
HAL Id: hal-04319725
https://hal.science/hal-04319725v1

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking Blocking Algorithms for Web Entities
Vasilis Efthymiou, Kostas Stefanidis, Vassilis Christophides

To cite this version:
Vasilis Efthymiou, Kostas Stefanidis, Vassilis Christophides. Benchmarking Blocking Algorithms
for Web Entities. IEEE Transactions on Big Data, 2020, 6 (2), pp.382-395. �10.1109/TB-
DATA.2016.2576463�. �hal-04319725�

https://hal.science/hal-04319725v1
https://hal.archives-ouvertes.fr

1

Benchmarking Blocking Algorithms
for Web Entities

Vasilis Efthymiou, Kostas Stefanidis, Vassilis Christophides

Abstract—An increasing number of entities are described by interlinked data rather than documents on the Web. Entity Resolution
(ER) aims to identify descriptions of the same real-world entity within one or across knowledge bases in the Web of data. To reduce the
required number of pairwise comparisons among descriptions, ER methods typically perform a pre-processing step, called blocking,
which places similar entity descriptions into blocks and thus only compare descriptions within the same block. We experimentally
evaluate several blocking methods proposed for the Web of data using real datasets, whose characteristics significantly impact their
effectiveness and efficiency. The proposed experimental evaluation framework allows us to better understand the characteristics of the
missed matching entity descriptions and contrast them with ground truth obtained from different kinds of relatedness links.

Index Terms—Blocking, Entity Resolution, Web of Data.

F

1 INTRODUCTION

O VER the past decade, numerous knowledge bases (KBs)
have been built to power large-scale knowledge shar-

ing, but also an entity-centric Web search, mixing both
structured data and text querying. These KBs offer compre-
hensive, machine-readable descriptions of a large variety of
real-world entities (e.g., persons, places) published on the
Web as Linked Data (LD). Traditionally, KBs are manually
crafted by a dedicated team of knowledge engineers, such
as the pioneering projects Wordnet and Cyc. Today, more
and more KBs are built from existing Web content using
information extraction tools. Such an automated approach
offers an unprecedented opportunity to scale-up KBs con-
struction and leverage existing knowledge published in
HTML documents.

Although KBs (e.g., DBpedia, Freebase) may be derived
from the same data source (e.g., Wikipedia), they may
provide multiple descriptions of the same entities. This is
mainly due to the different information extraction tools and
curation policies employed by KBs, resulting to complemen-
tary and sometimes conflicting descriptions. Entity resolution
(ER) aims to identify descriptions that refer to the same
entity within or across KBs [1], [2]. ER is essential in order
to improve interlinking in the Web of data, even by third-
parties. In particular:
• The size of the Linking Open Data (LOD) cloud1, in

which nodes are KBs (aka RDF datasets) and edges are
links crossing KBs, has roughly doubled between 2011
and 2014 [3], while data interlinking dropped by 30%.
In general, the majority of the KBs are sparsely linked,

• V. Efthymiou is with the University of Crete and ICS-FORTH, Greece.
E-mail: {vefthym,kstef}@ics.forth.gr

• K. Stefanidis is with the University of Tampere, Finland (work done while
at ICS-FORTH).
E-mail: ksts.stefanidis@gmail.com

• V. Christophides is with the University of Crete, Greece, and INRIA,
Paris-Rocquencourt, France.
E-mail: Vassilis.Christophides@inria.fr

Manuscript received Month dd, 2016; revised Month dd, 2016.
1. http://lod-cloud.net

while their popularity in links is heavily skewed2.
Sparsely interlinked KBs appear in the periphery of
the LOD cloud (e.g., Open Food Facts, Bio2RDF), while
heavily interlinked ones lie at the center (e.g., DBpe-
dia, GeoNames, FOAF). Encyclopaedic KBs, such as
DBpedia, or widely used georeferencing KBs, such as
GeoNames, are interlinked with the largest number of
KBs both from the LOD center and the periphery.

• The descriptions contained in these KBs present a high
degree of semantic and structural diversity, even for the
same entity types. The former is due to the frequent cre-
ation of new names for entities that have been described
in another KB, as well as the simultaneous annotation
of descriptions with semantic types not necessarily
originating from the same vocabulary. The latter is due
to the diverse sets of properties used to describe entities
both in terms of types and number of occurrences, even
within a KB.

The scale, diversity and graph structuring of entity descrip-
tions in the Web of data challenge the way two descriptions
can be effectively compared in order to efficiently decide
whether they are referring to the same real-world entity.
This clearly requires an understanding of the relationships
among somehow similar entity descriptions that goes beyond
duplicate detection without always being able to merge
related descriptions in a KB and thus improve its quality.
Furthermore, the very large volume of entity collections that
we need to resolve in the Web of data is prohibitive when
examining pairwise all descriptions.

In this context of big Web data, blocking is typically used
as a pre-processing step for ER to reduce the number of un-
necessary comparisons, i.e., comparisons between descrip-
tions that do not match. After blocking, each description
can be compared only to others placed within the same
block. The desiderata of blocking are to place (i) similar
descriptions in the same block (effectiveness), and (ii) dis-
similar descriptions in different blocks (efficiency). However,

2. http://linkeddata.few.vu.nl/wod analysis

This is the accepted manuscript of the article, which has been published in IEEE Transactions on Big Data.
http://dx.doi.org/10.1109/TBDATA.2016.2576463

2

efficiency dictates skipping many comparisons, possibly
leading to many missing matches, which in turn implies
low effectiveness. Thus, the main objective of blocking is
to achieve a trade-off between the number of comparisons
suggested and the number of missed matches.

Most of the blocking algorithms proposed in the litera-
ture (for a survey, refer to [4]) assume both the availability
and knowledge of the schema of the input data, i.e., they
refer to relational databases. To support a Web-scale resolu-
tion of heterogeneous and loosely structured entities across
domains, recent blocking algorithms (e.g., [5], [6]) disregard
strong assumptions about knowledge of the schema of data
and rely on a minimal number of assumptions about how
entities match (e.g., when they feature a common token in
their description or URI) within or across sources. However,
these algorithms have not yet been experimentally evalu-
ated with LOD datasets exhibiting different characteristics
in terms of the underlying number of entity types and size of
entity descriptions (in terms of property-value pairs), as well
as their structural (i.e., property vocabularies) and semantic
(i.e., common property values and URLs) overlap.

In summary, in this paper:
• We design a large-scale evaluation on a cluster of 15

machines using real data. To capture the differences
in the heterogeneity and overlap of entity descriptions,
we distinguish between data originating from sources
in the center (i.e., heavily interlinked) and the periphery
(i.e., sparsely interlinked) of the LOD cloud.

• We empirically study the behavior of blocking algo-
rithms for datasets exhibiting different semantic and
structural characteristics. We are interested in quanti-
fying the factors that make blocking algorithms take
different decisions on whether two descriptions from
real LOD sources potentially match or not.

• We investigate typical cases of missed matches of exist-
ing blocking algorithms and examine alternative ways
for them to be retrieved. We finally present the results
of blocking, when other kinds of links, different to
owl:sameAs, are used as a ground truth.

The rest of the paper is organized as follows3: Sec-
tion 2 describes the problem and existing solutions. Sec-
tion 3 presents our implementation of blocking algorithms
in MapReduce. Sections 4 and 5 analyze the setup and the
evaluation results of our experiments, respectively. Section 6
overviews works related to ER and, finally, Section 7 sum-
marizes the paper.

2 BLOCKING ALGORITHMS

We consider that an entity description is expressed as a set of
attribute-value pairs. Then, entity resolution is the problem of
identifying descriptions of the same entity (called matches).
In general, ER can be distinguished between pairwise and
collective. Pairwise ER (e.g., [8]) compares two descriptions
at a time, depending only on the data contained in these
descriptions. Collective ER (e.g., [9]) compares a set of re-
lated descriptions, heavily relying on similarity evidence
provided by neighboring descriptions.

Given as input of ER the descriptions of Figure 1, E =
{e1, e2, e3, e4, e5, e6, e7}, a possible output P = {{e1, e6},

3. A preliminary abridged version of this paper appeared in [7].

e1 = {(about, Eiffel Tower), (architect, Sauvestre), (year, 1889), (located,
Paris)}
e2 = {(about, Statue of Liberty), (architect, Bartholdi Eiffel), (year, 1886),
(located, NY)}
e3 = {(about, Auguste Bartholdi), (born, 1834), (work, Paris)}
e4 = {(about, Joan Tower), (born, 1938)}
e5 = {(work, Lady Liberty), (artist, Bartholdi), (location, NY)}
e6 = {(work, Eiffel Tower), (year-constructed, 1889), (location, Paris)}
e7 = {(work, Bartholdi Fountain), (year-constructed, 1876), (location, Wash-
ington)}

Fig. 1. A set of entity descriptions.

{e2, e5}, {e3}, {e4}, {e7}} indicates that the descriptions e1
and e6 refer to the same real-world object, namely Eiffel
Tower, e2 and e5 both represent another object, the Statue of
Liberty, and e3, e4 and e7 represent by themselves the enti-
ties Auguste Bartholdi, Joan Tower and Bartholdi Fountain,
respectively. Such a collection is called dirty, since it contains
duplicates, and the corresponding task is called dirty ER,
while clean-clean ER is a special case of (dirty) ER [6], [10];
E consists of two clean, i.e., duplicate-free, but possibly
overlapping collections, and ER targets at identifying their
common descriptions4. In this work, we focus on both cases.

Given E , we define a blocking collection as a set of blocks
containing the descriptions in E .

Definition 1 (Blocking collection). Let E be a set of entity
descriptions. A blocking collection is a set of blocks B = {b1, . . . ,
bm}, such that,

⋃
bi∈B

bi = E .

