
HAL Id: hal-04319674
https://hal.science/hal-04319674

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Knowledge graph embedding methods for entity
alignment: experimental review

Nikolaos Fanourakis, Vasilis Efthymiou, Dimitris Kotzinos, Vassilis
Christophides

To cite this version:
Nikolaos Fanourakis, Vasilis Efthymiou, Dimitris Kotzinos, Vassilis Christophides. Knowledge graph
embedding methods for entity alignment: experimental review. Data Mining and Knowledge Discov-
ery, 2023, 37 (5), pp.2070-2137. �10.1007/S10618-023-00941-9�. �hal-04319674�

https://hal.science/hal-04319674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Vol:.(1234567890)

Data Mining and Knowledge Discovery (2023) 37:2070–2137
https://doi.org/10.1007/s10618-023-00941-9

1 3

Knowledge graph embedding methods for entity
alignment: experimental review

Nikolaos Fanourakis1,2  · Vasilis Efthymiou1  · Dimitris Kotzinos3 ·
Vassilis Christophides3

Received: 28 January 2022 / Accepted: 12 May 2023 / Published online: 29 June 2023
© The Author(s) 2023

Abstract
In recent years, we have witnessed the proliferation of knowledge graphs (KG) in
various domains, aiming to support applications like question answering, recom-
mendations, etc. A frequent task when integrating knowledge from different KGs
is to find which subgraphs refer to the same real-world entity, a task largely known
as the Entity Alignment. Recently, embedding methods have been used for entity
alignment tasks, that learn a vector-space representation of entities which preserves
their similarity in the original KGs. A wide variety of supervised, unsupervised,
and semi-supervised methods have been proposed that exploit both factual (attrib-
ute based) and structural information (relation based) of entities in the KGs. Still, a
quantitative assessment of their strengths and weaknesses in real-world KGs accord-
ing to different performance metrics and KG characteristics is missing from the lit-
erature. In this work, we conduct the first meta-level analysis of popular embed-
ding methods for entity alignment, based on a statistically sound methodology. Our
analysis reveals statistically significant correlations of different embedding methods
with various meta-features extracted by KGs and rank them in a statistically sig-
nificant way according to their effectiveness across all real-world KGs of our test-
bed. Finally, we study interesting trade-offs in terms of methods’ effectiveness and
efficiency.

Keywords  Knowledge graph embeddings · Entity alignment · Knowledge graphs

1  Introduction

In recent years, we have witnessed the proliferation of knowledge graphs (KGs)
in various domains, aiming to support applications like entity search (Dong et al.
2014), question answering (Ahmetaj et al. 2021), and recommendations (Tarus et al.

Responsible editor: Aditya Prakash.

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2162-5822
http://orcid.org/0000-0002-0683-030X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00941-9&domain=pdf

2071

1 3

Knowledge graph embedding methods for entity alignment: an…

2018). Typically, KGs store machine-readable descriptions of real-world entities
(e.g., people, movies, books) that capture both relational and factual information.
In this work, we refer to an entity description as an identifiable set of property-value
pairs that abstracts several data formats, such as relational, RDF, or property graphs.

As different KGs may independently describe the same real-world entity, a
crucial task when integrating knowledge from several KGs is to align their entity
descriptions. Entity alignment (EA), also known as entity resolution (Christophides
et al. 2015, 2021), aims to identify pairs of descriptions from different KGs that
refer to the same real-world entity, which we call matching pairs or simply, matches.

Figure 1 shows an example of two KGs, each containing four entity descrip-
tions, represented as nodes, with their properties, represented as edges. The entities
described in those KGs can be aligned. For instance, node v1 in KG1 is a descrip-
tion of the director Stanley Kubrick, providing his name and birth year as attributes,
and the facts that he directed and wrote the movie The Shining, as well as that he
also directed an entity represented by v3 as relations. Node v1 should be aligned with
node v5 in KG2 , even if the “name” attribute is now called “label”, and its value, “S.
Kubrick”, is slightly different than the name value, “Stanley Kubrick”, used in v1 .
The birth year attribute is also missing in v5 , compared to v1 , and its only relation to
v6 is “directed”, missing the relation “wrote” that was also provided in KG1 between
v1 and v2 . Similarly, the other entity alignments in the example of Fig. 1 should be
v2 with v6 (describing the movie “The Shining”), v3 with v7 (describing the movie
“Barry Lyndon”), and v4 with v8 (describing the actor Philip Stone).

One way to implement entity alignment as a machine learning (ML) task, is
to learn a vector-space representation of symbolic KGs, known as embeddings.

Fig. 1   An example of two KGs whose entities can be aligned. The red dashed lines connect the aligned
entities ( v

1
,v
5
 ), ( v

2
,v
6
 ), ( v

3
,v
7
 ), and ( v

4
,v
8
)

2072	 N. Fanourakis et al.

1 3

Numerical representations (embeddings) of KGs are preferred over symbolic ones in
various ML tasks (link/node/subgraph prediction, matching, etc.), as they potentially
mitigate the symbolic, linguistic and schematic heterogeneity of independently cre-
ated KGs and thus aim to simplify knowledge reasoning. The idea is to embed the
nodes (entities) and edges (relations or attributes) of a KG into a low-dimensional
vector space. Particularly, we would like similar entities in the original KG to be
close to each other in the embedding space and dissimilar entities to be far from
each other. In this respect, both positive (i.e., actual KG edges) and negative (i.e.,
synthetic edges, non-existing in the actual KG) samples of the KGs are used. This
way, by measuring their embeddings distance in the vector space, we can decide
whether two entities are matching or not. Any available ground truth regarding the
alignment of entities, called seed alignment, can be used for training and/or evaluat-
ing an embedding method.

Learning low-dimensional representations of KGs in a way such that the seman-
tic relatedness of entities is captured by the geometrical structures of an embedding
space is a challenging task that gave birth to numerous methods. Embedding-based
entity alignment methods essentially exploit the relational (i.e., entity structural
neighborhood) and the factual part (i.e., entity names/identities, attributes that rep-
resent literals) of descriptions. We refer to the former as relation-based methods,
e.g., MTransE (Chen et al. 2017), MTransE+RotatE (Sun et al. 2020), RDGCN (Wu
et al. 2019), RREA (Mao et al. 2020b), and to the latter as attribute-based methods,
e.g., MultiKE (Zhang et al. 2019), AttrE (Trisedya et al. 2019), KDCoE (Chen et al.
2018), BERT_INT (Tang et al. 2020). Although this research direction is rapidly
growing, there are still several open questions regarding the underlying assumptions
of methods, as well as, the efficiency and effectiveness of entity alignment in real-
istic settings. In particular, in this work we address the following missing insights
from the literature:

	Q1.	 Characteristics of methods. What are the critical factors that affect the effec-
tiveness of relation-based (e.g., negative sampling, range of neighborhood) and
attribute-based methods (e.g., usage of literals) and how sensitive are the meth-
ods to hyperparameters tuning?

	Q2.	 Families of methods. What is the improvement in the effectiveness of embed-
ding-based entity alignment methods if we consider not only the structural rela-
tions of entities, but also their attribute values?

	Q3.	 Effectiveness vs Efficiency Tradeoff. Is the runtime overhead of each method
worth paying, with respect to the achieved effectiveness?

	Q4.	 Characteristics of datasets. To which characteristics of the datasets (e.g.,
sparsity, number of entity pairs in seed alignment, heterogeneity in terms of
literals, predicate names and entity names) are supervised, semi-supervised and
unsupervised methods sensitive?

Although several recent works (Zeng et al. 2021; Choudhary et al. 2021; Wang
et al. 2017; Sun et al. 2020; Zhang et al. 2020; Zhao et al. 2022; Jiang et al. 2021;
Wang et al. 2021; Leone et al. 2022; Zhang et al. 2022; Chaurasiya et al. 2022)

2073

1 3

Knowledge graph embedding methods for entity alignment: an…

survey embedding-based entity alignment methods, only few of them (Sun et al.
2020; Zhang et al. 2020; Zhao et al. 2022; Leone et al. 2022; Zhang et al. 2022;
Chaurasiya et al. 2022) conduct an experimental evaluation to obtain useful insights.
The conclusions drawn from Zhang et al. (2020) are limited, as it leaves out some
representative methods in embedding-based alignment such as MTransE (no nega-
tive sampling), KDCoE (semi-supervised exploiting long textual descriptions1),
RREA (semi-supervised exploiting structural information), AttrE (unsupervised),
BERT_INT (supervised exploiting both structural and factual information), while
neither RREA nor BERT_INT were part of OpenEA (Sun et al. 2020), as both
were published later. In addition, Leone et al. (2022) does not include MTransE,
MTransE+RotatE, AttrE, KDCoE, while RREA is not included in Leone et al.
(2022), Zhang et al. (2022), Chaurasiya et al. (2022) either. Moreover, benchmark-
ing efforts such as Zhang et al. (2020), OpenEA (Sun et al. 2020), EAE (Zhao et al.
2022) and Leone et al. (2022), Zhang et al. (2022), Chaurasiya et al. (2022), do not
shed light on questions Q1, Q2 and Q3, addressed in our work. Furthermore, only a
subset of the dataset characteristics we study in our work, such as the density of the
KGs, and the similarity of entity names, have been considered by previous works to
answer question Q4.

To compare the effectiveness and efficiency of the methods in realistic settings,
we have extended the testbed of datasets with pairs of KGs usually considered
in related empirical studies. Specifically, OpenEA, EAE and Leone et al. (2022),
Zhang et al. (2022), Chaurasiya et al. (2022) employ only datasets with a low num-
ber of entities featuring descriptions and literal values. In our testbed, we have
included five additional datasets whose unique characteristics allow us to draw new
insights regarding the evaluated EA methods, which were not previously reported
in Sun et al. (2020), Zhang et al. (2020), Zhao et al. (2022), Leone et al. (2022),
Zhang et al. (2022), Chaurasiya et al. (2022). More precisely, supervised methods
like RDGCN exploiting KG relations, are outperformed by unsupervised (AttrE)
and semi-supervised (KDCoE) methods that exploit the similarity of literals in data-
sets of decreasing density, but with rich factual information (i.e., attributes).

Rather than simply reporting the raw experimental results, we conduct a meta-
level analysis, aiming to find statistically significant correlations between the meth-
ods and the dataset characteristics (meta-features). Furthermore, we consider the
non-parametric Friedman test (Demsar 2006) and the post-hoc Nemenyi test (Neme-
nyi 1963), in order to perform a pairwise comparison of the methods and rank them
based on their effectiveness across all datasets of our testbed. Finally, we are inter-
ested in the methods’ training time curve and potential effectiveness vs efficiency
trade-offs instead of simply reporting overall runtimes (as in OpenEA and EAE).

In a nutshell, the contributions of this work are the following:

1  Although the term “literals” is inclusive of entity names and textual descriptions, in the EA litera-
ture we differentiate between them as follows: entity names are the suffixes of entity identifiers (which
are sometimes meaningful), textual descriptions are the values of some pre-determined attributes that
typically span several sentences, as opposed to the simple literals, used to describe all other factual data,
typically of much shorter length (1-2 words).

2074	 N. Fanourakis et al.

1 3

•	 In Sect. 2, we present a qualitative comparison of state-of-the-art embedding-
based entity alignment methods that span from supervised, i.e., MTransE (Chen
et al. 2017), MTransE+RotatE (Sun et al. 2020), MultiKE (Zhang et al. 2019),
RDGCN (Wu et al. 2019), RREA(basic) (Mao et al. 2020b), BERT_INT (Tang
et al. 2020), to unsupervised, i.e., AttrE (Trisedya et al. 2019), and semi-super-
vised, i.e., KDCoE (Chen et al. 2018), RREA(semi) (Mao et al. 2020b), para-
digms. They are representative methods of different embedding families covering
both relation- and attribute-based, but also considering one-hop and multi-hop
neighborhoods in KGs, as well as different negative sampling strategies.

•	 In Sect. 3, we describe our framework for a fair empirical comparison of the dif-
ferent methods. We detail the extended testbed of datasets that exhibit diverse
characteristics (w.r.t. KG density, entity naming, textual descriptions, etc.) usu-
ally encountered in reality along with the corresponding pre-processing pipe-
lines. We additionally introduce the evaluation protocol and metrics capturing
different aspects of the methods’ effectiveness.

•	 In Sect. 4, we report and analyze the results of a series of experiments,
including a comparison to a state-of-the-art non-embedding-based method,
PARIS (Suchanek et al. 2011), conducted to answer the four open questions
introduced previously, using a reliable, statistically sound methodology. First,
we discover a statistical significant ranking of the methods according to their
effectiveness across all real-world KGs of our testbed. Then, we study interest-
ing trade-offs in terms of their effectiveness and efficiency. Last but not least, we
extract statistically significant correlations between the methods’ performance
with various characteristics of our datasets (i.e., meta features).

Finally, the main conclusions drown from our experiments, as well as the plans
for future work, are discussed in Sect. 5.

2 � Entity alignment with KG embeddings

In this section, we first formally define the entity alignment problem on Knowledge
Graphs (KGs), along with some related constraints. Then, we provide a qualitative
comparison of entity alignment methods based on KG embedding.

2.1 � The entity alignment problem

Following the typical notation used in the literature (Zhang et al. 2019; Wang
et al. 2020), we assume that entities (with the corresponding entity names),2
are described in KGs by a collection of edges ⟨h, r, t⟩ , whose head h is always
an entity, and tail t may be either another entity, in which case we call this edge
a relation edge and r a relation, or a literal (e.g., number, date, string), in which
case we call this edge an attribute edge and r an attribute with its corresponding

2  The string suffix after the last slash of a URI of an entity or an attribute (Zhang et al. 2019).

2075

1 3

Knowledge graph embedding methods for entity alignment: an…

attribute name2 . We represent a knowledge graph as KG = (E,R,A, L,X, Y) , where
E is a set of entities, R is a set of relations, A is a set of attributes, L is a set of
literals, X ⊆ (E × R × E) and Y ⊆ (E × A × L) are the sets of relation and attrib-
ute edges of the KG, respectively. Given a source KG1 = (E1,R1,A1, L1,X1, Y1)
and a target KG2 = (E2,R2,A2 , L2,X2, Y2) , the task of entity alignment is to find
pairs of matching entities M = {(ei, ej) ∈ E1 × E2 ∣ ei ≡ ej} , where “ ≡ ” denotes the
equivalence relationship (Zhang et al. 2019; Wang et al. 2020). A subset 𝛿 ⊆ M of
the matching pairs may be used as a seed alignment for training. For instance, in
Fig. 1, the entities of the two KGs are E1 = {v1, v2, v3, v4} and E2 = {v5, v6, v7, v8} .
The relations are R1 = {cast, directed,wrote} and R2 = {directed, actedIn} ,
while the attributes are A1 = {name, birth-year, title} , A2 = {label} and
the literals are L1 = {}}StanleyKubrick��, }}1928��, }}TheShining��} .
L2 = {}}S.Kubrick��, }}BarryLyndon��, }}P.Stone��} . The relation edges are
X1 = {(v1, directed, v2), (v2, directed, v1), (v1, directed, v3), (v2, directed, v4)}   ,
X2 = {(v5, directed, v6) , (v8, actedIn, v6), (v8, actedIn, v7)} , while the
attribute edges are Y1 = {(v1, name, }}StanleyKubrick��) , (v1, birth-
year, }}1928��) , (v2, title, }}TheShining��)} and Y2 = {(v5, label, }}S.Kubrick��) ,
(v8, label, }}P.Stone��) , (v7, label, }}BarryLyndon��)} . The task of entity
alignment is to find the matches (denoted by dashed edges in Fig. 1) M =
{(v1, v5), (v2, v6), (v3, v7), (v4, v8)}.

In practice, all the evaluated entity alignment methods rely on a number of
assumptions/constraints, as listed below:

•	 Every entity is assumed to be the head of at least one relation edge (so we do not
consider entities that are not part of a connected component of the KG):

	  ∀e ∈ E,∃r ∈ R, t ∈ E ∶ (e, r, t) ∈ X.

•	 1-to-1 constraint: Every entity in E1 should be matched to exactly one entity in

E2 : ∀ei ∈ E1

(
∃ej ∈ E2 ∶ (ei, ej) ∈ M

)
∧
(
∄e�

j
∈ E2 ∶ (ei, e

�
j
) ∈ M

)
 and vice

versa ∀ej ∈ E2

(
∃ei ∈ E1 ∶ (ei, ej) ∈ M

)
∧
(
∄e�

i
∈ E1 ∶ (e�

i
, ej) ∈ M

)
. This also

implies that ∣ M ∣=∣ E1 ∣=∣ E2 ∣.

2.2 � Knowledge graph embeddings for entity alignment

KG embedding methods aim to learn a low-dimensional vector-space representation
of symbolic KGs, known as embeddings. The idea is to embed the nodes (entities)
and edges (relations or attributes) of a KG in an embedding space in a way that pre-
serves their similarity in the original KG. Embedding methods have been proven to
be effective in many machine learning tasks, such as node classification (Kipf and
Welling 2017) that aims to assign entity types to KG nodes, or link prediction (Bordes
et al. 2013; Sun et al. 2019) that aims to find missing relations between entities in
a single KG. Lately, several embedding-based methods have been also proposed for
entity alignment, exploiting either relation edges (relation-based methods), such as
MTransE (Chen et al. 2017), MTransE + RotatE (Sun et al. 2020), RDGCN (Wu et al.

2076	 N. Fanourakis et al.

1 3

2019), RREA(basic) (Mao et al. 2020b), RREA(semi) (Mao et al. 2020b) or attribute
edges (attribute-based methods), such as MultiKE (Zhang et al. 2019), AttrE (Trisedya
et al. 2019), KDCoE (Zhang et al. 2017), and BERT_INT (Tang et al. 2020).

Figure 2 depicts the building blocks of embedding-based entity alignment meth-
ods: (i) The embedding module SK that encodes the entities of each KG in an embed-
ding space (L1 for KG1 and L2 for KG2 ) according to the relational (i.e., entity struc-
tural neighborhood) and/or the factual part (i.e., entity names/identities, literals/text)
of descriptions. (ii) The alignment module SA that aligns the produced entity embed-
dings using the seed alignment (supervised) or attribute-values similarity (unsuper-
vised), or both (semi-supervised). It produces a common embedding space for the
entities of two KGs, in order to generate the alignment result according to a distance
metric (e.g., Euclidean), using three different techniques known as sharing, swap-
ping and mapping. Sharing and Swapping, update directly the entity embeddings
produced by the embedding module according to the available similarity evidence
of entities, while Mapping essentially learns a linear transformation between the two
embedding spaces of aligned KGs. In the rest of this section, we will detail popular
methods that implement those modules.

2.2.1 � Embedding module

KG embedding methods proposed for the task of link prediction are used to
implement the embedding module of entity alignment methods. There are sev-
eral families of KG embedding methods for link prediction have been proposed
in the literature, e.g., Yang et al. (2015), Trouillon et al. (2016); Nickel and Kiela
(2017). In this paper, we are interested in contrasting translational methods such

Fig. 2   General framework of KG embeddings for entity alignment

2077

1 3

Knowledge graph embedding methods for entity alignment: an…

as TransE (Bordes et al. 2013) and RotatE (Sun et al. 2019), with Graph Neu-
ral Networks such as Graph Convolutional Networks (GCNs) (Kipf and Welling
2017) and Graph Attention Networks (GATs) (Velickovic et al. 2018).

2.2.1.1 Translational methods Translational methods use distance-based
scoring functions in order to optimize a margin-based loss function and learn the
embeddings of entities in a KG. A distance-based scoring function is a function
that measures the plausibility of a relation edge ⟨h, r, t⟩ i.e., it measures the dis-
tance of the embedding of the head to the embedding of the tail entities, given the
embedding of the relation. A margin-based loss function is a function that these
methods aim to minimize, in order to minimize the distance of entity embeddings
by a certain margin, computed by a distance-based scoring function. The key dif-
ference among all those translational methods is based on the degree that they are
able to capture more complex graph structures such as cycles, by adopting the
appropriate operator in the scoring function.

TransE (Bordes et al. 2013) is one of the most widely used translational KG
embedding methods. In this method, both entities and relations are represented
in the same vector space. The relation r is equivalent to the translation of vec-
tors from head entity h to the tail entity t. If ⟨h, r, t⟩ ∈ X , then the embedding t of
t should be close to the embedding h of h, plus the vector r of r , i.e., h + r ≈ t .
Formally, TransE minimizes the margin-based loss function:

where f (h, r, t) = ∣ h + r − t ∣ is the scoring function, X is the set of positive relation
edges (relation edges that exists in the KG), X′ is the set of negative relation edges
(relation edges that do not exist in the KG), and � is the margin hyperparameter.
Each negative edge x� ∈ X� is created by replacing the head or the tail of a positive
edge in X with a random entity, ensuring that x� ∉ X.

RotatE (Sun et al. 2019) is a translation-based embedding model that, unlike
TransE, infers various relation patterns, such as symmetries. Specifically, RotatE
maps the entities and relations to the complex vector space and defines each rela-
tion as a rotation from the head entity to the tail entity (Fig. 3). Given a rela-
tion edge ⟨h, r, t⟩ , we expect that t = h◦r , where ◦ denotes the Hadamard (Million
2007) (element-wise) product.

