak-∗ L∞ compactification has been
proved in [2] to be

K
(

D
#
)

:=
{

f ∈ L2(Ω) : f ≥ 0, f ≺ D
#
}

. (4.12)

From [2, Theorem 2.2], K
(

D
#
)

is closed and weakly-∗ compact for the L∞-topology (this result is a

generalisation of a result by Migliaccio [28]). Furthermore, from [2, Theorem 2.2] we have

Ext
(

K
(

D
#
))

= C
(

D
#
)

. (4.13)

As a consequence of the general result [16, Proposition 2.1] or directly from weak-∗ convergence to extreme

points of convex sets, if a sequence {fk}k∈N ∈ K
(

D
#
)

weakly-∗ converges to f ∈ C
(

D
#
)

, then the

convergence is strong in Lp, p ∈ [1; +∞), see [32].

4.2. Proof of Theorem 2.1. What should be noted is that, here, the weak-∗ L∞ convergence of a
sequence {Dk}k∈N ∈ N (Ω)N does not imply the convergence of the associated sequence of eigenvalues
{µ(Dk)}k∈N. As is clear from the eigenequation

{

∆(D∆uρ) = µ(D)uD in Ω,

uD = ∆uD = 0 on ∂Ω,
(4.14)

the correct convergence that would imply lower-semi continuity of the eigenfunction is the convergence

of the sequence
{

1
Dk

}

k∈N

.

Lemma 4.3. Let δ and M1 be two positive constants. Let {Dk}k∈N ∈ L∞(Ω)N , infk,ΩDk ≥ δ > 0 , and
supk ‖Dk‖L∞(Ω) ≤M1. Assume there exists C∞ ∈ L∞(Ω) such that

1

Dk

⇀
k→+∞

C∞ weakly-∗ in L∞. (4.15)

Then, up to a subsequence,

µ(Dk) →
k→∞

µ

(

1

C∞

)

. (4.16)
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Proof of Lemma 4.3. To lighten notations, for any k ∈ N we denote by uk the eigenfunction associated
with µ(Dk) and we define

zk = −Dk∆uk. (4.17)

From Lemma 3.1, we have zk = 0 on ∂Ω and zk ≥ 0 in Ω.

Furthermore from Lemma 3.2 the sequence {µ(Dk)}k∈N
is bounded. We can thus choose µ∞ ∈ R such

that µ(Dk) →
k→∞

µ∞ for some not relabelled subsequence.

By assumption, we know that 1
Dk

⇀
k→∞

C∞ weakly-∗ in L∞. Since 1
1+β0

≤ 1
Dk

≤ 1, the same L∞

bounds hold for 1
C∞

. By Lemma 3.2, we have a uniform W 2,2(Ω) bound on the family {uk}k∈N. Since zk
solves the equation

{

−∆zk = µ(Dk)uk in Ω,

zk = 0 on ∂Ω
(4.18)

we obtain a uniform W 1,2
0 (Ω) bound on {zk}k∈N, namely, there exists M such that

∀k ∈ N, ‖zk‖W 1,2
0 (Ω) ≤M. (4.19)

As a consequence, there exists z∞ ∈ L2(Ω) such that

zk →
k→∞

z∞ weakly in W 1,2
0 (Ω) and strongly in L2(Ω) (4.20)

for some not relabelled subsequence. There also exists u∞ ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) such that

uk →
k→∞

u∞ weakly in W 2,2(Ω) and strongly in W 1,2
0 (Ω) (4.21)

for some not relabelled subsequence. Passing to the limit in the weak formulation of (4.17), the triple
(u∞, C∞, z∞) solves

{

−∆u∞ = C∞z∞ in Ω,

z∞ = 0 on ∂Ω,
(4.22)

and since, for any k, uk ≥ 0 and
´

Ω
u2k = 1, we have

u∞ ≥ 0 and

ˆ

Ω

u2∞ = 1.

