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Abstract

This article considers Savage’s theorem in a configuration relaxing the tech-

nical axioms P6 and P7 that ensure a continuum nature on the set of states.

With the only enrichment on fundamentals being the connectivity of the out-

comes set, we show that a weakened version of the Independence property is

sufficient to establish a utility function, a subjective probability, and an ex-

pected utility behavior. The proof does not require the existence of a pair

event, an idea initiated by Ramsey (1931) and applied by Gul (1992).
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1 Introduction

1.1 Motivation and result

After seven decades since the publication of “The foundation of Statistics,” (Savage

(1954)) and scholars continue to admire this tour de force, calling it a “crowning glory

of decision theory”.1 Based on a list of seven axioms, this legendary contribution

reconciled the ideas of de Finetti (1937) about subjective probability and those of

von Neumann and Morgenstein (1947) about expected utility behavior. The proof of

Savage does not rely on the mathematical structures of de Finetti or von Neumann

- Morgenstein, which are crucial for using the separate theorem in convex analysis.

Besides the famous and perhaps most discussed Savage axiom, the sure-thing

principle, the structure of Savage’s world also relies on ”technical axioms” P6 and

P7 which ensure a continuum nature on the set of states. This continuum property

allows Savage to divide the set of states by two equal parts and, then by four, eight,

sixteen and so on. We can therefore measure every event by passing through the

limit a sequence of events with probabilities in the form k
2n

, with 0 ≤ k ≤ 2n.2

Naturally, efforts have been done to extend the result of Savage to configurations

that encompass the possibility of atoms, events that can not be divided into smaller

non-null ones. It is not surprising that we must make a trade-off between the richness

of the set of states and the set of outcomes. The existence of atoms is problematic.

The seminal contribution of Gul (1992) proposes an idea initiated by Ramsey

(1931), assuming the existence of a pair event, an event that the decision maker be-

lieves has the same chance to occur as its complementary one. This choice is clearly

1See Kreps (1988).
2The proof of Savage is long and complicated. For a more simple proof and better explainations,

see Gilboa (2009), chapter 10, and Abdellaoui and Wakker (2020).
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intuitive: if a subjective probability exists, the probability of this event should be

1
2
. Gul (1992) followed the approach by Ramsey (1931) rather than Savage and de-

fines the probability of an event through a utility function. Instead of the sure-thing

principle, Gul (1992) assumed an Independence property, which states that combin-

ing two acts with a third one using a non-null event does not alter the comparison

between them.

This article is a studiy of Savage’s theorem in a configuration where the continuum

property of the set of states may not be satisfied. We proposed a weaker condition

used in the literature with three considerations. First, there is no restriction on

the set of states. It may be finite or infinite, contain atoms or not, countable or

continuum. Second, we present a weakened version of Independence axiom, requiring

its verification with one special non-null event. Third, we do not assume the existence

of a pair event.

The main idea of our approach is as follows. Given every two outcomes x and

y, using the event in Independence axiom, we construct an outcome that can be

considered their midpoint, or equivalently, an outcome that represents the an equi-

probability of 1
2

to x and y. Following the construction midpoints between x, y and

their midpoint, and so on, we can find the equivalent outcome of every distribution

that attributes a probability of the form k
2n

to x and 1− k
2n

to y. For a given event,

a lottery that wins x if that event occurs and y if not, is equivalent to the limit of a

sequence of midpoints. Hence, the probability of that event can be determined. We

can then prove the existence of an expected utility representation of the comparison

between acts.
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1.2 Related literature

For a finite number of states, Kraft et al. (1959) and Scott (1964) considered can-

cellation as a necessary and sufficient condition for the existence of a probability

measure. Kraft et al. (1959) also gave a counterexample to prove that the additivity

is not strong enough for positive answer when the number of states is bigger than or

equal to 5.

For an infinite number of states, Chateauneuf and Jaffray (1984) and Chateauneuf

(1985) considered the problem under the Archimedean property and prove that this

condition is sufficient for the establishment of a probability measure. The curious

readers can refer to the excellent reviews of Fishburn (1986, 1989) and Mackenzie

(2019).

The article by Gilboa and Schmeidler (1989), a “second Big Bang after Sav-

age (1954),”3 opens a huge body of literature for the configurations where Savage’s

famous sure-thing principle is not satisfied, and paves the way for numerous contem-

poraneous developments of the ambiguity literature. For a survey, see Etner et al.

(2012).

To the best of our knowledge, the idea of establishing a midpoint without passing

through a pair event appeared first in Ghirardato et al. (2003) and is in application

after by Ghirardato and Pennesi (2020). In these two contributions, the authors

used an essential event to determine a midpoint of two given outcomes, which they

called a preference average. Applying this idea to an order that represents biseparable

references, the midpoints serve to construct probability mixtures of acts. They can

therefore enjoy a rich structure similarly to Anscombe and Aumann (1962) and

Gilboa and Schmeidler (1989).