(1)JSE =
∑
x∈X

∑
x�∈X�

max
(
0, � + f (x) − f

(
��
))
,

Fig. 3   Example of rotatE

2078	 N. Fanourakis et al.

1 3

This model aims to minimize the margin-based loss function

by maximizing the scores of positive relation edges and minimizing the scores
of negative relation edges, where dr(⟨h, r, t⟩) = ∣ h◦r − t ∣ is a scoring function, �
is a fixed margin, � is the sigmoid function, and (h�

i
, r, t�

i
) is the i-th negative edge.

RotatE, like TransE, creates the negative relation edges by replacing the head and
the tail of positive relation edges randomly.

2.2.1.2 Graph Neural Network Methods Translational methods cannot deal with
various complex graph structures. For example, TransE (Bordes et al. 2013) cannot deal
with triangular structures like the one in Fig. 4, because it requires the three equations
v1 + ra ≈ v2 , v2 + ra ≈ v3 and v1 + ra ≈ v3 to hold at the same time. This is impossible,
because for satisfying the former two equations we would have v1 + 2ra ≈ v3 which is
contradictory to the equation v1 + ra ≈ v3.

In order to cope with that, Graph Neural Network (GNN) methods have been pro-
posed. GNNs learn entity embeddings, by recursively aggregating the representations
of neighboring nodes. They essentially rely on message passing, according to which,
each graph node recursively receives and aggregates features (node representations)
from its neighbors in order to represent the local graph structure.

There is a range of GNN variants, that implement different aggregation strategies.
In this section, we focus on standard graph convolutional networks (GCNs) (Kipf and
Welling 2017) and graph attention networks (GATs) (Velickovic et al. 2018), since they
are the core of both RDGCN (Wu et al. 2019) and RREA (Mao et al. 2020b); two of
the proposed methods that we evaluate in this study and describe in Sect. 2.3.

GCN (Kipf and Welling 2017) takes as input the randomly initialized entity embed-
dings of the KG, which is treated as an undirected graph. Then, it learns a set of layer-
specific weights, known as filters or kernels, that are multiplied with the input embed-
dings. In essence, it acts as a sliding window across the KG that learns entity features
while preserving useful structural information from the neighborhoods. GCN uses the
following function

(2)L = − log �
(
� − dr(h, r, t)

)
−

n∑
i=1

1

k
log �

(
dr
(
h�
i
, r, t�

i

)
− �

)
,

Fig. 4   Triangular structure (Wu
et al. 2019)

2079

1 3

Knowledge graph embedding methods for entity alignment: an…

to aggregate the entity embeddings of l layers, where � is an activation function, Ni
is the set of the one-hop neighbors of the central entity i (including itself by add-
ing a self-loop), cij is a normalization constant that defines isotropic average com-
putation (each neighbor contributes equally to update the embedding of the central
entity), W (l) is a trainable layer-specific weighted matrix for feature transformation
and H(l) are the entity embeddings for layer l. More precisely, in order to learn the
final embedding of a central entity, GCN sums its embedding with the neighbors
embeddings.

GAT​ (Velickovic et al. 2018) expands the aggregation function of GCN, by an
attention mechanism that assigns different weights to each neighbor of a central
entity. GAT uses the following aggregation function

that aggregates the entity embeddings of l layers, where � is an activation function,
Ni is the set of the one-hop neighbors of the central entity i, H(l) are the entity
embeddings for layer l, z(l)

i
 is a transformation operation and �(l)

ij
 is the normalized

coefficient score. Particularly, z(l)
i

 and �(l)
ij

 are calculated as:

and

where

𝐚⃗(l)
T is a learnable weight vector, LeakyReLU a variant of the activation function

ReLU (Parisi et al. 2022) and ∣∣ is the concatenation operation.

2.2.2 � Alignment module

For the alignment module SA , there exist three techniques: sharing, swapping and
mapping (Sun et al. 2020). We describe them below, while we extensively compare
them in Sect. 2.5.2.

(3)H
(l+1)
i

= �

(∑
j∈Ni

1

cij
W (l)H

(l)
j

)

(4)H
(l+1)
i

= �

(∑
j∈Ni

�
(l)
ij
z
(l)
j

)

(5)z
(l)
i
= W (l)H

(l)
i

(6)�
(l)
ij

=
exp

�
e
(l)
ij

�

∑
k∈N(i) exp

�
e
(l)
ik

� ,

(7)e
(l)
ij
= LeakyReLU

(
𝐚⃗(l)

T
(
z
(l)
i
∥ z

(l)
j

))
,

2080	 N. Fanourakis et al.

1 3

2.2.2.1 Sharing Sharing aims to iteratively update the already produced entity
embeddings, in order to minimize the embedding distance of each entity e and its
aligned entity e′ from the seed alignment �.

In Fig. 5, we demonstrate the entity embeddings of KG1 and KG2 in L1 and L2
embedding spaces, respectively, while we also show the updates of the embed-
dings of the entities of seed alignment, in order to minimize their embedding
distance. For simplification, we use a part of seed alignment, thus only the blue
entities and the orange entities are considered as aligned. Therefore, by this tech-
nique, assuming the spatial similarity of aligned entities in two different KGs,
we aim to adjust the axis of the two embedding spaces, so that entity vectors of
the same entity in two KGs to overlap. It is worth mentioning that we started
from two KGs encoded in two different embedding spaces (embeddings from
the embedding module) and we ended up with two KGs encoded in an unified
embedding space.

2.2.2.2 Swapping Swapping is a variation of sharing that produces extra posi-
tive edges, preserving the same objective as sharing. For instance, given two
aligned entity pairs (h, h�) ∈ �(KG1,KG2) and (t, t�) ∈ �(KG1,KG2) and a rela-
tion edge (h, r, t) of KG1 , swapping produces two new positive edges (h�, r, t) and
(h, r, t�) and feeds them in KG embedding models (embedding module) as positive
relation edges, in order to increase the training data, benefiting the quality of the
embeddings as we describe in Sects.2.5.1.2 and 2.5.6. Swapping does not intro-
duce a new loss function.

(8)SA =
∑

(e,e�)∈�(KGi,KGj)

∣∣e − ��∣∣.

Fig. 5   Sharing alignment technique

2081

1 3

Knowledge graph embedding methods for entity alignment: an…

2.2.2.3 Mapping Mapping aims to learn a matrix M as a linear transformation
on entity vectors from Li to Lj , in order to minimize the embedding distance of each
linearly transformed entity e and its aligned entity e′ from the seed alignment �:

In Fig. 6, we demonstrate the entity embeddings of KG1 and KG2 in L1 and L2
embedding spaces respectively, while we also show the process in which we learn
the matrix Mi,j that linearly transforms entities from L1 to L2. During this process,
the linearly transformed entities of KG1 should be close to their aligned entity of
KG2 according to the seed alignment. For simplification, we use a part of the seed
alignment, thus only the blue entities and the orange entities are considered as
aligned. Mapping, in contrary to sharing and swapping, aims to learn the mappings
between the two embedding spaces (deducing the linear transformation from L1 to
L2 ), without assuming the similarity of spatial emergence. More precisely, it does
not force the entity vectors of aligned entities to overlap, instead, it treats the learned
mappings as topological transformations (one-to-one correspondence) from L1 to L2 ,
preserving the two KGs encoded in two different embedding spaces.

2.3 � Knowledge graph embeddings using relations

In this section, we discuss relation-based KG embedding methods, all of which are
supervised. These methods use only the structural information (relation edges) for
learning the entity embeddings.

MTransE (Chen et al. 2017) is a translation-based model for multilingual KG
embeddings, but it is also applicable to general-purpose KGs, capturing their struc-
ture. The objective is to minimize the loss function

(9)SA =
∑

(e,e�)∈�(KGi,KGj)

∣∣Mije − ��∣∣.

Fig. 6   Mapping alignment technique

2082	 N. Fanourakis et al.

1 3

where SK is the loss function of the embedding module, SA is the loss function of the
alignment module, and � is a factor that weights SK and SA . As the loss function SK
of the embedding module, MTransE utilizes a simplified version of TransE (Eq. 1),
in which no negative relation edges are considered, while as the loss function SA of
the alignment module, it uses mapping (Eq. 9).

MTransE+RotatE (Sun et al. 2020) is a variation of MTransE that uses RotatE
(Eq. 2) as SK in Eq. 10, and sharing (Eq. 8) as SA , instead of TransE and mapping,
respectively.

RDGCN (Wu et al. 2019) leverages GCNs (described in 2.2.1.2) to incorporate
structural information in the entity embeddings. Particularly, given KG1 and KG2 ,
RDGCN constructs a primal (entity) graph Ge by merging KG1 and KG2 , and its dual
(relation) graph Gr , by creating a node in Gr for every relation type of Ge , and con-
necting two nodes in Gr if the corresponding relations in Ge share the same head or
tail entities.

Then, it uses a graph attention mechanism (a dual attention layer that assigns dif-
ferent importance to each neighbor’s contribution) to make interactions between
Ge and Gr , in order the resulting entity representations in Ge to capture the relation
information, and then, to be fed to a GCN, capturing the structure of the neighbor-
hood (Eq. 3). The resulting entity embeddings are refined using the mapping align-
ment technique (Sect. 2.2.2.3). The loss function that RDGCN aims to minimize is

where (ei, ej) are entity pairs from the seed alignment � , (e�
i
, e�

j
) are negative samples

generated by replacing ei or ej with a random entity, and d is the embedding distance
function used in mapping (Sect. 2.2.2.3).

RREA (Mao et al. 2020b) integrates GCNs and GATs (described in Sect. 2.2.1)
with a Relational Reflection Transformation, in order to obtain relation-specific
embeddings for KG entities. This transformation utilizes a matrix that, in contrary
to standard GCN and GAT, is constrained to be orthogonal, in order to reflect entity
embeddings across different relational hyperplanes. The orthogonal property of the
aforementioned matrix keeps the norms and the relative distances of entities in the
relational space unchanged.

More precisely, RREA stacks multiple GNN layers, in order to capture and aggre-
gate multi-hop neighborhood information for each entity embedding. The output
embedding of entity ei from the l-th layer is obtained as follows:

where ReLU (Parisi et al. 2022) is an activation function, Ne
ei
 are the neighboring

entities of ei , Rij denotes the relations between ei and ej , Mrk
 the relational reflection

(10)J = SK + �SA,

(11)L =
∑

(ei,ej)∈�,(e
�
i
,e�
j
)∉�

max
(
0, d(��, ��) − d

(
��� , �

�
�

)
+ �

)
,

(12)H
l+1
ei

= ReLU

⎛⎜⎜⎝
�

ej∈N
e
ei

�
rk∈Rij

�l
ijk
Mrk

h
l
ej

⎞⎟⎟⎠
,

2083

1 3

Knowledge graph embedding methods for entity alignment: an…

matrix of rk , and �l
ijk

 is a weight coefficient of Mrk
 (similar to GAT). The final entity

embedding comes from the concatenation of the embeddings of each layer. In addi-
tion, in order to include relational information around entities, RREA concatenates
the summation of the relation embeddings with entity embeddings to get dual-aspect
embeddings. The resulting entity embeddings are refined using the sharing align-
ment technique (Sect. 2.2.2.1). The loss function that RREA aims to minimize is the
following:

where e′
i
 and e′

j
 represent the negative pair of ei and ej , generated using truncated

uniform negative sampling (Sun et al. 2018; Zhu et al. 2019; Cao et al. 2019) and
dist is the embedding distance function used in sharing.

The methodology described above refers to the basic version of RREA,
RREA(basic). RREA also comes with a semi-supervised version, RREA(semi), that
proposes possibly aligned entity pairs in different iterations, in order to enrich the train-
ing set. According to Mao et al. (2020a), the entity pair (ei, ej) is proposed as aligned, if
ei and ej are mutually nearest aligned.

2.4 � Knowledge graph embeddings using attributes

In this section, we focus on attribute-based KG embedding methods. These methods
utilize not only the structural information of the KGs (relation edges) to learn the entity
embeddings, but also the attribute values (literals). In addition, in many methods the
attribute embeddings help to enrich the seed alignment or even in refining the entity
embeddings. We categorize the attribute-based methods depending on the usage of
seed alignment as supervised, semi-supervised and unsupervised.

2.4.1 � Supervised

MultiKE (Zhang et al. 2019) first constructs the embeddings of each literal l

where LP(on) is the pre-trained word embedding of word on , encode(⋅) is the encoder
that does the compression of the embeddings, and [;] is the concatenation operation.
If on is an out-of-vocabulary word (i.e., there is no pre-trained embedding for this
word), then MultiKE builds it by using pre-trained character embeddings. Then, it
learns entity embeddings by exploring three different views: the name view Θ(1) , the
relation view Θ(2) and the attribute view Θ(3).

Given an entity e, its name view ( Θ(1) ) is defined as

where name(⋅) is the name of the entity.

(13)L =
∑

(ei,ej)∈P
max

(
dist

(
ei, ej

)
− dist

(
e�
i
, e�

j

)
+ �, 0

)
,

(14)�(l) = encode
([
LP

(
o1
)
;LP

(
o2
)
;… ;LP

(
on
)])

,

(15)e(1) = �(name(e)),

2084	 N. Fanourakis et al.

1 3

For the relation view Θ(2) , it adopts TransE to learn the entity embeddings of the two
KGs, minimizing the following loss function

where X+ = X1 ∪ X2 are the relation edges that exist in the two KGs, X− are rela-
tion edges that do not exist in the two KGs (negative relation edges, created as in
TransE), frel is the scoring function of TransE (Eq. 1), and �(h,r,t) ∈ {−1, 1} denotes
whether (h, r, t) is a positive or a negative edge.

For the attribute view Θ(3) , again it uses TransE to learn the embeddings exploit-
ing the attributes and their values, aiming to minimize the loss function

where Y+ = Y1 ∪ Y2 are the attribute edges of the two KGs,
f attr

�
h(3), a, l

�
= − ∣ h(3) − CNN(⟨a;l⟩) ∣ , which is using a Convolution Neural Net-

work (CNN) representation of an attribute a and its literal value l, as follows:

where [;] denotes the concatenation operation, a the embedding of an attribute a, l
the embedding of a literal l, Ω the kernel of CNN, � the activation function, and W a
trainable weighted matrix.

For refining the entity embeddings of the relation and the attribute views, Mul-
tiKE minimizes the following two loss functions, respectively:

and

where (h, ĥ) and (t, t̂) are entity pairs in the seed alignment, X′ and X′′ are the relation
edges whose head and tail entities are in seed alignment, respectively, and Y′ are the
attribute edges whose head entities are in seed alignment.

For the entity alignment (alignment module), MultiKE produces a set of aligned
relations Srel and a set of aligned attributes Sattr that are used to minimize the follow-
ing loss function (cross-KG relation inference):

where X′′′ are the relation edges whose relations are in Srel and

(16)L
(
Θ(2)

)
=

∑
(h,r,t)∈X+∪X−

log
(
1 + exp

(
−�(h,r,t)frel(h, r, t)

))
,

(17)L
(
Θ(3)

)
=

∑
(h,a,v)∈Y+

log
(
1 + exp

(
−f attr

(
h(3), a, l

)))
,

(18)CNN(⟨a;l⟩) = �(vec(�(⟨a;l⟩ ∗ Ω))W),

(19)

LCE

(
Θ(2)

)
=

∑
(h,r,t)∈X�

log
(
1 + exp

(
−frel

(
ĥ
(2)
, r, t(2)

)))

+
∑

(h,r,t)∈X��

log
(
1 + exp

(
−frel

(
h(2), r, t̂

(2)
)))

(20)LCE

(
Θ(3)

)
=

∑
(h,a,l)∈Y�

log
(
1 + exp

(
−fattr

(
ĥ
(3)
, a, l

)))
,

(21)LCRA

(
Θ(2)

)
=

∑
(h,r,t)∈X���

sim(r, r̂) log
(
1 + exp

(
−frel

(
h(2), r̂, t(2)

)))
,

2085

1 3

Knowledge graph embedding methods for entity alignment: an…

is the similarity measure that is used to align or not two relations, based on their
name similarity (from literal embeddings) and their semantic similarity (from rela-
tion embeddings).

Finally, MultiKE jointly learns the final entity embeddings from the different
views in a unified embedding space, by minimizing the loss function

where H̃ =
⋃D

i=1
H(i) , H is the view-specific entity embedding, and D is the number

of views. For entity alignment, it uses swapping (Sect. 2.2.2.2).
BERT_INT (Tang et al. 2020) utilizes a well-known language model,

BERT (Devlin et al. 2019), in order to embed entities based on their factual informa-
tion (e.g., descriptions, names) and an interaction model, in order to compute their
interactions, instead of aggregating neighbors, which in many cases causes noisy
matches.

More precisely, for each entity e, it applies a pre-trained basic BERT unit that
accepts the factual information as input, aiming to minimize the following loss
function

to fine-tune BERT. Here, D is the seed alignment, e�+ is the correctly aligned entity
known from seed alignment, e�− is a randomly selected negative entity from the
other KG - truncated uniform negative sampling (Sun et al. 2018), m the margin and
g is the l1 distance, used for measuring the similarity between the embeddings C(e)
and C(e�).

Regarding the interaction model, it is divided into the name/description view,
the neighbor-views and the attribute-view interactions. Firstly, as name/description
interaction, it leverages the embeddings generated by BERT, calculating their cosine
similarity. Then, neighbor-view interaction compares names/descriptions of each
neighbor pair (considering also their neighboring relations and multi-hop neigh-
bors), producing a similarity matrix. The similarity matrix is then processed by a
dual aggregation function to extract the similarity vectors, i.e., the entity embed-
dings. Afterwards, rather than learning embeddings of entities by aggregating their
attributes, it compares each attribute pair, learning similarly to neighbor-view the
attribute similarity vectors. Finally, a unified dual aggregation function is applied to
extract the features from the neighbor-view and attribute-view interactions and gen-
erate the final entity embeddings.

(22)sim(r, r̂) = 𝛼1 cosine(𝜙(name(r)),𝜙(name(r̂))) + (1 − 𝛼1) cosine(r, r̂)

(23)L ITC (H̃,H) =

D∑
i=1

∣∣ H̃ −H(i) ∣∣,

(24)L =
∑

(e,e�+)∈D

max
{
0, g

(
e, e�+

)
− g

(
e, e�−

)
+ m

)
}

2086	 N. Fanourakis et al.

1 3

2.4.2 � Semi‑supervised

KDCoE (Chen et al. 2018) leverages a weakly aligned KG for semi-supervised
entity alignment using long (typically from a couple of sentences) textual descrip-
tions of entities. It co-trains iteratively two embedding models, one on the struc-
ture of the KG (KGEM) and another on the textual descriptions of the entities
(DEM), respectively, given a small seed alignment. During each iteration, each
embedding model proposes a new set of aligned entity pairs alternately, in order
to enrich the seed alignment. The process runs until one of the models has no
entity pair to propose.

KGEM is practically the same as MTransE (Eq. 10), using the TransE (Eq. 1)
embedding module (including negative samples) and mapping (Eq. 9). At the
end of this model, if the embedding distance between an entity e and its closest
(based on the distance function of mapping) entity ê′ is lower than a threshold,
then the pair (e, ê�) is proposed as aligned. DEM utilizes an encoder to process
textual description sequences of vectors de , that are produced by pre-trained word
embeddings, and learn the description embeddings. The learning objective of
DEM is to maximize the log likelihood of an entity e and its counterpart e′ in
terms of description embeddings, by minimizing the following loss function:

where � is the seed alignment and

where de and de′ are the embeddings of the textual descriptions of the two aligned
entities e and e′ , unrelated entities ek are chosen randomly from a uniform distribu-
tion U, and ∣ Bd ∣ is the batched sampling size. Intuitively, the encoder aims to maxi-
mize the dot product of descriptions of aligned entities and decrease the dot product
of descriptions of unrelated entities. At the end of this model, if the embedding dis-
tance between de and its closest entity de′ is lower than a threshold (different than the
one used for KGEM), then the pair (e, e�) is proposed as aligned.

For generating entity embeddings from textual descriptions, KDCoE utilizes a
self-attention Gated Recurrent Unit (GRU), in order to preserve the sequence of
words in a textual description and remove information irrelevant for the predic-
tion, while sharing information across the different descriptions. For more details
on this, we refer the reader to Chen et al. (2018).

(25)SD =
∑

(e,e�)∈�

−LL1 − LL2 =
∑

(e,e�)∈�

− log
(
P
(
e ∣ e�

))
− log

(
P
(
e� ∣ e

))

(26)LL1 = log 𝜎
(
d⊤
e
de�

)
+

∣Bd ∣∑
k=1

�
ek∼U

(
ek∈ELi

)
[
log 𝜎

(
−d⊤

ek
de�

)]

(27)LL2 = log 𝜎
(
d⊤
e
de�

)
+

∣Bd ∣∑
k=1

�
ek∼U

(
ek∈ELj

)[log 𝜎(−d⊤
e
dek

)]
,

2087

1 3

Knowledge graph embedding methods for entity alignment: an…

2.4.3 � Unsupervised

AttrE (Trisedya et al. 2019) is an unsupervised method that leverages both struc-
tural embeddings and attribute character embeddings for entity alignment. Instead
of relying on a seed alignment to refine the structural embeddings, it uses the fac-
tual information to minimize the embedding distance between entities that have
similar attribute character embeddings.

