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Abstract: This study presents the Drone Swarms Routing Problem (DSRP), which consists of identify-
ing the maximum number of victims in post-disaster areas. The post-disaster area is modeled in a
complete graph, where each search location is represented by a vertex, and the edges are the shortest
paths between destinations, with an associated weight, corresponding to the battery consumption to
fly to a location. In addition, in the DSRP addressed here, a set of drones are deployed in a cooperative
drone swarms approach to boost the search. In this context, a V-shaped formation is applied with
leader replacements, which allows energy saving. We propose a computation model for the DSRP
that considers each drone as an agent that selects the next search location to visit through a simple
and efficient method, the Drone Swarm Heuristic. In order to evaluate the proposed model, scenarios
based on the Beirut port explosion in 2020 are used. Numerical experiments are presented in the
offline and online versions of the proposed method. The results from such scenarios showed the
efficiency of the proposed approach, attesting not only the coverage capacity of the computational
model but also the advantage of adopting the V-shaped formation flight with leader replacements.

Keywords: drone swarms; routing; multi-agents systems; humanitarian logistics; disaster relief

1. Introduction

After a major disaster, it is very likely that access to some areas can be extremely
difficult due to the damage caused by the disaster itself, road congestion or blockages,
or even the contamination of dangerous products. This was the case of the Beirut port
explosion in Lebanon in 2020 that caused several causalities, more than 7000 injured people,
and left about 30,000 homeless [1]. In this context, an alternative strategy to circumvent
the aforementioned accessibility difficulties is to use drones to perform tasks such as the
distribution of drugs and food, the detection of ground conditions, and to search for victims.
They can also quickly access hard-to-reach areas. An extensive study in [2] demonstrates
the capabilities, performance outcomes and barriers of using drones in the context of
humanitarian logistics.

In such a context, the search for victims is a crucial operation and must be well-
planned and carried out with extreme efficiency to save lives. The search for victims can
be supported by the use of drones. Moreover, the search can be boosted by using a fleet
of drones equipped with optical and thermal cameras, flying in a coordinate swarm. This
allows them to share updated information about the area, to be more efficient in scanning
the area, and also to save energy using a special flight organization. As shown in [3], energy
consumption can be reduced by applying a V-shaped formation with leader replacements,
which is inspired by bird flight.

The search for victims using drone swarms involves not only solving a path planning
problem [4], but also solving an optimization problem for finding the route that mini-
mizes/maximizes a given criterion, which is the main focus of this study. More specifically,
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this study proposes the Drone Swarms Routing Problem (DSRP) and consists of defining
routes for drone swarms in order to maximize the number of victims identified. The
novelties of the DSRP are the consideration of the cooperative and decentralized flight of
drone swarms, where they decide on the fly if they scan a location together or not. The
interest of using such a strategy is to cover faster an area and to save energy, by means of
an appropriate swarm organization. Civil drones still have low autonomy, which makes
scanning large areas difficult. Moreover, the hydrogen technology for drones is not yet
operational. This study extends the work of [5], in which, drones fly independently of each
other with routes predefined by a control center.

A computational model to solve the DSRP is proposed here, using the concept of
Multi-Agents Systems (MAS), where drones are agents able to analyze information about
the post-disaster area, and smartly select the next search location to perform the search for
victims. For such a purpose, a Drone Swarm Heuristic (DSH) is applied to carry out the
decision step of the drones. The proposed method is tested over a case study inspired by
the Beirut port explosion in 2020. Numerical experiments considering offline and online
versions of the method are presented. In the former, the input data are predefined, while in
the latter, data changes during the execution of the model. The DSRP solutions produced by
the proposed method are also observed in the robot simulator CoppeliaSim [6] to simulate
their execution step-by-step.

This study makes several contributions, in particular, we propose:

• the new DSRP to search for victims in post-disaster scenarios;
• a computational model based on multi-agent systems;
• an offline and online heuristics for the DSRP;
• solutions are tested using the CoppeliaSim simulator;
• an adaptation of instances proposed in [5] for DSRP.

The remainder of this paper is organized as follows. The Drone Swarms Routing
Problem is defined in Section 2. In Section 3, closely related studies are presented. The
proposed DSRP computational model and heuristic method are detailed in Section 4.
Numerical experiments, concluding remarks and future works are, respectively, given in
Sections 5 and 6.

2. The Drone Swarms Routing Problem

The Drone Swarms Routing Problem (DSRP) is defined on a complete and simple
graph G = (V, E) built over a post-disaster area. Each search area is a vertex v ∈ V =
{0, 1, . . . , n} which has an expected number of victims ev and a victim identification proba-
bility pv. The set of edges is E = {(i, j)|i, j ∈ V2}, where (i, j) is the shortest path between i
and j. Moreover, each edge (i, j) ∈ E is weighted by a related cost cij that represents the bat-
tery consumption of a single-drone flight starting from vertex i to j. Let D = {1, 2, . . . , m}
be a homogeneous fleet of m drones, in which each drone d ∈ D has a range limit A accord-
ing to its battery capacity, a battery recharge time R and an associated base bd ∈ B ⊂ V to
perform the take-off, land and recharge operations. A specific drone searches for victims
on a search location during a period of time ts. The identification operation follows a
binomial distribution (ev

pv
). As a consequence of the binomial distribution, search areas may

be visited more than once and this visit can also be performed by the same drone. Another
characteristic of the searches is that, at the same period of time, more than one drone
(drone swarm) can scan for victims over the same search area. This latter characteristic is
actually a relaxation of the problem that, on one hand, can improve the effectiveness of
victim identification, but, on the other hand, it increases the search space of solutions to the
problem, making the problem even more complex.

The DSRP considers a trajectory as a direct flight from a vertex i to another vertex j,
consuming cij of the battery. Trajectories can be performed by a drone swarm flying in a
V-shaped formation with leader replacements. A “trip” in the DSRP is a circuit of a drone
that departs from its base, flies to search areas, performs victim detection, and returns to
the base. In the DSRP the whole operation of a drone may include multiple trips and there
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is a maximum time T allowed for this operation. The objective of the DSRP is to define
routes for a fleet of drones in order to maximize the expected number of detected victims.

The DSRP involves some assumptions to facilitate the modeling and analysis of the
problem. The first relies on the drone movements which are constrained to two dimensions,
assuming a flat surface or environment. This simplifies the spatial representation and allows
efficient route planning within a 2D space. The second assumption is the communication
between drones which is always considered available. This second assumption enables
information sharing and real-time coordination, which facilitates efficient swarm behavior
and collaboration during routing tasks. On the other hand, a more realistic communication
model could be taken into account as a constraint in our model. In summary, the focus
is on the decision optimization problem, and this first approach does not consider speed
and altitude variation. However, since the speed and altitude are constant, the solutions
generated belong to the set of feasible ones.