3See Karni et al. (2022).
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Without relying on the continuum nature of the set of states neither of the set

of outcomes, Mackenzie (2019, 2020) studied different atoms swarming properties to

establish probabilistic beliefs. His results did not require the usual conditions such

as no atoms, cancellation, or solvability. In our opinion, atoms swarming conditions

may be considered a beautiful bridge linking the configurations with discrete and

continuum states.

Adding a continuity property may allow us to change some conditions’ statements

from “for every” to “exists,” as shown in the weakened Independence property of this

article. An interesting discussion about this situation may be found in the article by

Segal (2023).

1.3 Organization

The article is organized as follows. Section 2 presents the fundamental notions. Sec-

tion 3 describes the establishement of the sujective probability and expected utility

behavior. All proofs are given in the Appendix.

2 Fundamentals

Let S be the set of states and A an algebra of events on S. The set S can be a

continuum, discrete, atomless, or hybrid type which contains continuum subsets and

atoms. For each event A ∈ A, let Ac be its complementary event: Ac = S \ A.

The set of outcome X is endowed with a topology τ . Denote by F0 the set of

measurable finite-value acts from S with algebra A to X.

F0 = {f : S → X such that f is measusable and f(S) is finite} .
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For a measurable partition A1, A2, . . . , An of S, outcomes x1, x2, . . . , xn in X, de-

note by x1,A1x2,A2 . . . xn,An the act that obtains outcome xk for s ∈ Ak. For example,

xAyAc denotes the act that takes value x if s ∈ A and value y otherwise. In the same

spirit, for every acts f and g, fAgAc denotes the act that is equal to f(s) on A and

g(s) on Ac.

Let P0 be the set of finite support probability distributions onX. For p1, p2, . . . , pn

belonging to the interval [0, 1] such that
∑n

k=1 pk = 1 and x1, x2, . . . , xn ∈ X, let

(p1 : x1, p2 : x2, . . . , pn : xn) be the random distribution on X which takes value xk

with probability pk.

The comparison between acts is defined by an order �. The strict and equivalent

comparisons are denoted by � and ∼, respectively. Before establishing some fun-

damental properties on order �, let us define some notations. An event A is called

a null-event if for every outcomes x and y, act h, we have xAhAc ∼ yAhAc . The

outcomes set X can be considered the set of constant acts and a subset of F0.

For a given sequence of outcomes {xn}∞n=0, we use the notion convergence in �

to an outcome x, in the sense that for every y � x � z, there exists N such that for

n ≥ N , y � xn � z. We use this notion to distinguish the convergence with respect

to the topology τ of X. Throughout this work, when we say that some sequence

converges to some outcome, we always refer to the convergence in �.

Axiom F1. Fundamental

i) Completeness, transivitity, monotonicity and non-triviality For every f, g ∈ F0,

either f � g or g � f . If f � g and g � h, then f � h. For every non-null

even A

x � y if and only if xAgAc � yAgAc .

There exist z, z ∈ X such that z � z.

6



ii) Weak comparative probability For any A,B ∈ A and x � y, x′ � y′,

xAyAc � xByBc if and only if x′Ay
′
Ac � x′By

′
Bc .

iii) Continuity For any x ∈ X, the sets {y ∈ X such that y � x} and {y ∈

X such that x � y} are closed with respect to the τ−topology. Moreover, the

space (X, τ) is connected and separable.4

Conditions (i) and (ii) are standard in literature and are presented in the contri-

bution by Savage (1954). Condition (iii) assumes a continuum property on the set

of outcomes.

Thanks to Weak comparative probability property, we can define an order on the

set of events as follows, A �` B if there exists x � y such that

xAyAc � xByBc .

The comparison using �` does not depend on the choice of outcomes x and y.5

3 Expected utility representation

3.1 Independence axiom and the determination of the mid-

point

The first purpose of this section is to provide a mixture of acts that replaces the lack

of linear structure being in use in Anscombe and Aumann (1962), and Gilboa and

Schmeidler (1989).

4We can not split X into two disjoint closed subsets, and there exists a countable and dense

subset of X.
5See Gilboa (2009), Chapter 10.
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Definition 1. For every acts f, g ∈ F0, a non-null event H, define the mixture of

f and g through H an act f̃ satisfying: for any s ∈ S,

f̃(s) ∼ f(s)Hh(s)Hc .