As shown in Fig. 7, AttrE consists of four modules: the schema alignment mod-
ule (preprocessing step), the structure embedding module JSE , the attribute character
embedding module JCE , and the alignment module JSIM

The predicate alignment module merges the two KGs and renames predicates with a
similar predicate name from KG1 and KG2 , with a unified naming schema. For exam-
ple, lgd:hasCountry and dbp:country (with lgd and dbp being the prefixes of the
Linked Geo Data and DBpedia namespaces, respectively) are converted to :country.
To find the predicates with similar names, it computes the Levenshtein distance of
the postfixes of the predicates’ URIs. If this score is greater than a predefined thresh-
old, then the two predicates are similar.

AttrE adopts TransE (Eq. 1) to learn the structure embeddings by minimizing the
JSE loss function, with � = count(r)

∣X∣
 , where count(r) is the number of occurrences of

relation r, and ∣X∣ is the total number of relation edges in the merged KG.
To learn the attribute character embedding, AttrE minimizes the following objec-

tive function:

(28)J = JSE + JCE + JSIM .

Fig. 7   Example of AttrE

2088	 N. Fanourakis et al.

1 3

where

and Y is the set of positive attribute edges, Y ′ is the set of negative attribute edges
(generated by replacing the head entity with a random entity), w weights relation

edges with aligned predicates, and fa(l) =
∑N

n=1

�∑t

i=1

∑n

j=i cj

t−i−1

�
 is an n-gram based

compositional function that encodes literals l of attributes a in the embedding space.
At the end of this process, entities that have similar attribute embeddings should
also have similar entity embeddings. In the example of Fig. 7, lgd:5147 has a similar
embedding with :Germany, since their attributes label:Germany have similar
embeddings.

Having learned the structure embeddings and the attribute embeddings, AttrE
combines them to produce the final entity embeddings, by minimizing the loss
function

where ��� the structure embedding of e, and ��� is the attribute character embedding
of e. For example, the embedding of the entities lgd:5147 and :Germany will be
updated in order their structured and attribute embeddings to be close. However, the
entities lgd:2401 and dbp:Kromsdorf have tail entities with similar embeddings. At
the end, the entities lgd:2401 and dbp:Kromsdorf will end up having similar embed-
dings too. For generating the alignment results, AttrE reports two entities as aligned,
if the cosine similarity of their entity embeddings is greater than a pre-defined
threshold.

2.5 � Qualitative comparison of embedding methods

In this section, we describe the general assumptions of the evaluated methods, while
we also compare the embedding-based entity alignment methods from different per-
spectives. For this purpose, we summarize in Tables 1 and 2 the basic characteristics
and techniques of the methods, with respect to eight main categories: embedding
module, literal size, alignment module, learning, schema alignment, embedding ini-
tialization, and negative sampling on relations and attributes, as described next.

2.5.1 � Embedding module

The type of information that each method exploits in order to learn the embeddings
reveals one of the most important assumptions that differentiates the methods. All
embedding-based entity alignment methods utilize the relational structure of enti-
ties (relations), assuming that structural similarity is the key to entity alignment.

(29)JCE =
∑
y∈Y

∑
y�∈Y �

max
(
0,
[
� + w

(
f (y) − f

(
y�
))])

,

(30)f (⟨h, a, l⟩) = ∣h + r − fa(l)∣

(31)JSIM =
∑

e∈E1∪E2

[
1 − cos

(
ese, ece

)]
,

2089

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
1  

M
et

ho
d

ca
te

go
rie

s

M
et

ho
ds

Em
be

dd
in

g
m

od
ul

e
A

lig
n.

 M
od

ul
e

Le
ar

ni
ng

Sc
he

m
a

A
lig

n.

En
t.

N
am

es
Re

la
tio

ns
A

ttr
. N

am
es

Li
t.

Va
lu

es
Li

t.
Si

ze

M
Tr

an
sE

✗
O

ne
-h

op
✗

✗
–

M
ap

pi
ng

Su
pe

rv
is

ed
✗

M
Tr

an
sE

+
Ro

ta
tE

✗
O

ne
-h

op
✗

✗
–

Sh
ar

in
g

Su
pe

rv
is

ed
✗

R
D

G
C

N
✓

M
ul

ti-
ho

p
✗

✗
–

M
ap

pi
ng

Su
pe

rv
is

ed
✗

R
R

EA
(b

as
ic

)
✗

M
ul

ti-
ho

p
✗

✗
–

Sh
ar

in
g

Su
pe

rv
is

ed
✗

R
R

EA
(s

em
i)

✗
M

ul
ti-

ho
p

✗
✗

–
Sh

ar
in

g
Se

m
i-s

up
er

vi
se

d
✗

K
D

C
oE

✗
O

ne
-h

op
✗

D
es

cr
ip

tio
ns

4
w

or
ds

M
ap

pi
ng

Se
m

i-s
up

er
vi

se
d

✗
M

ul
tiK

E
✓

O
ne

-h
op

✓
W

or
d

an
d

ch
ar

ac
te

r
5

w
or

ds
Sw

ap
pi

ng
Su

pe
rv

is
ed

N
am

e
an

d
Se

m
an

tic
A

ttr
E

✗
O

ne
-h

op
✗

C
ha

ra
ct

er
10

 c
ha

ra
ct

er
s

Sh
ar

in
g

U
ns

up
er

vi
se

d
N

am
e

B
ER

T_
IN

T
✓

M
ul

ti-
ho

p
✗

W
or

d
an

d
de

sc
rip

tio
n

12
8

W
or

ds
Sh

ar
in

g
Su

pe
rv

is
ed

✗

2090	 N. Fanourakis et al.

1 3

Ta
bl

e 
2  

In
iti

al
iz

at
io

n,
 h

id
de

n
la

ye
rs

 a
nd

 n
eg

at
iv

e
sa

m
pl

in
g

M
et

ho
d

Em
be

dd
in

g
in

iti
al

iz
at

io
n

La
ye

rs
N

eg
at

iv
e

sa
m

pl
in

g
on

 re
la

tio
ns

 n
eg

a-
tiv

e
pe

r p
os

iti
ve

N
eg

at
iv

e
sa

m
pl

in
g

on

at
tri

bu
te

s n
eg

at
iv

e
pe

r
po

si
tiv

e

M
Tr

an
sE

R
an

do
m

2
–

–
M

Tr
an

sE
 +

 R
ot

at
E

R
an

do
m

2
10

 (u
ni

fo
rm

)
–

D
C

oE
R

an
do

m
2

+
 2

 G
RU

​
1

 (u
ni

fo
rm

)
1

(u
ni

fo
rm

)
A

ttr
E

R
an

do
m

5
1

 (u
ni

fo
rm

)
1

(u
ni

fo
rm

)
M

ul
tiK

E
R

an
do

m
2

lit
.+

 4
 +

 3
 c

on
v.

10
 (

un
ifo

rm
)

–
R

D
G

C
N

N
am

e
em

be
dd

in
gs

4
G

A
T

+
 2

 G
C

N
12

5
 (u

ni
fo

rm
)

–
R

R
EA

(s
em

i)
R

an
do

m
2

G
A

T​
1

 (t
ru

nc
at

ed
)

–
R

R
EA

(b
as

ic
)

R
an

do
m

2
G

A
T​

1
 (t

ru
nc

at
ed

)
–

B
ER

T_
IN

T
R

an
do

m
3

M
LP

 +
 4

 R
B

F
2

 (t
ru

nc
at

ed
)

–

2091

1 3

Knowledge graph embedding methods for entity alignment: an…

However, there are methods that also exploit the literal values of the attributes, as
well as the entity and attribute names.

Among the evaluated methods, MultiKE, RDGCN and BERT_INT are the only
methods that use entity names in order to learn the final entity embeddings. Thus,
for these methods, we expect an improved performance on KGs where there is some
homogeneity in the naming of the entities.

2.5.1.1  Entity names  Some embedding-based entity alignment methods learn the
entity embeddings by encoding the entity names in the embedding space, so as enti-
ties with similar names to have similar embeddings. These methods work under the
assumption that the same real-world entities have to follow the same or semantically
similar naming. However, in many real-world KGs, this assumption is not holding as
entity names are replaced with source-specific ids. For this reason, several EA meth-
ods either avoid to utilise the entity names for the entity embeddings, either use them
jointly with the structural or factual information of KGs.

2.5.1.2  Relations  The structural information of the KGs constitutes the main type of
information that all embedding-based entity alignment methods use in order to learn
the entity embeddings. Entity embedding methods exploit the structural information
either in one hop or in multiple hops. The former use the local structural information
of the entities, ignoring the impact of more distant neighbors. For these methods, the
more relations we have per entity, the better results we expect to get, because entities
have the opportunity to minimize their embedding distance with multiple similar
entities (neighbors), exploiting multiple features to learn the final embeddings (more
information for learning). In addition, the more relation edges we have, the more
negative samples we have per entity, and as a result, entities move away from dissimi-
lar entities in the embedding space. The latter (multi-hop methods) use the subgraph
structure, exploiting a larger amount of relations between entities. This way, they
focus on the extended (multi-hop) neighborhood and aggregate the embeddings of
the multi-hop neighbors in order to learn their own.

Among the methods evaluated in this study, all of them use the relations to learn
the entity embeddings, with most methods focusing on the one-hop neighborhood,
except RDGCN, RREA(basic), RREA(semi), and BERT_INT, which follow a multi-
hop approach. This way, RDGCN and both versions of RREA increase the infor-
mation that an entity can exploit and the final entity embeddings are more expres-
sive. This benefit comes at the risk of incorporating more noisy information into the
embeddings, due to considering some distant neighbors, irrelevant or less important
for the entity alignment task. Thus, BERT_INT, rather than aggregating the infor-
mation of multi-hop neighbors, compares entity pairs from multi-hop neighbors,
called interactions, based on factual information (e.g., textual descriptions, names).

2.5.1.3  Attribute names  Some embedding-based entity alignment methods use
the attribute names for learning the entity embeddings. Usually, attribute names are
exploited by the methods in order to enhance the similarity measure of entities and

2092	 N. Fanourakis et al.

1 3

not as main source of information for learning the embeddings. That is because it
requires KGs to have similar naming schemes, which is not usual in real-world KGs.

MultiKE is the only method that utilizes this type of information, requiring a
homogeneous naming in terms of attributes. Thus, we expect this feature to perform
better in datasets originating from the same or similar data sources (e.g., Wikipedia-
based, or synthetic KGs).

2.5.1.4  Literal values and literal size  Many embedding-based entity alignment meth-
ods use literal values as auxiliary information to learn the entity embeddings. Specifi-
cally, they learn the embeddings of the literal values and they use those embeddings
for learning the entity embeddings, or for enriching the seed alignment, or even for
alignment. In most methods, all literal values are used, but in some methods, only the
literal values of the attributes with name “description” are used. In addition, there are
two methods for learning the literal-value embeddings: character-based and word-
based. The first one uses the characters of the literal to learn the final literal embed-
ding, while in the second one, the literal is tokenized (split into words) and the final
embedding is resulting by employing pre-trained word embeddings.

The character-based methods usually exploit a small part of the literals (e.g.,
the first few characters) and they are mostly used for short literals, such as dates.
In addition, there are many methods to learn the character-based embeddings: the
n-gram-based that sums the n-gram combinations of the literals and the method
that computes the average of the pre-trained character embeddings. The word-based
methods typically exploit more information from the literal value (e.g., the first few
words) and for this reason, they are mostly used for longer literals, such as names
and descriptions. However, the word-based methods assume the existence of the
word embeddings in the pre-trained set for all the words that appear in the literal val-
ues, which is very frequently not the case, resulting in out-of-vocabulary errors. For
this reason, there are also hybrid methods, that use the word-based method first, but
if a word does not exist in the pre-trained set (vocabulary), they use one of the afore-
mentioned character-based method, in order to learn the specific word’s embedding.
Regarding the literal size, it is a very important hyperparameter that defines the size
of the substring of the literal which will be used, including or excluding important
words or characters for the final literal embeddings.

Among the evaluated methods, KDCoE, AttrE, MultiKE and BERT_INT are
the ones that use literal values for learning embeddings. KDCoE exploits the first
4 words of textual descriptions and pre-trained word embeddings, in order to learn
the description embeddings and measure the entities similarity based on these
embeddings. The objective is to enrich the training set (Sect. 3.4) with extra aligned
entity pairs based on this similarity. Thus, if the similarity of an entity pair (based
on description embeddings) is above a pre-defined threshold (95%), the entities are
proposed as aligned, enriching the training set with an extra aligned entity pair that
was not included in the training set before. AttrE, in contrary, exploits the first 10
characters of the literal values and follows an n-gram based method to learn the
embeddings, for a combination of n values ranging from 1 to 10. The literal embed-
dings are used in the alignment module in order entities of the KGs with similar lit-
eral embeddings to be close in the embedding space. Specifically, AttrE uses literal

2093

1 3

Knowledge graph embedding methods for entity alignment: an…

embeddings for the alignment, since, as an unsupervised method, it does not use the
seed alignment during training process. Furthermore, MultiKE uses the first 5 words
and pre-trained word embeddings for learning the literal embeddings. In case a word
is not contained in the available pre-trained word embeddings, it averages the char-
acter embeddings of this word, i.e., it follows the hybrid approach described above.
MultiKE uses the literal embeddings in many ways, as described in Sect. 2.4.1, e.g.,
for name view, attribute view and schema alignment. BERT_INT utilizes long tex-
tual descriptions (limiting the words to 128), names, or literals for both BERT unit
and interaction model, as described in Sect. 2.4.1.

All these methods require homogeneity in terms of literal values, which is not
usual in real-world KGs. Finally, the character-based method that MultiKE uses as
alternative to word-based methods suffers in the literals that contain the same char-
acters in different order. For example, the number “5013” and the number “1350”
will have the same embeddings. AttrE does not have this issue, since it is following
an n-gram based method for character embeddings. BERT_INT, leveraging a vari-
ety of factual information and giving priorities depending on their availability and
quality, deals with heterogeneity issues (e.g., it prioritizes descriptions over entity
names, since descriptions contain richer information).

2.5.2 � Alignment module

The alignment module aims to produce a common embedding space for the enti-
ties of the two KGs, using three typical techniques described in Sect. 2.2.2.
MTransE+RotatE, AttrE, both versions of RREA, and BERT_INT utilize the shar-
ing technique to calibrate the axis of the embedding spaces of the two KGs, in order
the aligned entities to overlap. Consequently, we expect methods that rely on this
technique to work well on KGs with dense and similar neighborhoods. This setting
helps them to achieve the desired overlapping and preserve the initial structure of the
KGs in the embedding space. On the other hand, MTransE, KDCoE and RDGCN,
that rely on the mapping technique, learn a transformation matrix that aligns entities
in two separate embedding spaces. In contrary to sharing, this technique does not
assume the spatial similarity of the KGs. Finally, methods such as MultiKE, that
unify multiple embedding spaces (multi-view) and consume more relation edges for
training, rely on the swapping alignment technique.

2.5.3 � Learning

We divide the evaluated methods into supervised, that require the seed alignment for
the alignment module, semi-supervised, that use the seed for the alignment process,
but also try to enrich it, and unsupervised, that do not use the seed alignment for
the alignment process. All methods need seed alignment, either for training (align-
ment module) and testing (supervised and semi-supervised) or exclusively for test-
ing (unsupervised). Supervised methods (MTransE, MTransE+RotatE, RDGCN,
MultiKE RREA(basic) and BERT_INT) assume the existence of seed alignment,
which in many cases is hard to find (since it includes the matches of all the entities

2094	 N. Fanourakis et al.

1 3

of the two KGs), even in widely used Wikipedia-based KGs, hindering the EA task
especially when the KGs scale up in terms of content and density.

In contrary to the aforementioned category, semi-supervised methods (e.g.,
KDCoE and RREA(semi)) work sufficiently well when a small percentage of
aligned entities is available, which is more realistic in real-world KGs. However,
these methods usually require auxiliary information to support the alignment task
that involves the enrichment of the seed alignment. For example, KDCoE does this
by assuming the existence of multiple, homogeneous textual descriptions. On the
other hand, RREA(semi) does not use auxiliary information; it utilizes specific rules
(e.g., the two entities have to be mutually nearest aligned, in order be proposed as
aligned).

Finally, unsupervised methods carry out a more difficult task, since they use no
seed alignment for the alignment process. Particularly, the lack of seed alignment
makes AttrE leverage the literals similarity for alignment purposes, assuming their
homogeneity. It is worth noting that unsupervised methods, in contrary to supervised
and semi-supervised, do not assume that every entity of KG1 should be matched to
exactly one entity of KG2.

2.5.4 � Schema alignment

We refer to schema alignment as the process of finding similar relations and/or
attributes. The similarity of the relations or the attributes can be measured by two
different ways: measuring their name similarity (AttrE) or measuring both their
name similarity and their structural (semantic) similarity (MultiKE) in the embed-
ding space. All these methods can benefit if the initial KGs follow similar naming
schemes, making the process of finding similar relations and attributes easier.

AttrE and MultiKE are two methods that perform schema alignment. MultiKE
captures the schema similarity not only in terms of relation or attribute name simi-
larity, but also exploits the semantic similarity of relations and attributes. In the case
that we have KGs with heterogeneous naming at the schema level, MultiKE would
have better performance than AttrE, that only exploits the name similarity for the
schema alignment.

2.5.5 � Embedding initialization

For initializing the entity embeddings, there are two practices: the random one,
that initializes them by picking random numbers from a normal distribution, and
the one that initializes them with the entity name embeddings. The latter has better
results (Kocmi and Bojar 2017), because embeddings contain some information for
the entities, but it works under the assumption that matching entities have similar
entity names, which is not holding in many cases. RDGCN is the only method that
initializes the embeddings with entity name embeddings.

2095

1 3

Knowledge graph embedding methods for entity alignment: an…

2.5.6 � Negative sampling

Negative sampling (Kamigaito and Hayashi 2022) is the process of generating n (a
hyperparameter) negative examples of edges that do not exist in the KG, by replac-
ing either the head or the tail entities of each positive edge with another random
entity - uniform negative sampling (Bordes et al. 2013) - or with a highly similar
neighbor - truncated negative sampling (Sun et al. 2018; Zhu et al. 2019; Cao et al.
2019). Truncated negative sampling, in contrary to uniform negative sampling,
ensures difficult negative samples that contribute more on learning process than the
easy ones. For example, if we sample a negative triple (Titanic, capitalOf, Greece)
from (Athens, capitalOf, Greece), using uniform sampling, we can find that Athens
and Titanic have very low similarity and the generated negative sample contributes
little in the learning process. If, instead, we generate the negative triple (Thessalon-
iki, capitalOf, Greece) from (Athens, capitalOf, Greece), using truncated sampling,
this negative triple would contribute more in the learning process, since Thessalon-
iki (the second biggest city in Greece) and Athens, are two very similar entities.

In general, negative sampling is widely used in KG embedding models on rela-
tions, as well as on attributes, in order to maximize the embedding distance of dis-
similar entities. The more negative examples we have per positive example, the big-
ger the distance among dissimilar entities. In addition, an entity that participates
in a high number of positive examples (high average relations per entity), will also
participate in an increased number of negative examples. For instance, if an entity
appears in the head or the tail of x relation edges, then the number of the nega-
tive examples for this entity can be as high as x ∗ n , where n is the corresponding
hyperparameter.

All the evaluated methods use negative sampling, with the exception of MTransE.
The higher the ratio of negative per positive triples, the better the performance of
the methods, since the embedding distance of dissimilar entities increases. Although
requiring 10 or even 125 times bigger KGs (for 10 or 125 negative samples per pos-
itive, respectively) improves the performance, this comes at the cost of increased
training time and less scalable methods. MultiKE further enriches the KGs by using
the swapping alignment technique that generates additional positive examples, as
described in Sect. 2.2.2.2. This technique not only increases the available informa-
tion for training, but it also increases the negative examples for the entities indi-
rectly, as entities will appear in more relation edges.

2.5.7 � Neural network architectures

All evaluated methods are implemented on top of a neural network architecture with
multiple hidden layers, each consisting of d neurons, where d are the dimensions of
the embeddings (dim). More precisely, relation-based methods utilize either shallow
neural networks (MTransE, MTransE+RotatE), or Graph Neural Network (RDGCN,
RREA(basic), RREA(semi)) for learning the embeddings, while attribute-based
methods use shallow neural networks for encoding relations (AttrE) or Graph Neu-
ral Networks for encoding literals (MultiKE) and textual descriptions (KDCoE) or
Radial Basis Function kernel (Xiong et al. 2017) for the interactions (BERT_INT).

2096	 N. Fanourakis et al.

1 3

Regarding relation-based methods, MTransE and MTransE+RotatE, utilize one
layer for embedding entities and one layer for embedding entity relations. As shown
in Table 7, the dimensions of both embeddings are the same (100). On the other
hand, RDGCN consists of four Graph Attention Networks (GATs) (Velickovic et al.
2018), two primal layers and two dual layers. The final embeddings are output by
two stacked GCN layers (Kipf and Welling 2017). Both versions of RREA utilize
two stacked GATs (Relational Reflection Aggregate Layer). It is worth mention-
ing that both RDGCN and both versions of RREA use variations of graph attention
mechanisms, not standard GATs.