Figure 1 shows an example of a DSRP in a graph with nine vertices, eight drones and
one base. It also contains two examples of routes performed by drones 1 and 2. Drone
1 starts the route by being the leader of the V-shaped formation, while drone 2, in turn,
initiates the route by following another leader in another V-shaped formation. It can be
seen that drone 2 performs two trips, as it returns to the base to be recharged.

Figure 1. Example of a DSRP with eight drones, one base and eight search areas.

Clearly, the DSRP is an NP-hard problem, as it originally comes from the Vehicle
Routing Problem (VRP) [7], a well-known NP-hard problem. In this way, the time needed to
find an optimal solution for the offline version of the DSRP can be impractical. Considering
that the main focus here is to find a solution for the online version of the DSRP, the need
for an efficient algorithm is even greater. This has motivated us to develop a heuristic to
solve the DSRP problem.

3. Related Literature

This section provides a concise overview of closely related works in the literature,
aiming to establish a comprehensive understanding of the research landscape. The review
begins by examining optimization surveys that offer valuable insights into the current state-
of-the-art techniques. Then, offline and centralized approaches are described for Drone
Routing Problems, exploring different methodologies employed to optimize drone routes in
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the context of post-disaster management. In the following, online and decentralized Multi-
Robot Task Allocation approaches are presented, showcasing an innovative strategy for
real-time decision-making and coordination among drones. In addition, a study focusing
on a V-shaped flight formation for drones is detailed, highlighting recent advances in flight
formations that enhance efficiency and cooperation using drone swarms. The section ends
with an overview comparing our contributions to those found in the scientific literature.

3.1. Optimization Surveys

In the scientific literature, there is growing interest in the use of drones, as can be
noticed by the number of surveys published and the number of papers they analyze. From
2001 to 2017 more than 200 papers with optimization approaches for civil applications
of drones were reviewed in [8], such as area coverage, search operations, routing, data
gathering, networks of drones, communication linking and computing power to mobile
devices. In [9], the authors classified 79 relevant publications from 2005 to 2019 that
address Drone Routing Problems (DRP) modeled as a VRP. Survey [10] reviewed 63 papers,
from 2015 to 2020, related to routing problems for four main problem classes: (1) the
traveling salesman problem with drones; (2) the vehicle routing problem with drones;
(3) the drone delivery problem and (4) the carrier-vehicle problem with drones. A survey
and a framework for classifying drone-based delivery systems is presented in [11] and this
framework was used to classify 101 related papers according to their objectives, methods,
applications and constraints. The authors in [12] did an extensive analysis of articles
published from January 2005 to June 2022, identifying 135 articles that explore various
aspects of VRP problems. These surveys are very interesting entry points for researchers
looking for the state-of-the-art on a wide range of topics involving optimization problems
involving drones, like exact and heuristic solution methods, novel problem variants like
drone routing, and emerging research areas such as green routing.

The surveys aforementioned surveys contain a very limited number of articles focus-
ing on post-disaster management. This highlights a potential research gap in exploring
the application of DRP methodologies to this constrained context. In addition, it is worth
noting that a significant portion of the papers predominantly address the classic version of
the VRP, which differs from the approach adopted in this work. This distinction empha-
sizes the contribution of this study in exploring novel perspectives and approaches that
extend beyond traditional VRP formulations, aiming to address the specific challenges and
complexities inherent in post-disaster management scenarios.

3.2. Offline and Centralized DRP Approaches

Some studies investigate variants of DRPs in the post-disaster context, proposing both
methods and case studies. The DRPs can be addressed by adopting an offline or online
approach. Offline computation is very often used for static and centralized approaches
when there is enough time for decision-making. On the other hand, online computation is
commonly used for dynamic and decentralized approaches, when the time for decision-
making is a hard constraint, being taken in almost “real time”. All the works cited in this
section consider offline computation with a centralized approach.

The authors in [13] address a DRP to recognize a post-earthquake area, where the
objective is to find the shortest path to visit each site affected by the earthquake and to check
the state of building damage. A simulated annealing was proposed and was applied to
instances generated from the city of Acireale (Italy), finding good solutions with two drones.
Another DRP to assess post-disaster areas using drones and motorcycles is studied in [14],
where a bi-objective mathematical model for maximizing the total importance of population
centers (nodes) and road segments (arcs) is presented. The bi-objectives are optimized
by means of an ε-constraint method, together with a heuristic to solve the problem on
instances based on Istanbul’s Kartal district (Turkey). The results show that a high-quality
approximation of the Pareto front can be found using the proposed methodology.
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Study [15] presents a DRP that uses gliders to collect useful information for assessing
the extent of the disaster’s consequences by visiting the post-disaster locations as fast as
possible. They also propose a solution to this problem by linearizing a Mixed-Integer Non-
linear Programming (MINLP) formulation that optimizes the routes and the trajectories
along these routes. The MINLP formulation is tested on random instances and on instances
based on flooding-prone cities of the United Kingdom (UK). These instances are divided
into small and medium ranges and they contain up to 10 waypoints, 2 landing zones and
3 gliders. The strategy is able to prove optimal solutions for some test cases, contrary to
large test cases with more waypoints and a medium to large size. A heterogeneous fixed
fleet DRP is considered in [16] with the objective of minimizing the inspection cost of a
post-disaster area. In order to solve it, the authors propose a Mixed-Integer Linear Program-
ming (MILP) model and two heuristics, an Adaptive Large Neighborhood Search (ALNS)
algorithm and a Modified Backtracking Adaptive Threshold Accepting (MBATA) one. The
algorithms were tested on instances generated over Hancock county from Mississippi State
(USA) and produced high-quality solutions in a reasonable time.

3.3. Online and Decentralized MRTA Approaches

Considering the field of multi-agent systems (MAS), the Multi-Robot Task Allocation
(MRTA) is a problem commonly found problem (see [17] for more information on MRTA).
The MRTA is an analogous problem to the VRP in which tasks are defined in terms of
location. Furthermore, the MRTA problems can be also solved by adopting offline or
online approaches.

Several studies consider MAS with an online approach to solve different MRTA
problems, but there is a lack of studies that address MRTA in post-disaster areas. The
authors in [18] present a MRTA in which robots (drones) with limited range and payload
must accomplish tasks with deadlines that are generated during the search. The MRTA
goal is to deliver survival kits to spatially distributed victims after a flood disaster. An
Integer Linear Programming (ILP) formulation is presented to solve the offline version
of the problem as well as an online method, named BiG-MRTA, that combines a bipartite
graph construction with a model that assigns edge weights to the graph, and allocates
tasks, by solving a maximum weighted matching problem. Each task can be allocated to
only one agent and task selection is performed in a myopic way, i.e., at each iteration, an
agent selects the next task to undertake considering an acquisition function that balances
exploitation and exploration. The algorithms were run on instances generated from South
Hilo district, Hawaii. The results show that the BiG-MRTA is more than 103 times efficient
than the ILP, and it can also offer up to 46% higher task completion when compared to a
random walk baseline in problems with 1000 tasks.