We denote by Hf + Hcg a mixing act of f and g through H. One must avoid

confusing Hf + Hcg with fHgHc . The former can be considered as a convex combi-

nation act of f and g with weighted parameters defined using the event set H, while

the latter is an act equal to f on H and to g on Hc. From now on, we always assume

axioms Fundamental and Independence on the order �.

Axiom A1. Independence There exists an event H such that both H and Hc are

non-null and for all acts f, g, h ∈ F0,

f � g if and only if Hf +Hch � Hg +Hch.

Mixing f and g with h using event H does not change the comparison between

f and g. The intuition is clear once a probability measure µ on the set of events is

established. The mixing act between f and g through H is the act µ(H)f + µ(Hc)g

that corresponds each state s to a lottery that gives f(s) with probability µ(H) and

g(s) with the probability 1 − µ(H). The independence axiom condition therefore

requires that f � g if and only if µ(H)f + µ(Hc)h � µ(H)h + µ(Hc)h. A more

detailed intuition is presented in Gul (1992). It is worth noting that here we require

Independence for only one event H, instead of every non-null event.

The relation between the independence axiom and the sure-thing principle is an

important question. In Gul (1992), where the states space S is finite, independence

implies the sure-thing principle. Proposition 1 states the same conclusion for a

general set of states S.
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Proposition 1. The sure-thing principle is satisfied. For every non-null event A,

acts f, g, h, h̃,

fAhAc � gAhAc if and only if fAh̃Ac � gAh̃Ac .

Under Independence, using event H, we can determine the midpoint of two out-

comes x and y, which can be considered an equivalent outcome of uniform distribu-

tion. This allows us to overcome the lack of a pair event, as proposed in Ramsey

(1931), and used by Gul (1992) in a configuration where the set S is finite.

Lemma 1. For events x and y, define sequences {xn}∞n=0 and {yn}∞n=0 as follows.

Let x0 = x and y0 = y. For every n ≥ 0, let

xn+1 ∼ xn,Hyn,Hc and yn+1 ∼ yn,Hxn,Hc .

Then both {xn}∞n=0 and {yn}∞n=0 converge to an outcome z that we denote as

z ∼ 1

2
x⊕ 1

2
y.

Let us present some intuition for the definition of the midpoint and the result of

Lemma 1. Assume for an instance that a subjective probability has been established.

Let p be the probability of event H. For every n, outcomes xn and yn are equivalent

correspondingly to distributions (pn : x, (1 − pn) : y) and ((1 − qn) : x, qn : y), with

p0 = 1, q0 = 0 and for n ≥ 0,

pn+1 = p× pn + (1− p)× qn,

qn+1 = (1− p)× pn + p× qn.

Assume that x � y and H �` H
c. By induction, xn � yn, pn ≥ qn and pn + qn = 1

for every n. Since {pn}∞n=0 is decreasing and {qn}∞n=0 is increasing, they converge

respectively to p∗ and q∗ and p∗ ≥ q∗. This implies p∗ = q∗ = 1
2
. Hence, the
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sequences {xn}∞n=0 and {yn}∞n=0 have the same limit, that is an equivalent outcome

of distribution
(
1
2

: x, 1
2

: y
)

and this outcome can be considered a midpoint of x and

y. The cases Hc �` H or y � x are similar.

We can therefore work with distributions of the form
(
1
2

: x, 1
2

: y
)

without relying

on a pair event set. Following Debreu (2015),6 Theorem 1, chapter 9, as Gul (1992),

we obtain a utility function u that represents the comparison between these special

distributions.

Lemma 2. There exists a utility function u such that for every x, y, x′, y′ ∈ X,

1

2
x⊕ 1

2
y � 1

2
x′ ⊕ 1

2
y′ if and only if

1

2

(
u(x) + u(y)

)
≥ 1

2

(
u(x′) + u(y′)

)
.

The function u is unique up to a strictly increasing transformation.

3.2 Expected utility representation

We use midpoint z as an equivalent outcome of distribution
(
1
2

: x, 1
2

: y
)
. The con-

struction of equivalence of distributions on the set {x, y} is intuitive. Using 1
2
x⊕ 1

2
z,

we obtain an equivalent outcome of the distribution
(
3
4

: x, 1
4

: y
)
. Similarly, 1

2
z⊕ 1

2
y

represents
(
1
4

: x, 3
4

: y
)
, and so on. Continuing with this line of reasoning, we can

create equivalent representations of every distribution of the form
(

k
2n

: x, 2
n−k
2n

: y
)
,

for 0 ≤ k ≤ 2n. Taking the limits when n converges to infinity, we construct the rep-

resentation of every distribution which takes at most two values:
(
p : x, (1− p) : y

)
,

with x, y ∈ X and 0 ≤ p ≤ 1. Moreover, if z is equivalent to
(
p : x, (1− p) : y

)
, then

u(z) = pu(x) + (1− p)u(y).