Attribute-based methods, as shown in Table 2, use two standard layers (for entity
and relation embeddings) and some extra layers to encode additional information
of entity descriptions. For example, KDCoE utilizes two layers for embedding enti-
ties and their relations and two GRU layers for encoding their textual descriptions.
It is worth mentioning that while all other examined methods learn the structure
and attribute embeddings jointly, KDCoE is the only method that trains two differ-
ent models alternatively (co-training). AttrE consists of five layers: one layer for
embedding entities of relation edges, one layer for embedding entities of attribute
edges, one layer for relations, one layer for attributes, and one layer for character
embeddings. All of these layers contain the same number of neurons (100). Mul-
tiKE utilizes two layers for the word embeddings, three layers for entity, relation and
attribute embeddings, one convolution layer for encoding literals, and one layer that
combines them. Finally, it uses two additional convolution layers for the cross-KG
entity inference based on relations and attributes. BERT_INT utilizes four Radial
Basis Function kernels (one layer each one) for the interaction model and three Mul-
tilayer Perceptron for obtaining the entity embeddings.

It is worth mentioning that the simpler the architecture, the more scalable the
method is (e.g., as shown in Table 14, the translation-based method MTransE is
more scalable than the GNN-based method RDGCN).

3 � Experimental setting

In this section, we give an overview and statistics about the datasets, we describe the
evaluation protocol and the metrics that we used. We also provide implementation
details about this study. The source code of this work is publicly available.3

3.1 � Datasets

For the experimental evaluation we utilized nine datasets, each consisting of a pair
of KGs to be aligned, four from OpenEA (Sun et al. 2020) and five datasets from
Efthymiou et al. (2015), Obraczka et al. (2021) in order to enrich the available data
characteristics and ensure a trustworthy meta-level analysis.

3  https://​github.​com/​fanou​rakis/​exper​iment​al-​review-​EA.

https://github.com/fanourakis/experimental-review-EA.

2097

1 3

Knowledge graph embedding methods for entity alignment: an…

For the datasets from OpenEA, three well-known KGs were used as
sources: DBpedia (version 2016-10) (Lehmann et al. 2015), Wikidata (version
20160801) (Vrandecic and Krötzsch 2014) and YAGO3 (Rebele et al. 2016).
The seed alignment is constructed by the owl:sameAs links, which were provided
with those KGs. In addition, it is hard for embedding-based approaches to run on
full KGs due to the large candidate space, hence the authors of OpenEA sampled
real-world KGs, by their iterative degree-based sampling algorithm described in
Sect. 3.4. The resulting KGs have a size of 15K entities each, constituting the data-
sets D_W_15K_V1 and D_Y_15K_V1. In order to examine the behaviour of the
methods with respect to the density of the KGs, the authors of OpenEA generated
an additional dense version for each dataset (D_W_15K_V2 and D_Y_15K_V2).
For generating the dense version, they deleted entities (nodes) with low ( ≤ 5 ) node
degrees and they performed again their iterative degree-based sampling algorithm,
described in Sect. 3.4. The above mentioned datasets are described as follows:

•	 D_W_15K_V1 and D_W_15K_V2 are the sparse and the dense datasets,
respectively, that were constructed from DBpedia and Wikidata KGs, describ-
ing actors, musicians, writers, films, songs, cities, football players and football
teams. We chose them in order to examine the influence of KG density variations
in the relation- and attribute-based methods. In addition, these datasets have both
low entity name similarity and a low number of entities that have long textual
descriptions, undermining the methods that use them. In these datasets, relation
and attribute names have been replaced with special ids, which influences in a
negative way methods that perform schema alignment using predicate names.

•	 D_Y_15K_V1 and D_Y_15K_V2 are the sparse and the dense datasets, respec-
tively, that were constructed from DBpedia and YAGO3. They contain the same
entity types with D_W_15K but unlike D_W_15K, they have both high number
of entities that have long textual descriptions and high entity name similarity.

Five additional datasets, from Efthymiou et al. (2015), Obraczka et al. (2021),
were employed, that originate from the following eight KGs: the BTC2012 version
of DBpedia,4 BBCmusic (originating from Kasabi5), IMDb,6 TVDB,7 TMDb,8 and
two restaurant KGs.9 None of these datasets originally cover the assumptions of
embedding-based entity alignment methods, thus we pre-process them, as described
in Sect. 3.4. The five extra datasets, built from those KGs, are the following:

•	 BBC-DB (Efthymiou et al. 2015) is a sparse dataset constructed by BBCmusic
and the BTC2012 version of DBpedia. It contains various entity types such as
musicians, their birth places and bands, while also it has the highest number of

4  http://​km.​aifb.​kit.​edu/​proje​cts/​btc-​2012/.
5  https://​archi​ve.​org/​detai​ls/​kasabi.
6  https://​www.​imdb.​com/.
7  https://​www.​thetv​db.​com/.
8  https://​www.​themo​viedb.​org/.
9  http://​oaei.​ontol​ogyma​tching.​org/​2010/​im/.

http://km.aifb.kit.edu/projects/btc-2012/.
https://archive.org/details/kasabi.
https://www.imdb.com/.
https://www.thetvdb.com/.
https://www.themoviedb.org/.
http://oaei.ontologymatching.org/2010/im/.

2098	 N. Fanourakis et al.

1 3

average attributes per entity and the highest number of entities that have textual
descriptions among other datasets. In addition, this dataset is better suited for the
methods that perform schema alignment, since these KGs follow similar predi-
cate naming conventions.

•	 imdb-tmdb, imdb-tvdb, and tmdb-tvdb (Obraczka et al. 2021) were con-
structed from IMDb, TMDb, and TVDB that contain descriptions about people,
movies, tv series, episodes and companies. Those datasets have a low number of
entities, which makes them interesting for examining the performance of super-
vised vs unsupervised methods with a small training dataset. In addition, they are
much sparser than the previous datasets, with low average attributes per entity,
while they exhibit high homogeneity in terms of literals and predicate names.
tmdb-tvdb features higher homogeneity in terms of literals and lower similarity
of long-text descriptions, compared to imdb-tvdb and tmdb-tvdb.

•	 Restaurants9 contains descriptions of real restaurants and their addresses from
two different KGs. It is the smallest dataset in terms of number of entities, rela-
tion types and attribute types, but its main challenge is that it does not cover the
assumptions of all the embedding-based entity alignment methods. Specifically,
not all entities of KG1 are matched with all the entities KG2 and vice versa. We
chose this dataset to examine whether the evaluated methods can be generalized
beyond datasets that satisfy the 1-to-1 assumption.

Table 3   Statistics per dataset

Datasets #Rel_Triples #Attr_Triples #Rel_Types #Attr_Types Sym-
metric_
Rels

D_W_V1 KG1 38,265 68,258 248 342 7
D_W_V1 KG2 42,746 138,246 169 649 2
D_W_V2 KG1 73,983 66,813 167 175 1
D_W_V2 KG2 83,365 175,686 121 457 0
D_Y_V1 KG1 30,291 71,716 165 257 4
D_Y_V1 KG2 26,638 132,114 28 35 2
D_Y_V2 KG1 68,063 65,100 72 90 0
D_Y_V2 KG2 60,970 131,151 21 20 0
BBC-DB KG1 15,478 18,165 9 4 3
BBC-DB KG2 45,561 149,720 98 723 1
imdb-tmdb KG1 4,747 10,279 2 13 0
imdb-tmdb KG2 4,857 8,947 2 29 0
imdb-tvdb KG1 3,389 5,648 2 13 0
imdb-tvdb KG2 1,051 3,535 2 8 0
tmdb-tvdb KG1 3,396 5,326 2 24 0
tmdb-tvdb KG2 938 4,096 2 8 0
Restaurants KG1 226 1,504 2 4 0
Restaurants KG2 1,504 3,760 2 4 0

2099

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
4  

S
ta

tis
tic

s p
er

 d
at

as
et

 fo
r t

he
 M

et
a-

fe
at

ur
es

D
at

as
et

s
Se

ed
 a

lig
nm

en
t

si
ze

D
en

si
ty

H
et

er
og

en
ei

ty

#E
nt

ity
_P

ai
rs

(K

G
1/

K
G

2)
#A

vg
_R

el
s_

pe
r_

En
tit

y
(K

G
1/

K
G

2)

#A
vg

_A
ttr

s_
pe

r_
En

tit
y

(K
G

1/
K

G
2)

So
le

_R
el

s
(K

G
1/

K
G

2)

H
yp

er
_R

el
s

(K
G

1/
K

G
2)

#E
nt

s_
D

es
cr

D
es

cr
_S

im
En

t_
N

am
e_

Si
m

Li
t_

Si
m

Pr
ed

_N
am

e_
Si

m

D
_W

_V
1

15
K

 /
15

K
2.

86
 /

3.
15

4.
69

 /
9.

61
91

 /
74

15
7

/ 9
5

1,
18

1
/ 9

,0
32

0.
69

0.
72

0.
81

0
D

_W
_V

2
15

K
 /

15
K

5.
39

 /
5.

77
4.

52
 /

11
.9

7
53

 /
44

11
4

/ 7
7

27
8

/ 3
,5

79
0.

73
0.

78
0.

83
0

D
_Y

_V
1

15
K

 /
15

K
2.

8
/ 3

.5
8

4.
89

 /
8.

8
53

 /
5

11
2

/ 2
3

3,
45

5
/ 1

2,
00

0
0.

88
0.

99
0.

78
47

.3
7

D
_Y

_V
2

15
K

 /
15

K
6.

12
 /

10
.9

8
4.

38
 /

8.
74

17
 /

6
55

 /
15

2,
94

5
/ 1

2,
00

0
0.

87
0.

91
0.

79
47

.9
9

B
B

C
-D

B
9,

39
6

/ 9
,3

96
1.

72
 /

6.
03

1.
94

 /
20

.1
5

9
/ 2

0
0

/ 7
8

2,
43

0
/ 2

,1
33

0.
62

0.
34

0.
87

80
.9

3
im

db
-tm

db
1,

93
3

/ 1
,9

33
2.

65
 /

2.
71

5.
31

 /
4.

62
2

/2
0

/ 0
75

3
/ 7

53
0.

35
0.

48
0.

92
88

.4
9

im
db

-tv
db

1,
07

6
/ 1

,0
76

3.
22

 /
1

5.
25

 /
3.

28
2

/ 2
0

/ 0
47

2
/ 4

73
0.

38
0.

43
0.

91
79

.9
6

tm
db

-tv
db

98
2

/ 9
82

3.
62

 /
1

5.
42

 /
4.

17
2

/ 2
0

/ 0
18

0
/ 1

80
0.

22
0.

84
0.

94
80

.3
3

Re
st

au
ra

nt
s

11
2

/ 1
12

1
/ 2

1.
66

 /
1.

66
2

/ 2
0

/ 0
90

 /
73

0
0.

95
0.

96
80

.1
1

2100	 N. Fanourakis et al.

1 3

Ta
bl

e 
5  

M
et

a-
fe

at
ur

es
 o

f t
he

 d
at

as
et

s

D
at

as
et

s
Se

ed
 a

lig
nm

en
t s

iz
e

D
en

si
ty

H
et

er
og

en
ei

ty

#E
nt

ity
_P

ai
rs

 o
f s

ee
d

al
ig

nm
en

t
A

vg
_

Re
ls

_p
er

_
En

tit
y

A
vg

_
A

ttr
s_

pe
r_

En
tit

y

So
le

_R
el

s
H

yp
er

_R
el

s
#E

nt
s_

D
es

cr
D

es
cr

 si
m

En
t_

N
am

e_
Si

m
Li

t_
Si

m
Pr

ed
_N

am
e_

Si
m

D
_W

_V
1

15
,0

00
3.

00
7.

15
39

.5
6

60
.4

3
1,

18
1

0.
69

0.
72

0.
81

0
D

_W
_V

2
15

,0
00

5.
58

8.
24

33
.6

8
66

.3
1

27
8

0.
73

0.
78

0.
83

0
D

_Y
_V

1
15

,0
00

3.
19

6.
84

30
.0

5
69

.9
4

3,
45

5
0.

88
0.

99
0.

79
47

.3
7

D
_Y

_V
2

15
,0

00
8.

55
6.

56
24

.7
3

75
.2

6
2,

94
5

0.
87

0.
91

0.
78

47
.9

9
B

B
C

-D
B

9,
39

6
3.

87
11

.0
4

27
.1

0
72

.8
9

2,
43

0
0.

62
0.

34
0.

87
80

.9
3

im
db

-tm
db

1,
93

3
2.

68
4.

96
10

0
0

75
3

0.
35

0.
48

0.
92

88
.4

9
im

db
-tv

db
1,

07
6

2.
11

4.
26

10
0

0
47

2
0.

38
0.

43
0.

91
79

.9
6

tm
db

-tv
db

98
2

2.
31

4.
79

10
0

0
18

0
0.

22
0.

84
0.

94
80

.3
3

Re
st

au
ra

nt
s

11
2

1.
50

1.
66

10
0

0
90

0
0.

95
0.

96
80

.1
1

2101

1 3

Knowledge graph embedding methods for entity alignment: an…

3.2 � Statistics and meta‑features

In order to quantify useful information about the knowledge graphs, we calculated
some basic dataset statistics regrading the type and the number of relations and
attributes that are presented in Table 3 and some additional dataset statistics that
are shown in Table 4, categorized in the three following categories: seed alignment
size, density and heterogeneity that were used for constructing the meta-features of
Table 5.

Seed alignment size refers to the number of entity pairs in the seed alignment.
Density consists of the average relations per entity and the average attributes per
entity, which indicate the density of the knowledge graphs on structural and attrib-
ute level, respectively. In addition, it consists of the proportion of sole and hyper
relation types of the two knowledge graphs, where a sole relation type is a relation
type that does not co-occur with another relation type in any entity pair (Zhang et al.
2017), otherwise, a relation is called a hyper relation (Zhang et al. 2017). Finally,
in order to measure the heterogeneity of the two knowledge graphs, we calculate
the textual description similarity (Descr_Sim) in the embedding space, of entities
that are included in the test and validation sets, the number of entities of the two
KGs that have textual descriptions (#Ents_Descr), the similarity of entity names
(Ent_Name_Sim), the similarity of literals (Lit_Sim) and the similarity of predicate
names (Pred_Name_Sim). Specifically, for Descr_Sim, Ent_Name_Sim and Lit_
Sim, we report the average of MAX similarities of each description, entity name and
literal, respectively. As for the Pred_Name_Sim, we measure the name similarity of
relation and attribute types (predicates) using Levenshtein Distance, as suggested in
AttrE (Trisedya et al. 2019). Specifically, we report the average of MAX similarities
of each predicate (relation or attribute).

The meta-features of Table 5 were constructed by applying the aggregation
functions of Table 6 on the statistics of Table 4, in order to construct features for
each individual dataset instead of each individual KG of the dataset and use them
in Sect. 4.3. More precisely, for Avg_Rels_per_Entity, Avg_Attrs_per_Entity,
Sole_Rels, Hyper_Rels and #Ents_Descr (based on KDCoE that proposes possi-
bly aligned entities of the entities of the first KG) were used aggregation functions,
while #Entity_Pairs, Descr_Sim, Ents_Name_Sim, Lit_Sim and Pred_Name_Sim
were used as meta-features without the application of any aggregation function.

Table 6   Aggregation functions

Statistics Aggregation functions

Avg_Rels_per_Entity (avg_rel_per_entity_KG1 + avg_rel_per_entity_KG2) / 2
Avg_Attrs_per_Entity (avg_attr_per_entity_KG1 + avg_attr_per_entity_KG2) / 2
Sole_Rels ((sole_KG1 + sole_KG2) / rels.)*100
Hyper_Rels ((hyper_KG1 + hyper_KG2) / rels.)*100
#Ents_Descr ents_with_descr_KG1

2102	 N. Fanourakis et al.

1 3

3.3 � Evaluation protocol and metrics

In this section, we describe the evaluation protocol that embedding-based entity
alignment methods use, the metrics used for their evaluation, while we also compare
those metrics.

3.3.1 � Evaluation protocol

EA methods have been traditionally evaluated using classification-based metrics
(e.g., precision and recall), comparing the matches proposed by those methods to
the correct matches of a given ground truth (Leone et al. 2022). On the contrary,
KG embedding-based EA methods, adopted rank-based evaluation metrics (see
Sect. 3.3.2), possibly influenced by the recent literature on the embedding-based
methods for link prediction (Bordes et al. 2013; Sun et al. 2019). In order to com-
pare embedding-based EA methods on an equal basis and re-use the available
open-source code as much as possible, we adopt the latter evaluation metrics and
acknowledge that the criticism of Leone et al. (2022) is valid.

During the evaluation, the embedding-based EA methods use two embedding
matrices, one for each KG, with the entity embeddings in their rows, and the test
set10 of the seed alignment (Fig. 8). The alignment methods calculate the similar-
ity of every entity of the first matrix with every entity of the second matrix, in the
embedding space using similarity measures such as Euclidean distance, cosine simi-
larity, etc. The result of this process is a similarity list, that we sort in descending
order and aim to find the index (ranking) of the aligned entity in the similarity list.

In the example of Fig. 8, e′
1
 is the aligned entity of entity e1 , known as true entity,

according to seed alignment, and it is in the first position in the similarity list. In the

Fig. 8   Evaluation process

10  The seed alignment is split into train (20%), validation (10%) and test (70%), as in (Sun et al. 2020).

2103

1 3

Knowledge graph embedding methods for entity alignment: an…

last similarity list, there is a tie in the scores of the two candidate entities e′
3
 and e′

2
 ,

that is decisive for some evaluation metrics. According to Berrendorf et al. (2020),
there are different behaviors for this phenomenon that are categorized as optimistic,
pessimistic, non-deterministic and realistic. In optimistic behavior, it is assumed that
the true entity is ranked first among other entities with the same score, in pessimis-
tic, it is assumed that it is ranked last, and realistic is the mean of optimistic and
pessimistic. In our case, all of the evaluated methods are non-deterministic, which
means that handling ties depends on the inner working of the sorting algorithm that
the methods use to sort each similarity list.

In the context of ensuring a reliable and unbiased experimental process, we con-
ducted the experiments with 5-fold cross-validation (Sun et al. 2020), where each
fold is split into train, validation and test10 . Finally, the performance of each method,
per dataset, for a specific metric is calculated by the average scores that the method
achieves in the 5 folds for this metric.

3.3.2 � Evaluation metrics

For the evaluation of the alignment methods, we use the following metrics, which
depend on the individual ranks I generated by each method, as described in the
previous section.

Hits@k describes the fraction of hits (true entities) that appear in the first k ranks
of the sorted similarity lists:

where Hits@k ∈ [0, 1] . In the experimental results, we report Hits@k values as per-
centages (i.e., Hits@k ⋅ 100% ). Specifically, this metric measures the accuracy of the
methods with adjustable error rate. For instance, Hits@10 allows a small error rate
in contrary to Hits@1 that does not allow any errors. The weakness of this metric
is that it considers only the first k position of the similarity list, and as a result, all
the other positions have no effect to the final score. An advantage of this metric is
its easy interpretation. In the example of Fig. 8, Hits@1 = 1∕3 = 0.33 , since among
the three similarity lists ( ∣ I ∣= 3 ), only in one similarity list, a true entity pair is
observed in the first rank.

Mean Rank (MR) computes the average ranks of the true entity pairs:

where MR ∈ [1, ∣ E ∣] (the lower the better). An advantage of MR is its sensitivity
to any model performance changes, since it reflects the average performance and
not only the fist k ranks. However, it is also sensitive to outliers, because a very high
or very low rank of a true entity pair affects the mean of the ranks. Finally, MR is
an easily interpretable metric, but we should keep in mind the size of the candidate
entities, because MR = 10 is better for 1,000,000 entities than for 20 entities. In the

(32)Hits@k =
∣ {r ∈ I ∣ r ≤ k} ∣

∣ I ∣
,

(33)MR =
1

∣ I ∣

∑
r∈I

r,

2104	 N. Fanourakis et al.

1 3

example of Fig. 8, assuming that in the third similarity list the true pair is in the sec-
ond rank, MR = (1 + 3 + 2)∕3 = 2.

Mean Reciprocal Rank (MRR) is the inverse of harmonic mean rank:

where MRR ∈ (0, 1] . This metric is affected more by the top-ranked values rather
than the bottom ones. For instance, the change is larger when moving from 1 to 2
compared to moving from 10 to 1,000. Thus, MRR is less sensitive to outliers. In
the example of Fig. 8, assuming that in the third similarity list the true pair is in the
second rank, MRR = (1∕1 + 1∕3 + 1∕2)∕3 = 0.61.

3.4 � Pre‑processing pipelines

The embedding-based entity alignment methods are working under some strict
assumptions that make them inapplicable to the five new datasets. However, for a
reliable experimental evaluation of the methods under the same conditions and data
characteristics, we pre-process those datasets in order to conform to the assumptions
described in Sect. 2.

1-to-1 and structural-information assumptions Firstly, we processed the seed
alignment, in order to satisfy the 1-to-1 mapping assumption, as follows. If there are
two entity pairs (ei, ej) and (ei, e�j) in the seed alignment, we need to keep one of
them. In the dilemma of choosing which entity pair to remove, we examined two
factors. The first factor is to keep the entity pair in which the true entity, ej or e′

j
 in

this example, is involved in at least one relation edge (one of the other assumptions
of these methods). The second factor is to keep the entity pairs in which the true
entity has the highest node degree (number of incoming and outgoing edges), in the
effort to reduce as little as possible the initial KGs. In addition, we processed the
initial KGs, by removing relation edges (h, r, t) , whose head (h) or tail (t) entities did
not appear in the seed alignment. Then, we repeated the same process for the attrib-
ute edges, removing the edges whose head entity did not appear in the seed align-
ment, and also removing the attribute edges whose head entity was not involved in at
least one relation edge.