In general, blocking can be used both for pairwise and
collective ER, to reduce the number of required compar-
isons. Specifically, token blocking [6] relies on the minimal
assumption that matching descriptions should at least share
a common token. Each distinct token t in the values of a
description, defines a new block bt, essentially building an
inverted index of descriptions. Two descriptions are placed
in the same block, if they share a token in their values.

Given the entity collection of Figure 1, Figure 2 shows the
blocks generated by token blocking. In the generated blocks,
we save the comparisons (e1, e5), (e1, e7), (e2, e4), (e3, e4),
(e4, e5), (e5, e6) and (e6, e7), and we successfully place the
matches (e1, e6) and (e2, e5) in common blocks. Still, pairs,
such as (e1, e2), (e1, e3), and (e3, e6), lead to unnecessary
comparisons. Note also that the pair (e1, e6) is contained in
4 different blocks, which leads to redundant comparisons.

Next, we present two extensions: attribute clustering
blocking, in which candidate matches should at least share
a common token for similar attributes known globally, and
prefix-infix(-suffix) blocking, in which candidate matches
should additionally share a common URI infix.

Attribute clustering blocking [6] exploits schematic in-
formation of the descriptions to minimize the number of
unnecessary comparisons. To achieve this, prior to token
blocking, it clusters attributes based on the similarities of
their values over the entire entity collection. Each attribute
from one collection is connected to its most similar attribute
in the other collection and connected attributes, taken by
transitive closure, form non-overlapping clusters. Then,
each token t in the values of an attribute, belonging to a
cluster c, defines a block bc.t. Hence, comparisons between

4. Dirty-dirty and clean-dirty ER can be seen as equivalent to dirty
ER. Other names include record-linkage (for linking clean KBs) and
deduplication (for merging duplicates in a dirty KB).

3

Fig. 2. Token blocking example. Descriptions having a common token
are placed in a common block.

descriptions without a common token in a similar attribute,
are discarded. Like token blocking, attribute clustering gen-
erates overlapping blocks. Compared to the blocks of token
blocking, it produces a larger number of smaller blocks.

As an example, consider that the descriptions of Figure
1 consist of two clean collections, D1 = {e1, e2, e3, e4} and
D2 = {e5, e6, e7}. Using Jaccard similarity, the attribute
work (with values: {Lady, Liberty, Eiffel, Tower, Bartholdi,
Fountain}) of D2 is the most similar attribute to about of
D1. Similarly, the transitive closure of the pairs of most
similar attributes between D1 and D2 (Figure 3(a) depicts
such pairs), produce the clusters of attribute names (Fig-
ure 3(b)). A subset of the blocks constructed for each cluster
is shown in Figure 3(c). This way, the comparisons (e1, e3)
and (e3, e6) that were suggested by token blocking, due to
the common token Paris, are now discarded, since the token
Paris appears in different attribute clusters for e3 than for e1
and e6, as shown in the bottom blocks of Figure 3(c). Again,
both unnecessary (e.g., e4 and e6 are both placed in block
C1.T ower (Figure 3(c))), and redundant (e.g., (e1, e3) is still
contained in 4 different blocks) comparisons are generated.

Unlike previous methods analyzing the content of
descriptions, prefix-infix(-suffix) blocking [5] exploits the
naming pattern in the descriptions’ URIs. The prefix
describes the domain of the URI, the infix is a lo-
cal identifier, and the optional suffix contains details
about the format, or a named anchor. For example, the
prefix of “http://liris.cnrs.fr/olivier.aubert/foaf.rdf#me” is
“http://liris.cnrs.fr”, the infix is “/olivier.aubert” and the
suffix is “/foaf.rdf#me”. Given a set of descriptions, this
method creates one block for each token in the descriptions
literal values and one block for each URI infix. It is con-
strained by the extent to which common naming policies
are followed by the KBs. In a favourable scenario, it creates
additional blocks than token blocking for the names of the
descriptions, which enables to consider matching descrip-
tions, even with no common tokens in their literal values.

Fig. 3. Attribute clustering blocking example. Pairs of most similar at-
tributes are linked (a). Connected attributes form clusters (b). Descrip-
tions with a common token in the values of attributes of the same cluster,
are placed in a common block (c).

Fig. 4. Prefix-infix(-suffix) blocking example. A set of descriptions (a),
their subject URIs (b), and the blocks from their tokens and infixes (c).

Figure 4(c) shows the blocks produced after apply-
ing prefix-infix(-suffix) blocking to the descriptions of Fig-
ure 4(a) (the descriptions of Figure 1, slightly modified to il-
lustrate the characteristics of the method), while Figure 4(b)
presents the URI identifiers of the descriptions.

Recent works have proposed using an iterative ER
process, interleaved with blocking. The intuition is that
the ER results of a processed block, may help identifying
more matches in another block. Specifically, iterative block-
ing [11], applied on the results of blocking, examines one
block at a time looking for matches. When a match is found
in a block, the resulting merging of the descriptions that
match is propagated to all other blocks, replacing the initial
matching descriptions. This way, redundant comparisons
between the same pair of descriptions in different blocks
are saved and, in addition, more matches can be identified
efficiently. The same block may be processed multiple times,
until no new matches are found. Inherently, iterative block-

Fig. 5. Iterative blocking example. Given a set of blocks (a), the matches
of each block are merged, propagating the results to the subsequent
blocks (b),(c), until no more merges are possible (d).

4

TABLE 1
Criteria for placing descriptions in the same block.

Method Criterion
Token Blocking The descriptions have a common token in their values.
Attribute Cluster-
ing Blocking

The descriptions have a common token in the values of
attributes that have similar values in overall.

Prefix-Infix(-
Suffix) Blocking

The descriptions have a common token in their literal
values, or a common URI infix.

Iterative Blocking
The descriptions are placed in a block by a blocking
method, or after replacing descriptions that were merged
in a previous iteration.

ing follows a sequential execution model, since the results
of ER in one block directly affect other blocks.

Given the results of token blocking for the dirty collec-
tion of Figure 1 and an additional description e8 = {(work,
Statue of Lib.), (architect, Eiffel), (year-constructed, 1886)},
the process of iterative blocking is presented in Figure 5.
The results of token blocking, excluding blocks with a
single description, are shown in Figure 5 (a). Starting from
the block Statue, (e2, e8) is found to be matching. The
matching descriptions are merged into a new description
e28, representing both. Hence, in the next step (Figure 5 (b)),
e2 and e8 are replaced by e28 in block Eiffel, so they are
not compared again. Also, another match (e1, e6) is found in
this block and the result of the merging e16 is replacing the
descriptions e1 and e6 in the following step ((Figure 5 (c))).
Also in this step, e28 is compared to e5 and they are
found to match, creating the new description e258. Note
that this match could not be identified by the other blocking
methods, since e5 and e8 did not share any common blocks.
Finally, when no new merges occur in an iteration, after
processing all the blocks, the algorithm terminates, yielding
the results P = {{e16}, {e258}, {e3}, {e4}, {e7}}, as shown
in Figure 5 (d). Those are the results of ER and not blocking.

Overall, Table 1 summarizes, simplified, the criteria em-
ployed by the aforementioned blocking methods to place
two descriptions into the same block. In this context, the
following questions naturally arise:
• Which blocking method performs best and for which

dataset characteristics?
• How could we evaluate a blocking method, and its

ability to reduce the number of suggested comparisons
versus its ability to correctly place matching descrip-
tions in common blocks?

• Does blocking place all matches in common blocks and
what are the characteristics of the missed matches?

• Could blocking be used for identifying other types of
relations, e.g., geographical, between descriptions?

3 MAPREDUCE IMPLEMENTATION

Next, we present the MapReduce version of the evaluated
methods, designed to cope with Web data5. Note that itera-
tive blocking [11] is an inherently sequential process, hence,
we do not provide an implementation for it in MapReduce.

3.1 Token Blocking
Token blocking is essentially an inverted index of descrip-
tions. Each token is a key in this index, associated with a
list of all the descriptions containing it. Our implementation

5. Source code and datasets available at csd.uoc.gr/∼vefthym/
minoanER/.

Mapper N

Mapper 2

Mapper 1

e1	

e2	

e3	

e4	

e5	

e6	

…	

ei-‐1	

ei	

k1	 e1	 k2	 e1	 k3	 e1	

k1	 e2	 k2	 e2	

k4	 e3	 k1	 e3	

k2	 e4	 k1	 e4	

k5	 e6	

k5	 e5	 k3	 e5	

k2	 e6	 k4	 e6	

k5	 ei	

k5	 ei-‐1	 k3	 ei-‐1	

k4	 ei	

e1	

e2	

e3	

e4	

e5	

e6	

ei-‐1	

ei	

Reducer 2

Reducer 1

k1	 e1	 e2	 e3	 e4	 …	

k2	 e1	 e2	 e4	 e6	 …	

k3	 e1	 e5	 ei-‐1	 …	

k4	 e3	 e6	 ei	 …	

k5	 e5	 e6	 ei-‐1	 ei	 …	

k1	 e1	

k1	 e2	

k1	 e3	

k1	 e4	

k2	 e1	

k2	 e2	

k2	 e4	

k2	 e6	

k3	 e1	

k3	 e5	

k3	 ei-‐1	

k4	 e3	

k4	 e6	

k4	 ei	

k5	 e5	

k5	 e6	

k5	 ei-‐1	
k5	 ei	

Reducer 3

Reducer 4

Reducer 5

…

…

…

…

…

…

…
Fig. 6. Token blocking in MapReduce.

of token blocking in MapReduce is based on the procedure
illustrated in Figure 6. In the map phase, one entity descrip-
tion of the local input split is processed at a time. For each
token t in the values of a description ei, a (t, ei) pair is
emitted by the mapper. In the reduce phase, all descriptions
having a common token will be processed by the same
reduce function, i.e., placed in the same block.