Some studies in the literature investigate several dynamic issues (velocity, communi-
cation delays, etc.) of coordinating drones swarms, as for instance in [19,20].

3.4. V-Shaped Formation

Another inspiration for our work comes from [3], in which the authors study the
energy conservation of V-shaped swarming flight for fixed-wing drones. The study has
shown that the V-shaped formation drones can save up to 70% of their energy, and that
adopting leader replacements during the flight, a further 21% of their energy is saved,
consequently, increasing the flight time and the distance travelled.

3.5. Position of This Study

Table 1 summarizes the set of closely related studies and compares them with this
study in terms of the problem addressed, the objective function, the proposed method (s)
and the case study.
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Table 1. Comparison of closely related works with this study.

Authors Problem Addressed Objective Function Method(s) Case Study

Cannioto et al. (2017) [13] Drone routing Minimize travel
distance

Metaheuristic,
centralized

Sicily,
Italy

Oruc and Kara (2018) [14] Drone routing
Maximize assessed
road segments and
points of interest

MILP, exact,
heuristic,

centralized

Kartal,
Turkey

Coutinho et al. (2019) [15] Drone routing Minimize total
flight time

MINLP,
centralized

Cities,
UK

Chowdhury et al. (2021) [16] Drone routing Minimize inspection
cost

MILP,
metaheuristics,

centralized

Mississippi,
USA

Ghassemi and
Chowdhury (2022) [18]

Online Task allocation
(Drone routing)

Maximize completed
tasks

MILP,
metaheuristics,
decentralized,

multi-agent systems

South Hilo
district, Hawaii

Our work Online Drone routing Maximize identification
of victims

Heuristic,
decentralized,

multi-agent systems

Beirut,
Lebanon

Analyzing Table 1, the lack of works that study DRPs using multi-agent systems in a
decentralized approach and performing online computation is clearly noticeable. Moreover,
no other work models a DRP that considers cooperation between drones that can fly
in V-shaped formations with leader replacements. Another point to be highlighted is
related to the objective addressed since the search for the maximum number of victims in a
post-disaster context is considered crucial for disaster management.

4. DSRP Computational Model and Methods

In the DSRP multi-agent decentralized approach, each drone is modeled as an agent
able to compute its route based on real-time information. The drones can decide when it is
appropriate (or not) to work cooperatively in a swarm of drones, considering a V-shaped
formation with leader replacements. This decision is addressed by means of a heuristic
proposed here. It should be noted that two versions of this model have been developed.
The first is the offline version, whose main feature is the fact that when a drone searches
for victims at a search location, the number of victims identified will always be equal to
the expected number. As for the other version, the online version, the number of victims
identified will be obtained at the instant of identification, and may be greater or less than
the expected number.

Figure 2 shows a flowchart of the proposed decentralized model. This algorithm
contains two main modules: the Main Control (MC) and the Drone Agent (DA). The MC is
responsible for building the heatmap of the post-disaster area containing all the information
about possible victim locations. In the sequel, a graph based on this heatmap is built. Then,
the algorithm checks which drones are available, updates the graph by getting their new
information and sends it to the available drones. In the following, the MC performs a leader
election to choose a leader. Finally, the MC controls the return of the drones to the base,
considering the start of a new operation or the end of the whole operation.

The DA starts its work by becoming available and communicating with the MC. Thus,
it waits for the leader election and when the answer from MC is positive the Drone Swarm
Heuristic algorithm is executed to choose the next node to visit in the next trip. This decision
is made by obtaining the updated graph and information about the other operations from
the MC. In this module, it also decides about the drone swarms’ V-shaped formation, by
making the DA able to join a nearby drone swarm, and the leader replacements during the
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flight. In order to perform any operation, the DA must check whether it will have enough
battery power to reach the next node, search for victims and return to the base. Thus, the
DA performs its operation, which may be to start the trip to the next node and then search
for victims at this node; otherwise, it stops and returns to the base station. Finally, after
finishing its operation, the DA reports to the MC if it will be available for the next operation
or if it has finished all its work.

By employing an auction-based algorithm, for example, the Consensus-Based Bundle
Algorithm (CBBA) [21], decentralized coordination can be achieved, enabling agents to
effectively exchange information between themselves. Such an approach fosters distributed
decision-making, increased autonomy and robustness in the face of uncertainties or dis-
ruptions. With regard to the architecture of the data communication network, we can cite
some recent works that address interesting architectures in which our model can be easily
incorporated, making it possible to deploy it in real disasters. In [22] we are introduced to
a communication network architecture for a squadron of drones to be used in the scanning
rocket impact area of Barreira do Inferno Launch Center in Rio Grande do Norte, Brazil to
detect intruder boats. The system uses Wireless Sensor Networks, specifically employing
XBee Pro 900HP S3B modules, for information transmission within a range of 5 km.

The remainder of this section describes in more detail both modules of the algorithm,
Main Control (Section 4.1) and Drone Agent (Section 4.2). It is important to note that both
modules contain simple and reproducible algorithms.

4.1. Main Control

The main control module contains five sub-modules: Get heatmap and Build a graph,
Drones available, Update graph/info, Leader election and Drones returned. These sub-
modules are detailed next.

Figure 2. Flowchart of the computational model for the DSRP.

Get heatmap and build graph. The heatmap is essential information to start the search
for a solution to the DSRP. The procedure on how to build the heatmap and transform it
into a complete graph is illustrated in Figure 3. This procedure consists of five steps.

The first step consists of obtaining the map of the post-disaster search area through
some data source, for instance, the open data source OpenStreetMap (OSM). Then, the
second step consists of defining all possible search locations for the drones, and setting the
radius of action according to the range detection of the drones. The goals are to identify
victims and cover the entire search area using this information.

The third step looks for the data related to the expected number of victims (ev) and
the victim identification probability (pv) in each possible search location. Such information
can be obtained from official government data, as well as through unofficial data from
other sources (ground teams, Non-governmental organizations, etc.) The ev number can
be deduced, for example, from the number of buildings existing before the disaster. The
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probability pv is defined by taking into account the difficulty of identifying victims in each
search area after the disaster has occurred. The more buildings there are, the higher the
expected number of victims, and the lower the probability of identifying them. Figure 2
shows each search area colored in tints of red, in which the deeper the tint, the higher the
estimation of the number of victims.

Figure 3. How to build the heatmap and transform it into a complete graph.

In the fourth step, the conversion of the heatmap into a complete graph is initiated,
by first building a grid graph. This transformation is made as follows. Each search area of
the grid represents a vertex of the graph, and the edges connect adjacent search areas. The
edges are weighted by the battery consumption related to the path of a single drone. Once
again, the number of buildings can help to define these weights.