Pre-aligned predicates assumption In addition to these assumptions, AttrE
requires predicate alignment, as described in Sect. 2.4 and merging the two KGs
into one KG. The predicate alignment step is performed by manual inspection of the
data, as suggested by the authors of AttrE.11 For example, given the attributes :name
and :hasName, the second one is replaced by :name.

Sampling. For sampling real-world KGs, the authors of OpenEA proposed an
iterative degree-based sampling (IDS) algorithm which simultaneously removes
entities of the two KGs using seed alignment. The objective of this algorithm is to
generate a dataset of a specific size from real-world KGs, such that the difference of

(34)MRR =
1

∣ I ∣

∑
r∈I

1

r
,

11  https://​bitbu​cket.​org/​bayudt/​kba/​src/​35c67​d56a8​f0e2b​cc05e​8d56f​b98c4​374e3​ff542/.

https://bitbucket.org/bayudt/kba/src/35c67d56a8f0e2bcc05e8d56fb98c4374e3ff542/.

2105

1 3

Knowledge graph embedding methods for entity alignment: an…

the entity degree distribution, between the original KG and the sampled KG, does
not exceed a certain value. In order to determine which entities to remove without
greatly affecting the entity degree distribution, they delete entities with low Pag-
eRank scores, while assessing the divergence of the two degree distributions of the
KGs using the Jensen-Shannon (JS) (Lin 1991) measure. The algorithm stops when
the size of the datasets is the desired one (15K) and the divergence is ≤ 5%.

3.5 � Implementation details

All experiments were performed in a server with 16 cores (AMD EPYC 7232P @
3.1 GHz), 64 GB RAM, one RTX-4090 GPU (24 GB) and Ubuntu 18.04.5 LTS. We
used the code of OpenEA12 (2020-07-28) for the experiments of methods MTransE,
MTransE + RotatE, KDCoE, MultiKE and RDGCN. For AttrE, we noticed that the
implementation of OpenEA utilizes the seed alignment for training, which contra-
dicts the unsupervised learning nature of AttrE (Trisedya et al. 2019). For this rea-
son, we used the code provided by the authors of AttrE11 (2019-01-11). Finally, for
RREA (basic and semi), BERT_INT and PARIS, we used the code provided by the
authors.13,14,15

For conducting a fair experimental process, we used the same hyperparameter
values as described in the works of OpenEA, AttrE, RREA and BERT_INT, and
are shown in Table 7. Dim is the dimensions of the embeddings (length of the vec-
tor representations). The higher dimensions an embedding has, the more features
(expressiveness) it has. Batch size is the number of relation edges that we used
in each iteration during training. All the examined methods adopt a batch size of
5,000, except AttrE which adopts 100 and BERT_INT 128. Max epochs refers to
the times the learning algorithm will work in the entire dataset. In our experiments,

Table 7   Hyperparameters of
methods

Methods Dim Batch size Max epochs

MTransE 100 5,000 2,000
MTransE+RotatE 100 5,000 2,000
RDGCN 300 5,000 2,000
RREA(basic) 100 5,000 1,200 (fix)
RREA(semi) 100 5,000 6,000 (fix)
KDCoE 100 5,000 2,000
MultiKE 100 5,000 2,000
AttrE 100 100 50 (fix)
BERT_INT 300 128 205 (fix)

12  https://​github.​com/​nju-​webso​ft/​OpenEA/​tree/​2a6e0​b03ec​8cdca​d4920​704d1​c3854​7a3ad​72abe.
13  https://​github.​com/​MaoXi​nn/​RREA.
14  https://​github.​com/​kosug​i11037/​bert-​int.
15  https://​github.​com/​epfl-​dlab/​entity-​match​ers.

https://github.com/nju-websoft/OpenEA/tree/2a6e0b03ec8cdcad4920704d1c38547a3ad72abe.
https://github.com/MaoXinn/RREA.
https://github.com/kosugi11037/bert-int.
https://github.com/epfl-dlab/entity-matchers.

2106	 N. Fanourakis et al.

1 3

there are two ways to define the number of epochs. The first one is to give a fixed
number (50, 205, 1,200 or 6,000 epochs), as AttrE, BERT_INT, RREA(basic) and
RREA(semi) do. The second one, early stopping, is to terminate the training process
when Hits@1 starts dropping, based on the validation set, checked every 10 epochs.
The latter ensures that the model does not overfit. It is worth noting RREA(semi)
requires a fixed number of iterations (5), while KDCoE decides the number of itera-
tions dynamically. RREA(basic) is the first iteration of RREA(semi).

4 � Analysis of experimental results

In this section, we report and analyze the results of a series of experiments we con-
ducted to answer the open questions Q1-Q4 posed in Sect. 1, regarding embedding-
based entity alignment methods. More precisely, to shed light regarding Q1 (char-
acteristics of methods) and Q2 (families of methods), we analyze the performance
of the methods described in Sect. 2 across all datasets (Sect. 4.1). To answer Q3
(effectiveness-efficiency trade-off), we rank the methods in a statistically significant
way, while we analyze their corresponding execution time over all datasets of our
testbed, and compare the time they require to reach a relative effectiveness threshold
(Sect. 4.2). Finally, in Sect. 4.3, we address Q4 (characteristics of datasets), by con-
ducting a meta-level analysis to identify correlations between the methods and the
various meta-features extracted from the KGs of our testbed.

4.1 � Effectiveness of EA methods using different metrics

To answer Q1 and Q2, we experimentally compare five relation-based (MTransE,
MTransE+RotatE, RDGCN, RREA(basic) and RREA(semi)) and three attrib-
ute-based methods (KDCoE, MultiKE and AttrE), using the protocol and metrics
described in Sect. 3.3. Table 8 reports the different evaluation metrics per method
over all datasets of our testbed.

4.1.1 � Relation‑based EA methods

MTransE exploits one-hop entity neighborhoods and does not use negative sam-
pling. As we can see in Table 8, the performance of MTransE remains relatively
the same between the sparse version D_W_15K_V1 with 3 average relations per
entity16 (Table 5), and the dense one D_W_15K_V2 with 5.58 average relations per
entity, as well as between the sparse D_Y_15K_V1 with 3.19 average relations per
entity, and the dense D_Y_15K_V2 with 8.55 average relations per entity. In gen-
eral, entities in dense KGs are more likely to minimize their embedding distance
with multiple similar entities (neighbors), exploiting richer semantic information to
learn the embeddings. For this reason, dense KGs are the best use cases for rela-
tion-based methods. However, the density of KGs is also reflected in the embedding

16  A KG is considered “dense” in Sun et al. (2020) if it has more than an average of 5 relations per
entity.

2107

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
8  

P
er

fo
rm

an
ce

 o
f m

et
ho

ds
 in

 d
iff

er
en

t d
at

as
et

s a
nd

 m
et

ric
s

D
at

as
et

Re
la

tio
n-

ba
se

d
m

et
ho

ds

A
ttr

ib
ut

e-
ba

se
d

m
et

ho
ds

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

D
at

as
et

s
D

_W
_1

5K
_V

1
H

@
1

26
.0

7
27

.2
7

53
.0

2
65

.5
7

71
.8

2
23

.2
2

40
.4

9
N

/A
44

.0
8

H
@

10
54

.0
5

56
.9

8
72

.9
6

88
.4

9
90

.0
3

46
.2

9
56

.7
1

N
/A

48
.9

6

M
R

35
2.

92
50

1.
58

49
4.

69
46

.3
2

57
.7

1
86

8.
85

32
0.

29
N

/A
13

.2
7∗

M
R

R
0.

35
0.

36
0.

59
0.

74
0.

79
0.

30
0.

45
N

/A
0.

45

D
_W

_1
5K

_V
2

H
@

1
26

.2
7

49
.2

2
63

.7
1

87
.8

6
93

.7
2

33
.7

8
49

.5
4

N
/A

42
.6

3

H
@

10
57

.4
5

81
.6

9
82

.3
3

98
.6

6
99

.1
8

64
.3

8
72

.7
6

N
/A

48
.5

0

M
R

14
5.

53
58

.5
3

21
0.

94
2.

64
2.

74
16

9.
46

37
.4

4
N

/A
10

.3
8∗

M
R

R
0.

36
0.

59
0.

69
0.

92
0.

96
0.

44
0.

56
N

/A
0.

44

O
pe

nE
A

D
_Y

_1
5K

_V
1

H
@

1
45

.5
4

46
.2

5
94

.1
0

76
.1

9
81

.7
9

69
.5

7
90

.1
8

0.
03

99
.2

3
H

@
10

72
.7

8
72

.9
4

97
.6

8
91

.3
1

91
.9

5
88

.0
2

95
.0

3
0.

2
99

.2
8

M
R

24
5.

02
57

4.
13

14
.8

7
29

.7
9

73
.3

4
14

3.
78

19
.6

9
50

77
.5

9
1.

00
04

∗

M
R

R
0.

55
0.

55
0.

95
0.

82
0.

86
0.

75
0.

91
0.

00
1

0.
99

D
_Y

_1
5K

_V
2

H
@

1
44

.7
2

93
.8

9
94

.1
5

96
.5

6
97

.5
3

86
.7

2
85

.6
4

0.
04

99
.3

7
H

@
10

71
.2

1
98

.9
3

97
.7

3
99

.4
6

99
.5

5
98

.0
6

92
.7

0
0.

3
99

.3
7

M
R

79
.4

7
3.

46
11

.5
0

1.
32

1.
39

2.
28

9.
86

49
00

.2
3

1∗

M
R

R
0.

53
0.

95
0.

97
0.

98
0.

98
0.

91
0.

88
0.

00
2

0.
99

2108	 N. Fanourakis et al.

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d) D
at

as
et

Re
la

tio
n-

ba
se

d
m

et
ho

ds

A
ttr

ib
ut

e-
ba

se
d

m
et

ho
ds

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

N
ew

 d
at

as
et

s
B

B
C

-D
B

H
@

1
24

.9
8

18
.4

1
6.

38
43

.6
2

46
.8

7
32

.6
9

15
.2

2
17

.3
1

92
.5

0

H
@

10
50

.2
8

41
.6

6
11

.0
1

65
.2

8
65

.1
9

52
.8

8
33

.4
7

46
.6

5
93

.7
8

M
R

67
2.

17
13

43
.3

0
26

56
.5

31
8.

03
63

1.
69

64

3.
35

12
99

.8
1

76
0.

98
1.

38
∗

M
R

R
0.

33
0.

26
0.

08
0.

52
0.

54
0.

38
0.

21
0.

27
0.

93

im
db

-tm
db

H
@

1
15

.0
0

9.
30

0.
07

27
.0

6
29

.5
6

20
.0

2
15

.2
8

87
.0

1
99

.7
0

H
@

10
54

.0
4

37
.8

2
0.

73
74

.8
6

73
.6

5
29

.4
3

54
.6

0
98

.0
6

10
0

M
R

52
.9

9
13

1.
41

67
7.

50
16

.2
5

61
.8

3
19

9.
59

59
.7

2
5.

96
1.

00
2

M
R

R
0.

27
0.

18
0.

00
5

0.
42

0.
44

0.
23

0.
27

0.
90

0.
99

im
db

-tv
db

H
@

1
13

.6
3

7.
18

0.
13

20
.5

3
19

.4
1

15
.8

0
8.

61
84

.5
4

99
.8

6

H
@

10
43

.8
2

24
.1

6
1.

32
52

.7
6

46
.8

2
24

.1
1

33
.2

1
98

.9
9

10
0

M
R

40
.4

1
14

9.
27

37
7.

50
25

.8
6

78
.2

6
14

9.
64

94
.4

5
1.

89
1.

00
1

M
R

R
0.

23
0.

13
0.

00
9

0.
32

0.
29

0.
18

0.
16

0.
89

0.
99

tm
db

-tv
db

H
@

1
10

.6
3

5.
60

0.
14

14
.1

3
14

.5
1

20
.0

0
12

.2
6

34
.4

1
10

0

H
@

10
49

.6
8

29
.7

3
1.

45
58

.3
1

54
.2

7
27

.0
9

52
.2

3
65

.4
2

10
0

M
R

22
.8

9
74

.2
9

34
4.

50
14

.5
9

31
.7

9
13

3.
18

23
.9

4
28

.1
1

1

2109

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
8  

(c
on

tin
ue

d) D
at

as
et

Re
la

tio
n-

ba
se

d
m

et
ho

ds

A
ttr

ib
ut

e-
ba

se
d

m
et

ho
ds

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

M
R

R
0.

22
0.

13
0.

01
0.

27

0.
26

0.
22

0.
24

0.
44

1

Re
st

au
ra

nt
s

H
@

1
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
94

.6
N

/A

H
@

10
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
98

.1
9

N
/A

M
R

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

1.
68

N
/A

M
R

R
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
0.

95
N

/A

B
es

t s
co

re
s a

re
 g

iv
en

 in
 b

ol
d

∗
 F

or
 m

em
or

y
re

as
on

s,
th

e
so

ur
ce

 c
od

e
of

 B
ER

T_
IN

T
re

str
ic

ts
 th

e
ev

al
ua

tio
n

co
m

pu
ta

tio
ns

 to
 th

e
to

p-
k

ra
nk

s,
w

hi
ch

 m
ay

 y
ie

ld
 b

et
te

r r
es

ul
ts

 in
 so

m
e

ca
se

s (
de

fa
ul

t k
=

50
).

W
e

se
t k

=
10

00
, w

hi
ch

 is
 th

e
la

rg
es

t k
 v

al
ue

 fo
r w

hi
ch

 w
e

di
d

no
t r

un
 in

to
m

em
or

y
is

su
es

.

2110	 N. Fanourakis et al.

1 3

space. In case that the embedding space has limited dimensions and the KGs are
dense, dissimilar entities end up close in the embedding space. The lack of negative
sampling (that distances dissimilar entities in the embedding space) is the reason
why MTransE is not improved in dense datasets.

In the new datasets (BBC-DB, imdb-tmdb, imdb-tvdb and tmdb-tvdb) that are
all sparse, fewer entity pairs in seed alignment and fewer relation edges are used
for training, resulting in worse performance, too, for this method (when comparing
BBC-DB to tmdb-tvdb). For example, Hits@1 for BBC-DB with 61,039 relation
edges is 24.98, while Hits@1 for imdb-tmdb with 9,604 relation edges is 15. On
the contrary, MR is improved as can been seen in Table 8. This is attributed to the
dependency of MR on the size of the similarity lists (see the evaluation protocol in
Sect. 3.3.1). Specifically, as the entity pairs of seed alignment are reduced, the size
of similarity lists is reduced too. The smaller the similarity lists, the lower the ranks
for true entity pairs in the test set, resulting to an improved MR metric.

MTransE+RotatE is a variation of MTransE that exploits RotatE as embedding
module, as well as negative sampling, and was originally proposed for better han-
dling symmetrical relations in KGs (Sun et al. 2020). Since such relations are not
encountered in datasets imdb_tmdb, imdb_tvdb, and tmdb_tvdb (see Table 3), we
investigate only the effect of negative sampling on the performance of the method.
MTransE+RotatE exhibits a similar performance to MTransE in the sparse versions
of D_W_15K_V1 and D_Y_15K_V1 (e.g., in dataset D_W_15K_V1, MTransE
Hits@10 is 72.78 and MTransE+RotatE Hits@10 is 72.94). However, the nega-
tive sampling used by MTransE+RotatE significantly improves its performance in
dense datasets compared to MTransE. For example, for D_Y_15K_V2, the MR of
MTransE is 79.47 and that of MTransE+RotatE is 3.46, and for D_W_15K_V2,
MTransE Hits@1 is 26.27 and MTransE+RotatE Hits@1 is 49.22. This means that
MTransE+RotatE represents similar entities closer in the embedding space and dis-
similar entities farther, exploiting the rich semantic information that dense KGs
offer.

In the new datasets, MTransE+RotatE is outperformed by MTransE (e.g., for
tmdb-tvdb Hits@1 of MTransE is 10.63, while Hits@1 of MTransE+RotatE drops
to 5.60). This is due to the small size of the new datasets in terms of seed entity
pairs (e.g., 982 in tmdb-tvdb) and relation edges (e.g., 3,396 for KG1 vs only 938 for
KG2 in tmdb-tvdb) that, in conjunction with the high dimensionality of the embed-
ding space, place similar entities far away. Negative sampling seems to amplify this
behavior.

RDGCN exploits multi-hop entity neighborhoods, as well as a higher number
of negative samples and dimensions in the embedding space than the other meth-
ods (see Table 7). As shown in Table 8, RDGCN has the highest Hits@1 and
Hits@10, compared to MTransE and MTransE+RotatE in datasets D_W_15K and
D_Y_15K, both for sparse (V1) and dense (V2) versions (e.g., for D_W_15K_
V2 and D_Y_15K_V1, RDGCN Hits@1 is respectively 63.71 and 94.10, while
MTransE Hits@1 is 26.27 and 45.54 and MTransE+RotatE Hits@1 is 49.22 and
46.25). This behavior can be attributed to the fact that RDGCN exploits an extended
neighborhood of entities (multi-hop) for constructing the embeddings. Of course,
this richer semantic context incurs the risk of incorporating noisy information into

2111

1 3

Knowledge graph embedding methods for entity alignment: an…

the embeddings, due to potentially irrelevant or less important distant neighbors for
aligning entities. For these reasons, RDGCN requires both high-dimensional embed-
dings to capture more features, as well as increased negative samples per positive
edge that place irrelevant neighbors far away in the embedding space. It is worth
mentioning that RDGCN outperforms the other methods in all OpenEA datasets,
demonstrating the added value of multi-hop neighbors in embeddings. On the other
hand, RDGCN is outperformed by MTransE+RotatE in datasets BBC-DB, imdb-
tmdb, imdb-tvdb and tmdb-tvdb (e.g., in BBC-DB Hits@1 drops from 18.41 to
6.38). This behavior stems from the same problem that negative sampling causes
to MTransE+RotatE in these datasets. As RDGCN uses more negative samples and
higher dimensions in the embedding space than MTransE+RotatE, it aggravates the
problem.

RREA(basic), like RDGCN, exploits multi-hop entity neighborhoods, having
the same issue about irrelevant or less important neighbors. Contrary to RDGCN,
that needs higher number of negative samples and dimensions to solve the afore-
mentioned issue, RREA(basic) utilizes an attention mechanism that assigns high
weights to relevant and important neighbors, outperforming RDGCN, but also
MTransE and MTransE+RotatE in all datasets, regardless of the metric (e.g., in
D_W_15K_V2, RREA(basic)’s Hits@1 is 87.86 and for MTransE it is 26.27, in
D_W_15K_V1, RREA(basic)’s Hits@10 is 88.49, while for MTransE+RotatE it is
56.98, and in D_Y_15K_V2, RREA(basic)’s MR is 1.32, while the corresponding
MR for RDGCN is 11.50). As we can see from D_Y_15K_V1, RREA(basic) fails
to differentiate the importance of relevant and irrelevant neighbors, and RDGCN
achieves higher performance in all metrics (e.g., Hits@1 for RDGCN is 94.10, while
for RREA(basic) it is 76.19). The fact that RREA(basic) solves the issue of noisy
information and irrelevant neighbors by utilizing the attention mechanism, with-
out requiring higher number of negative samples, leads to outperforming MTransE,
MTransE+RotatE and RDGCN in all new datasets (e.g., RREA(basic)’s Hits@1
for imdb_tmdb is 27.06, while for MTransE it is 15, RREA(basic)’s Hits@10 for
bbc_db is 65.28, while for MTransE+RotatE it is 41.66 and RREA(basic)’s MR for
imdb_tvdb is 25.86, while for RDGCN it is 377.50).

RREA(semi) runs in 5 iterations, where the first iteration is RREA(basic),
which means that the 4 extra iterations, increase the performance of RREA(semi)
compared to RREA(basic) and consequently to MTransE, MTransE+RotatE and
RDGCN in all datasets, in Hits@1, Hits@10 and MRR (e.g., RREA(semi)’s Hits@1
for D_Y_15K_V2 is 97.53, while for RREA(basic) it is 96.56, RREA(semi)’s
Hits@10 for imdb_tmdb is 73.65, while for RDGCN it is 0.73, and RREA(semi)’s
MRR for imdb_tvdb is 0.29, while for MTransE it is 0.23). RREA(semi), like
RREA(basic) fails to distinguish relevant and irrelevant neighbors in D_Y_15K_
V1, where RDGCN achieves better performance in all metrics (e.g., Hits@1 for
RDGCN is 94.10, while for RREA(semi) it is 81.79). The fact that RREA(semi)
enriches the seed alignment with new entity pairs leads to increasing the candidate-
space (denominator of MR) and also the probability of wrong alignment (compared
to RREA(basic)), making RREA(semi) exhibit worse MR in all datasets (e.g., in
D_Y_15K_V2, RREA(semi)’s MR is 1.39, while for RREA(basic) it is 1.32).