3.2 Attribute Clustering Blocking

Given two clean entity collections, our implementation of
attribute clustering blocking can be briefly sketched by
the following steps, each representing a MapReduce job.
Figure 7 illustrates a high-level flow of the process.

Attribute Creation. First, we gather the values of each
attribute. In the map phase, we emit an (attribute, value) pair
for each attribute-value pair in a description. We also keep
the collection of this attribute in the key. In the reduce phase,
all the values of an attribute are grouped together and their
concatenation is emitted as the value of this attribute.

Attribute Similarities. In the second job, we compute
the pairwise Jaccard similarities between the trigram sets
of all attributes. A mapper outputs each input attribute, as
many times, as the number of total mappers. Each time,
a composite key, consisting of the current mapper id and
another mapper id, will determine in which reducer the
attribute will be placed, and to which other attributes it will
be compared. For example, assuming 3 mappers in total, the
mapper with id 2, emits for each input attribute, 3 different
keys: 1 2, 2 2, and 2 3. The keys 1 2 and 2 3 will result
in comparing the contents of mapper 2 to the contents of
mappers 1 and 3, while 2 2 will result in comparing the
contents of mapper 2 to each other. The value of each emitted
pair is the input attribute with its values and the current
mapper id. In the reduce phase, we compute similarities
of attributes, ensuring that each comparison is performed
once. For each pair of attributes, we emit a (key, value) pair,
with one attribute being the key and the second attribute
along with their similarity score being the value.

Best Match. In the third job, we use an identity mapper,
which just forwards its input. A combiner keeps for each
attribute of each collection, only the attribute of the other
collection with the local highest similarity score. In the
reduce phase, we pick for each attribute of each collection,

5

Fig. 7. Attribute clustering blocking in MapReduce.

the attribute with the maximum similarity score, in overall,
from the other collection. Before this job ends, we start the
first step of clustering the most similar attributes together.
To accomplish that, we emit for each best-matching attribute
pair, two (attribute, clusterId) pairs, one for each attribute,
with the same clusterId. Ids of clusters with common at-
tributes are marked, in order to be merged at the next step.

Final Clustering and Blocking. In the final job, we
associate each attribute with a final cluster id, according to
the marks of the previous step. Then, we perform token
blocking (Section 3.1), with only difference that in each
key emitted from a mapper, there is also a cluster prefix,
enabling distinctions between blocks for the same token. For
example, if the same token t appears in a description ei for
attributes in clusters cj and ck, then the mapper will emit
the pairs (cj .t, ei) and (ck.t, ei), instead of a single (t, ei).

3.3 Prefix-Infix(-Suffix)

Our MapReduce implementation of this method consists of
three jobs. The first two are the MapReduce adaptation of
the infix extraction algorithm [5]. The third job reads the
descriptions, as well as the infixes produced by the second
job and creates the blocks. A high-level representation of the
process is depicted in Figure 8.

Prefix Removal. In the map phase, we output a (key,
value) pair for each URI in a description. The key is the
second token of the URI (after “http”) and the value consists
of the whole URI and the identifier of the entity description
having this URI. This clusters the URIs according to their
second token, which usually represents the domain (e.g.,
“dbpedia”), in the reduce phase. For each URI in a cluster,
we find, among all its possible prefixes, the one with the
largest set of distinct (immediately) next tokens. The part of
the URI following the prefix is the key of each output pair,
with value consisting of the input key, i.e., the second token
of the URI, and the entity identifier having this URI.

Suffix Removal. We apply Prefix Removal, on each
reverse URI (without prefix), to remove the suffix.

Infix&Token Blocking. We create the final blocks, based
on the output of Suffix Removal and the initial entity collec-
tion. We use two different mappers, operating in parallel; an
identity mapper, forwarding the output of Suffix Removal
and the mapper of token blocking, operating on the tokens
of literal values only of the input descriptions. In the reduce
phase, all the descriptions having a common token or infix
in their literals or URIs will be placed in the same block.

4 EXPERIMENTAL SETUP

In this section, we present the experimental framework we
have designed for evaluating existing blocking algorithms.
We describe the datasets and the measures we employed
to study the behavior of the blocking algorithms under
different characteristics of entity descriptions in the LOD
cloud. We have used a cluster of 15 Ubuntu 12.04.3 LTS
servers (1 master, 14 slaves), each with 8 CPUs, 8GB RAM
and 60GB of disk, provided by ∼okeanos [12]. Each node
could run simultaneously 4 map or reduce tasks, each with a
heap size of 1250MB, leaving resources required for I/O and
communication with the master. We used Apache Hadoop
1.2.0 and Java version 1.7.0 25 from OpenJDK.

4.1 Datasets
Our study relies on real data from the Billion Triples
Challenge 2012 dataset6 (BTC12), DBpedia, Kasabi7, the
Linked Archives Hub project8, and OAEI benchmarks9. To
capture the differences in the heterogeneity and semantic
relationships of descriptions, we distinguish between data
originating from sources in the center and the periphery of the
LOD cloud. In general, central sources, such as DBpedia and
Freebase, are derived from a common source, Wikipedia,
from which they extract information regarding an entity.
Such descriptions often refer to the original wiki page and
feature synonym attributes whose values share a significant
number of common tokens. Since they have been exhaus-
tively studied in the literature, descriptions across central
LOD sources are heavily interlinked using in their majority
owl:sameAs links [3], expressing equivalence relations. In
our experiments, we used the DBpedia (BTC12DBpedia) and
Freebase (BTC12Freebase) datasets from BTC12, and the raw
infoboxes from DBpedia 3.5 (Infoboxes), i.e., two different
versions of DBpedia. From the OAEI benchmarks, we used
the one including the DBLP and Rexa (OAEI 2009) - describ-
ing authors and publications - dataset, that has been widely
used in the literature (e.g., in [13]). We also included a
movies dataset, used in [6], extracted from DBpedia movies
and IMDB, to validate the correctness of our algorithms.

On the other hand, data sources in the periphery of
the LOD cloud are far more diverse to each other and
sparsely interlinked. In our experiments, we considered
the BTC12Rest, the BBCmusic and the LOCAH datasets.
BTC12Rest originates from the BTC12 dataset, which con-
sists of multiple data sources, like DBLP, geonames and

6. km.aifb.kit.edu/projects/btc-2012/
7. archive.org/details/kasabi
8. data.archiveshub.ac.uk/
9. oaei.ontologymatching.org/

6

Fig. 8. Prefix-infix(-suffix) blocking in MapReduce.

drugbank. BBCmusic originates from Kasabi and contains
descriptions regarding music bands and artists, extracted
from MusicBrainz and Wikipedia. For LOCAH, we used the
latest published version at Archives hub (March 2014). This,
rather small dataset links descriptions of people, from UK
archival institutions, with their descriptions in DBpedia.

Table 2 provides statistics about these datasets, for the
number of contained triples, descriptions, attributes, and
the average number of attribute-value pairs per description.
We have also included the number of entity types, taken as
the distinct values of the property rdf:type, when provided.
Observe that BTC12DBpedia contains more types than at-
tributes. This is due to the fact that DBpedia entities may
have multiple types from taxonomic ontologies like Yago.
IMDB is the dataset with the highest number of attribute-
value pairs per description. Finally, we have included in
each dataset the number of duplicate descriptions based on
our ground truth, i.e., descriptions that have been reported
to be equivalent (via owl:sameAs links) across all datasets of
our testbed. Taking into account the transitivity of equality,
those descriptions should be regarded as matches, too.

To investigate the ability of blocking algorithms in rec-
ognizing relatedness links beyond the owl:sameAs among
descriptions, we considered the Kasabi airports and airlines
datasets, containing data linked to DBpedia, the dataset
with the highest number of references, with the umbel:isLike
property. This property is used to associate entities that
may or may not be equivalent, but are believed to be so.
The twitter dataset contains data for the presentations of an
ESWC conference. It is linked to DBpedia with the dct:subject
property, which captures relatedness of entities to topics
and it is also used in the books and iati datasets. Books de-
scribes books listed in the English language section of Dutch
printed book auction catalogues of collections of scholars
and religious ministers from the 17th century. Iati contains
data from the International Aid Transparency Initiative. Iati
is also connected to DBpedia with the dct:coverage property,
which associates an entity to its spatial or temporal topic,
its spatial applicability, or the jurisdiction under which
it is relevant. Finally, the www2012 dataset contains data
from the WWW2012 conference, linked to DBpedia with
the foaf:based near property, which associates an entity to an
abstract notion of location. Table 3 details the type and the
number of links of these datasets to DBpedia.

In this setting, we combine BTC12DBpedia with each of
the datasets of Table 2 to produce the entity collections pre-
sented in Table 4, on which we finally ran our experiments.
To combine two datasets, for the dirty ER setting, we simply
concatenate them into a singe file, while for clean-clean ER,
we seek candidate matches between those datasets.

TABLE 3
Characteristics of datasets with different types of links to

BTC12DBpedia.