6This is a posthumous publication of the article “Topological methods in cardinal utility theory”

by Gerard Debreu, Mathematical Methods in the Social Sciences, 1959.
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Proposition 2. There exists a unique probability measure µ and a utility function u

such that for every events A,B and outcomes x, y, x′, y′, xAyAc � x′By
′
Bc is equivalent

to

µ(A)u(x) +
(
1− µ(A)

)
u(y) ≥ µ(B)u(x′) +

(
1− µ(B)

)
u(y′).

Once the subjective probability has been established, an act f = x1,A1x2,A2 . . . xn,An ,

with a partition A1, A2, . . . , An S, can be considered an equivalence of the distribu-

tion (µ(A1) : x1, µ(A2) : x2, . . . , µ(An) : xn). Therefore, the comparison of distribu-

tions can be realized through equivalent outcomes. We obtain Savages’s theorem in

a new context without relying on the continuum nature of the set of states.

Theorem 1. There exists unique finitely additive probability measure µ and unique

utility function u (up to a strictly increasing affine transformation) such that for

every acts f and g belonging to F0:

f � g if and only if

∫
S

u (f(s))µ(ds) ≥
∫
S

u (g(s))µ(ds).

4 Appendix

4.1 Proof of Proposition 1

Consider a non-null event A. Assume that for acts f, g, h, we have fAhAc � gAhAc .

We want to prove that for every h̃ ∈ F0, fAh̃Ac � gAh̃Ac .

First, we prove the following claim: if there is some ĥ ∈ F0 such that for every

s ∈ S,

h̃(s) ∼ h(s)H ĥ(s)Hc ,

then fAhAc � gAhAc if and only if fAh̃Ac � gAh̃Ac .

This claim is a direct consequence of the following two:
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i) fAhAc � gAhAc if and only if

fAh̃Ac � (Hg +Hcf)A h̃Ac .

ii) fAh̃Ac � gAh̃Ac if and only if

fAh̃Ac � (Hg +Hcf)A h̃Ac .

First, we prove (i). Indeed, from Independence axiom, fAhAc � gAhAc if and only if

H (fAhAc) +Hc
(
fAĥAc

)
� H (gAhAc) +Hc

(
fAĥAc

)
,

which is equivalent to

fAh̃Ac � (Hg +Hcf)A h̃Ac .

Now, consider (ii). Using once again the Independence axiom, fAh̃Ac � gAh̃Ac if

and only if

H
(
fAh̃Ac

)
+Hc

(
fAh̃Ac

)
� H

(
gAh̃Ac

)
+Hc

(
fAh̃Ac

)
,

which is equivalent to

fAh̃Ac � (Hg +Hcf)A h̃Ac .

Hence fAhAc � gAhAc if and only if fAh̃Ac � gAh̃Ac . The claim is proven.

Fix outcome x such that z � x � z. We will prove that

fAhAc � gAhAc if and only if fAxAc � gAxAc .

Indeed, consider the sequence of acts h0, h1, . . . , hn, . . . ∈ F0 defined as

h0 = h,

hn+1 = Hhn +Hcx for n ≥ 0.
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Using the same arguments as the case h̃ = Hh + Hcĥ, we have fAhAc � gAhAc is

equivalent to fAh
1
Ac � gAh

1
Ac , which is equivalent to fAh

2
Ac � gAh

2
Ac and so on. By

induction, for every n, fAhAc � gAhAc is equivalent to fAh
n
Ac � gAh

n
Ac . The sequence

of acts {hn}∞n=0 converges to x, in the sense that for every y � x � z, there exists N

such that for n ≥ N , s ∈ S,

y � hn(s) � z.

Let n be sufficiently big,

hn(s)HzHc � x � hn(s)zHc ,

for every s ∈ S. This implies the existence of h∗ ∈ F0 such that for every s ∈ S,

hn(s)Hh
∗(s)Hc ∼ x.

This is equivalent to Hhn + Hch∗ ∼ x. Hence fAh
n
Ac � gAh

n
Ac is equivalent to

fAxAc � gAxAc . Applying the same arguments for h̃, we get fAh̃Ac � gAh̃Ac if and

only if fAxAc � gAxAc .

The sure-thing principle is proven.

4.2 Proof of Lemma 1

Consider the case H �` H
c and x � y. Then we have

x0 � x1 � . . . � xn � . . . � yn � yn−1 � . . . y1 � y0.