2112	 N. Fanourakis et al.

1 3

4.1.2 � Attribute‑based EA methods

KDCoE in addition to one-hop neighborhood and negative sampling, exploits the
textual descriptions of entities, when available. Negative sampling also improves the
performance of KDCoE in dense versions of the datasets, compared to their sparse
versions (e.g., in dataset D_W_15K_V1 Hits@10 is 46.29, while in D_W_15K_V2
Hits@10 is 64.38, and in dataset D_Y_15K_V1 MR is 143.78, while in D_Y_15K_
V2 MR is 2.28). In dense entity graphs, negative sampling helps KDCoE to increase
the distance of dissimilar entities in an embedding space with limited dimensions.
The use of textual descriptions as an additional source of similarity evidence favors
KDCoE to outperform the other methods in datasets that are rich in terms of tex-
tual descriptions. As shown in Table 8, this is the case of BBC_DB, which features
the highest number of entities with textual descriptions (2,430), compared to the
size of the seed alignment (9,396), and where KDCoE exhibits better performance
compared to MTransE, MTransE+RotatE and RDGCN. The higher ratio of entities
with similar textual descriptions in a dataset boosts the performance of KDCoE. It
is worth mentioning that although KDCoE outperforms the aforementioned meth-
ods in BBC_DB, both versions of RREA exhibit higher performance in all met-
rics, due to the attention mechanism that both utilize and the rule that RREA(semi)
uses. In case of lower ratio of entities with similar textual descriptions in a data-
set, KDCoE’s performance drops as the training set is flooded with falsely similar
entity pairs in terms of textual descriptions. This behavior is observed in datasets
imdb_tmdb, imdb_tvdb, tmdb_tvdb, where textual descriptions of entities exhibit
the minimum similarity among all datasets (e.g., for imdb-tmdb descriptions simi-
larity is 0.35). Statistically meaningful correlations of the method with the specific
data characteristics (#Ents_Descr and Descr_Sim) are reported in Sect. 4.3. Note
that the disfavored effect of negative sampling in these datasets still persists (as in
MTransE+RotatE and RDGCN), but with an attenuated strength, due the smaller
number of negative samples this method uses.

MultiKE exploits multiple sources of similarity evidence of entities (i.e., from
attribute names, literals and relations) along with a high number of negative sam-
ples. In this respect, MultiKE embeddings are less sensitive to the number of entity
relations than in the previous methods. For this reason, MultiKE, in contrary to
KDCoE, is not improving in all dense versions of the datasets, even if it uses nega-
tive sampling (see Table 8). Specifically, in D_W_15K, when comparing the dense
to the sparse version, Hits@1 increases from 40.49 to 49.54 as both the number
(average attributes per entity is 3 for sparse and 5.58 for dense) and the similarity
score of literals (i.e., 81.24 for sparse and 83.79 for dense) increase. In contrary,
from the sparse D_Y_15K_V1 to the dense D_Y_15K_V2, there is a small decrease
( ≈ 8% ) in both entity names similarity (from 0.99 to 0.91), causing Hits@1 to drop
from 90.18 to 85.64. Finally, in datasets imdb_tmdb, imdb_tvdb and tmdb_tvdb,
MultiKE has a lower Hits@1 than KDCoE (i.e., for imdb_tmdb Hits@1 of KDCoE
is 20.02, while for MultiKE it is 15.28), due to the increased number of negative
samples. The correlation of MultiKE with the similarity of entity names will be fur-
ther investigated in Sect. 4.3.3.

2113

1 3

Knowledge graph embedding methods for entity alignment: an…

AttrE is an unsupervised method that consumes fewer negative samples (like
KDCoE) and exploits the similarity of literal values. On the other hand, it requires
the alignment of predicates in KGs as a pre-processing step. The highest the num-
ber of aligned predicates, the better the performance of the method. In datasets
without aligned predicates, AttrE is unable to run. Specifically, AttrE is not appli-
cable to datasets D_W_15K_V1 and D_W_15K_V2, while on D_Y_15K_V1
and D_Y_15K_V2, it exhibits a very low performance (e.g., Hits@1 is 0.0003 for
D_Y_15K_V1) due to the low predicate similarity (e.g., 0 in D_W_15K_V1 and
47.37% in D_Y_15K_V1). In datasets like BBC_DB, where both the similarity of
predicates (80.93) and the similarity of literals (0.87) are high, AttrE’s performance
is significantly improved. In datasets imdb-tmdb, imdb-tvdb and tmdb-tvdb, exhib-
iting the highest similarity of predicates and literals, AttrE outperforms all other
methods. The correlation of the method with specific data characteristics (Pred_Sim
and Lit_Sim) will be presented in Sect. 4.3. Finally, AttrE is the only method that is
able to run on the Restaurants datasets, where not all the entities of KG1 are aligned
with entities of KG2 and vice versa.

BERT_INT is an attribute-based method that exploits multiple sources of simi-
larity evidence between entities (i.e., long-text descriptions, literals, names, and
relations). More precisely, BERT_INT, rather than aggregating the information of
multi-hop neighbors that in some cases introduces noise (as in RDGCN), even by
the usage of attention mechanisms (as in RREA), it employs interactions between
the different views (i.e., description/name-view, neighbor-view and attribute-views),
considering multi-hops and consuming very few negative samples compared to
RDGCN. Regarding the factual information, it prioritizes textual descriptions over
entity names, in order to leverage as much textual information as possible (textual
descriptions are typically longer than entity names). BERT_INT has the advantage,
compared to MultiKE, that it also exploits multiple resources but without prioritiz-
ing them, since the noise of irrelevant factual information is not incorporated in the
embeddings. BERT_INT also has an advantage over AttrE and KDCoE, that they
exclusively exploit either longer textual descriptions or other literals.

Table 8 shows that BERT_INT outperforms all methods in all datasets and meas-
ures, except the two versions of D_W_15K. For example, in D_Y_15K_V1, BERT_
INT achieves 99.23 H@1 when RDGCN and RREA(semi) achieve 94.10 and 81.79.
In D_Y_15K_V2, we observe similar behavior with BERT_INT exhibiting 99.37
when RDGCN and RREA(semi) achieve 94.15 and 97.53. This happens, because in
both versions of D_Y_15K the number of the entities that have textual descriptions,
the descriptions similarity and the entity names are high (e.g., in D_Y_15K_V1
3,455 entities have textual descriptions with 0.88 similarity and 0.99 similarity in
names). The opposite behavior is observed in both versions of D_W_15K, where
RREA outperforms BERT_INT with H@10 90.03 instead of 48.96 that BERT_INT
achieves, since in these datasets the number of the entities that have descriptions
is low (only 278 in D_W_15K_V2), with low similarity (0.73) and low similarity
in entity names (0.78). In new datasets, the similarity of long-text descriptions and
entity names is very low, the literal similarity is very high (0.94 in tmdb-tvdb); as
a result, the performance of BERT_INT is even better, outperforming even AttrE
(e.g., in tmdb-tvdb, BERT_INT finds all the matches correctly, with an impressive

2114	 N. Fanourakis et al.

1 3

MRR 1, while the corresponding MRR of the second best method, AttrE, is only
0.44).

4.1.3 � Conventional EA methods

PARIS (Suchanek et al. 2011) is a conventional, probabilistic, holistic approach,
i.e., it performs both instance and schema matching, by estimating probabilities of
matching (i.e., equivalence), without learning KG embeddings. Such probability
estimation relies on the knowledge of quasi-functional relations, i.e., relations that
for a given head entity, the expected number of tail entities is close to 1. Given, for
example, two relation triples < h, r, t > and < h′, r, t′ > , with r being a functional
relation (e.g., born_in), the equivalence probability h ≡ h′ depends recursively on
other equivalence probabilities ( t ≡ t′ ). Initial equivalences are computed between
literals, using a certain string distance (their similarity is inverse proportional to
their edit distance).

Table 9 depicts the performance of PARIS along with the best embedding-based
method for each dataset according to Table 8. As in Sun et al. (2020), for PARIS,
we report the classification-based metrics (Precision, Recall and F1-score), while
for the embedding-based method, we used the H@1. This is because, in the test
phase, each source entity gets a list of candidates; as a result, precision, recall and
F1-score can be considered equal to Hits@1. Regarding the OpenEA datasets, we
observe that in both versions of D_W_15K, where the literal similarity is high (for
D_W_15K_V1, it is 0.81), PARIS outperforms the best embedding-based method
(in this case RREA(semi)). On the other hand, in both versions of D_Y_15K, the
best method (BERT_INT) exhibits higher Recall and F1-score (in D_Y_15K_V2
Recall is 99.37, instead of 98.37 of PARIS and F1-score is 99.37, instead of 99.10 of
PARIS), while the precision is lower (99.37) but still close to PARIS (99.85). This
happens because of the low literal similarity that these datasets exhibit (affecting the
Precision) and the high textual descriptions and entity names similarity (improving
Recall and F1-score). Finally, in the new datasets, even if the literal similarity is
high, the lack of functional relations affect negatively the performance of PARIS,
and as a result, BERT_INT is the clear winner in these datasets (e.g., in imdb-tmdb
F1-score is 15.53 for PARIS, while BERT_INT achieves 99.70).

4.2 � Effectiveness vs efficiency trade‑offs

In this section, we investigate whether it is worth paying the time overhead of each
method, with respect to its effectiveness (Q3). In this respect, in Sect. 4.2.1, we first
rank the methods according to their effectiveness across all datasets of our testbed.
For that, we rely on a statistically sound methodology for ranking the different EA
methods across all datasets of our testbed, that exploits the non-parametric Fried-
man test (Demsar 2006) and the post-hoc Nemenyi test (Nemenyi 1963). Then, in
Sect. 4.2.2, we report the execution time of each method (Table 14) and analyze
their trade-offs in terms of effectiveness and efficiency (Fig. 10), demonstrating also

2115

1 3

Knowledge graph embedding methods for entity alignment: an…

the training curves of the methods and the time that a method needs to reach 90% of
its highest MRR (Fig. 11).

4.2.1 � Effectiveness‑based ranking of EA methods

In this section, for each of the metrics used in Table 8, we first calculate the ranks
(rank 1 corresponds to the best performance) of all methods per dataset and average
their ranks for each metric. The resulting ranks are reported in Tables 10, 11, 12, and
13.

Then, to infer a statistically significant ranking of the methods, we rely on the
non-parametric Friedman test (Demsar 2006). The null hypothesis H0 of the Fried-
man test is that “The mean performance for each method is equal”, while the alter-
native hypothesis (Ha) states exactly the opposite. With p-values 0.004, 0.003, 0.001

Table 9   Performance of PARIS
and of the best embedding-
based method per dataset

Best scores are given in bold

Dataset PARIS Best Method

Datasets D_W_15K_V1 Precision 96.51 71.82
Recall 74.55 71.82
F1-score 84.12 71.82

D_W_15K_V2 Precision 97.59 93.72
Recall 90.32 93.72
F1-score 93.81 93.72

OpenEA D_Y_15K_V1 Precision 99.72 99.23
Recall 96.24 99.23
F1-score 97.95 99.23

D_Y_15K_V2 Precision 99.85 99.37
Recall 98.37 99.37
F1-score 99.10 99.37

New datasets BBC-DB Precision 78.43 92.50
Recall 26.38 92.50
F1-score 38.72 92.50

imdb-tmdb Precision 56.84 99.70
Recall 8.99 99.70
F1-score 15.53 99.70

imdb-tvdb Precision 58.37 99.86
Recall 9.17 99.86
F1-score 15.84 99.86

tmdb-tvdb Precision 99.76 100
Recall 97.50 100
F1-score 98.62 100

Restaurants Precision 28.79 94.60
Recall 69.76 94.60
F1-score 40.18 94.60

2116	 N. Fanourakis et al.

1 3

and 0.003 of Friedman test for Hits@1, Hits@10, MR and MRR, respectively, we
can reject the null hypothesis H0 at a 10% confidence-level (�) . In the sequel, we
conduct the Nemenyi post-hoc test to compare the methods pairwise. This test
reports as significance the average ranks of two methods if they differ by a critical
distance (CD) given by q�

√
k(k+1)

6N
 , where N is the number of the datasets, q� is a

constant based on � , and k is the number of methods in total. For 9 EA methods, 8
datasets and � = 0.1 , the value of CD is 3.90.

From Fig. 9, we can see that BERT_INT is a clear winner, since it outperforms
the other methods with statistically significant difference (bigger difference than
CD). Figure 9a, which captures accuracy with 0 error tolerance (Hits@1), shows
that BERT_INT has statistically significant performance difference to MTransE,
MTransE+RotatE, AttrE and RDGCN, while RREA(semi) only to MTransE and
MTransE+RotatE. In case we accept a 10% error tolerance (Hits@10 in Fig. 9b),
none of the examined methods has significant performance difference to the other
methods, so the choice should depend on different factors, e.g., the training time
(see Sect. 4.2.2) or dataset characteristics (see Sect. 4.3). In addition, BERT_INT
that exploits multiple sources of similarity evidence of entities (e.g., textual descrip-
tions, entity names) and not only structural information, as relation-based methods
such as RREA(basic) do, improves the general performance, improving the ranks
even of lower ranked entities in the similarities lists (see Sect. 3.3.1). The result is
that BERT_INT has significant performance difference with MTransE, RDGCN,
MTransE+RotatE, KDCoE and AttrE, while RREA(basic) has significant perfor-
mance difference with only RDGCN, MTransE+RotatE, KDCoE and AttrE, for
MR. In contrast, MRR (Fig. 9d) which is affected by the first ranks (see Sect. 3.3.2)
and is less sensitive to outliers, shows that BERT_INT is the only method that has
statistically significant performance difference with other methods (MTransE and
MTransE+RotatE).

4.2.2 � Efficiency‑based ranking of EA methods

In this subsection, we compare the efficiency of the evaluated EA methods. Particu-
larly, in Table 14, we are measuring the execution time of both training and testing.
Figure 10 depicts the trade-off between effectiveness and efficiency of EA meth-
ods using BERT_INT as baseline. In addition, Figure 11 demonstrates the training
curves of the methods, as well as the time or the epochs that a method needs to
achieve 90% of its own highest MRR.

As MTransE has the most lightweight implementation among all methods (Sun
et al. 2020) (only two layers of entity and relation embeddings), it is the fast-
est method (Table 14). Although MTransE+RotatE also uses only two layers,
MTransE is faster because it employs a simpler scoring function than RotatE (see
Sect. 2.2.1.1). BERT_INT, that achieves the best performance in most datasets
(excluding the two versions of D_W_15K), and MultiKE are competing for the
second most efficient method. Specifically, as both BERT_INT and MultiKE trains
and combines multi-view embeddings, they require more training time (long-lasting

2117

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
10

  
R

an
ki

ng
 o

f m
et

ho
ds

 p
er

 d
at

as
et

 a
cc

or
di

ng
 to

 H
its

@
1

D
at

as
et

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

D
_W

_1
5K

_V
1

7
6

3
2

1
8

5
9

4
D

_W
_1

5K
_V

2
8

5
3

2
1

7
4

9
6

D
_Y

_1
5K

_V
1

8
7

2
5

4
6

3
9

1
D

_Y
_1

5K
_V

2
8

5
4

3
2

6
7

9
1

B
B

C
-D

B
5

6
9

3
2

4
8

7
1

im
db

-tm
db

7
8

9
4

3
5

6
2

1
im

db
-tv

db
6

8
9

3
4

5
7

2
1

tm
db

-tv
db

7
8

9
5

4
3

56
2

1
A

vg
 ra

nk
7

6.
62

6
3.

37
2.

62
5.

5
5.

75
6.

12
2

2118	 N. Fanourakis et al.

1 3

Ta
bl

e 
11

  
R

an
ki

ng
 o

f m
et

ho
ds

 p
er

 d
at

as
et

 a
cc

or
di

ng
 to

 H
its

@
10

D
at

as
et

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

D
_W

_1
5K

_V
1

6
4

3
2

1
8

5
9

7
D

_W
_1

5K
_V

2
7

4
3

2
1

6
5

9
8

D
_Y

_1
5K

_V
1

8
7

2
5

4
6

3
9

1
D

_Y
_1

5K
_V

2
8

4
6

2
1

5
7

9
3

B
B

C
-D

B
5

7
9

2
3

4
8

6
1

im
db

-tm
db

6
7

9
3

4
8

5
2

1
im

db
-tv

db
5

7
9

3
4

8
6

2
1

tm
db

-tv
db

6
7

9
3

4
8

5
2

1
A

vg
 ra

nk
6.

37
5.

87
6.

25
2.

75
2.

75
6.

62
5.

5
6

2.
87

2119

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
12

  
R

an
ki

ng
 o

f m
et

ho
ds

 p
er

 d
at

as
et

 a
cc

or
di

ng
 to

 M
R

D
at

as
et

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

D
_W

_1
5K

_V
1

5
7

6
2

3
8

4
9

1
D

_W
_1

5K
_V

2
6

5
8

1
2

8
4

9
3

D
_Y

_1
5K

_V
1

7
8

2
4

5
6

3
9

1
D

_Y
_1

5K
_V

2
8

5
7

2
3

4
6

9
1

B
B

C
-D

B
5

8
9

2
3

4
7

6
1

im
db

-tm
db

4
7

9
3

6
8

5
2

1
im

db
-tv

db
4

7
9

3
5

8
6

2
1

tm
db

-tv
db

3
7

9
2

6
8

4
5

1
A

vg
 ra

nk
5.

25
6.

75
7.

37
2.

37
4.

12
6.

62
4.

87
6.

37
1.

25

2120	 N. Fanourakis et al.

1 3

Ta
bl

e 
13

  
R

an
ki

ng
 o

f m
et

ho
ds

 p
er

 d
at

as
et

 a
cc

or
di

ng
 to

 M
R

R

D
at

as
et

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

D
_W

_1
5K

_V
1

7
6

3
2

1
8

4
9

5
D

_W
_1

5K
_V

2
8

4
3

2
1

6
5

9
7

D
_Y

_1
5K

_V
1

8
7

2
5

4
6

3
9

1
D

_Y
_1

5K
_V

2
8

5
4

2.
5

2.
5

6
7

9
1

B
B

C
-D

B
5

7
9

3
2

4
8

6
1

im
db

-tm
db

6
8

9
4

3
7

5
2

1
im

db
-tv

db
5

8
9

3
4

6
7

2
1

tm
db

-tv
db

7
8

9
3

4
6

5
2

1
A

vg
 ra

nk
6.

75
6.

62
6

3.
06

2.
68

6.
12

5.
50

6
2.

25

2121

1 3

Knowledge graph embedding methods for entity alignment: an…

epochs) than MTransE, despite the fact that the latter needs more epochs accord-
ing to Table 15 (short-lasting epochs). On the other hand, BERT_INT and MultiKE
are faster than MTransE+RotatE and KDCoE, since BERT_INT and MultiKE con-
verge faster (see Table 15). In addition, BERT_INT and MultiKE are faster than
RREA(basic) and RREA(semi), since the last two do not utilize early stopping and
they need multiple epochs to be trained (1,200 and 5 ×1,200=6,000, respectively).
Finally, BERT_INT and MultiKE are faster than the unsupervised method AttrE,
even if the latter needs fewer epochs for training (it does not utilize early stopping).
This is due to the nature of AttrE refining embeddings in multiple iterations, by
exploiting all the possible literal values and not the seed alignment.

Figure 10 illustrates the trade-off between effectiveness and efficiency of all
methods, compared to a baseline method (BERT_INT). The x-axis represents the
relative difference of the methods in effectiveness, measured by MRR, the metric
that is the least sensitive to outliers (see Sect. 3.3.2), and the y-axis represents the
relative difference in execution time, with respect to the baseline. In particular, the
red quadrant (bottom right) indicates methods that both run faster and have a bet-
ter effectiveness than the baseline (i.e., dominate the baseline) in a specific dataset,
and the green quadrant (top left) exactly the opposite (i.e., methods dominated by
the baseline). The bottom-left grey quadrant indicates methods that run faster with
lower performance than the baseline and the top-right grey quadrant indicates meth-
ods that have better performance, but are slower than the baseline method.

The choice of BERT_INT as baseline is because it is the method that dominates
most methods (highest number of methods on the top-left quadrant), and it is not
dominated by any other method (0 methods in the bottom-right quadrant). As shown
in Fig. 9d, BERT_INT is the method with the best MRR in both OpenEA and new
datasets. Indicatively, the corresponding values for the fastest method, MTransE,

Fig. 9   Statistical significance rankings of methods according to all metrics

2122	 N. Fanourakis et al.

1 3

Ta
bl

e 
14

  
Tr

ai
ni

ng
 +

 te
sti

ng
 ti

m
e

(e
xe

cu
tio

n
tim

e
in

 se
co

nd
s)

 o
f m

et
ho

ds
 in

 e
ac

h
da

ta
se

t

B
es

t s
co

re
s a

re
 g

iv
en

 in
 b

ol
d

Th
e

da
sh

 ‘-
’ m

ea
ns

 th
at

 th
e

m
et

ho
d

co
ul

d
no

t r
un

 in
 th

is
 d

at
as

et

D
at

as
et

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

A
ttr

E
B

ER
T_

IN
T

D
_W

_1
5K

_V
1

53
.5

4
+

 3
.6

7
23

6.
76

 +
 6

.8
5

85
3.

80
 +

 2
6

44
2.

68
 +

 8
.6

9
1,

15
8.

73
 +

 8
.2

2
78

4.
75

 +
 5

.6
7

40
3.

53
 +

 4
.3

8
–

33
3.