RDF
triples

entity
descrip-

tions

avg.
att.-value
pairs per

description
link links

airports 238,973 12,294 19.44 umbel:isLike 12,269
airlines 15,465 1,141 13.55 umbel:isLike 1,217
twitter 6,743 2,932 2.30 dct:subject 20,671
books 2,993 748 4.00 dct:subject 1,605

iati 378,130 31,868 11.87 dct:subject 23,763
dct:coverage 7,833

www2012 11,772 1,547 7.61 foaf:based near 1,562

- D1 combines BTC12DBpedia with Infoboxes. Since it con-
tains two versions of the same dataset, it is considered as
a homogeneous collection. This is the biggest collection in
terms of triples, as well as attributes.
- D2 combines BTC12DBpedia with BTC12Rest. Since it is
constructed by many different datasets, it is the most het-
erogeneous collection. Note that BTC12Rest has the highest
number of attributes per entity type.
- D3 combines BTC12DBpedia with BTC12Freebase. It is the
biggest collection in terms of entity descriptions, matches,
entity types and comparisons.
- D4 combines BTC12DBpedia with BBCmusic. Note that
BBCmusic extracts some of its data from MusicBrainz,
which, in turn, extracts data from Wikipedia. Also, BBC-
music is edited and maintained by users and BBC staff.
- D5 combines BTC12DBpedia with LOCAH, the smallest
dataset, both in terms of triples and entity descriptions.
- D6 combines DBpedia movies and IMDB, as originally
used in [6]. It is the most homogeneous collection, it only
contains descriptions of movies (i.e., a single entity type)
using the smallest number of attributes among all collec-
tions. However, the significantly greater (even by six orders
of magnitude, compared to the other collections) ratio of
matches to non-matches is not typical of the collections we
can find in the Web of data.
- D7 combines DBLP and Rexa. Both datasets use the same
ontology; Rexa’s attributes are a subset of those used by
DBLP. Also, it is the collection with the lowest number
of attribute-value pairs per description. Note that this col-
lection is a typical benchmark used to evaluate instance
matching algorithms.

Following the distinction of our datasets between central
and peripheral, we also distinguish our collections between
central (D1, D3, D6, and D7), composed of central datasets,
and peripheral (D2, D4, and D5), part of which are periph-
eral datasets. For all the collections, we consider both their
clean-clean and dirty versions. In practice, for our datasets,
the clean-clean and dirty versions of a collection are the same;
their distinction serves only as means for measuring how

7

TABLE 2
Datasets characteristics.

RDF triples
entity

descriptions
avg. attribute-
value pairs per

description
attributes entity types

attributes/
entity types duplicates

BTC12DBpedia 102,306,242 8,945,920 11.44 36,354 258,202 0.14 0
Infoboxes 27,011,880 1,638,149 16.49 31,857 5,535 5.76 0
BTC12Rest 849,656 31,668 26.83 518 33 15.7 863
BTC12Freebase 25,050,970 1,849,180 13.55 8,323 8,232 1.01 12,058
BBCmusic 268,759 25,359 10.60 29 4 7.25 372
LOCAH 12,932 1,233 10.49 14 4 3.5 250
DBpediamov 180,680 27,615 6.54 5 1 5 0
IMDB 816,012 23,182 35.20 7 1 7 0
DBLP 12,074,269 1,642,945 7.35 30 10 3 0
Rexa 64,787 14,771 4.39 12 3 4 0

TABLE 4
Entity collections characteristics.

D1 D2 D3 D4 D5 D6 D7
RDF triples 129,318,122 103,155,898 127,357,212 102,575,001 102,319,174 996,692 12,139,056
entity descriptions 10,584,069 8,977,588 10,795,100 8,971,279 8,947,153 50,797 1,657,716
avg. attribute-value pairs 12.22 11.49 11.80 11.43 11.44 19.62 7.32per description
attributes 68,211 36,872 44,677 36,383 36,368 12 42
entity types 263,737 258,232 266,434 258,206 258,205 1 10

matches 1,564,311 30,864 1,688,606 23,572 1,087 22,405 1,532
matches (incl. duplicates) 1,564,311 31,727 1,700,664 23,944 1,337 22,405 1,532
matches/non-matches 1.07 · 10−7 1.09 · 10−7 1.02 · 10−7 1.04 · 10−7 9.85 · 10−8 3.5 · 10−5 6.3 · 10−8

matches/non-matches (dirty) 2.79 · 10−8 7.87 · 10−10 2.92 · 10−8 5.95 · 10−10 3.34 · 10−11 1.74 · 10−5 1.1 · 10−9

comparisons (w/o blocking)

clean-clean 1.47 · 1013 2.83 · 1011 1.65 · 1013 2.27 · 1011 1.1 · 1010 6.4 · 108 2.4 · 1010
dirty 5.6 · 1013 4.03 · 1013 5.83 · 1013 4.02 · 1013 4 · 1013 1.29 · 109 1.37 · 1012

well a blocking method can identify links across different
datasets and within the same dataset. We finally combine
BTC12DBpedia with each peripheral dataset of Table 3 to
produce entity collections for studying the ability of block-
ing algorithms to discover different relatedness attributes.

GroundTruth. Our ground truths were built using a
methodology met in the literature (e.g., [5], [6]). For D2-
D5, we consider the owl:sameAs links to/from DBpedia
3.7 (the version used in BTC12). For D1, we consider the
subject URIs of Infoboxes that also appear as subjects in
BTC12DBpedia. The ground truth of D6, provided in [6],
is made of DBpedia movies connected with IMDB movies
through the imdbId property. The ground truth of D7 is
provided by OAEI, since it is a benchmark collection,
containing equivalence links between authors, as well as
publications. Based on the ground truth and the generated
blocks, we say that a known matching pair of descriptions
is correctly resolved, i.e., a true positive (TP), if there is at
least a block, to which both these descriptions belong. Pairs
belonging to the same block are candidate matches. A false
positive (FP) is a distinct candidate match not contained
in the ground truth. In the opposite, if a known pair of
matching descriptions is not a candidate match, this pair
is considered a false negative (FN). All remaining pairs of
descriptions are considered to be true negatives (TN).

Similarly to D2-D5, we used the available types of
links of the datasets of Table 3 to BTC12DBpedia, instead of
owl:sameAs, to produce the ground truth of the correspond-
ing entity collections. From all datasets, except D6 and D7,
we removed the triples present in the ground truth, since
identifying those links is the goal of our tasks.

Our pre-processing, implemented in MapReduce, parses
RDF triples in order to transform them into entity descrip-
tions, which are the input of the methods used in our
study. It simply groups the triples by subject, and outputs

TABLE 5
Quality Measures.

Name Formula Description

Recall TP
TP+FN

Measure what fraction of the
known matches are candidate
matches.

Precision TP
TP+FP

Measure what fraction of the
candidate matches are known
matches.

F-measure 2 Precision·Recall
Precision+Recall

The harmonic mean of preci-
sion and recall.

RR 1− comparisons with blocking
comparisons without blocking

Returns the ratio of reduced
comparisons when blocking is
applied.

H3R 2 RR·Recall
RR+Recall

The harmonic mean of recall
and reduction ratio.

each group as an entity description, using the subject as
the entity identifier, removing triples containing a blank
node. Moreover, we kept only the entity descriptions for
which we know their linked description in BTC12DBpedia
and removed the rest. This way, we know that any sug-
gested comparison between a pair of descriptions outside
the ground-truth is false.

4.2 Measures

The employed quality measures along with a short descrip-
tion are summarized in Table 5. The range of all measures is
[0, 1], with 1 being the ideal value. The recall of a blocking
method is the upper recall threshold of a non-iterative
ER algorithm, which takes its generated blocks as input.
Therefore, (1-recall) represents the cost of blocking. RR is
the percentage of comparisons that we save if we apply the
given blocking method. Consequently, it reflects the benefit
of blocking, since the reason for using blocking in the first
place, is the reduction in the required comparisons.

In general, a good blocking method should have a low
impact on recall, i.e., a low cost, and a great impact on
the number of required comparisons, i.e., a high benefit.

8

Typically, this trade-off is captured by the F-measure, the
harmonic mean of recall and precision. However, as we will
see in the next section, the values of F-measure are domi-
nated by the values of precision, which are many orders of
magnitude lower than those of recall, so F-measure cannot
be easily used to express this trade-off. Moreover, precision
is not as important as recall is for blocking, since precision
can only be improved by a non-iterative ER method that
follows blocking, whereas the recall of blocking is the upper
threshold of such ER methods. Thus, we define H3R as
the harmonic mean of recall and reduction ratio, a measure
which has also been used in [14]. Similar to the F-measure,
H3R gives high values only when both recall and reduction
ratio have high values. Unlike F-measure, H3R manages to
capture the trade-off between effectiveness and efficiency in
a more balanced way. Note that H3R does not estimate the
performance of a blocking approach (as, for example, [5]
does), but evaluates it based on the actual results.

5 EXPERIMENTAL EVALUATION

In this section, we analyze the quality and performance of
the evaluated blocking methods, taking into consideration
the specific features of each dataset. Then, we present the
results of blocking, when different kinds of links, other than
owl:sameAs, are used as ground truth and conclude with a
discussion of the lessons learned from this analysis. In our
evaluation, we use the adaptation of token blocking ToB,
attribute clustering AtC and prefix-infix(-suffix) blocking
PIS in MapReduce. Both ToB and PIS can be used with
either clean-clean Cl or dirty Di entity collections, while AtC
is suitable for Cl collections. Moreover, the process of AtC
requires a similarity function; we use Jaccard similarity over
the set of trigrams from the values (similar to [6]).

5.1 Quality Results
5.1.1 Identified Matches (TPs)
Token blocking: The premise of this algorithm is that
matching descriptions should at least share a common
token, disregarding the comparisons between descriptions
that do not share common tokens. Therefore, the higher
the number of common tokens, i.e., tokens shared by the
datasets composing an entity collection, a description has,
the higher the chances it will be placed in a block with
a matching description, increasing recall. Figure 9 (left)
presents the distributions of common tokens per descrip-
tion, showing that descriptions in central collections feature
many more common tokens than those in peripheral ones10.
For example, 41.43% and 44% of descriptions in D1 and
D3, respectively, have 2-4 common tokens, while for D2, D4
and D5 the corresponding values are 33.26%, 26.03% and
12.97%. We observe a big difference in the distributions of
D6 and D7, which contain many more common tokens per
description, to those of the other collections. Only 23.75%
of the descriptions in D6 and 44% of the descriptions in
D7 have 0 - 10 common tokens. Figure 9 (left) also shows
that a big number of descriptions in peripheral collections,
do not share any common tokens. Those are hints that the

10. We take the median values and not the averages, as the latter are
highly influenced by extreme values and our distributions are skewed.

recall of token blocking in central collections is higher than
in peripheral collections.