Let Z be the set of outcomes z such that xn � z for every n ≥ 0. This set is closed

with respect to the topology τ of X. Let Z
c

be the close envelope of the open set

Zc. The connectivity of X implies that Z ∩ Zc 6= ∅. Fix z ∈ Z ∩ Zc
. This outcome

is found on the boundaries of Z and Zc. We will prove that z can be considered
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as an infimum of the sequence {xn}∞n=0, in the sense that for every outcome y � z,

there exists n such that y � xn � z. Indeed, the contrary implies that z belongs

to the interior of the set Z: a contradiction. Using the same argument, we prove

the existence of an outcome z′ that can be considered a supremum of the sequence

{yn}∞n=0.

To finish the proof, we must prove z ∼ z′. Assume the contrary, z � z′. Then

z � zHz
′
Hc � z′. The continuous nature of the set of outcomes X ensures the

existence of y � z and z′ � y′ such that z � yHy
′
Hc � z′. For n sufficiently big,

y � xn � z � z′ � yn � y′, with a direct consequence that z � xn,Hyn,Hc ∼ xn+1: a

contradiction. Hence, both {xn}∞n=0 and {yn}∞n=0 converge to z.

In the case Hc �` H and x � y, we use the same arguments, with the only

observation that the sequences {x2n}∞n=0 and {y2n+1}∞n=0 are decreasing, the sequences

{x2n+1}∞n=0 and {y2n}∞n=0 are increasing. They converge all to a midpoint of x and y.

The case y � x now becomes trivial. It is obvious that 1
2
x ⊕ 1

2
y ∼ 1

2
y ⊕ 1

2
x for

every x and y.

4.3 Proof of Lemma 2

The proof of Lemma 2 is long and will be presented in two steps.

(1) Step 1: We prove that for every outcomes x, y, x′, y′, we have

1

2

(
1

2
x⊕ 1

2
y

)
⊕ 1

2

(
1

2
x′ ⊕ 1

2
y′
)
∼ 1

2

(
1

2
x⊕ 1

2
x′
)
⊕ 1

2

(
1

2
y ⊕ 1

2
y′
)
. (1)

(2) Step 2: We prove that for every outcomes x1, x2, x3, y1, y2, y3, if

1

2
x2 ⊕

1

2
y1 �

1

2
x1 ⊕

1

2
y2 and

1

2
x3 ⊕

1

2
y2 �

1

2
x2 ⊕

1

2
y3, (2)

then
1

2
x3 ⊕

1

2
y1 �

1

2
x1 ⊕

1

2
y3.
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The proof of Step 1 requires two preparation statements. First, consider x, y, x′, y′, z, z′

such that

z ∼ xHyHc and z′ ∼ x′Hy
′
Hc .

Fix w, v, t ∈ X satisfying:

w ∼ xHx
′
Hc ,

v ∼ yHy
′
Hc ,

t ∼ wHvHc .

Then we have t ∼ zHz
′
Hc .

Indeed, by Independence axiom, the mixture of acts xHyHc and x′Hy
′
Hc using H

is equivalent to the mixture between z and z′ using H. We obtain:

t ∼ wHvHc

∼ H(xHyHc) +Hc(x′Hy
′
Hc)

∼ Hz +Hcz′

∼ zHz
′
Hc .

Second statement: consider x, y, x′, y′, z, z′ such that

z ∼ 1

2
x⊕ 1

2
y and z′ ∼ 1

2
x′ ⊕ 1

2
y′.

Fix w, v, t ∈ X satisfying:

w ∼ xHx
′
Hc ,

v ∼ yHy
′
Hc ,

t ∼ 1

2
w ⊕ 1

2
v.
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Then we have t ∼ zHz
′
Hc .

Let x0 = x, x′0 = x′, y0 = y, y′0 = y, w0 = w, and v0 = v. Consider sequences

{xn}∞n=0, {x′n}∞n=0, {yn}∞n=0, {y′n}∞n=0, {wn}∞n=0, {vn}∞n=0 being defined as:

xn+1 ∼ xn,Hyn,Hc and yn+1 ∼ yn,Hxn,Hc ,

x′n+1 ∼ x′n,Hy
′
n,Hc and y′n+1 ∼ y′n,Hx

′
n,Hc ,

wn+1 ∼ wn,Hvn,Hc and vn+1 ∼ vn,Hwn,Hc .

Let sequence {tn}∞n=0 be defined as

tn = wn,Hvn,Hc ,

for every n.

Using the first statement, by induction, we have, for every n,

wn ∼ xn,Hx
′
n,Hc ,

vn ∼ yn,Hy
′
n,Hc .

Let n goes to infinity, we have xn and yn converge to the midpoint z of x and y, x′n

and y′n to the midpoint z′ of x′ and y′, and wn and vn to the midpoint t of w and v.

Hence, t ∼ zHz
′
Hc .