34
 +

 3
0.

09
D

_W
_1

5K
_V

2
44

.4
1

+
 3

.6
2

1,
02

8.
26

 +
 6

.9
4

1,
52

0.
21

 +
 2

6.
86

59
3.

32
 +

 8
.3

3
1,

54
3.

96
 +

 9
1,

05
2.

56
 +

 4
.5

0
37

2.
29

 +
 5

.3
7

–
33

3.
61

 +
 2

9.
80

D
_Y

_1
5K

_V
1

10
1.

76
 +

 3
.6

3
40

5.
33

 +
 6

.9
2

35
6.

50
 +

 2
7.

07
38

7.
43

 +
 8

.1
2

1,
02

7.
93

 +
 7

.5
6

79
5.

42
 +

 5
.3

4
34

8.
55

 +
 4

.4
0

1,
47

2.
26

 +
 5

4
33

1.
73

 +
 2

9.
95

D
_Y

_1
5K

_V
2

88
.8

5
+

 3
.6

2
47

0.
96

 +
 6

.7
8

1,
18

5.
88

 +
 2

7.
80

57
0.

38
 +

 9
1,

46
8

+
 8

.2
5

1,
58

5.
22

 +
 4

.7
1

15
4.

12
 +

 4
.5

2
1,

41
6.

78
 +

 2
0.

59
33

1.
40

 +
 2

9.
75

B
B

C
-D

B
44

.8
8

+
 2

.2
1

20
9.

26
 +

 2
.8

4
22

1.
97

 +
 1

0.
38

23
0.

33
 +

 5
.2

7
59

5.
32

 +
 5

.5
6

69
0.

21
 +

 2
.9

5
40

0.
93

 +
 2

.0
5

93
8.

05
 +

 7
.4

8
20

6.
69

 +
 1

7.
13

im
db

-tm
db

11
.9

4
+

 0
.3

0
52

.3
2

+
 0

.3
0

12
.0

9
+

 1
.4

4
71

.4
1

+
 3

.7
4

19
5.

12
 +

 3
.9

0
57

.2
3

+
 1

.1
2

41
.9

0
+

 0
.6

4
10

7.
47

 +
 0

.3
2

42
.6

2
+

 4
.0

4
im

db
-tv

db
5.

16
 +

 0
.2

4
37

.9
3

+
 0

.1
9

9.
31

 +
 1

.0
3

42
.7

7
+

 3
.4

8
11

7.
37

 +
 3

.4
8

32
.9

0
+

 1
.2

2
47

.5
7

+
 0

.5
5

53
.1

6
+

 0
.0

8
23

.8
0

+
 1

.1
6

tm
db

-tv
db

6.
03

 +
 0

.2
4

37
.6

2
+

 0
.1

7
5.

61
 +

 1
.0

2
41

.0
7

+
 3

.5
3

11
0.

67
 +

 3
.5

3
25

.9
3

+
 1

.2
2

34
.9

6
+

 0
.5

4
53

.7
9

+
 0

.0
8

22
.0

6
+

 0
.9

1

2123

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
15

  
N

um
be

r o
f e

po
ch

s e
m

pl
oy

ed
 fo

r t
ra

in
in

g

D
at

as
et

M
Tr

an
sE

re

l_
em

b
M

Tr
an

sE
+

Ro
ta

tE

re
l_

em
b

R
D

G
C

N

re
l_

em
b

R
R

EA
(b

as
ic

)
re

l_
em

b
R

R
EA

(s
em

i)
re

l_
em

b
K

D
C

oE
 re

l_
em

b
+

 d
es

c_
em

b
M

ul
tiK

E
m

ul
ti-

vi
ew

_
em

b

A
ttr

E
re

l_
em

b
B

ER
T_

IN
T

B
ER

T
+

 in
te

r-
ac

tio
ns

D
_W

_1
5K

_V
1

22
4

32
2

22
0

12
00

 (fi
x)

60
00

 (fi
x)

25
6/

ite
r.

+
 5

68
/

ite
r.

11
4

–
5

+
 2

00
 (fi

x)

D
_W

_1
5K

_V
2

14
4

30
0

22
4

12
00

 (fi
x)

60
00

 (fi
x)

30
4/

ite
r.

+
 6

40
/

ite
r.

15
4

–
5

+
 2

00
 (fi

x)

D
_Y

_1
5K

_V
1

47
2

39
6

70
12

00
 (fi

x)
60

00
 (fi

x)
20

4/
ite

r.
+

 4
90

/
ite

r.
90

50
 (fi

x)
5

+
 2

00
 (fi

x)

D
_Y

_1
5K

_V
2

31
8

33
2

14
0

12
00

 (fi
x)

60
00

 (fi
x)

26
8/

ite
r.

+
 5

68
/

ite
r.

86
50

 (fi
x)

5
+

 2
00

 (fi
x)

B
B

C
-D

B
23

6
23

4
12

6
12

00
 (|

fix
)

60
00

 (fi
x)

23
0/

ite
r.

+
 3

44
/

ite
r.

11
6

50
 (fi

x)
5

+
 2

00
 (fi

x)

im
db

-tm
db

19
6

17
8

50
12

00
 (fi

x)
60

00
 (fi

x)
22

0/
ite

r.
+

 1
84

/
ite

r.
74

50
 (fi

x)
5

+
 2

00
 (fi

x)

im
db

-tv
db

13
0

22
4

50
12

00
 (fi

x)
60

00
 (fi

x)
12

2/
ite

r.
+

 1
44

/
ite

r.
56

50
 (fi

x)
5

+
 2

00
 (fi

x)

tm
db

-tv
db

12
0

22
8

50
12

00
 (fi

x)
60

00
 (fi

x)
74

/it
er

. +
 4

2/
ite

r.
72

50
 (fi

x)
5

+
 2

00
 (fi

x)

2124	 N. Fanourakis et al.

1 3

when chosen as a baseline, are: 16 (top left), 46 (top right), 0 (bottom left), and 0
(bottom right).

As BERT_INT outperforms all methods in all datasets (except of the two ver-
sions of D_W_15K) in terms of MRR, with low a execution time, the top-left quad-
rant consists of 36 out of 62 (58.06%) points. The bottom-left grey quadrant con-
tains 16 out of 62 (25.80%) points, as BERT_INT is slower than the fastest method
MTransE in all datasets, as well as slower than the competing method MultiKE in
some datasets. More precisely, MTransE is on average 394.14% faster than BERT_
INT, achieving 138.73% lower MRR, while MultiKE is 43.79% faster than BERT_
INT, at a cost of 10.61% lower MRR in the two versions of D_Y_15K. Finally, since
BERT_INT is negatively affected by the low attribute (e.g., textual descriptions
and entity names) similarity in dense KGs, in terms of effectiveness, the top-right

Fig. 10   Trade-off between efficiency and effectiveness (MRR) of methods across all datasets, using
BERT_INT as baseline. The x-axis is log-scaled using symmetric log function

2125

1 3

Knowledge graph embedding methods for entity alignment: an…

quadrant contains 10 out of 62 (16.12%) points. In KGs with such characteristics,
RREA(basic) and RDGCN outperform BERT_INT, achieving 88.63% and 45.45%
better effectiveness with an overhead of 226.62% and 42.53% longer execution time,
respectively.

In Fig. 11, we demonstrate the training curves of the methods for each of the
OpenEA datasets, while we also point out the training time that a method needs, in
order to achieve 90% of its highest MRR (represented as a dot in each curve), similar
to the time-to-accuracy (TTA) metric in the literature (Coleman et al. 2017, 2019),
measured here in seconds (x-axis labels) and epochs (first element of the points
coordinates). As suggested in Coleman et al. (2017), Coleman et al. (2019), we run
the methods in only one fold of the datasets. We exclude the AttrE method, since it
cannot run with D_W_15K_V1 and D_W_15K_V2, while for D_Y_15K_V1 and
D_Y_15K_V2 it yields MRR close to zero. In addition, it is worth mentioning that
the training curve of RREA(basic) (Fig. 11) overlaps with part of the training curve
of RREA(semi), since the former is the first iteration (out of 5) of the latter. Last but
not least, in Table 16 we demonstrate the coefficient of variation (CV) of methods
training epochs per dataset. More precisely, CV measures the relative variability of
the methods epochs and is given by �∕� , where � is the standard deviation and � is
the mean. The higher the values, the greater the degree of relative variability.

Fig. 11   Methods training time curve for each dataset. Each of the seven points represents the time (meas-
ured both in seconds and epochs) that a specific method needs to achieve 90% of its highest MRR. The
x-axis is log-scaled

2126	 N. Fanourakis et al.

1 3

From Fig. 11, we firstly conclude that the increased training time of RREA(semi)
is not worth spending, since the improvement of its MRR is very low, compared to
RREA(basic), and it reaches 90% of its highest MRR in its first iteration. In addition,
we conclude that in most cases, both versions of RREA, not only achieve the highest
MRR, but also reach every threshold faster (steeper slope) in only few seconds or
epochs, e.g., in D_W_15K_V1, RREA(basic) needs only 9.43s (7 epochs) for 0.69
MRR. RDGCN achieves quite lower MRR in reasonable time e.g., in D_W_15K_
V2 it needs only 107.19s (19 epochs) for 0.62 MRR. Although BERT_INT is the
fastest or the second fastest method (see Table 14), as it needs few short-lasting
epochs for training, yet, it takes more time to fine-tune the BERT model and launch
the training. This explains why BERT_INT appears on right extreme of the x-axis in
Fig. 11, but it still manages to finish before all other methods. It is worth mentioning
that it takes only 1 or 2 epochs to achieve an MRR that is even better than RREA
or RDGCN. E.g., in D_Y_15K_V1 it needs 281.97s (1 epoch) for 0.99 MRR. Last
but not least, as we can see from Table 16, KDCoE, RDGCN and BERT_INT have
CVs greater than 1, which means that the time of each epoch varies a lot during
training. In contrary to those methods, MTransE, MTransE+RotatE, RREA(basic),
RREA(semi), and MultiKE exhibit low variability in epochs duration.

4.3 � Meta‑level analysis of EA methods

In this subsection, we report the statistically significant correlations between the
various meta-features (Table 5) extracted by the KGs of our datasets and the per-
formance achieved by EA methods (Q4). In this experiment, we exclude the Restau-
rants dataset, since only AttrE was able to run on this dataset.

The null hypothesis (H0) of our correlation analysis is that “there is no significant
correlation between the performance metric X and the meta-feature Y”, while the
alternative hypothesis (Ha) states exactly the opposite. We reject the null hypothesis
when the p-values of correlations are less than a significance level � . We use the
Spearman’s correlation, which measures the degree of association between two
ranked variables, with a coefficient rs = 1 −

6
∑

d2
i

n(n2−1)
 , where di is the difference

between the ranks of the two variables and n is the maximum rank. This choice is
motivated by the robustness of the Spearman’s correlation to outliers (unlike Pear-
son’s correlation), as it relies on the ranks of the variables and not on their actual
values. The closer rs is to zero, the weaker the association between two ranked vari-
ables (negative or positive). A positive Spearman’s correlation denotes that when a
meta-feature increases the method-specific metric increases too, while negative
Spearman’s correlation denotes the opposite direction of the association17 between
the two ranked variables.

Table 17 reports the correlations for a significance level � = 0.05 (otherwise cells
are empty) under different categories. To make the results easily comparable across
the different performance metrics, we multiply correlations of MR with −1 , since
in contrary to the other metrics, the higher the value of MR the worse. Finally, for

17  Correlation is not causation as the association direction is not known.

2127

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
16

  
C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

(C
V

) o
f m

et
ho

ds
 tr

ai
ni

ng
 e

po
ch

s

D
at

as
et

M
Tr

an
sE

M
Tr

an
sE

+
Ro

ta
tE

R
D

G
C

N
R

R
EA

(b
as

ic
)

R
R

EA
(s

em
i)

K
D

C
oE

M
ul

tiK
E

B
ER

T_
IN

T

D
_W

_1
5K

_V
1

0.
03

1
0.

00
9

1.
90

7
0.

02
2

0.
01

8
5.

28
3

0.
01

9
11

.9
4

D
_W

_1
5K

_V
2

0.
03

1
0.

01
0

1.
78

9
0.

01
9

0.
01

6
4.

23
4

0.
01

4
11

.9
3

D
_Y

_1
5K

_V
1

0.
03

5
0.

01
2

1.
95

5
0.

02
6

0.
02

1
6.

78
8

0.
01

3
11

.9
5

D
_Y

_1
5K

_V
2

0.
02

7
0.

00
8

1.
84

9
0.

01
8

0.
01

6
7.

73
9

0.
01

7
11

.9
4

2128	 N. Fanourakis et al.

1 3

meta-features that impact only specific EA methods, e.g., description similarity con-
cerns only KDCoE, their correlations with non relevant methods are omitted (cells
are filled with dashes).

4.3.1 � Seed alignment size

As we can see in Table 17, the size of the seed alignment (#Entity_Pairs) is posi-
tively correlated with the supervised and semi-supervised methods MTransE,
MTransE+RotatE, RDGCN, RREA(basic), RREA(semi), KDCoE, MultiKE
and BERT_INT and negatively correlated with the unsupervised method AttrE.
Increasing the seed alignment and consequently, increasing the space of candi-
date matches, penalizes unsupervised methods, as it also increases the probability
of wrong alignments. On the other hand, the size of the seed alignment is posi-
tively correlated with the performance of supervised and semi-supervised meth-
ods, as a large number of entity pairs in seed alignment implies larger KGs18, and
by extension more training data. Although BERT_INT is a supervised method,
in the new datasets (which are smaller, but exhibit higher factual similarity than
the OpenEA datasets), it achieves higher performance than in OpenEA datasets,
resulting in a negative correlation with the seed alignment size. Note that we only
measure correlations, which are not causal relations, as the association direction
is not known.

4.3.2 � Density

As we can see in Table 17, the average number of relations per entity is posi-
tively correlated with the performance of MTransE, MTransE+RotatE, RDGCN,
RREA(basic), RREA(semi), KDCoE and MultiKE, while all methods are negatively
correlated with the sole meta-feature and positively correlated with the hyper meta-
feature (see Sect. 3.2). In addition, the average number of attributes per entity is
negatively correlated with the performance of AttrE and BERT_INT.

As we discussed in Sects. 2.5.1.2 and 2.5.6, a high number of average rela-
tions per entity improves the quality of embeddings. Specifically, entities have the
opportunity to minimize their embedding distance with multiple similar entities
(neighbors). Also, the more relations we have per entity, the more negative sam-
ples we will consider, and as a result, dissimilar entities will be placed farther
in the embedding space. Sole and hyper meta-features are essentially alternative
measures of KG density. When we have many sole relations, many relation types
will never co-occur with others resulting to a low average number of relations per
entity (low density). Inversely, when we have many hyper relations, there will be
many co-occurring relation types resulting to a high average relations per entity
(high density).

18  In supervised and semi-supervised methods, all nodes of aligned KGs should be entities of the
employed seed alignment.

2129

1 3

Knowledge graph embedding methods for entity alignment: an…

Ta
bl

e 
17

  
C

or
re

la
tio

n
m

at
rix

 o
f m

et
a-

fe
at

ur
es

 w
ith

 E
A

 m
et

ho
ds

’ p
er

fo
rm

an
ce

 m
et

ric
s

M
et

ho
ds

M
et

ric
s

Se
ed

al

ig
nm

en
t

si
ze

D
en

si
ty

H
et

er
og

en
ei

ty

#E
nt

ity
_

Pa
irs

 o
f

se
ed

 a
lig

n-
m

en
t

A
vg

_
Re

ls
_p

er
_

En
tit

y

A
vg

_
A

ttr
s_

pe
r_

En
tit

y

So
le

_R
el

s
H

yp
er

_R
el

s
#E

nt
s_

D
es

cr
D

es
cr

_S
im

En
t_

N
am

e_
Si

m
Li

te
ra

l_
Si

m
Pr

ed
_N

am
e

Si
m

M
Tr

an
sE

H
@

1
0.

94
0.

79
–

–0
.7

8
0.

78
–

–
–

–
–

H
@

10
0.

89
0.

74
–

–
–

–
–

–
M

R
–

–
–

–
–

–
M

R
R

0.
96

0.
79

–
−

0.
78

0.
78

–
–

–
–

- -
M

Tr
an

sE
 +

 R
ot

.
H

@
1

0.
94

0.
90

–
−

0.
81

0.
81

–
–

–
–

- -
H

@
10

0.
94

0.
93

–
−

0.
81

0.
81

–
–

–
–

–
M

R
–

–
–

–
–

–
M

R
R

0.
91

0.
93

–
−

0.
81

0.
81

–
–

–
–

–
R

D
G

C
N

H
@

1
0.

84
0.

81
–

−
0.

83
0.

83
–

–
–

–
H

@
10

0.
84

0.
81

–
−

0.
83

0.
83

–
–

–
–

M
R

–
–

–
0.

88
–

–
M

R
R

0.
84

0.
74

–
–0

.7
8

0.
78

–
–

–
–

R
R

EA
(b

as
ic

)
H

@
1

0.
94

0.
9

–
–0

.8
1

0.
81

–
–

–
–

–
H

@
10

0.
89

0.
86

–
–

–
–

–
–

M
R

–
–

–
–

–
–

M
R

R
0.

94
0.

9
–

−
0.

81
0.

81
–

–
–

–
–

R
R

EA
(s

em
i)

H
@

1
0.

94
0.

9
–

−
0.

83
0.

83
–

–
–

–
–

H
@

10
0.

89
0.

86
–

–
–

–
–

–
M

R
–

–
–

–
–

–
M

R
R

0.
94

0.
9

–
−

0.
81

0.
81

–
–

–
–

–

2130	 N. Fanourakis et al.

1 3

Ta
bl

e 
17

  (
co

nt
in

ue
d)

M
et

ho
ds

M
et

ric
s

Se
ed

al

ig
nm

en
t

si
ze

D
en

si
ty

H
et

er
og

en
ei

ty

#E
nt

ity
_

Pa
irs

 o
f

se
ed

 a
lig

n-
m

en
t

A
vg

_
Re

ls
_p

er
_

En
tit

y

A
vg

_
A

ttr
s_

pe
r_

En
tit

y

So
le

_R
el

s
H

yp
er

_R
el

s
#E

nt
s_

D
es

cr
D

es
cr

_S
im

En
t_

N
am

e_
Si

m
Li

te
ra

l_
Si

m
Pr

ed
_N

am
e

Si
m

K
D

C
oE

H
@

1
0.

85
0.

93
-0

.9
0

0.
90

0.
81

0.
88

–
–

–

H
@

10
0.

85
0.

93
−

0.
90

0.
90

0.
81

0.
88

–
–

–

M
R

–
–

- -

M
R

R
0.

85
0.

93
−

0.
90

0.
90

0.
81

0.
88

–
–

–
M

ul
tiK

E
H

@
1

0.
89

0.
74

–
–

0.
71

–
–

H
@

10
0.

81
–

–
0.

83
–

–
M

R
–

–
0.

9
–

–
M

R
R

0.
81

–
–

0.
83

–
–

A
ttr

E
H

@
1

−
0.

84
–

–
–

0.
73

0.
9

H
@

10
−

0.
87

−
0.

73
–

–
–

0.
83

M
R

–
–

–
M

R
R

−
0.

84
–

–
–

0.
73

0.
9

B
ER

T_
IN

T
H

@
1

−
0.

81
−

0.
9

–
–

–
–

–
H

@
10

−
0.

78
−

0.
9

–
–

-
–

–
M

R
–

–
–

–
–

M
R

R
−

0.
8

–
–

–
–

–

Em
pt

y
ce

lls
 d

en
ot

e
st

at
ist

ic
al

ly
 n

ot
 si

gn
ifi

ca
nt

 c
or

re
la

tio
n,

 a
nd

 d
as

he
d

ce
lls

 d
en

ot
e

th
at

 a
 m

et
a-

fe
at

ur
e

is
 n

ot
 re

le
va

nt
 to

 a
n

EA
 m

et
ho

d

2131

1 3

Knowledge graph embedding methods for entity alignment: an…

The meta-feature measuring the average number of attributes per entity is rele-
vant only to attribute-based methods that exploit similarity of literals for the embed-
dings, such as MultiKE, AttrE and BERT_INT. As we can see in Table 17, the per-
formance of AttrE and BERT_INT is negatively correlated with this meta-feature.
This happens because as the average number of attributes per entity increases, the
noise (irrelevant attribute values) per entity is increasing too, especially if the literals
similarity is low. The correlation of AttrE with the literals similarity is examined in
Sect. 4.3.3.

4.3.3 � Heterogeneity

As the only attribute-based semi-supervised method, KDCoE exploits textual
descriptions to enrich the seed alignment with new entity pairs that have very similar
descriptions. The presence of many entities with highly similar (Descr_Sim) textual
descriptions (#Ents_Descr) boosts the performance of KDCoE. For this reason, we
observe a positive correlation of these two meta-features with KDCoE. In addition,
MultiKE and RDGCN are the only supervised methods that exploit entity names to
create and initialize the entity embeddings. Thus, we observe a positive correlation
between those methods and entity name similarity. AttrE is the only unsupervised
method that is not using pre-trained word embeddings and thus is positively cor-
related with the meta-feature capturing the similarity of literals (Lit_Sim). A higher
literal similarity is associated with better performance for the method. Finally, as
AttrE exploits the Levenshtein distance to align the predicate names of two KGs, its
performance is positively correlated with this meta-feature (Pred_Name_Sim): the
more similar the predicates names of the two KGs, the better for AttrE. Although
BERT_INT, exploits multiple resources of similarity evidence of entities (e.g., tex-
tual descriptions, entity names, literal), it uses pre-trained BERT-based word embed-
dings, so measuring correlations with these meta-features, is irrelevant.