Indeed, D6 is the dataset with the highest recall (99.92%)
and the highest number of common tokens per entity (19),
while D5 is the dataset with the lowest recall (72.13%)
and number of common tokens per entity (0). There is a
big difference in the number of common tokens in D6,
compared to D1 and D3, which is not reflected by their
small difference in recall. Due to the high ratio of matches to
non-matches in D6 (Table 4), descriptions in this collection
have many common tokens and this leads to high recall.
Attribute clustering blocking: The goal of attribute clus-
tering is to improve the precision of token blocking, while
retaining its recall as much as possible (it cannot have higher
recall). To do this, it restricts the number of attributes on
which descriptions, featuring a common token, should be
compared. Comparisons between descriptions that do not
share a common token in a common attribute cluster, are
discarded. Hence, descriptions with many common tokens
in common clusters are more likely to be matched. Fig-
ure 9 (right) presents the distributions of the number of
common tokens in common attribute clusters per entity. It
shows a clearer distinction between central and peripheral
collections than Figure 9 (left); the descriptions in central
collections have many more common tokens in common
clusters, while many descriptions in peripheral collections
do not have any common token in a common cluster. This
occurs, because values in the descriptions of peripheral
collections are much less similar than those of central col-
lections, leading to a bad clustering of the attributes and,
thus, to lower recall. In fact, D6 is the dataset with the
highest recall (99.55%) and the highest number of common
tokens in common attribute clusters per entity (19). On
the other hand, D2 and D5, which have the lowest recall
values (68.42% and 71.11%) also have the lowest number of
common token in common attribute clusters per entity (0).

In central collections (D1, D3, D6, D7), many, small
clusters of similar attributes are formed, as the values of
the descriptions are similar. This leads to a minor (or zero,
in D7) decrease in recall, compared to token blocking, while
it significantly improves its precision (even by an order of
magnitude in D3). D1 forms many (16,886), small attribute
clusters (of 2 attributes in the median case), since in most
cases there is a 1-1 mapping between the attributes of the
datasets that compose it. These clusters contain the same
attribute used by the two versions of DBpedia.

However, this approach has a substantial impact on
recall in peripheral collections (D2, D4, D5), even if it still
improves precision in all collections (even by an order of
magnitude for D4). The descriptions in those collections
have few common tokens, in the first place, which leads to a
bad clustering of attributes; few clusters of many attributes,
not similar to each other, are formed. Hence, if we make the
blocking criterion of token blocking stricter, by also consid-
ering attributes, then the more distinct attributes used per
entity type, the more difficult it is for an entity description,
to be placed in a common block with a matching description.
For BTC12Rest (part of D2), the ratio between attributes and
entity types (last row of Table 2) is the highest (15.7), leading
to a great impact on recall (-24.04%). This dataset has the
biggest number of data sources that compose it and many

9

TABLE 6
Statistics and evaluation of blocking methods.

D1 D2 D3 D4 D5 D6 D7
Token blocking statistics:
blocks 1,639,962 122,340 1,019,501 57,085 2,109 40,304 18,553
comparisons (clean-clean) 1.68 · 1012 3.74 · 1010 6.56 · 1011 2.39 · 1010 8.72 · 108 2.91 · 108 1.45 · 109
RR (clean) 88.51% 86.81% 96.03% 89.48% 92.09% 54.50% 94.04%

comparisons (dirty) 5.56 · 1012 3.68 · 1012 4.27 · 1012 4.02 · 1012 1.01 · 1012 2.05 · 109 2.35 · 1011
RR (dirty) 90.08% 90.87% 92.67% 90.01% 97.48% −58.85% 82.93%

common tokens per entity (median) 4 3 4 2 0 19 12
Attribute clustering blocking statistics:
blocks 5,602,644 150,293 1,673,855 39,587 3,724 43,716 19,148
comparisons 3.22 · 1011 4.20 · 109 1.84 · 1011 1.43 · 109 7.13 · 108 2.13 · 108 8.38 · 108
RR 97.80% 98.52% 98.89% 99.37% 93.54% 66.80% 96.55%

common tokens in common att. clus-
ters per entity (median) 4 0 4 2 0 19 11

attribute clusters 16,886 124 2,106 6 8 4 8
attributes per attribute cluster (me-
dian) 2 142 9 4,261 3,946 3 3.5

Prefix-Infix(-Suffix) blocking statistics:
blocks 3,266,798 141,517 789,723 45,403 2,098 N/A 18,442
comparisons (clean-clean) 1.10 · 1012 1.78 · 1010 2.75 · 1011 2.30 · 109 4.08 · 108 N/A 1.28 · 109
RR (clean) 92.48% 93.72% 98.34% 98.99% 96.30% N/A 94.72%

comparisons (dirty) 4.39 · 1012 3.45 · 1012 5.34 · 1012 3.32 · 1012 1.76 · 1012 N/A 2.23 · 1011
RR (dirty) 92.16% 91.44% 90.84% 91.76% 95.59% N/A 83.78%
Recall:
Token blocking (clean-clean) 98.38% 92.46% 95.52% 87.76% 72.13% 99.92% 99.54%
Token blocking (dirty) 98.38% 89.99% 94.85% 87.95% 77.34% 99.92% 99.54%
Attribute clustering blocking 97.31% 68.42% 92.10% 76.84% 71.11% 99.55% 99.54%
Prefix-Infix(-Suffix) blocking (clean-
clean) 100% 91.71% 87.68% 95.44% 68.17% N/A 99.54%

Prefix-Infix(-Suffix) blocking (dirty) 100% 89.25% 87.06% 95.50% 74.12% N/A 99.54%
Precision:
Token blocking (clean-clean) 1.56 · 10−6 1.00 · 10−6 2.49 · 10−6 1.30 · 10−6 1.13 · 10−6 1.21 · 10−4 1.18 · 10−6

Token blocking (dirty) 3.64 · 10−7 5.14 · 10−9 3.78 · 10−7 1.05 · 10−8 1.29 · 10−9 7.51 · 10−5 6.5 · 10−9

Attribute clustering blocking 8.51 · 10−6 5.76 · 10−6 1.01 · 10−5 1.41 · 10−5 1.35 · 10−6 1.52 · 10−4 1.97 · 10−6

Prefix-Infix(-Suffix) blocking (clean-
clean) 1.87 · 10−6 2.19 · 10−6 5.72 · 10−6 1.01 · 10−5 2.05 · 10−6 N/A 1.19 · 10−6

Prefix-Infix(-Suffix) blocking (dirty) 6.04 · 10−7 8.21 · 10−9 2.77 · 10−7 1.23 · 10−8 6.99 · 10−10 N/A 6.84 · 10−9

F-measure:
Token blocking (clean-clean) 3.13 · 10−6 2.00 · 10−6 9.72 · 10−7 2.06 · 10−8 1.94 · 10−9 2.42 · 10−4 2.35 · 10−6

Token blocking (dirty) 7.28 · 10−7 1.03 · 10−8 7.55 · 10−7 2.10 · 10−8 2.59 · 10−9 1.50 · 10−4 1.30 · 10−8

Attribute clustering blocking 1.70 · 10−5 1.15 · 10−5 2.02 · 10−5 2.82 · 10−5 2.69 · 10−6 3.04 · 10−4 3.94 · 10−6

Prefix-Infix(-Suffix) blocking (clean-
clean) 3.75 · 10−6 4.38 · 10−6 9.98 · 10−7 2.02 · 10−5 4.11 · 10−6 N/A 2.38 · 10−6

Prefix-Infix(-Suffix) blocking (dirty) 1.21 · 10−6 1.64 · 10−8 5.55 · 10−7 2.46 · 10−8 1.40 · 10−9 N/A 1.37 · 10−8

H3R:
Token blocking (clean-clean) 93.18% 89.55% 95.77% 88.61% 80.90% 70.53% 97.04%
Token blocking (dirty) 94.05% 90.43% 93.75% 88.97% 86.25% N/A (RR < 0) 90.48%
Attribute clustering blocking 97.55% 80.76% 95.37% 86.66% 80.80% 79.95% 98.16%
Prefix-Infix(-Suffix) blocking (clean-
clean) 96.09%

92.70%
92.70% 97.18% 79.83% N/A 97.07%

Prefix-Infix(-Suffix) blocking (dirty) 95.92% 90.33% 88.91% 93.59% 83.50% N/A 90.98%

Fig. 9. Common tokens (left) and common tokens in common clusters (right) per entity description distributions for D1-D7.

different attribute names can be used for the same purpose;
hence, big attribute clusters are formed. LOCAH (part of
D5) only has 3.5 attributes per entity type. Thus, the recall
of attribute clustering blocking is insignificantly reduced (-
1.02%), compared to that of token blocking.

Prefix-Infix(-Suffix) blocking: Prefix-Infix(-Suffix) blocking
is built on the premise that many URIs contain useful
information. Its goal is to extend token blocking and im-
prove both its recall, by also considering the subject URIs

of the descriptions, and its precision, by disregarding some
unneeded tokens in the URI values (either in the prefix or
suffix). It achieves good recall values in datasets with similar
naming policies in the URIs, as in D4, part of which is
BBCmusic, which also has Wikipedia as a source. However,
it misses many matching pairs of descriptions, when the
names of the URIs do not contain useful information, as in
D3 that uses random strings as ids, or have different poli-
cies, as in D5, which uses concatenations of tokens, without

10

delimiters, as URIs. The recall of D1 is 100%, because the
collection is constructed this way; it consists of two versions
of the same dataset, DBpedia, and the URIs appearing as
subjects in Infoboxes are only those URIs that also appear as
subjects in BTC12DBpedia. PIS is not applicable (marked
N/A) to D6, since URIs have been replaced with numerical
ids in the provided datasets. In D7, recall is the same as in
the other blocking methods, since the matches can be found
by tokens in the literal values of the descriptions.