We finish Step 1 in the proof. Consider x, y, x′, y′, z, z′ such that

z ∼ 1

2
x⊕ 1

2
y and z′ ∼ 1

2
x′ ⊕ 1

2
y′.

Fix w, v, t ∈ X satisfying:

w ∼ 1

2
x⊕ 1

2
x′,

v ∼ 1

2
y ⊕ 1

2
y′,

t ∼ 1

2
w ⊕ 1

2
v.
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We will prove that t ∼ 1
2
z ⊕ 1

2
z′.

Let w0 = x, w′0 = x′, v0 = y, v′0 = y′, z0 = z, z′0 = z′. Consider sequences

{wn}∞n=0, {vn}∞n=0, {zn}∞n=0, {z′n}∞n=0 being defined as:

wn+1 ∼ wn,Hw
′
n,Hc and w′n+1 ∼ w′n,Hwn,Hc ,

vn+1 ∼ vn,Hv
′
n,Hc and v′n+1 ∼ v′n,Hvn,Hc ,

zn+1 ∼ zn,Hz
′
n,Hc and z′n+1 ∼ z′n,Hzn,Hc .

Let

tn ∼
1

2
wn ⊕

1

2
vn.

Since wn and vn converge respectively to w and v, tn converges to t ∼ 1
2
w ⊕ 1

2
v. By

the second statement and induction, we have

tn ∼ zn,Hz
′
n,Hc .

Since zn and z′n converge to a midpoint of z and z′, tn converges to t ∼ 1
2
z⊕ 1

2
z′. The

claim in Step 1 is proven.

Now, we begin Step 2.

Assume (2). Consider the case where we can ”decrease” y1 and ”increase” y3 such

that the comparisons in (2) become ”equivalent”. Precisely, assume the existence of

outcomes y′1 and y′3 such that y1 � y′1 and y′3 � y3, satisfying

1

2
x2 ⊕

1

2
y′1 ∼

1

2
x1 ⊕

1

2
y2 and

1

2
x3 ⊕

1

2
y2 ∼

1

2
x2 ⊕

1

2
y′3.

Then

1

2

(
1

2
x3 ⊕

1

2
y2

)
⊕ 1

2

(
1

2
x2 ⊕

1

2
y′1

)
∼ 1

2

(
1

2
x1 ⊕

1

2
y2

)
⊕ 1

2

(
1

2
x2 ⊕

1

2
y′3

)
.

By (1), we obtain

1

2

(
1

2
x3 ⊕

1

2
y′1

)
⊕ 1

2

(
1

2
x2 ⊕

1

2
y2

)
∼ 1

2

(
1

2
x1 ⊕

1

2
y′3

)
⊕ 1

2

(
1

2
x2 ⊕

1

2
y2

)
.
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Since two sides of this equivalence relation share the common term 1
2
x2 ⊕ 1

2
y2,

1

2
x3 ⊕

1

2
y′1 ∼

1

2
x1 ⊕

1

2
y′3.

Recall that y1 � y′1 and y′3 � y3. We obtain

1

2
x3 ⊕

1

2
y1 �

1

2
x1 ⊕

1

2
y3. (3)

Consider the general case with (2). Fix x such that z � x � z. For every outcome

w ∈ {x1, x2, x3, y1, y2, y3}, let the sequence {w(n)}∞n=0 be defined as: w(0) = w, and

for every n ≥ 0,

w(n+ 1) =
1

2
w(n)⊕ 1

2
x.

By induction and using the result in Step 1, we can prove that (2) is equivalent to

1

2
x2(n)⊕ 1

2
y1(n) � 1

2
x1(n)⊕ 1

2
y2(n) and

1

2
x3(n)⊕ 1

2
y2(n) � 1

2
x2(n)⊕ 1

2
y3(n),

for every n ≥ 0.

Since when n tends to infinity, six sequences all converge to x, there exists n

sufficiently big such that when we replace y1(n) by z and y3(n) by z, the comparisons

are reversed:

1

2
x1(n)⊕ 1

2
y2(n) � 1

2
x2(n)⊕ 1

2
z and

1

2
x2(n)⊕ 1

2
z � 1

2
x3(n)⊕ 1

2
y2(n).

This implies the existence of y′1(n) and y′3(n) such that y1(n) � y′1(n), y′3(n) � y3(n),

and

1

2
x2(n)⊕ 1

2
y′1(n) ∼ 1

2
x1(n)⊕ 1

2
y2(n) and

1

2
x3(n)⊕ 1

2
y2(n) ∼ 1

2
x2(n)⊕ 1

2
y′3(n).