Passing to the limit in the weak formulation (4.18) we obtain that (z∞, µ∞, u∞) solves
{

−∆z∞ = µ∞u∞ in Ω,

z∞ = 0 on ∂Ω.
(4.23)

As a consequence, (C∞, u∞) solves














∆
(

1
C∞

∆u∞

)

= µ∞u∞ in Ω,

u∞ = ∆u∞ = 0 on ∂Ω,

u∞ ≥ 0,
´

Ω u
2
∞ = 1.

(4.24)

However, the first eigenvalue being the only having a constant sign eigenfunction, we conclude that

(u∞, µ∞) is the first eigencouple associated to 1
C∞

or, in other words, that µ∞ = µ
(

1
C∞

)

. Thus, the

sequence {µ(Dk)}k∈N has a unique closure point, and hence the entire sequence converges, so that

lim
k→∞

µ(Dk) = µ

(

1

C∞

)

. (4.25)

�
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We now treat the optimisation problem (2.3) in a slightly different way. For any D ∈ L∞(Ω) with
inf D > 0 we set

η(D) := µ

(

1

D

)

. (4.26)

We recall that from Lemma 3.5 and Subsection 4.1 we have

inf
D∈N (Ω)

µ(D) = inf
{D∈N (Ω):D#=D

#
}

µ(D).

Since C
(

D
#
)

= {D ∈ N (Ω) : D# = D
#
} this can be equivalently rewritten as

inf
D∈N (Ω)

µ(D) = inf
D∈C

(

D
#
)

µ(D). (4.27)

Eventually, as D
#

is bang-bang, it follows that D ∈ C
(

D
#
)

if and only if 1
D

∈ C

(

(

1

D
#

)#
)

.

Given the definition of η, problem (2.3) is equivalent to

inf
{

E∈C

(

(

1

D#

)#
)}

η (E) , (4.28)

in the sense that, if E solves (4.28) then 1
E

solves (2.3).

The key lemma is thus the following:

Lemma 4.4. (1) The variational problem

inf
E∈K

(

(

1

D#

)#
)

η (E) (4.29)

has a solution E∗.

(2) The solutions of the variational problem (4.29) belong to C

(

(

1

D
#

)#
)

.

Proof of Lemma 4.4. Point 1. The existence of a minimiser for problem (4.29) follows from the weak-∗

L∞ compactness of the set K

(

(

1

D
#

)#
)

. Let {Ek}k∈N ∈ K

(

(

1

D
#

)#
)N

be a minimising sequence,

and let E∞ ∈ K

(

(

1

D
#

)#
)

be one of its weak closure points. From Lemma 4.3,

η(Ek) = µ

(

1

Ek

)

→
k→∞

µ

(

1

E∞

)

= η (E∞) . (4.30)

Hence, E∞ is a solution of (4.29).

Point 2. To prove the second point of the lemma, it suffices to prove that no interior point E ∈

K

(

(

1

D
#

)#
)

satisfies local first order optimality conditions. By standard theorems [20] the simplicity

of η (E), obtained as in Lemma 3.2, enables us to differentiate it with respect to E. Let E ∈ K

(

(

1

D
#

)#
)

and h be an admissible perturbation at E (i.e. E + th ∈ K

(

(

1

D
#

)#
)

for t > 0 small enough). For

the sake of notational simplicity, let uE be the eigenfunction associated with η(E). Let η̇ and u̇ be
the derivative of η(E + th) and its associated eigenfunction with respect to t evaluated in the origin,
respectively. Then, (u̇, η̇) solves











∆
(

1
E
∆u̇

)

−∆
(

h
E2∆uE

)

= η̇uE + η (E) u̇,

u̇ = ∆u̇ = 0 on ∂Ω,
´

Ω uEu̇ = 0.

(4.31)
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As a consequence, testing (4.31) against uE, using the eigenequation for uE , and integrating by parts,
from the fact that

´

Ω
u2E = 1, we find

η̇ =

ˆ

Ω

h

E2
(∆uE)

2
. (4.32)

Thus, if E is not a bang-bang function, that is, if ω0 :=
{

1
1+β0

< E < 1
}

is a set of positive measure,

there exists a constant C such that (∆uE)2

E2 = C in ω0, see for instance [30, Theorem 1, Remark 1].