In the last step, the complete graph is built, by solving the All Pairs Shortest Path
Problem and then connecting all pairs of vertices with edges weighted by the minimum
battery consumption between them, i.e., the one that corresponds to the shortest path
between such vertices in the previous graph.

This step allows the drone availability to be checked. At this stage, there are three
possibilities for receiving messages concerning the availability of drones. Two of them
are treated in trivial ways, i.e., as soon as the message is received the process continues
its flow directly to the next step. The third possibility requires synchronization as well as
consistency of the graph information. The two trivial possibilities are when the DA module
starts its processing and after the drone finishes its battery recharge. In the latter case, the
message is only sent if there is still enough time to visit at least one search location. The
last one is when the drone just ends up performing a search for victims operation. In order
to avoid exchanging too many messages with the MC module, it is considered that at the
end of the search, the current leader will control the availability of his swarm and he will
be responsible for sending the message to the MC, notifying the swarm availability and
also containing new information about the number of victims identified by the swarm.

Update graph/info. In the Update graph/info step, the information obtained by the
leaders regarding the number of victims identified by the drones is updated in the graph.
In addition, information related to the current allocation of drones to search locations is
also updated. Considering this information, it is important to limit the number of drones
that are on their way to the same search location.

Leader election. This step performs the choice of an available drone to be the next leader.
This choice is performed according to a very simple rule: the next leader will be the one
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with the largest amount of available battery. In case of a tie, the next leader will be chosen
randomly among those with sufficient battery.

Drones returned. Drones returned is the last sub-module of MC and is responsible
for controlling the return of drones to the base. Basically, it is performed as a check on
the remaining time of the whole operation, considering the maximum time available T.
If there is still enough time for the drone to visit at least one search location and still
return to the base, then the drone becomes available and this message is transmitted to
the DA sub-module. Otherwise, the DA module of such a drone is concluded. In this way,
the MC must wait until all the drones have no more time left for the operation to stop
the algorithm.

4.2. Drone Agent

As mentioned before, the DA module starts by sending a message indicating its
availability to the MC. Then, the processing continues following the flow of its eight sub-
modules detailed next: Leader, Get graph/info, Drone swarm heuristic, Join swarm, Battery
check, Start trip/Return base, Search for victims and Recharge.

Leader. In this step, the agent waits for the leader’s election. Once it is defined, the agent
immediately moves on to the next step, the heuristic choice based on updated information.

Get graph/info. Before choosing the next search location to visit, the agent updates the
information regarding the graph, as well as the operations that other agents are performing
at the moment. These data are essential to make the best decisions considering the current
configuration of the environment. Hence, the DA requests, and obtains, from the MC the
current information which, more specifically, corresponds not only to the expected number
of victims remaining at each search location but also to what are the trips that other agents
are performing at that moment.

Drone swarm heuristic. The Drone Swarm Heuristic (DSH) will build iteratively a
complete solution for the DSRP based on two criteria: the expected number of victims and
operation cost. The choice to define only the next visit at each moment is necessary to
guarantee the applicability of the model. Thus, the drones make this decision promptly,
avoiding a bottleneck in the model and consuming less energy. Initially, DSH uses the data
obtained from the previous sub-module to know the possible search locations available
to be visited by the agent, this information is referred to here as the candidate list (CL). It
means that if a search location has a positive remaining number of expected victims, then
it will be included in the CL. Otherwise, if this number is close to zero, it means that all
expected victims were identified. Then, DSH will rank each search location v according to
the F function (1):

F (i, v) =
ev × pv

cij × swarm(v) + ts
, (1)

which is responsible for obtaining, given a start location i and a search location v, the ratio
of the expected number of remaining victims (ev × pv) over the operation cost (the trip cost
civ may be reduced according to the number of drones in the swarm). The objective is to
maximize g in CL, the Fmax = max{F (i, v) | ∀v ∈ CL}. In other words, the gmax represents
the search location that provides the highest victim identification while also taking into
account the cost of this operation.

It is noteworthy that the DA can only choose feasible search locations to visit, taking
into account enough battery to fly to the location, detect and return to the base station.

Join swarm. Once the decision on the node to be visited is made, the agent has the
possibility of joining up with another agent or a swarm that is making a common trip. Even
though they may have different final destinations, agents can group together to make an
intermediate trip and split up afterward.

In [3], the authors presented some possible scenarios of savings when using a drone
swarm performing flights in a V-shaped formation. Among all of them, in this work, we
adopted the one that the authors consider the closest to real applications, i.e., reducing
to 10%, 15%, 19% and 21% of energy consumption by using two, three, four and five
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drones. In addition, in [3] the possibility of reducing to 20% of extra savings by adopting
the V-shaped formation with leader replacements in each case is also presented. Table 2
presents the savings of this realistic scenario, considering the V-shaped formation and
leader replacements according to the number of drones. In the last row (Total savings)
we present the combined savings adopted by our computational model. To clarify, in our
model, if the energy consumption between two locations is 100 and there is a swarm of two
drones flying between them, this means that we will have a final consumption of 72 (28%)
because of the reduction in total consumption, being 90 (10%) because of the flight in a
V-shaped formation and finally 72 (20% extra) because of the replacement of leaders. It
is noticeable from the table that drone swarms are limited to a maximum of five drones.
This means that during the whole operation at most five drones are allowed to be in the
same V-shaped formation. If more than five drones fly to the same search location, then the
model will allow at least two different swarms to coexist.

Table 2. Possible savings for the drone swarms obtained from [3].

Number of Drones 1 2 3 4 5

V-shaped formation 0% 10% 15% 19% 21%

Leader replacements 0% 20% 20% 20% 20%

Total savings 0% 28% 32% 35.2% 36.8%

The swarm function used by Equation (1) works as follows. According to a search
location v, the swarm function returns the corresponding saving value related to the number
of drones that visit v.

Battery check. The agent must check its remaining battery during the whole operation
to prevent the drone from dropping during its flight. The Battery check sub-module
periodically performs such a check, considering that the agent must always have enough
battery to return to its base. If, for any reason, the remaining battery is not enough to
continue the current operation, this sub-module triggers the immediate return of the agent
to the base.

Start trip/return base. The Start trip/return base sub-module is responsible for conduct-
ing the trip for the agent. An agent can perform the trip by itself or in a swarm of drones, in
the latter case the trip cost will be lower for all drones involved in this cooperation. When
the agent is running out of battery, it will perform a return to base, which is also conducted
as a normal trip, alone or in a cooperative flight.

Search for victims. The search for victims is an action of an agent that demands a fixed
time. If this action is carried out by more than one drone the time required will be similar
for each. However, the more agents there are, the greater the probability of identifying
victims. At the end of this sub-module, the DA leader sends a message to the Drones
available sub-module reporting not only on the number of victims identified but also on
drone availability for future operations.