Then we have
1

2
x3(n)⊕ 1

2
y1(n) � 1

2
x1(n)⊕ 1

2
y3(n),

which is equivalent to (3). The claim in Step 2 is proven. By Theorem 1, chapter 9

in Debreu (2015), there exists a utility function u such that 1
2
x ⊕ 1

2
y � 1

2
x′ ⊕ 1

2
y′ if

and only if 1
2
u(x) + 1

2
u(y) ≥ 1

2
u(x′) + 1

2
u(y′).
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4.4 Proof of Proposition 2

Consider a construction of the following sequence
{
zk,2

n}
, with n ≥ 0 and 0 ≤ k ≤ 2n.

For n = 1, fix outcomes z0,2, z1,2 and z2,2 as:

z0,2 = y,

z1,2 ∼ 1

2
x⊕ 1

2
y,

z2,2 = x.

For n ≥ 1, 0 ≤ k ≤ 2n+1, fix the elements zk,2
n+1 ∈ X as:

zk,2
n+1

= zk
′,2n if k = 2k′, with 0 ≤ k′ ≤ 2n,

zk,2
n+1 ∼ 1

2
z2k

′,2n ⊕ 1

2
z2k

′+1,2n if k = 2k′ + 1, with 0 ≤ k′ ≤ 2n − 1.

The following assertions are intuitive and can be proven by induction. Assume

that x � y.

a) For every 0 ≤ k ≤ n,

x � z2
n−1,2n � . . . � zk+1,2n � zk,2

n � . . . � z1,2
n � y.

b) For every 0 ≤ k ≤ n,

u
(
zk,2

n)
=

k

2n
u(x) +

(
1− k

2n

)
u(y).

c) For any event A ∈ A and n, there exists unique kn(A) such that:

zkn(A)+1,2n � xAyAc � zkn(A),2n .

Fix an event A ∈ A and outcomes x � y, consider the sequence {(kn(A), 2n)}∞n=0

such that for every n,

zkn(A)+1,2n � xAyAc � zkn(A),2n .
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Observe that the sequence
{

kn(A)
2n

}
n≥0

is increasing in respect to n. We may

define the probability measure of A using outcomes x and y as

µx,y(A) = lim
n→∞

kn(A)

2n
.

However, the sequence {(kn(A), 2n)}∞n=0 and the limit may depend on the choice of

x and y. Under the Independence axiom, we can discard this possibility and prove

that the value of µx,y(A) is independent with respect to the choice of x and y.

Now, we begin the main part of the proof of this Proposition. First, we prove the

independence of µx,y(A) with respect to the choice of x, y.

Fix any x∗, y∗ ∈ X such that x∗ � y∗. Consider an event A ∈ A. Let p =

µx∗,y∗(A), with the same construction of µx∗,y∗ , using the sequences of
{
zk,2

n}
.

First, we prove that under any other choice of x ∼ zk,2
n

and y ∼ zk
′,2n with

k > k′:

µx,y(A) = µx∗,y∗(A).

The proof will be given by induction. Consider first the case n = 1. Consider z1,2

and z0,2. Let x′ = z1,2, and y′ = z0,2 = y∗. Let p = µx∗,y∗(A) and p′ = µx′,y′(A).

Recall that,

u(xAyAc) = pu(x∗) + (1− p)u(y∗),

u(x′Ay
′
Ac) = p′u(x′) + (1− p′)u(y′)

=
p′

2

(
u(x) + u(y)

)
+ (1− p′)u(y′)

=
p′

2
u(x∗) +

(
1− p′

2

)
u(y∗).

Since y′ = y∗, using the first statement in the proof of Lemma 2, we get

x′Ay
′
Ac ∼

1

2
(xAyAc)⊕ 1

2
y∗.
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This implies

u(x′Ay
′
Ac) =

1

2
(u(xAyAc) + u(y∗))

=
1

2

(
pu(x∗) + (1− p)u(y∗)

)
+

1

2
u(y∗)

=
p

2
u(x∗) +

(
1− p

2

)
u(y∗).

Hence p = p′, or µx′,y′(A) = µx,y(A).

For the case of the choice x and z1,2, we use the same arguments. The conclustion

is immediate for x = x∗, y = y∗.

Now assume that the assertion is true for any number n. We will prove that it

is also true for n + 1. Consider any 0 ≤ k′ ≤ k ≤ 2n+1. By the construction of the

sequence {zk,2n}∞n=0, there exist x, x′, y, y′ ∈
{
zk,2

n}2n
k=0

such that x � y, x′ � y′ and

zk,2
n+1 ∼ 1

2
x⊕ 1

2
x′

zk
′,2n+1 ∼ 1

2
y ⊕ 1

2
y′.