5.1.2 Missed Matches (FNs)
A non-negligible number of matching pairs of descriptions
do not share any common tokens at all. Such descriptions,
constituting the false negatives of token blocking, should
not be assumed faulty, or noisy. We distinguish two different
sources of information that can be exploited for successfully
placing descriptions of missed matches in common blocks:

(i) The matches of their neighbors: Given that a descrip-
tion can have, as one of its values, another descrip-
tion, neighborhoods of related descriptions are formed,
spinning the Web of data. The knowledge of matches in
the neighbors of a description is valuable for correctly
matching this description. For example, if a description
e10 is related to e1, e20 is related to e2, and we know
that e10 and e20 match, then we can use this knowledge
as a hint that e1 and e2 could possibly match, too.

(ii) A third, matching description: In dirty collections (typ-
ically peripheral), which are composed of datasets that
potentially contain duplicate descriptions, a descrip-
tion e1 could have more than one matching descrip-
tion, e.g., both e2 and e3. Identifying one of these
matches, e.g., (e1, e3), knowing that (e2, e3) is a match,
leads to also identify the missing match (e1, e2).

Table 7 provides details about the number and the charac-
teristics of false negative pairs of descriptions, and the set of
individual descriptions that constitute these pairs11.

We focus first on the neighbors of these descriptions,
namely descriptions that appear in their values. We found
that almost all the descriptions in the false negatives have
at least one neighbor (second row of Table 7). Looking more
thoroughly, we counted the percentage of descriptions in
false negatives that have at least one neighbor belonging
to the ground truth (third row of Table 7). In all cases,
this percentage is more than 10% and goes up to 58% for
D4. This means that, not only do these descriptions have
neighbors, but many of these neighbors can be matched
to other descriptions in the same collection as well. Then,
we counted the percentage of descriptions in false negatives
that have neighbors, which have already been matched to
another description (fourth row of Table 7). This percentage
is over 20% in most collections, while it reaches up to
51.84% for D4. Finally, we counted the percentage of false
negative pairs, whose descriptions have neighbors, which
match to each other (fifth row of Table 7). This percentage
is 0 for D1, as matches in this collection are defined as de-
scriptions that have the same subject URI. However, in some
peripheral collections (D2, D4), examining the matches of
the neighbors of the descriptions is meaningful.

11. D6 is excluded, as it does not contain any descriptions with
neighbors and D7 is excluded, as it only yields 7 missed matches.

TABLE 7
Characteristics of the missed matches of token blocking.

D1 D2 D3 D4 D5
FNs 25,419 3,176 87,672 2,886 303
descriptions in FNs, with
neighbor(s) 99.64% 100% 99.99% 100% 100%

descriptions in FNs, with
neighbor(s) in ground
truth

22.60% 53.94% 36.43% 58.36% 11.57%

descriptions in FNs, with
neighbor(s) with an iden-
tified match

20.94% 48.54% 34.05% 51.84% 7.59%

FNs with matching
neighbors 0% 24.81% 0.38% 37.63% 0%

FNs with common, iden-
tified matches 0% 25.35% 10.54% 0.14% 8.58%

Another useful piece of information for the missed
matches of dirty collections is whether their descriptions
have been correctly matched to a third description. The last
row of Table 7 quantifies this statistic, showing that there
are collections, both peripheral (D2, D5) and central (D3),
for which this kind of information could, indeed, be useful.

The information of Table 7 is lost when we only consider
the tokens in the values of the descriptions to create the
blocks in a single round, but it could be useful to an
iterative method. Iterative blocking [11], based on some
initial blocks, aims to identify matches of type (ii), as well
as eliminate redundant comparisons. In our experiments,
the recall of iterative blocking, given the blocks of token
blocking from the dirty collection with the smallest number
of comparisons (D6), was the same as that of token blocking
(99.92%), since both of its datasets contain no duplicates
(Tables 2, 4), but the number of comparisons performed was
almost half of those suggested by token blocking. We also
applied iterative blocking to the dirty collection with the
lowest recall (D5), giving the blocks generated by token
blocking as input. The process did not terminate within a
reasonable amount of time, even so, the recall of iterative
blocking was 78.09% after a first pass, whereas the recall of
token blocking was 77.34%.

Regarding attribute clustering blocking, it misses the
matches that are also missed by token blocking, plus
matches that, even if they share common tokens, those
tokens appear in the values of attributes in different clusters.
The matches missed by prefix-infix(-suffix) blocking are
those with no common tokens in their literal values and
no common infixes in their URIs.

5.1.3 Non-matches (FPs and TNs)
Next, we examine the ability of blocking methods to identify
non-matches, namely their ability to avoid placing non-
matching descriptions in the same block. A key statistic for
this, regarding the datasets, is the ratio of matches to non-
matches (Table 4). The higher the ratio, the easier it is for a
blocking method to have better precision, as it statistically
has better chances of suggesting a correct comparison. D6
is the collection with the highest such ratio and precision,
while D5 has the lowest ratio and, in most blocking meth-
ods, the lowest precision, too. It is clear from Table 6 that
attribute clustering is the most precise method, since, in
almost every case, it results in the fewest wrong suggestions.
On the contrary, the least precise method is token blocking,
in all cases. The differences in precision, in some cases even
by an order of magnitude, also determine F-measure, since

11

TABLE 8
Analysis of 1K sampled matches and 1K sampled non-matches.

D1 D2 D3 D4 D5 D7
matches with
neighbors 967 956 913 918 859 973

non-matches with
neighbors 966 955 912 917 854 973

neighbors of
matches (median) 17 80 100 138 121 1
neighbors of non-
matches (median) 72 80 105 171 121 1
matches with
matching
neighbors

862 254 7 766 570 966

non-matches
with matching
neighbors

32 22 0 0 542 590

the differences in recall are not that big. All the evaluated
methods have very low precision, i.e., the vast majority of
suggested comparisons correspond to non-matches.

5.1.4 Structural Analysis of Matches and Non-matches
To better understand the characteristics of matches versus
those of non-matches in the evaluated collections, we have
analyzed sample pairs of matching and non-matching de-
scriptions. In particular, we have taken 1,000 random pairs
of matches and non-matches from each collection and we
have focused on their neighbor pairs of descriptions. The
results of this analysis are presented in Table 8.

First, we counted the number of pairs of descriptions
that both have neighbors. We found that those numbers,
presented in the first two rows of Table 8 for matches and
non-matches, respectively, are almost the same. Practically,
almost all the pairs of descriptions are linked to other pairs
of description, in all collections. Then, we measured the
median number of neighbors (pairs of descriptions) that a
match has (Table 8, row 3) and the same median number for
non-matches (Table 8, row 4). Again, there are no significant
differences between those two lines. Those numbers vary
greatly from collection to collection, ranging from 1 (for D7)
to 171 (for D4). Finally, we counted the number of pairs,
whose neighbor pairs match. For matches (Table 8, row
5), this number is always higher than the corresponding
number for non-matches (Table 8, row 6). Intuitively, this
means that when a match is found, the chances that there is
another match in its neighbor pairs are increased.

5.2 Performance Results
Table 6 shows that all the evaluated methods manage to
greatly reduce the number of comparisons that would be
required if blocking was not employed, e.g., by one (D1-D4,
D7) or two (D5) orders of magnitude for token blocking.
This is reflected by high RR in all cases. An exception is
D6, which is much smaller in terms of descriptions and,
consequently, comparisons without blocking. Moreover, its
descriptions contain many more common tokens than the
other collections, leading to more comparisons per entity.
Therefore, token blocking does not save many of the com-
parisons that would be required without blocking and in
D6 dirty, it even produces twice as many comparisons.

With respect to H3R, we notice that, in general, central
collections have higher scores, i.e., they present a better
balance between recall and reduction ratio. This means
that in these collections, comparisons that are discarded by

blocking mostly correspond to non-matches, while many
of the comparisons discarded by blocking in peripheral
collections correspond to matches. Again, D6 has a different
behaviour, since it initially contains a much smaller number
of comparisons and a high ratio of matches to non-matches,
so the reduction ratio for this collection is limited. These
measures are not applicable to token blocking, when applied
to D6 dirty, since in that case the reduction ratio is negative.

5.3 Different Types of Links
In order to evaluate the ability of blocking methods to
identify more types of links, semantically close or even
not that close to equivalence links, we have run a set of
experiments with the peripheral collections consisting of
each of the datasets of Table 3 and BTC12DBpedia. We have
chosen a wide range of link types, in order to show that the
same blocking method can better identify some specific link
types, and fail to identify other link types. Table 9 provides
the recall of token blocking, when applied to each of those
collections. Similarly to the owl:sameAs links, token blocking
performs well for links with the semantics of equivalence
(i.e., umbel:isLike, expressing a possible equivalence), as in
the airports and airlines datasets with recall values close to
100%. It also manages to identify many subject associations
(i.e., dct:subject, expressing the topic of a description), as in
the cases of books and iati datasets. It performs poorly in
identifying this kind of association, however, in the twitter
dataset, where its recall values fall to below 10%. This could
be justified by the nature of this dataset, which, in most
cases, simply states who created a slideset. Regarding spa-
tial associations (i.e., dct:coverage, expressing the spatial topic
of a description, and foaf:based near, relating two spatial
objects), token blocking manages to identify a mere 39% of
the coverage associations of the iati dataset, but it performs
much better in identifying the based near associations of
www2012, with a recall of 63%. The spatial relationships
of coverage are looser than those of based near, hence the
related entities are not so strongly related in the former
type of links. For example, in iati, the description of a
project regarding the evaluation of cereal crop residues is
linked to the DBpedia resource describing Latin America
and the Caribbean, through the coverage relation, while,
in www2012, a Greek professor is linked to the DBpedia
resource describing Greece, through the based near relation.