Recharge. The recharge of an agent requires a fixed time, which must be respected
until the end for the recharge to take place, i.e., it is not possible to recharge an agent
partially. Once the recharge is complete, the DA notifies the Drones returned sub-module
of the MC that the battery is full and whether there is still enough time to perform any
further operations. If there is not enough time, in addition to notifying the MC, the agent
terminates its activity.

5. Computational Experiments

All the algorithms were implemented in C++, using the Windows/GNU g++ com-
piler (version 8.1.0). All tests with the proposed algorithms were executed on an Intel(R)
Core(TM) i5-9300H @ 2.40 GHz processor with 16 GB RAM on Windows 10.
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The solutions produced by the proposed methods were adapted to be visualized
using the simulator CoppeliaSim [6]. This allows the execution of the solutions to be
followed dynamically.

The goals of the numerical experiments are to check the performance and the impact of
the proposed offline and online methods using the realistic case study. For such a purpose,
several indicators are used such as:

• O→ total number of operations achieved by all drones;
• Oc → the number of operations achieved in cooperation;
• T→ the total number of trips;
• Tv → the total number of trips in a V-shaped formation;
• S→ the total number of scans;
• Sc → the total number of scans in cooperation;
• R→ the total number of recharges;
• end→ the time the last drone returns to base;
• avg→ the average time the drones return to base;
• C→ the total cost in time units to conclude all operations: to take off from the base,

arrive at search locations, identify victims, return to a base and recharge;
• C→ the total cost in time units to conclude all operations without considering savings

from the V-shaped formation flight;
• G(%)→ the percentage gain obtained by considering the savings;
• E→ the total number of expected victims;
• V → the total number of victims identified by the drones;
• V(%)→ the percentage related to the number of victims found.

In the following sections, the case study, the development and settings and results
considering both offline and online approaches, together with sensitivity analysis are
detailed in the next sections.

5.1. Case Study: Beirut Port Explosion

The Beirut Port scenarios were generated with the instance generator coming from the
study [5], using additional features for the DSRP. The process was described in Section 4.1.
A fleet of drones able to communicate with each other is defined. The complete graph is
obtained by All Pairs Shortest Path Problem. Figure 4 shows the selected area divided into
squares of 100 m2, colored in tints of red to illustrate the expected number of victims. The
dimension of the grid graph constructed is 42 × 25, thus resulting in a complete graph of
1050 vertices.

Figure 4. Case study: Beirut Port explosion.
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Scenarios

Three scenarios, referred here as Scenario 1, 2 and 3, were generated with 1050 vertices,
2 recharge base stations, and 8 drones. Each drone has a range limit of 3540, a recharging
time of 2400, and the time spent detecting victims equals one. These values are based on
the eBee senseFly drone [23], which was also set and used by [3]. The maximum time for
the whole operation is 7200. The differences between the three scenarios are the variation
in the expected number of victims in each search area (totaling 29,349, 30,599, and 31,711,
respectively). They also differ in the identification probability for each search area.

5.2. Development and Settings

The MC module makes use of a main thread, while the DA uses more than one thread,
working in parallel. This distinguishes our development from that of [18], who employ
only one thread.

Figure 5 shows the interface of CoppeliaSim as well as an example of a loaded solution
for the DSRP, containing four drones and nine vertices (one base and eight search areas).
Each drone is positioned at a certain height in order to facilitate viewing, even if they are in
a V-shaped formation. This has been conducted to simplify the simulation. A code color is
used to identify the leaders, the drones following the leader, drone recharging, for example,
the yellow and blue vertices that represent, respectively, the base stations, and the potential
nodes with victims. The size of each yellow circle is proportional to the expected number
of victims in the corresponding area.

Figure 5. Example of a solution loaded in CoppeliaSim.

5.3. Results Using an Offline Approach

The performance of the proposed algorithm is also evaluated in an offline approach
based on the Beirut Port explosion. In the offline version, the number of victims obtained
in each search location will always be equal to the expected number. For instance, if it is
expected that there are 100 victims in a search location and the identification probability is
60%, then for each victim search operation, 60% of the remaining victims will be identified,
i.e., 60, 24, 9.6, 3.84, etc.
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5.3.1. Sensitivity Analysis on the Number of Drones

In this experiment, the number of drones varies (4, 8, 16, 32 and 64), while the other
parameters remain similar along the optimization. Tables 3–5 present results using the
aforementioned indicators.

Obviously, the more the number of drones increases, the higher the percentage of
identified expected victims is. It is noteworthy that with only four drones it is possible to
reach more than 91% of identified victims. When increasing to eight drones, this percentage
reaches more than 99% of the expected victims. Finally, with 16, 32 and 64 drones, practically
all victims are expected to be identified. Taking into account the modest savings model
applied, it is considered that reasonable gains can be achieved through the use of V-shaped
formation flight, reaching values above 3%.

Results using 32 and 64 drones show that the final time spent concluding all operations
is less than the maximum time allowed. Due to that, the maximum time limit used
in the simulation was removed, in order to check the impact of using each number of
drones. Figures 6–8 depict a graph that contains the percentage of expected victims
identified by our computational model over time and according to the number of drones
for Scenarios 1, 2 and 3.
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Figure 6. Scenario 1: Results varying the number of drones, in terms of time and percentage of
expected victims.
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Figure 7. Scenario 2: Results varying the number of drones, in terms of time and percentage of
expected victims.
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Table 3. Results produced using Scenario 1.

Scenario 1 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

4 drones 3249 17 1215 15 2030 0 4 7199.93 7199.48 28,797.9 28,903.1 0.37% 29,349 26,946.1 91.81%

8 drones 6592 300 2317 74 4267 221 8 7199.71 7194.58 57,556.6 58,383 1.44% 29,349 29,200 99.49%

16 drones 12,456 498 4757 215 7683 268 16 7199.14 7179.07 114,865 116,523 1.44% 29,349 29,347.4 99.99%

32 drones 14,898 1135 6257 404 8641 721 0 3370.75 3175.09 101,603 104,176 2.53% 29,349 29,348.5 99.99%

64 drones 17,797 1879 9976 1018 7821 829 0 2715.88 2461.86 157,559 162,719 3.27% 29,349 29,348.6 99.99%

Table 4. Results produced using Scenario 2.

Scenario 2 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

4 drones 3283 98 1163 25 2116 70 4 7199.97 7182.97 28,731.9 28,929.1 0.69% 30,599 28,970.2 94.68%

8 drones 6167 127 2380 59 3779 61 8 7199.74 7184.47 57,475.8 58,147.7 1.17% 30,599 30,439.6 99.48%

16 drones 11,502 416 4831 206 6655 128 16 7196.72 7164.71 114,635.4 116,536.6 1.66% 30,599 30,597.1 99.99%

32 drones 14,212 607 7108 273 7104 190 0 3533.23 3425.93 109,630 111,724 1.91% 30,599 30,598.5 99.99%

64 drones 16,651 968 9662 798 6989 155 0 2696.05 2343.24 149,967 153,857 2.59% 30,599 30,598.6 99.99%

Table 5. Results produced using Scenario 3.