Plugging this in the eigenequation ∆
(

1
E
∆uE

)

= η(E)uE we obtain

uE = 0 in ω0.

This contradicts the positivity of uE inside Ω, which is a consequence of the strong maximum principle
and of Lemma 3.2. �

Relying on Lemma 4.4, we can eventually prove Theorem 2.1 by computing

inf
D∈C

(

D
#
)

µ(D) = inf
D∈C

(

D
#
)

η

(

1

D

)

= min
E∈K

(

(

1

D#

)#
)

η(E)

= min
E∈C

(

(

1

D#

)#
)

η(E) = η(E∗) = µ

(

1

E∗

)

.

Since E∗ ∈ C
(

1

D
#

)#

, we have that 1
E∗

∈ C
(

D
#
)

. This entails the existence of a minimizer, hence

Theorem 2.1 holds.

5. Proof of Theorem 2.2

Recall that here Ω = B(0, R) for some R > 0. The core idea of the proof is to use the Talenti inequality,
as was done in [4] to solve (2.3). Let us briefly recall this inequality:

Let D ∈ N (Ω) and uD be the associated eigenfunction solving (2.2). Let zD be defined as

−∆uD = zD in Ω. (5.1)

Since uD ∈ H2(Ω) we have that zD ∈ L2(Ω).

From ∆uD = 0 on ∂Ω we obtain zD = 0 on ∂Ω. Furthermore, from Lemma 3.1, there holds zD ≥ 0

in Ω. Let us consider its Schwarz rearrangement z#D . Since Ω is a ball centered in the origin, clearly
Ω# = Ω. Let ũD be the solution of

−∆ũD = z#D in Ω, ũD = 0 on ∂Ω. (5.2)

From the Talenti inequality, Proposition 4.1, we have

0 ≤ u#D ≤ ũD in Ω. (5.3)

This inequality holds pointwise and hence guarantees

1 =

ˆ

Ω

u2D =

ˆ

Ω

(

u#D

)2

≤

ˆ

Ω

ũ2D. (5.4)

Furthermore, since z#D is a rearrangement of zD, for any V ∈ [0; Vol(Ω)] we have that

inf
F⊂Ω,Vol(F )=V

ˆ

F

z2D = inf
G⊂B,Vol(G)=V

ˆ

G

(z#D)2. (5.5)

Take now V = (D0 −VolΩ)/β0. The function z#D being non-increasing, the so-called bathtub principle
[24, Theorem 1.14] ensures that

inf
G⊂B,Vol(G)=V

ˆ

Ω

(1 + β01G)(z
#
D)2 =

ˆ

B

D#(z
∗
D)2. (5.6)
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On the one hand, the Schwarz rearrangement is measure preserving, hence
ˆ

Ω

(∆uD)2 =

ˆ

Ω

z2D =

ˆ

B

(z#D)2 =

ˆ

B

(∆ũD)
2
. (5.7)

On the other hand, from (5.5)-(5.6) we get

ˆ

Ω

D(∆uD)2 ≥

ˆ

B

D# (∆ũρ)
2
. (5.8)

Combining (5.8) with (5.4) and plugging these estimates in the Rayleigh-quotient formulation of the
eigenvalues we obtain

µ(D) =

´

Ω
D(∆uD)2
´

Ω u
2
D

≥

´

B
D#(∆ũD)2
´

Ω ũ
2
D

≥ µ(D#), (5.9)

and the assertion follows.

6. Proof of Theorem 2.3

We are now working under the assumption that Ω = B(0, R) for some R > 0. Recall that ρ∗ = 1B∗ is
the characteristic function of a ball centered in the origin and of volume V0. By the same arguments as in
[4, Theorem 3.3], ρ∗ is the unique minimiser of λ0 in M(Ω) and u0,ρ∗ is radially symmetric non-increasing.