Let t ∼ zk,2
n+1

A zk
′,2n+1

Ac , v ∼ xAyAc , w ∼ x′Ay
′
Ac . Applying the first step in the proof of

Lemma 2, the equivalence t ∼ 1
2
w ⊕ 1

2
v is satisfied. Hence

u(t) =
1

2

(
u(w) + u(v)

)
=

1

2
(pu(x) + (1− p)u(y) + pu(x′) + (1− p)u(y′))

= p

(
1

2

(
u(x) + u(x′)

))
+ (1− p)

(
1

2

(
u(y) + u(y′)

))
= pu

(
zk,2

n+1
)

+ (1− p)u
(
zk
′,2n+1

)
.

This implies

µzk,2
n+1

,zk
′,2n+1

(A) = µx,y(A) = µx∗,y∗(A).
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Consider now any x, y such that x∗ � x � y � y∗. Let
{
zkn,2

n}∞
n=0

and{
zk
′
n,2

n}∞
n=0

be sequences that converge correspondingly to x and y. Then

u (xAyAc) = lim
n→∞

u
(
zkn,2

n

A z
k′n,2

n

Ac

)
= pu(x) + (1− p)u(y),

which is equivalent to

µx,y(A) = µx∗,y∗(A).

For any x � y and x′ � y′, fix x∗ and y∗ such that x∗ � x, x′ and y, y′ � y∗, we

have

µx,y(A) = µx∗,y∗(A) = µx′,y′(A).

Hence the choice of value µ(A) does not depend on the choice of x, y.

Now, we prove that µ is a finitely countable probability. We will prove that for

every events A and B such that A ∩B = ∅,

µ
(
A ∪B

)
= µ(A) + µ(B).

Define C =
(
A ∪ B

)c
. Let x � y. Since xAxB∪C � xA∪ByC � xAyB∪C , there

exists outcome w such that

xAxByC = xA∪ByC ∼ xAwB∪C .

Applying the sure-thing principe by replacing x by y on the event A, we get

xByA∪C = yAxByC ∼ yAwB∪C .

From xA∪ByC ∼ xAwB∪C and xByA∪C ∼ yAwB∪C we get

µ
(
A ∪B

)
u(x) +

(
1− µ

(
A ∪B

))
u(y) = µ(A)u(x) + (1− µ(A))u(w), (4)

µ(B)u(x) + (1− µ(B))u(y) = µ(A)u(y) + (1− µ(A))u(w). (5)
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Taking (4) minus (5), we obtain

(
u(x)− u(y)

)
µ
(
A ∪B

)
=
(
u(x)− u(y)

)(
µ(A) + µ(B)

)
.

Hence,

µ
(
A ∪B

)
= µ(A) + µ(B).

4.5 Proof of Theorem 1

By Proposition 2, there exists unique probability measure µ and a utility function

such that for every events A,B ∈ A, outcomes x, y, x′, y′ ∈ X, the comparison

xAyAc � x′By
′
Bc is equivalent to:

µ(A)u(x) + µ(Ac)u(y) ≥ µ(B)u(x′) + µ(Bc)u(y′).

Suppose that the assertion of the theorem is true for the acts which take almost

n−1 different values, with some n ≥ 2. We will prove that it is verified for n different

values.

For a partition {Ak}nk=1 of S, let f = x1,A1x2,A2 . . . xn,An , with {Ak}nk=1 a partition

of S. Fix a constant outcome v ∈ X. For 1 ≤ k ≤ n, let pk = µ(Ak).

We will prove that

f � v if and only if
n∑

k=1

pku(xk) ≥ u(v).

Fix w ∈ X such that

x1,A1x2,A2x3,A3 . . . xn,An ∼ x1,A1w∪nk=2Ak
.

By the sure-thing principle property, replacing x1 by x2, this implies

x2,A1x2,A2 . . . xn,An ∼ x2,A1w∪nk=2Ak
,
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which is equivalent to

p1u(x2) + p2u(x2) + p3u(x3) + . . .+ pnu(xn) = p1u(x2) + (p2 + p3 + . . .+ pn)u(w).

Hence

u(w) =
1∑n

k=2 pk

n∑
k=2

pku(xk).

This allows us to deduce the value of f :

u
(
x1,A1w∪nk=2Ak

)
= p1u(x1) +

(
n∑

k=2

pk

)
u(w)

=
n∑

k=1

pku(xk).

We have f � v if and only if x1,A1w∪nk=2Ak
� v, which is equivalent to

n∑
k=1

pku(xk) ≥ u(v).

For every acts f = x1,A1x2,A2 . . . xn,An and g = y1,B1y2,B2 . . . ym,Bm , by considering

v such that v ∼ g, one has

f � g if and only if
n∑

k=1

µ(Ak)u(xk) ≥
m∑
k=1

µ(Bk)u(yk).

The proof is completed.
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