Scenario 3 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

4 drones 3288 22 1197 16 2087 3 4 7199.82 7182.09 28,728.3 28,865.2 0.48% 31,711 29,522.8 93.10%

8 drones 6634 115 2378 87 4248 20 8 7190.95 7187.29 57,498.4 58,299.2 1.39% 31,711 31,544.3 99.47%

16 drones 12,902 279 4785 198 8101 65 16 7199.55 7186.52 114,984 116,448 1.27% 31,711 31,709.7 99.99%

32 drones 14,788 977 6585 408 8198 561 5 5688.02 3629.65 116,149 118,494 2.02% 31,711 31,710.5 99.99%

64 drones 18,340 1662 10,671 1137 7669 509 0 3188.75 2617.07 167,493 173,765 3.74% 31,711 31,710.6 99.99%
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Figure 8. Scenario 3: Results varying the number of drones, in terms of time and percentage of
expected victims.

These results show that the proposed method obtains a good coverage of the post-
disaster area of Beirut in a very acceptable time. Using 64 drones, the time required to reach
all expected victims is about 40 min. If the number of drones equals 32, this time increases
to one hour. All the expected victims were found using 16 drones and about 2.5 h. Six hours
are necessary to identify all the expected victims using eight drones. Not surprisingly, the
longest time to identify all the victims is when there are only four drones, taking slightly
less than 12 h.

5.3.2. Sensitivity Analysis of the V-Shaped Formation with Leader Replacements

Tables 6–8 present the results obtained without using a V-shaped formation with
leader replacements, respectively, for Scenario 1, 2 and 3, using 4, 8, 16, 32 and 64 drones.
Moreover, Figures 9 and 10 consider, respectively, the additional cost and number of victims
found, whenever not considering the savings related to the V-shaped formation flight with
leader replacements.

Results clearly indicate that not using V-shaped formations with leader replacements
led to a smaller number of victim detection and a higher cost, compared to the previous
results. The cost is increased in up to 80% , and the victim detection is decreased up to 1%
It is worth noting that the number of recharges also increases for 32 and 64 drones.

Table 6. Results for Scenario 1 without using V-shaped formation with leader replacements.

Scenario 1 O T S R end avg C E V V (%)

4 drones 3133 1200 1929 4 7199.79 7199.42 28,797.7 29,349 26,773.2 91.22%

8 drones 6745 2300 4437 8 7199.96 7199.44 57,595.5 29,349 29,181.5 99.43%

16 drones 11,993 4519 7458 16 7199.91 7198.85 115,182 29,349 29,346.6 99.99%

32 drones 15,365 6575 8760 30 6587.26 5660.85 181,147 29,349 29,348.5 99.99%

64 drones 17,763 9498 8263 2 4561.89 2539.06 162,500 29,349 29,348.6 99.99%

Figure 9 illustrates higher cost, except with four drones in scenario 1, which was
slightly lower, −0.20. Using more drones, 32 and 64 drones results in a higher cost,
especially using a V-shaped formation. This is due to the additional recharges required. On
the contrary, the number of victims identified increases, as depicted in Figure 10. Using 32
and 64 all victims are identified, while the improvement using fewer drones (4, 8 and 16) is
noticeable. On average, 137 extra victims could be identified with 4 drones, 18 extra victims
with 8 drones and 1 extra victim with 16 drones. Such results demonstrate the importance
of adopting the savings related to the V-shaped formation strategy.
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Table 7. Results for Scenario 2 without using V-shaped formation with leader replacements.

Scenario 2 O T S R end avg C E V V (%)

4 drones 3328 1185 2139 4 7199.99 7199.86 28,799.5 30,599 28,849.2 94.28%

8 drones 6153 2365 3780 8 7199.88 7199.41 57,595.3 30,599 30,426 99.43%

16 drones 11,472 4681 6775 16 7199.93 7197.88 115,166 30,599 30,597.1 99.99%

32 drones 14,305 7116 7157 32 6317.9 5885.28 188,329 30,599 30,598.5 99.99%

64 drones 16,738 9950 6788 0 2849.22 2498.59 159,910 30,599 30,598.6 99.99%

Table 8. Results for Scenario 3 without using V-shaped formation with leader replacements.

Scenario 3 O T S R end avg C E V V (%)

4 drones 3568 1150 2414 4 7199.87 7199.33 28,797.3 31,711 29,403.1 92.72%

8 drones 6522 2333 4181 8 7199.81 7199.41 57,595.3 31,711 31,522.4 99.41%

16 drones 11,879 4660 7203 16 7199.97 7197.74 115,164 31,711 31,707.3 99.99%

32 drones 15,839 8021 7786 32 7098.45 6535.99 209,152 31,711 31,710.5 99.99%

64 drones 18,963 10,512 8446 5 4830.35 2840.62 181,800 31,711 31,710.6 99.99%
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Figure 9. Additional cost required without V-shaped formation savings.

5.3.3. Sensitivity Analysis on the Detection Probability

In these experiments, we evaluated the impact of using a detection probability asso-
ciated with the search locations. For this purpose, three levels of detection probabilities,
defined by means of intervals, were used: low ([0%, 33%]), medium ([33%, 66%]), and high
([66%, 100%]). Values were randomly generated within these ranges for each search location
of each scenario. The results obtained for scenarios 1, 2 and 3 using eight drones are shown,
respectively, in Tables 9–11.

It is remarkable for the three Scenarios, that even with low identification probabili-
ties, the proposed computational model was able to find a high percentage of expected
victims, more than 87%. Another interesting observation is that in these more "adverse"
situations, the method makes use of more flights in a V-shaped formation. This can be
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seen when observing the highest gains in savings and, of course, the number of squad
operations. Whenever the probabilities were applied at the medium level, more than
98.7% of victims were identified in all Scenarios, obtaining savings of more than 1.3% with
V-shaped formation flight. By using the level with a high identification probability, the
percentage of identified victims was greater than 99.6% and the savings gain was about 1%.
This happens since the use of V-shaped formation flight is not as necessary as in the low
detection probability level.

5.3.4. Sensitivity Analysis on the Number of Expected Victims

The goal of these numerical experiments is to evaluate the impact of the method when
the expected number of victims at each search location is underestimated or overestimated.
Therefore, the Scenarios were adapted to this case. In an underestimated case, each search
location has the number of victims decreased to a random value between 50% to 75%, 25%
to 50%, and 0% to 25%, considering the initial number of victims. In the overestimated case,
the number of victims was increased in each location as a random value between 0% to
25%, 25% to 50% and 50% to 75%, considering the initial number of victims. Results are
depicted in Tables 12–14, using eight drones. The previous results obtained in Tables 3–5
are presented in line “Initial Scenario” to allow comparison.