Furthermore, u0,ρ∗ is strictly decreasing and there holds

∀ε > 0, ∃δ(ε) > 0, ∀r ∈ (ε;R] :

∣

∣

∣

∣

∂u0,ρ∗

∂r

∣

∣

∣

∣

≥ δ(ε). (6.1)

Indeed, this follows from the following fact: replacing u0,ρ∗ with the solution w to
{

−∆w = |∆u|∗ in B(0;R),

w ∈ W 1,2
0 (Ω),

we obtain, combining the arguments of Lemma 3.2 and the Talenti inequality, that
´

Ω
(∆w)2 −

´

Ω
ρ∗w2

´

Ωw
2

≤

´

Ω (∆u0,ρ∗)
2 −
´

Ω ρ
∗u20,ρ∗

´

Ω u
2
0,ρ∗

.

Thus, w is also an eigenfunction. By simplicity of λ0(ρ
∗), u0,ρ∗ and w are linearly dependent. As a

consequence, u0,ρ∗ = cw for some constant c > 0; this sign condition comes from the fact that both u0,ρ∗

and w are non-negative. Thus, it follows that −∆u0,ρ∗ = |∆u0,ρ∗ |∗. Since ∆u0,ρ∗ 6= 0, |∆u0,ρ∗ |∗ (0) > 0.
Setting z = ∆u0,ρ∗ = −|∆u0,ρ∗ |∗ we have, in radial coordinates

r
∂u0,ρ∗

∂r
(r) =

ˆ r

0

τz(τ)dτ < 0,

which concludes the proof.

We prove Theorem 2.3 by contradiction and assume that, for any α > 0, there exists a radially
symmetric ρα ∈ M(Ω) such that

λα(ρα) ≤ λα(ρ
∗), ρα 6= ρ∗. (6.2)

Let us prepare a preliminary lemma.

Lemma 6.1. We can assume that ρα is a bang-bang function. Furthermore, we have ρα →
α→0

ρ∗ strongly

in L1.

Proof of Lemma 6.1. The first point follows from the concavity of the functional. For the second point,
we first observe that, for any weak-∗ L∞ closure point ρ0 of {ρα}α→0, there holds λ0(ρ0) ≤ lim inf

α→0
λα(ρα):

setting, for notational convenience, uα := uα,ρα
, we have, from Lemma 3.2, a uniform W 2,2(Ω) bound on
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this sequence. This allows to pick a weak W 2,2(Ω) and strong L2(Ω) closure point u0 of a not relabelled
subsequence. By weak lower-semicontinuity of convex functions

ˆ

Ω

(∆u0)
2 ≤ lim inf

α→0

ˆ

Ω

(1 + αρα)(∆uα)
2,

while
ˆ

Ω

ρ0u
2
0 = lim

α→0

ˆ

Ω

ραu
2
α,

ˆ

Ω

u20 = 1.

From the variational formulation (2.8) of λ0(ρ0), we obtain the conclusion. Let us then observe that for
any fixed ρ ∈ M(Ω) (in particular for ρ = ρ∗), there holds λ0(ρ) = lim

α→0
λα(ρ). Passing to the limit in

the inequality λα(ρα) ≤ λα(ρ
∗) we obtain λ0(ρ0) ≤ λ0(ρ

∗). Since ρ∗ is the unique minimiser of λ0 we
have ρ0 = ρ∗. As ρ∗ is an extreme point of M(Ω), from [16, Proposition 2.1] this convergence is strong
in L1. �

Henceforth, we can hence assume that the sequence {ρα}α→0 fulfilling (6.2) consists of bang-bang
functions. We use this information to proceed with the proof, which rests upon fine properties of the
switch function. We need to use one of the core idea of H-convergence to make sure this function is
regular enough. Let us explain why some concepts from homogenisation are needed: if we consider the
map D 7→ λα(D) and if we define uα,ρ as the eigenfunction associated with λα(ρ), the simplicity of the
eigenvalue ( Lemma 3.2) ensures that ρ 7→ (λα(ρ), uα,ρ) is Gâteaux-differentiable. Furthermore, for any
ρ ∈ M(B(0, R)) and any admissible perturbation h at ρ (i.e a function h such that, for every ε > 0 small

enough ρ+ εh ∈ M(B(0, R))), the Gâteaux-derivatives u̇α,ρ and λ̇α(ρ) (we omit the dependency on h for
notational convenience) solve















∆((1 + αρ)∆u̇α,ρ) + α∆(h∆uα,ρ) = (λα,ρ+ρ) u̇αρ +
(

λ̇α,ρ+h
)

uα,ρ in B(0, R),

u̇α,ρ = ∆u̇α,ρ = 0 on ∂B(0, R),
´

B(0,R) uα,ρu̇α,ρ = 0.

(6.3)

Multiplying the equation by uα,ρ, integrating by parts, and using the equation (2.9) on uα,ρ we obtain

the following expression for λ̇α(ρ):

λ̇α(ρ) =

ˆ

B(0,R)

h
{

α (∆uα,ρ)
2 − uα,ρ

2
}

. (6.4)

This leads to defining the switch function associated with the problem as

Uα,ρ := α (∆uα,ρ)
2 − uα,ρ

2. (6.5)

In other words, with this approach, we have λ̇α(ρ) =
´

B(0,R) Uα,ρh. Ideally, we would use Lemma 6.1

to approximate Uα,ρ by U0,ρ∗ in the C 1 norm. However, since ∆uα,ρ is merely L∞, Uα,ρ is not regular
enough. To overcome this problem, we rely on some general ideas borrowed from H-convergence and
homogenisation theory [1, 29]. We introduce, for any ρ ∈ M(B(0, R)), the harmonic mean J−(ρ) of
1 + αρ, defined as

J−(ρ) :=
1 + α

1 + α(1 − ρ)
. (6.6)

We define an auxiliary eigenvalue Λα(ρ) as follows:

Λα(ρ) := min
u∈W 2,2(B(0,R))∩W

1,2
0 (B(0,R))u6=0

´

B(0,R) J−(ρ)(∆u)
2 −
´

B(0,R) ρu
2

´

B(0,R) u
2

. (6.7)

From this variational formulation, since ρ 7→ J−(ρ) is concave, we have that ρ 7→ Λα(ρ) is concave too.
If ρ is a bang-bang function, that is, if ρ = 1E for some measurable subset E, then J−(ρ) = 1 + αρ so
that

For any bang-bang ρ one has that λα(ρ) = Λα(ρ). (6.8)

Hence for all α > 0, we have that

λα(ρα) = Λα(ρα) and λα(ρ
∗) = Λα(ρ

∗).
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To see why this allows to overcome the aforementioned regularity issues, let us compute the Gâteaux-
derivative of the map ρ 7→ Λα(ρ). Let us define vα,ρ to be the eigenfunction associated with Λα(ρ). This
can be chosen positive and normalized in L2. In particular, vα,ρ solves











∆(J−(ρ)∆vα,ρ) = Λα(ρ)vα,ρ + ρvα,ρ in B(0, R),

vα,ρ = ∆vα,ρ = 0 on ∂B(0, R),
´

B(0,R)
v2α,ρ = 1, vα,ρ ≥ 0.

(6.9)

From the same arguments as in Lemma 3.2, Λα(ρ) is a simple eigenvalue, and so the map ρ 7→ (Λα(ρ), vα,ρ)
is Gâteaux-differentiable and, for ρ ∈ M(B(0, R)) and an admissible perturbation h at ρ, if we denote

with a dot the Gâteaux-differentiated quantities, the couple
(

Λ̇α(ρ), v̇α,ρ

)

solves



















∆(J−(ρ)∆v̇α,ρ) +
α

1+α
∆
(

hJ−(ρ)
2∆vα,ρ

)

= (Λα(ρ) + ρ) v̇α,ρ

+Λ̇α(ρ)vα,ρ + hvα,ρ in B(0, R),

v̇α,ρ = ∆v̇α,ρ = 0 on ∂B(0, R),
´

B(0,R)
v̇α,ρvα,ρ = 0.