4.4 � Lessons learned

In this section, we summarize the main conclusions drawn from our experiments
that shed light on the four open questions of our empirical study.

Q1. What are the critical factors that affect the effectiveness of relation-based
and attribute-based methods and how sensitive are the methods to hyperparam-
eters tuning?
Negative sampling and the range of the entity neighborhood are the two critical
factors that affect the performance (see Table 8) of the relation-based methods.
Specifically, negative sampling helps the methods to exploit the rich semantic
information that dense KGs offer, in order to distantiate dissimilar entities in an
embedding space with limited dimensions. However, negative sampling harms
the effectiveness of methods when the KGs are very sparse (average relations
per entity < 3). This is due to the fact that similar entities lie already far in the
embedding space and negative sampling further increases their distance: the more

2132	 N. Fanourakis et al.

1 3

negative samples per positive sample (see Table 2) of KGs, the more the distance
increases.

Moreover, by increasing the range of the neighborhood that a method exploits, infor-
mation from both close and distant neighbors is aggregated to learn entity embed-
dings. However, an increased number of features for learning embeddings, will also
increase the dimensionality of the embedding space under the default neural-net-
work architecture that each method use. Additionally, multi-hop relations entails the
risk of modeling noisy information from irrelevant distant neighbors. To alleviate
the noise in embeddings, we need either a high number of negative samples or atten-
tion mechanisms that weight relevant and important neighbors.

Interaction-based methods that compare the pairwise similarity of attributes’
values of both close and distant neighbors, are less affected by negative sampling
on sparse KGs. They can also cope with the noise introduced by the aggregation
of distant neighbors, but they require highly similar attributes, independently of
the density of the KGs. As a matter of fact, any additional source of similarity
evidence, such as textual descriptions (KDCoE, BERT_INT), literals (MultiKE,
AttrE and BERT_INT), entity names (MultiKE, BERT_INT) or predicate names
(AttrE), boosts the performance of attribute-based methods.

Q2. What is the improvement in the effectiveness of embedding-based entity
alignment methods, if we consider not only the structural relations of entities,
but also their attribute values?
The improvement in the effectiveness (see Table 8) of embedding-based EA
methods that exploit the factual information of entities depends on the charac-
teristics of the input KGs. In the dense KGs of the OpenEA datasets, where the
similarity of factual information (e.g., textual descriptions and entity names) is
low, exploiting only the structural neighborhood of entities seems sufficient for
a method to achieve a competitive performance. However, when the similarity
of factual information is high, the effectiveness of the methods in the dense
KGs is significantly improved, approaching the perfect matching. In the sparse
KGs of the new datasets containing a high number of textual descriptions and
very similar literals and predicates, the attribute-based methods outperform
most relation-based methods, especially BERT_INT that is the overall winning
method.

In particular, among all embedding-based methods, both versions of RREA seem
to achieve the best performance in dense KGs, when the similarity of factual infor-
mation (e.g., textual descriptions and entity names) is low, since RREA exploits
multi-hop neighborhoods and utilizes attention mechanism that weights relevant and
important neighbors. In contrast, when the similarity of factual information is high,
BERT_INT is the best method, since it seems to properly handle it, achieving very
high performance. However, in sparse KGs, RREA is outperformed by BERT_INT
that achieves the best performance among all methods in the new datasets, as in
these datasets, the literals similarity is higher than in the OpenEA datasets.

2133

1 3

Knowledge graph embedding methods for entity alignment: an…

The same improvement is also observed in PARIS (see Table 9) that outperforms
the best embedding-based methods when textual descriptions and entity names simi-
larity is low in dense KGs. However when the textual descriptions and entity names
similarity is high, PARIS is outperformed by the best embedding-based method.
Nonetheless, even in those cases, PARIS’s precision remains high, because it uses
only functional attributes. In sparse KGs, when literal similarity is high, PARIS is
outperformed by the best embedding-based method.

Q3. Is the runtime overhead of each method worth paying, with respect to the
achieved effectiveness?
We conclude that the training time of BERT_INT is a cost worth spending,
since the effectiveness improvement is significant, compared to faster methods,
like MTransE (Fig. 10). Moreover, from Fig. 11, we conclude that BERT_INT
reaches 90% of its highest MRR faster than the other methods, employing only
1 or 2 epochs. It is worth noticing that in dense KGs with low similarity in fac-
tual information (e.g., textual descriptions and entity names), BERT_INT is not
as effective as RREA(basic). In such KGs RREA(basic) should be preferred,
although it is slower.
Q4. To which characteristics of the datasets are supervised, semi-supervised and
unsupervised methods sensitive?
The effectiveness of supervised and semi-supervised methods is positively
correlated with the size of the seed alignment and the density of the KGs (see
Table 17). Although RDGCN is a supervised method, it is also affected by the
degree of similarity between the entity names, as entity embeddings are initial-
ized using the entity name embeddings. Concerning unsupervised methods, the
effectiveness of AttrE is negatively correlated to the size of the seed alignment,
since it increases the probability of making wrong alignment decisions without
improving its learning. In addition, data characteristics such as the similarity of
entity names, predicate names, or textual descriptions and literals, are positively
correlated with the corresponding relevant method. More precisely, the effective-
ness of KDCoE is positively correlated with the number and similarity of textual
descriptions, MultiKE with the entity names similarity and AttrE with the predi-
cate names and literals similarity. The unsupervised nature of AttrE justifies the
different correlations found w.r.t. other attribute-based methods, in meta-features
that refer to the seed alignment size and average relations per entity. In particular,
AttrE relies on attribute values (literals) rather than seed alignment, to measure
the similarity of entities. Its effectiveness is boosted when the aligned entities
have not only a high number of attributes, but also their values are highly similar.
In the opposite case, the aligning process is adversely penalized by the noise that
is created. BERT_INT exhibits a similar behavior.

2134	 N. Fanourakis et al.

1 3

5 � Conclusions and future work

In this work, we have experimentally evaluated several translational- and Graph
Neural Networks-based methods for implementing EA tasks using KG embeddings,
as well as, non-learning methods like PARIS. They essentially cover a wide range
of supervised, to semi-supervised and unsupervised methods that exploit both rela-
tional and factual information of entity descriptions along with different negative
sampling and neighborhood range (one- vs multi-hop) strategies. We have measured
both the effectiveness and efficiency of all methods over a rich collection of datasets
that exhibit different characteristics of entity descriptions provided by KGs.

According to our analysis, negative sampling proves to be a critical factor that
affects the performance of both relation- and attribute-based KG embeddings meth-
ods, as it helps distancing dissimilar entities in the embedding space. Another crit-
ical factor that affects the performance of relation-based methods is the attention
mechanism that weights relevant and important neighbors. Moreover, the perfor-
mance of relation-based methods depends on the range of the entity neighborhood
(one-hop or multi-hop). In particular, we observed that multi-hop methods, require
an increased number of negative samples or attention mechanisms to compen-
sate noisy information in the produced embeddings from far distant neighbors. As
expected, attribute-based methods (independently of the usage of KG embeddings)
are more affected by the different types of factual information exploited in embed-
dings, such as textual descriptions. In addition, interaction-based GNNs seem to
better cope with the noise of distant neighbors and improve the utilization of attrib-
utes for matching, compared to aggregation-based GNNs. We should notice that the
unsupervised attribute-based method AttrE, can run only if the predicates of the dif-
ferent KGs have been sufficiently aligned and it does not impose the 1-to-1 map-
ping assumption. Supervised and semi-supervised methods do not suffer from this
limitation. We conclude that BERT_INT dominates all methods in terms of effec-
tiveness and efficiency overall, especially when the KGs contain high similar factual
information. In dense KGs with low factual similarity, RREA and RDGCN achieve
the best and the second best performance, respectively, as also reported in Sun et al.
(2020), Zhang et al. (2020), Zhao et al. (2022). MTransE is the fastest method (due
to the lack of negative sampling and its simple architecture - see Sects. 2.5.6 and
2.5.7), but it suffers from much lower effectiveness compared to the other methods.

As future work, we would like to benchmark embedding-based EA meth-
ods exploiting different Neural Network architectures, e.g., Generative Adver-
sarial (Vretinaris et al. 2021), Self-Adversarial (Sun et al. 2019), Graph Trans-
former (Cai et al. 2022). Moreover, we plan to extend our testbed with datasets
proposed in OAEI19 that exhibit a higher structural heterogeneity between the KGs
to be aligned (e.g., in terms of average degrees). Finally, recent works have revealed
that KG embedding methods often exhibit direct or indirect forms of bias, leading to
discrimination (Efthymiou et al. 2022; Fisher et al. 2020). We are particularly inter-
ested in assessing the robustness of embedding-based EA methods with respect to

19  https://​oaei.​ontol​ogyma​tching.​org/​2022/​knowl​edgeg​raph/​index.​html.

https://oaei.ontologymatching.org/2022/knowledgegraph/index.html.

2135

1 3

Knowledge graph embedding methods for entity alignment: an…

increasing structural diversity (i.e., in terms of connected components) of KGs, that
reflect indirect forms of bias (Fanourakis et al. 2023).

Funding  Open access funding provided by HEAL-Link Greece. This work has received funding from the
Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and
Technology (GSRT), under grant agreement No 969.

Declarations 

Conflict of interest  The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Ahmetaj S, Efthymiou V, Fagin R, et al. (2021) Ontology-enriched query answering on relational data-
bases. In: AAAI, pp 15247–15254

Berrendorf M, Faerman E, Vermue L, et al. (2020) On the ambiguity of rank-based evaluation of entity
alignment or link prediction methods. CoRR arXiv:​abs/​2002.​06914

Bordes A, Usunier N, García-Durán A, et al. (2013) Translating embeddings for modeling multi-rela-
tional data. In: NeurIPS, pp 2787–2795

Cai W, Ma W, Zhan J, et al. (2022) Entity alignment with reliable path reasoning and relation-aware het-
erogeneous graph transformer. In: IJCAI, pp 1930–1937

Cao Y, Liu Z, Li C, et al. (2019) Multi-channel graph neural network for entity alignment. In: ACL, pp
1452–1461

Chaurasiya D, Surisetty A, Kumar N, et al. (2022) Entity alignment for knowledge graphs: Progress, chal-
lenges, and empirical studies. CoRR arXiv:​abs/​2205.​08777

Chen M, Tian Y, Yang M, et al. (2017) Multilingual knowledge graph embeddings for cross-lingual
knowledge alignment. In: IJCAI, pp 1511–1517

Chen M, Tian Y, Chang K, et al. (2018) Co-training embeddings of knowledge graphs and entity descrip-
tions for cross-lingual entity alignment. In: IJCAI, pp 3998–4004

Choudhary S, Luthra T, Mittal A, et al. (2021) A survey of knowledge graph embedding and their appli-
cations. CoRR arXiv:​abs/​2107.​07842

Christophides V, Efthymiou V, Stefanidis K (2015) Entity Resolution in the Web of Data. Theory and
Technology, Morgan & Claypool Publishers, San Rafael, California, Synthesis Lectures on the
Semantic Web

Christophides V, Efthymiou V, Palpanas T, et al. (2021) An overview of end-to-end entity resolution for
big data. ACM Comput Surv 53(6):127:1–127:42

Coleman C, Narayanan D, Kang D et al (2017) Dawnbench: An end-to-end deep learning benchmark and
competition. Training 100(101):102

Coleman C, Kang D, Narayanan D et al (2019) Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. ACM SIGOPS Oper Syst Rev 53(1):14–25

Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/abs/2002.06914
http://arxiv.org/abs/abs/2205.08777
http://arxiv.org/abs/abs/2107.07842

2136	 N. Fanourakis et al.

1 3

Devlin J, Chang M, Lee K, et al. (2019) BERT: pre-training of deep bidirectional transformers for lan-
guage understanding. In: NAACL-HLT, pp 4171–4186

Dong X, Gabrilovich E, Heitz G, et al. (2014) Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: SIGKDD, pp 601–610

Efthymiou V, Stefanidis K, Christophides V (2015) Big data entity resolution: From highly to somehow
similar entity descriptions in the web. In: IEEE Big Data, pp 401–410

Efthymiou V, Stefanidis K, Pitoura E, et al. (2022) FairER: Entity resolution with fairness constraints. In:
CIKM, pp 3004–3008

Fanourakis N, Efthymiou V, Christophides V, et al. (2023) Structural bias in knowledge graphs for the
entity alignment task. In: ESWC

Fisher J, Mittal A, Palfrey D, et al. (2020) Debiasing knowledge graph embeddings. In: EMNLP, pp
7332–7345

Jiang J, Li M, Gu Z (2021) A survey on translating embedding based entity alignment in knowledge
graphs. In: DSC, pp 187–194

Kamigaito H, Hayashi K (2022) Comprehensive analysis of negative sampling in knowledge graph repre-
sentation learning. In: ICML, pp 10661–10675

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: ICLR
Kocmi T, Bojar O (2017) An exploration of word embedding initialization in deep-learning tasks. In:

ICON, pp 56–64
Lehmann J, Isele R, Jakob M et al (2015) Dbpedia - A large-scale, multilingual knowledge base extracted

from wikipedia. Semantic Web 6(2):167–195
Leone M, Huber S, Arora A et al (2022) A critical re-evaluation of neural methods for entity alignment.

PVLDB 15(8):1712–1725
Lin J (1991) Divergence measures based on the shannon entropy. IEEE Trans Inf Theory 37(1):145–151
Mao X, Wang W, Xu H, et al. (2020a) MRAEA: an efficient and robust entity alignment approach for

cross-lingual knowledge graph. In: WSDM, pp 420–428
Mao X, Wang W, Xu H, et al. (2020b) Relational reflection entity alignment. In: CIKM, pp 1095–1104
Million E (2007) The Hadamard product. Course Notes 3(6)
Nemenyi P (1963) Distribution-free Multiple Comparisons. Princeton University, Princeton
Nickel M, Kiela D (2017) Poincaré embeddings for learning hierarchical representations. In: NeurIPS, pp

6338–6347
Obraczka D, Schuchart J, Rahm E (2021) EAGER: embedding-assisted entity resolution for knowledge

graphs. CoRR arXiv:​abs/​2101.​06126
Parisi L, Neagu D, Ma R et al (2022) Quantum relu activation for convolutional neural networks to

improve diagnosis of parkinson’s disease and COVID-19. Expert Syst Appl 187:115892
Rebele T, Suchanek FM, Hoffart J, et al. (2016) YAGO: A multilingual knowledge base from wikipedia,

wordnet, and geonames. In: ISWC, pp 177–185
Suchanek FM, Abiteboul S, Senellart P (2011) PARIS: probabilistic alignment of relations, instances,

and schema. PVLDB 5(3):157–168
Sun Z, Hu W, Zhang Q, et al. (2018) Bootstrapping entity alignment with knowledge graph embedding.

In: IJCAI, pp 4396–4402
Sun Z, Deng Z, Nie J, et al. (2019) Rotate: Knowledge graph embedding by relational rotation in complex

space. In: ICLR
Sun Z, Zhang Q, Hu W et al (2020) A benchmarking study of embedding-based entity alignment for

knowledge graphs. PVLDB 13(11):2326–2340
Tang X, Zhang J, Chen B, et al. (2020) BERT-INT: A bert-based interaction model for knowledge graph

alignment. In: IJCAI, pp 3174–3180
Tarus JK, Niu Z, Mustafa G (2018) Knowledge-based recommendation: a review of ontology-based rec-

ommender systems for e-learning. Artif Intell Rev 50(1):21–48
Trisedya BD, Qi J, Zhang R (2019) Entity alignment between knowledge graphs using attribute embed-

dings. In: AAAI, pp 297–304
Trouillon T, Welbl J, Riedel S, et al. (2016) Complex embeddings for simple link prediction. In: ICML,

pp 2071–2080
Velickovic P, Cucurull G, Casanova A, et al. (2018) Graph attention networks. In: ICLR
Vrandecic D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun ACM 57:78–

85. https://​doi.​org/​10.​1145/​26294​89
Vretinaris A, Lei C, Efthymiou V, et al. (2021) Medical entity disambiguation using graph neural net-

works. In: SIGMOD, pp 2310–2318

http://arxiv.org/abs/abs/2101.06126
https://doi.org/10.1145/2629489

2137

1 3

Knowledge graph embedding methods for entity alignment: an…

Authors and Affiliations

Nikolaos Fanourakis1,2  · Vasilis Efthymiou1  · Dimitris Kotzinos3 ·
Vassilis Christophides3

 *	 Nikolaos Fanourakis
	 fanourakis@ics.forth.gr

	 Vasilis Efthymiou
	 vefthym@ics.forth.gr

	 Dimitris Kotzinos
	 Dimitrios.Kotzinos@cyu.fr

	 Vassilis Christophides
	 Vassilis.Christophides@ensea.fr

1	 Institute of Computer Science, FORTH, N. Plastira 100, Heraklion, Greece
2	 Computer Science Department, University of Crete, Voutes Campus, Heraklion, Greece
3	 Lab. ETIS, CNRS, CY Cergy Paris University, ENSEA, 2 av. A. Chauvin,

Cergy‑Pontoise UMR 8051, France

Wang Q, Mao Z, Wang B et al (2017) Knowledge graph embedding: a survey of approaches and applica-
tions. IEEE Trans Knowl Data Eng 29(12):2724–2743

Wang Z, Yang J, Ye X (2020) Knowledge graph alignment with entity-pair embedding. In: EMNLP, pp
1672–1680

Wang Z, Li M, Gu Z (2021) A review of entity alignment based on graph convolutional neural network.
In: DSC, pp 144–151

Wu Y, Liu X, Feng Y, et al. (2019) Relation-aware entity alignment for heterogeneous knowledge graphs.
In: IJCAI, pp 5278–5284

Xiong C, Dai Z, Callan J, et al. (2017) End-to-end neural ad-hoc ranking with kernel pooling. In: SIGIR,
pp 55–64

Yang B, Yih W, He X, et al. (2015) Embedding entities and relations for learning and inference in knowl-
edge bases. In: ICLR

Zeng K, Li C, Hou L et al (2021) A comprehensive survey of entity alignment for knowledge graphs. AI
Open 2:1–13

Zhang C, Zhou M, Han X et al (2017) Knowledge graph embedding for hyper-relational data. Tsinghua
Sci Technol 22(2):185–197

Zhang Q, Sun Z, Hu W, et al. (2019) Multi-view knowledge graph embedding for entity alignment. In:
IJCAI, pp 5429–5435

Zhang R, Trisedya BD, Li M et al (2022) A benchmark and comprehensive survey on knowledge graph
entity alignment via representation learning. VLDBJ 31(5):1143–1168

Zhang Z, Liu H, Chen J, et al. (2020) An industry evaluation of embedding-based entity alignment. In:
COLING, pp 179–189

Zhao X, Zeng W, Tang J et al (2022) An experimental study of state-of-the-art entity alignment
approaches. IEEE Trans Knowl Data Eng 34(6):2610–2625

Zhu Q, Zhou X, Wu J, et al. (2019) Neighborhood-aware attentional representation for multilingual
knowledge graphs. In: IJCAI, pp 1943–1949

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://orcid.org/0000-0002-2162-5822
http://orcid.org/0000-0002-0683-030X

	Knowledge graph embedding methods for entity alignment: experimental review
	Abstract
	1 Introduction
	2 Entity alignment with KG embeddings
	2.1 The entity alignment problem
	2.2 Knowledge graph embeddings for entity alignment
	2.2.1 Embedding module
	2.2.2 Alignment module

	2.3 Knowledge graph embeddings using relations
	2.4 Knowledge graph embeddings using attributes
	2.4.1 Supervised
	2.4.2 Semi-supervised
	2.4.3 Unsupervised

	2.5 Qualitative comparison of embedding methods
	2.5.1 Embedding module
	2.5.1.1 Entity names
	2.5.1.2 Relations
	2.5.1.3 Attribute names
	2.5.1.4 Literal values and literal size

	2.5.2 Alignment module
	2.5.3 Learning
	2.5.4 Schema alignment
	2.5.5 Embedding initialization
	2.5.6 Negative sampling
	2.5.7 Neural network architectures

	3 Experimental setting
	3.1 Datasets
	3.2 Statistics and meta-features
	3.3 Evaluation protocol and metrics
	3.3.1 Evaluation protocol
	3.3.2 Evaluation metrics

	3.4 Pre-processing pipelines
	3.5 Implementation details

	4 Analysis of experimental results
	4.1 Effectiveness of EA methods using different metrics
	4.1.1 Relation-based EA methods
	4.1.2 Attribute-based EA methods
	4.1.3 Conventional EA methods

	4.2 Effectiveness vs efficiency trade-offs
	4.2.1 Effectiveness-based ranking of EA methods
	4.2.2 Efficiency-based ranking of EA methods

	4.3 Meta-level analysis of EA methods
	4.3.1 Seed alignment size
	4.3.2 Density
	4.3.3 Heterogeneity

	4.4 Lessons learned

	5 Conclusions and future work
	References