Results remain stable for underestimated and overestimated cases, i.e., more than 99%
of the expected victims are found, with gains in savings with flights in V-shaped formation
between 1% and 2%. These results allow the robustness of the proposed method to be
evaluated and, as a consequence, its applicability in real situations.
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Figure 10. Number of extra expected victims identified with V-shaped formation savings.

5.4. Results Using an Online Approach

In post-disasters, the probability of detecting victims in a search location may vary in
every scanning situation. Thus, at each location, the number of victims identified is not
always equal to the expected number. To address this context, an online version of the
proposed method is tested, using the underestimate and overestimate cases, considering the
variation of the detection probability. Both have the following intervals: [0–5%], [5–10%],
[10–15%] and [15–20%]. For instance, whenever applying an underestimated case related
to the interval [0–5%] over a search location where identification probability equals 60%,
the underestimated case varies from 55% to 60%.

Tables 15–17 present the results obtained for the online approach, using the three
Scenarios 1, 2, and 3. The proposed method seems robust for the Scenarios used, even
in the most adverse situationwhere the probabilities decrease between <15% and 20%,
the model was able to locate more than 97% of victims. Applying the overestimated case
and the interval >15% and 20%, the method is able to identify almost all the victims. In
summary, for these Scenarios, the approach deals very well with uncertainties related to
the identifications.
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Table 9. Impact of using different levels of probability for Scenario 1.

Scenario 1 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

[0%, 33%] 15,137 1687 1463 240 13666 1441 8 7199.94 7178.09 57,424.7 59,471.9 3.57% 29,349 25,636.7 87.35%

[33%, 66%] 8401 167 2169 123 6224 38 8 7199.97 7162.62 57,301 58,372.5 1.87% 29,349 28,973.4 98.72%

[66%, 100%] 5595 63 2464 56 3123 1 8 7199.73 7184.54 57,476.3 58,002.2 0.91% 29,349 29,245.1 99.65%

Table 10. Impact of using different levels of probability for Scenario 2.

Scenario 2 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

[0%, 33%] 14,846 1730 1502 221 13,336 1501 8 7199.98 7187.96 57,503.7 59,230.9 3.00% 30,599 27,098.7 88.56%

[33%, 66%] 8425 157 2204 97 6213 54 8 7199.66 7172.36 57,378.8 58,146.6 1.34% 30,599 30,267 98.91%

[66%, 100%] 5486 60 2457 53 3021 0 8 7199.88 7188.25 57,506 58,016 0.89% 30,599 30,481.2 99.62%

Table 11. Impact of using different levels of probability for Scenario 3

Scenario 3 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

[0%, 33%] 15,046 1836 1446 230 13,592 1599 8 7199.89 7170.32 57,362.5 59,323.2 3.42% 31,711 28,032 88.40%

[33%, 66%] 8638 153 2204 103 6426 43 8 7199.75 7174.39 57,395.1 58,243.2 1.48% 31,711 31,339.3 98.83%

[66%, 100%] 5545 80 2438 69 3099 1 8 7199.6 7180.72 57,445.8 58,156.1 1.24% 31,711 31,597.5 99.64%
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Table 12. Results varying the number of expected victims for Scenario 1.

Scenario 1 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

<50–75% 6422 318 2311 87 4103 224 8 7199.81 7178.59 57,428.7 58,234.6 1.40% 11,036 10,977 99.47%

<25–50% 6757 186 2359 78 4390 101 8 7199.41 7183.31 57,466.5 58,187.1 1.25% 18,400 18,300.7 99.46%

<0–25% 6387 155 2344 118 4035 30 8 7199.51 7166.16 57,329.3 58,504.6 2.05% 25,763 25,540.7 99.14%

Initial Scenario 6592 300 2317 74 4267 221 8 7199.71 7194.58 57,556.608 58,383.042 1.44% 29,349 29,200 99.49%

>0–25% 6474 174 2371 61 4095 107 8 7199.8 7172.94 57,383.6 57,969.9 1.02% 33,018 32,826.2 99.42%

>25–50% 6677 158 2310 113 4359 38 8 7187.24 7174.7 57,397.6 58,623.2 2.14% 40,385 40,116.8 99.34%

>50–75% 6638 232 2352 76 4278 150 8 7199.98 7190.77 57,526.2 58,247 1.25% 47,749 47,535.1 99.55%

Table 13. Results varying the number of expected victims for Scenario 2.

Scenario 2 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

<50–75% 6070 130 2372 97 3690 26 8 7199.24 7157.72 57,261.8 58,109.9 1.48% 11390 11,328.2 99.46%

<25–50% 6121 71 2408 52 3705 13 8 7199.85 7186.76 57,494.1 58,046.4 0.96% 19,080 18,967.5 99.41%

<0–25% 6147 95 2370 77 3769 11 8 7199.41 7177.1 57,416.8 58,166.4 1.31% 26,746 26,605.7 99.48%

Initial Scenario 6167 127 2380 59 3779 61 8 7199.74 7184.47 57,475.8 58,147.7 1.17% 30,599 30,439.6 99.48%

>0–25% 6075 125 2376 81 3691 37 8 7199.67 7177.93 57,423.5 58,215.3 1.38% 34,309 34,105 99.41%

>25–50% 6127 73 2409 59 3710 8 8 7199.97 7189.97 57,519.8 58,106.4 1.02% 41,989 41,749.5 99.43%

>50–75% 6216 82 2431 64 3777 12 8 7199.87 7192.26 57,538 58,123.3 1.02% 49,679 49,394.8 99.43%
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Table 14. Results varying the number of expected victims for Scenario 3.

Scenario 2 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

<50–75% 6325 288 2356 71 3961 211 8 7199.99 7176.97 57,415.7 58,155.7 1.29% 11,837 11,775 99.48%

<25–50% 6434 336 2342 79 4084 250 8 7199.77 7182.4 57,459.2 58,187 1.27% 19,795 19,686.4 99.45%

<0–25% 6443 129 2375 75 4060 48 8 7199.81 7186.02 57,488.1 58,100.4 1.07% 27,755 27,569 99.33%

Initial Scenario 6634 115 2378 87 4248 20 8 7190.95 7187.29 57,498.4 58,299.2 1.39% 31,711 31,544.3 99.47%

>0–25% 6742 107 2344 70 4390 32 8 7199.99 7172.69 57,381.5 57,998.6 1.08% 35,604 35,382.9 99.38%

>25–50% 6717 72 2379 51 4330 14 8 7199.83 7190.5 57,524 57,999.2 0.83% 43,548 43,303.1 99.44%

>50–75% 6862 98 2322 62 4532 28 8 7199.16 7177.8 57,422.4 58,010.3 1.02% 51,506 51,234.4 99.47%

Table 15. Results for the underestimate and overestimate cases using Scenario 1.