5.4 Lessons Learned
We now present the key points of our evaluation. Central
collections are mostly derived from Wikipedia, from which
they extract information regarding an entity. This way, de-
scriptions in such collections follow similar naming policies
and feature many common tokens (Figure 9) in the values of
semantically similar, or equivalent attributes (see the small
size of clusters in Table 6). Those are exactly the premises on
which the evaluated blocking methods are built.

For these reasons, the recall achieved by token block-
ing in central entity collections is very high (ranges from
99.92% to 94.85%). With the exception of D6 (featuring a
higher ratio of matching to non-matching descriptions), the
precision achieved by token blocking in these collections
ranges from 2.49 · 10−6 to 3.64 · 10−7. The gains in precision

12

TABLE 9
Recall of the collections composed of datasets of Table 3 and BTC12DBpedia.

airports airlines twitter books iati www2012
link umbel:isLike umbel:isLike dct:subject dct:subject dct:subject dct:coverage foaf:based near
Recall of token blocking 97.47% 99.75% 9.52% 63.55% 49.13% 39.46% 62.61%

brought by attribute clustering blocking in central entity
collections are up to one order of magnitude (for D3), with
a minor cost on recall (from 0% to 3.42%). Prefix-infix(-
suffix) blocking can improve both recall and precision of
token blocking for central collections, as in D1, but, it can
also deteriorate these values, as in the dirty case of D3,
which uses random identifiers as URIs, in which recall
drops by 7.79% and precision by 26.72%. In a nutshell,
many redundant comparisons are suggested by blocking
algorithms in all entity collections (see precision and F-
measure in Table 6), due to the small ratio of matches to
non-matches in the collections (Table 4). However, as H3R
reveals, the comparisons that are discarded by blocking in
central collections mostly correspond to non-matches.

On the contrary, descriptions in peripheral KBs are more
diverse, following different naming policies and sharing few
common tokens (Figure 9), since they stem from various
sources. The lack of similar values in those descriptions
leads to a bad clustering of attributes; big clusters of at-
tributes not similar to each other are formed (Table 6).

For these reasons, the recall of token blocking for pe-
ripheral collections drops even to 72.13%, while precision
ranges from 1.3 · 10−6 to 1.29 · 10−9. The gains in precision
brought by attribute clustering blocking (up to one order of
magnitude) in peripheral collections, come at the cost of a
drop in recall up to 24.04% (corresponding to 7,421 more
missed matches). Prefix-infix(-suffix) blocking can improve
the precision of token blocking in peripheral collections,
even by an order of magnitude (for D4), or decrease it by an
order of magnitude (for D5), while it decreases recall from
0.74% to 3.96%, i.e., more matches are missed. In the case
of D4, in which both datasets use Wikipedia as a source,
recall is improved by up to 7.68%. In overall, however, H3R
reveals that many of the comparisons that are discarded by
blocking in peripheral collections correspond to matches.

Nevertheless, information for the missed matches, e.g.,
from the neighborhoods of their descriptions (Table 7), sets
the ground for a new generation of ER algorithms, which
will exploit this information to identify more matches, in
an iterative fashion. In Table 8, we have shown that even a
single match in the neighborhood of a candidate pair is a
good match-indication for that pair, too.

Finally, in peripheral collections, there are several types
of relations, other than equivalence, between descriptions.
Token blocking identifies some of them, depending on the
dataset, the specific type of such links, and the immediacy
of those relations (Table 9). It does not perform well when
the data do not contain much information (e.g., see the
characteristics of twitter in Table 3), or when the relation-
ship of the entities is loose (e.g., see the recall of iati for
dct:coverage in Table 9). Thus, for a quantitative evaluation
of blocking methods ground truth should not be restricted
only to owl:sameAs links. We could potentially take other
relations into account, to identify more such links, or more
owl:sameAs links, using iterative algorithms.

6 RELATED WORK

In this section, we briefly overview representative ER tech-
niques that have been proposed in the Database and Se-
mantic Web communities and can be classified under two
general axes: (a) high and low similarity in the content and (b)
high and low similarity in the structure of entity descriptions.

More precisely, deduplication techniques [15] are essen-
tially ER techniques for highly (low) similar in structure
(content) descriptions from one relation, record linkage for
structured [15] or semi-structured Web data [16] targets
highly (low) similar in content (structure) descriptions from
two relations, while in the Web of data, descriptions hosted
in a network of KBs exhibit low similarity both in content
and structure (i.e., are somehow similar). It is worth notic-
ing that instance matching techniques [17] (also called data
linking or link discovery), aiming to semantically relate
entities described in two KBs, are variations of the record
linkage problem for semi-structured descriptions (e.g., in
RDF) and relationships going beyond entity equivalence
(e.g., sameAs). Web-scale ER techniques essentially require
to address these problems for a large number of entity types
and hosting KBs, having limited domain knowledge regard-
ing how description schemas and instances could match,
as well as representative ground truth and training sets.
In this context, resolution decisions regarding one pair of
descriptions essentially provide evidence for the matching
of others (i.e., the network effect).

In the rest of this section, we focus on blocking (and
meta-blocking) methods outside the scope of our work and
explain the reasons why they have not been included in our
experimental evaluation. We finally compare our work with
other benchmarking and large-scale evaluation efforts.

Blocking. Besides the methods we detailed in Section 2,
alternative methods for reducing the number of unnecessary
comparisons include: Locality-Sensitive Hashing, similarity
joins, frequent itemsets, and clustering.

The key idea of blocking with Locality-Sensitive Hashing
(LSH) (e.g., [18]) is to hash descriptions multiple times,
using a family of hash functions, in such a way that similar
descriptions (e.g., with Jaccard similarity, approximated by
minhasing [19]) are more likely (with probabilistic guar-
antees) to be placed into the same bucket than dissimilar
ones. Any two descriptions that hash at least once into the
same bucket, for any of the employed hash functions, are
considered to be a candidate pair. This technique assumes
an a-priori knowledge of a minimum similarity threshold
between entity description pairs, above which, such pairs
are considered candidate matches. However, as we will see
in our experimental evaluation (see Section 5), often, match-
ing descriptions do not share many common tokens and
thus, have very low, even zero, similarity when computed
only on the values of their attributes. Those matches would
not be placed in the same bucket and thus, they would
not be considered candidate matches. Effectively choosing
a minimum similarity threshold also depends on the KBs.

13

For example, when seeking matches between two central
KBs, a high similarity threshold can be used, since such KBs
usually have more similar values. Using a lower threshold
in central KBs would result in many false candidate pairs.
Accordingly, using a high similarity threshold in peripheral
KBs, in which descriptions have lower similarity values,
would yield many missed matches. Consequently, applying
LSH across domains is an open research problem, due to
the difficulty in knowing or tuning a similarity threshold
that can be generalized to identify matches across several
domains in an effective and efficient way.

String-similarity join algorithms (e.g., [20], [21], [22])
construct blocks which are guaranteed to contain all pairs
of descriptions whose string values similarities are above a
certain threshold and potentially some pairs whose string
values similarities are below that threshold. To achieve that,
without computing the similarity of all pairs of descriptions,
this family of algorithms build an inverted index from the
tokens of the attribute values of the descriptions. However,
unlike token blocking, this inverted index is created only
by the first non-frequent tokens of each description (i.e.,
the most discriminating), based on the prefix filtering prin-
ciple [20]. [21] additionally applies a size filtering [23] on
the sets of tokens to disregard some of the candidate pairs,
based on the fact that Jaccard(x, y) ≥ t ⇒ t · |x| ≤ |y|.
The ppjoin+ algorithm [22] introduces a positional filtering,
i.e., the position in the ordered set of tokens, in which a
token appears, to further reduce the number of candidate
pairs. Tuning the appropriate similarity threshold is non-
trivial and it also affects the performance of the string-
similarity join algorithms [24]. Smaller thresholds entail less
pruning, and thus, more time. Furthermore, [25] proves
experimentally that algorithms based on prefix filtering are
only effective when the similarity threshold is extremely
high. However, this is not the case in the Web of data,
where highly heterogeneous descriptions, yielding very low
similarity in their literal values, can refer to the same entity.

[26] introduces a method for building blocks based on
Maximal Frequent Itemsets (MFI). Abstractly, each MFI (an
itemset can be a set of tokens) of a specific attribute in the
schema of a description defines a block, and descriptions
containing the tokens of an MFI for this attribute are placed
in a common block. Using frequent itemsets to construct
blocks may significantly reduce the number of candidates
for matching pairs. However, since many matching descrip-
tions share few, or even no common tokens, further requir-
ing that those tokens are parts of frequent itemsets is too
restrictive for those pairs of matching descriptions, resulting
in many missed matches in the Web of data. Moreover,
MFI blocking requires a-priori knowledge of the desired
block sizes, and is also based on the notion of a schema,
information which is unavailable at the Web of data.

Canopy clustering [27] is an unsupervised clustering
method that has been used as blocking. Initially, one random
description is chosen as a canopy center and it is compared
to all other descriptions. All the descriptions within a loose
distance threshold to this canopy center are added to this
canopy, while those within a tighter distance threshold, are
removed from the candidate canopy centers. This process
repeats, until there are no more candidate canopy centers.
The problem with this approach, even with the parallel ver-

sion of Mahout12 or our own MapReduce implementation,
is that it fails to scale to the volumes of our datasets.