(6.10)

This equation has a unique solution by the Fredholm alternative. Multiplying the first equation in (6.10)
by vα,ρ, integrating by part and using (6.9) yields

Λ̇α(ρ) =

ˆ

B(0,R)

h

{

α

1 + α
J−(ρ)

2(∆vα,ρ)
2 − v2α,ρ

}

. (6.11)

The new switch function

ψα,ρ :=
α

1 + α
J−(ρ)

2(∆vα,ρ)
2 − v2α,ρ (6.12)

is now more regular, since the function J−(ρ)∆vα,ρ is itself the solution of an elliptic problem. Let
us now consider the two bang-bang-densities ρα, ρ

∗ ∈ M(B(0, R)). Instead of considering the path
t 7→ λα(ρα+t(ρ

∗−ρα)), which would lead to the irregular switch function (6.5), we set ρt := ρα+t(ρ
∗−ρα)

and we consider the path

fα : t 7→ Λα(ρt). (6.13)

For t ∈ [0; 1], let us define vt to be the eigenfunction associated with Λα(ρ
∗ + t(ρα − ρ∗)) and

Ψt :=
α

1 + α
J−(ρt)

2(∆vt)
2 − v2t (6.14)

By Lemma 6.1 and by the mean value Theorem, we write

λα(ρ
∗)− λα(ρα) = Λα(ρ

∗)− Λα(ρα) =

ˆ

B(0,R)

Ψt(ρ
∗ − ρα) (6.15)

for some t = t(α) ∈ [0; 1]. From Lemma 6.1, we know that ρt(α) →
α→0

ρ∗ strongly in L1(B(0, R)). From

standard elliptic regularity, there exists a constant M > 0 such that ‖J−(ρt(α))∆vt(α)‖C1(B(0,R)) ≤ M .

Again from elliptic regularity, we also have that vt(α) →
α→0

u0,ρ∗ in C 1. Hence, Ψt(α) →
α→0

−u20,ρ∗ in C 1.

Since Ψt(α) is radial, the strict monotonicity (6.1) implies that ρ∗ is the unique solution of

inf
ρ∈M(B(0,R))

ˆ

B(0,R)

Ψt(α)ρ (6.16)

for α > 0 small enough. Indeed, from (6.1) and the C 1 convergence of
{

Ψt(α)

}

α→0
to −u20,ρ∗ , for α > 0

small enough, B∗ is the unique level set of Ψt(α) of volume ρ0.

Hence,
´

B(0,R) Ψt(α)(ρα − ρ∗) ≥ 0, which in turn implies that Λα(ρ
∗) − Λα(ρα) ≤ 0. By Lemma 6.1,

this leads to contradicting (6.2) and concludes the proof of the theorem.
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7. Conclusion

In this article, we have studied several theoretical aspects related with the spectral optimisation of
inhomogeneous plates. It is worth underlining that the existence result, Theorem 2.1, is in sharp contrast
with other results in the context of the optimisation of two-phase problems.

Note moreover that the stationarity of minimisers of λα , as α → 0+ is proved with respect to radial
competitors only. We believe that the case of not radially symmetric competitors is presently out of reach,
given the available rearrangement tools. In fact, Theorem 2.2 indicates that the correct rearrangement
when handling thickness optimisation is expected to be the increasing rearrangement, whereas previous
results [4] point to the fact that optimisation with respect to the density should rather involve the
decreasing rearrangement.
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pp. 25–28.
[29] F. Murat and L. Tartar, Calculus of Variations and Homogenization, Birkhäuser Boston, Boston, MA, 1997, pp. 139–

173, https://doi.org/10.1007/978-1-4612-2032-9_6.
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