Scenario 1 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

<15–20% 6512 170 2377 113 4127 113 8 7199.69 7189.60 57,516.80 58,105.50 1.02% 29,349 28,565.40 97.33%

<10–15% 6522 198 2350 66 4164 126 8 7199.73 7183.69 57,469.5 58,153.7 1.19% 29,349 28,824.5 98.21%

<5–10% 6528 221 2310 78 4210 137 8 7199.83 7170.27 57,362.10 58,134.5 1.35% 29,349 28,980.90 98.75%

<0–5% 6518 243 2341 92 4169 144 8 7199.50 7180.63 57,445 58,329.30 1.54% 29,349 29,099 99.15%

>0–5% 6657 108 2343 74 4306 28 8 7199.50 7181.69 57,453.50 58,240.20 1.37% 29,349 29,221.50 99.57%

>5–10% 5761 415 2352 117 3401 291 8 7199.71 7187.25 57,498 58,618.4 1.95% 29,349 29,239.5 99.63%

>10–15% 5709 205 2410 67 3291 131 8 7199.58 7183.81 57,470.5 58,165.1 1.21% 29,349 29,260.1 99.70%

>15–20% 5441 165 2445 53 2988 107 8 7199.94 7187.14 57,497.1 58,098.2 1.05% 29,349 29,277.2 99.76%
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Table 16. Results for the underestimate and overestimate cases using Scenario 2.

Scenario 2 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

<15%–20% 6144 152 2384 71 3752 73 8 7199.73 7195.32 57,562.6 58,282.6 1.25% 30,599 29,829.8 97.49%

<10–15% 6241 140 2368 81 3865 52 8 7199.21 7174.03 57,392.3 58,203.5 1.41% 30,599 30,091.4 98.34%

<5–10% 6363 109 2397 43 3958 59 8 7199.84 7189.18 57,513.5 57,996 0.84% 30,599 30,283.5 98.97%

>0–5% 6157 87 2400 57 3749 23 8 7199.85 7172.55 57,380.4 57,968.8 1.03% 30,599 30,377.9 99.28%

>0–5% 5994 111 2400 54 3586 51 8 7199.86 7186.83 57,494.6 58,040.5 0.95% 30,599 30,458.3 99.54%

>5–10% 5690 67 2441 53 3241 6 8 7199.32 7185.76 57,486.1 58,042.5 0.97% 30,599 30,476.8 99.60%

>10–15% 5381 198 2474 69 2899 122 8 7199.62 7194.15 57,553.2 58,284.6 1.27% 30,599 30,496.8 99.67%

>15–20% 5235 99 2452 49 2775 43 8 7199.83 7192.64 57,541.1 58,042 0.87% 30,599 30,539 99.80%

Table 17. Results for the underestimate and overestimate cases using Scenario 3

Scenario 3 O Oc T Tv S Sc R end avg C C G(%) E V V (%)

<15–20% 6630 83 2377 67 4245 11 8 7199.93 7184.34 57,474.7 58,055.8 1.01% 31,711 30,797.8 97.12%

<10–15% 6370 378 2359 70 4003 303 8 7199.9 7176.78 57,414.2 58,095.8 1.19% 31,711 31,076.2 98.00%

<5–10% 6666 80 2395 60 4263 14 8 7199.69 7195.88 57,567 58,074.1 0.88% 31,711 31,315.3 98.75%

<0–5% 6660 115 2366 80 4286 28 8 7199.91 7188.45 57,507.6 58,214.8 1.23% 31,711 31,484.2 99.28%

<0–5% 6571 92 2391 62 4172 24 8 7199.87 7192 57,536 58,130 1.03% 31,711 31,536.8 99.45%

>5–10% 5961 103 2444 75 3509 20 8 7199.91 7189.32 57,514.5 58,232.7 1.25% 31,711 31,564.2 99.54%

>10–15% 5740 299 2426 60 3306 232 8 7199.56 7191.34 57,530.7 58,139.4 1.06% 31,711 31,604.4 99.66%

>15–20% 5511 79 2482 58 3021 13 8 7199.77 7185.79 57,486.3 57,981.4 0.86% 31,711 31,631.2 99.75%
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6. Conclusions

In this article, the Drones Swarm Routing Problem (DSRP) is proposed, motivated
by the application of finding victims after a disaster. The main novelty of the DSRP is to
address a cooperation issue between drones. Both online and offline strategies are tested
using drone cooperation. This is conducted with multiple drones and using a V-shaped
formation with leader replacements that lead to less energy consumption.

A computational model that applies the Drone Swarm Heuristic and uses multi-agents
in a decentralized approach is proposed. It has decision features allowing a drone to
operate alone or in a swarm. It relies on the hypothesis that drones are able to correctly
fly within a group without collisions, considering both path planning and detection. This
assumption is used since we are focusing on the decision optimization problem. The
proposed computational model was developed using threads. Solutions obtained were
also tested using the robot simulator CoppeliaSim, in order to visualize the operations of
drones over time.

A case study was conducted based on the Beirut port explosion, thereby generating
three test Scenarios. They were tested using an online and an offline approach. Extensive
numerical experiments were run for the off-line version: varying the number of drones;
enabling and disabling a flight-related V-shaped formation with leader replacements;
varying the identification probability, and the number of expected victims. In the sequel,
the online version was studied, where the identification probability was randomly modified
along the test.

For the Scenarios used in this study, the proposed heuristic methods are robust.
Moreover, using eight drones, results indicate that more than 99% of victims can be found
within 2 h. Using 16, 32 and 64 drones, a slight improvement is obtained, despite a higher
running time. The V-shaped formation with leader replacements gives very interesting
results, making it possible to find extra numbers of victims at a lower cost. In general, the
proposed heuristic method has good coverage.

This study opens several avenues of research. The communication issue, which in
practice consumes a large part of the energy consumption can be investigated together with
other types of topologies for drones, for example, the work of [24] presents an architecture
including aerial base stations that must provide network services to ground users who can
move around. Other methods, such as 3D search space with Reinforcement Learning [25]
or even artificial potential fields [26], can be investigated in order to carry out the path
planning and also guarantee the permanence of the V-shaped formation. In addition, the
detection is not explicitly integrated in this study. In fact, it is possible to accomplish
that using thermal cameras, or even artificial intelligence using images of the areas. This
step is an area for forthcoming study. Moreover, it is noticeable that observations at a
higher altitude allow larger areas to be scanned at once, in spite of lower precision. On
the contrary, a lower altitude allows more local and precise observations. Analyzing the
trade-off between higher and lower altitudes is left for future work.
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