Block post-processing. Further processing steps on the
results of blocking have been proposed in the literature
for further reducing the number of comparisons to be per-
formed by an ER task (e.g., [28], [29], [30]). Such steps make
sense to be used, when blocking results in missing only few
matches, and the whole process is faster than exhaustively
performing the comparisons between all descriptions. For
example, [28] proposes to reconstruct the blocks of a given
blocking collection in order to discard redundant, as well
as unnecessary comparisons. [28] essentially transforms a
given blocking collection into a blocking graph, whose
nodes correspond to entity descriptions, while its undi-
rected edges connect the co-occurring descriptions. Every
edge is associated with a weight representing the likelihood
that the adjacent entities are matching candidates. Low-
weighted edges are pruned, so as to discard comparisons
between unlikely to match descriptions. To minimize the
missed matches, an iterative entity resolution process can
exploit in a pay-as-you-go fashion any intermediate results of
blocking and matching, discovering new candidate matches.
Such iterative process may consider matching evidence
provided by entity descriptions placed into the same block
(e.g., [11]) or being structurally related in the original entity
graph (e.g., [13], [31]). In this work, we are focusing on
blocking algorithms, since those further steps also benefit
from a better initial blocking, but we briefly show how such
an algorithm [11] uses the results of blocking.

Benchmarks and evaluation frameworks. Existing
works in ER benchmarks [32], [33] and evaluation frame-
works [34], [35] focus on the similarity of descriptions and
how these similarities affect the matching decision of entity
resolution; not on blocking, explicitly. In all cases, data
collections are built from central datasets of a single domain,
e.g., only bibliographic. Those data variations are not ade-
quate to evaluate the blocking algorithms suitable for cross-
domain ER involving a large number of entity types. Finally,
many works on ontology and instance matching, e.g., [13],
[36], have been using the OAEI benchmarks in their eval-
uations. Typically, those collections are composed of two
ontologies with a 1-1 mapping in their attributes, or even
a single ontology, whose instances, i.e., entity descriptions,
have some modifications in their values. We have included
and analyzed one of those benchmarks in this study.

7 SUMMARY

In this work, we evaluated, for the first time, ER blocking
algorithms for somehow (not only highly) similar descrip-
tions in the Web of data. We have investigated the data
characteristics of such descriptions that impact blocking
algorithms’ effectiveness and efficiency. Highly similar de-
scriptions, met in central LOD collections, feature many
common tokens in the values of common attributes, while
somehow similar descriptions, met in peripheral collections,
have significantly fewer common tokens in attributes that
are not necessarily semantically related. Hence, the former
can be compared only on their content (i.e., values), while

12. mahout.apache.org/users/clustering/canopy-clustering

14

the latter require contextual information, e.g., the similarity
of neighborhood descriptions, linked with different types
of relationships. Since a single similarity function cannot
identify such matches in a single pass, multiple iterations of
matching (focusing on context) and/or blocking (focusing
on content) are needed. Towards this end, we are interested
in progressive ER algorithms that try to maximize the
benefit (e.g., number of resolved entities, number of links
between resolved entities) of each iteration, by dynamically
adapting their execution plan, based on previous results.

Acknowledgements: This work was partially supported by
the EU FP7 SemData (#612551) project.

REFERENCES

[1] V. Christophides, V. Efthymiou, and K. Stefanidis, Entity Resolution
in the Web of Data, ser. Synthesis Lectures on the Semantic Web:
Theory and Technology. Morgan & Claypool Publishers, 2015.

[2] X. L. Dong and D. Srivastava, Big Data Integration, ser. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers,
2015.

[3] M. Schmachtenberg, C. Bizer, and H. Paulheim, “Adoption of the
linked data best practices in different topical domains,” in ISWC,
2014.

[4] P. Christen, Data Matching - Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection, ser. Data-centric
systems and applications. Springer, 2012.

[5] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl,
“Beyond 100 million entities: large-scale blocking-based resolution
for heterogeneous data,” in WSDM, 2012.

[6] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl,
“A blocking framework for entity resolution in highly heteroge-
neous information spaces,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 12, pp. 2665–2682, 2013.

[7] V. Efthymiou, K. Stefanidis, and V. Christophides, “Big data entity
resolution: From highly to somehow similar entity descriptions in
the web,” in IEEE Big Data, 2015.

[8] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E.
Whang, and J. Widom, “Swoosh: a generic approach to entity
resolution,” VLDB J., vol. 18, no. 1, pp. 255–276, 2009.

[9] I. Bhattacharya and L. Getoor, “Collective entity resolution in
relational data,” TKDD, vol. 1, no. 1, 2007.

[10] H. Kim and D. Lee, “HARRA: fast iterative hashed record linkage
for large-scale data collections,” in EDBT, 2010.

[11] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina, “Entity resolution with iterative blocking,” in
SIGMOD, 2009.

[12] V. Koukis, C. Venetsanopoulos, and N. Koziris, “˜okeanos: Build-
ing a cloud, cluster by cluster,” IEEE Internet Computing, vol. 17,
no. 3, pp. 67–71, 2013.

[13] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and
Z. Ghahramani, “Sigma: simple greedy matching for aligning
large knowledge bases,” in KDD, 2013.

[14] M. Kejriwal and D. P. Miranker, “An unsupervised algorithm for
learning blocking schemes,” in ICDM, 2013.

[15] P. Christen, “A survey of indexing techniques for scalable record
linkage and deduplication,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 9, pp. 1537–1555, 2012.

[16] O. Hassanzadeh, “Record linkage for web data,” Ph.D. disserta-
tion, 2013.

[17] M. Nentwig, M. Hartung, A.-C. N. Ngomo, and E. Rahm, “A sur-
vey of current link discovery frameworks,” Semantic Web Journal,
2015.

[18] P. Malhotra, P. Agarwal, and G. Shroff, “Graph-parallel entity
resolution using LSH & IMM,” in EDBT/ICDTWorkshops, 2014.

[19] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” J. Comput. Syst. Sci.,
vol. 60, no. 3, pp. 630–659, 2000.

[20] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in ICDE, 2006.

[21] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in WWW, 2007.

[22] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins
for near duplicate detection,” in WWW, 2008.

[23] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity
joins,” in VLDB, 2006.

[24] Y. Jiang, G. Li, J. Feng, and W. Li, “String similarity joins: An
experimental evaluation,” PVLDB, vol. 7, no. 8, pp. 625–636, 2014.

[25] A. Metwally and C. Faloutsos, “V-smart-join: A scalable mapre-
duce framework for all-pair similarity joins of multisets and
vectors,” PVLDB, vol. 5, no. 8, pp. 704–715, 2012.

[26] B. Kenig and A. Gal, “MFIBlocks: an effective blocking algorithm
for entity resolution,” Inf. Syst., vol. 38, no. 6, pp. 908–926, 2013.

[27] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of
high-dimensional data sets with application to reference match-
ing,” in KDD, 2000.

[28] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl, “Meta-
blocking: Taking entity resolutionto the next level,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 8, pp. 1946–1960, 2014.

[29] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis,
and T. Palpanas, “Parallel meta-blocking: Realizing scalable entity
resolution over large, heterogeneous data,” in IEEE Big Data, 2015.

[30] S. E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-as-you-go
entity resolution,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp.
1111–1124, 2013.

[31] V. Rastogi, N. N. Dalvi, and M. N. Garofalakis, “Large-scale
collective entity matching,” PVLDB, vol. 4, no. 4, pp. 208–218, 2011.

[32] E. Ioannou, N. Rassadko, and Y. Velegrakis, “On generating bench-
mark data for entity matching,” J. Data Semantics, vol. 2, no. 1, pp.
37–56, 2013.

[33] A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt,
“Benchmarking matching applications on the semantic web,” in
ESWC, 2011.

[34] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” PVLDB, vol. 3, no. 1,
pp. 484–493, 2010.

[35] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C. Lee, “Frame-
work for evaluating clustering algorithms in duplicate detection,”
PVLDB, vol. 2, no. 1, pp. 1282–1293, 2009.

[36] F. M. Suchanek, S. Abiteboul, and P. Senellart, “PARIS: probabilis-
tic alignment of relations, instances, and schema,” PVLDB, vol. 5,
no. 3, pp. 157–168, 2011.

Vasilis Efthymiou is a PhD candidate at the University of Crete,
Greece, and a research assistant at ICS-FORTH, Greece. The topic of
his PhD is entity resolution in the Web of data. He got his MSc and BSc
degrees from the same university in 2012 and 2010, respectively. He has
received undergraduate and postgraduate scholarships from FORTH,
working in the areas of Semantic Web and Ambient Intelligence.

Kostas Stefanidis is an Associate Professor at the University of Tam-
pere, Finland. He got his PhD in personalized data management from
the University of Ioannina, Greece, in 2009. His research interests lie
in the intersection of databases, Web and information retrieval. Kostas
co-authored more than 35 papers in peer-reviewed conferences and
journals, including ACM SIGMOD, IEEE ICDE and ACM TODS.

Vassilis Christophides is a Professor at the University of Crete,
Greece. He has been recently appointed to an advanced research
position at INRIA Paris - Rocquencourt. Previously, he worked as Distin-
guished Scientist at Technicolor, R&I Center in Paris. He studied Electri-
cal Engineering at the National Technical University of Athens, Greece,
1988, he received his DEA in computer science from the University
PARIS VI, 1992, and his Ph.D. from the Conservatoire National des Arts
et Metiers of Paris, 1996. His main research interests include Databases
and Web Information Systems, as well as Big Data Processing and
Analysis. He has published over 130 articles in high-quality international
conferences, journals and workshops. He received the 2004 SIGMOD
Test of Time Award and the ISWC Best Paper Award in 2003 and 2007.

