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Abstract

This paper introduces a new method to tackle the issue of the almost sure conver-
gence of stochastic approximation algorithms defined from a differential inclusion.
Under the assumption of slowly decaying step-sizes, we establish that the set of es-
sential accumulation points of the iterates belongs to the Birkhoff center associated
with the differential inclusion. Unlike previous works, our results do not rely on
the notion of asymptotic pseudotrajectories introduced by Benäım–Hofbauer–Sorin,
which is the predominant technique to address the convergence problem. They fol-
low as a consequence of Young’s superposition principle for closed measures. This
perspective bridges the gap between Young’s principle and the notion of invariant
measure of set-valued dynamical systems introduced by Faure and Roth. Also, the
proposed method allows to obtain sufficient conditions under which the velocities
locally compensate around any essential accumulation point.
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1. Introduction

Let H : Rn ⇒ R
n be an upper semi-continuous set-valued map, and let π : Rn×R

n →
R
n be the projection π(x, v) = x.
In this paper we are concerned with stochastic processes of the following form:

xi+1 = xi + ǫiθi + ǫiηi+1,

where θi is in a δi-neighborhood of the set H(xi), both sequences (δi) ⊂ [0,+∞) and
(ηi) ⊂ R

n are random, δi → 0 as i → +∞, and ηi+1 is a martingale increment. We
assume that the step size sequence (ǫi) converges to 0; contrary to [5, 12] but similarly
to [8, 17], we allow this convergence to happen arbitrarily slowly, hence covering a
broad set of practical situations. The sequences (xi) model a discrete process with drift
θi, noise ηi, and step-size ǫi; we will describe some of the situations where these arise
in Section 5 below. An important example is the classical Robbins-Monro algorithm
[26], in which θi = h(xi) for some vector field h; when h is Lipschitz continuous, the
so-called ordinary differential equation method can be used to characterize the set of
accumulation points of (xi) [4, 12, 23, 24], and the analysis of more general versions
of the algorithm require more sophisticated techniques [5].
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We investigate the dynamics of the sequences (xi) using the method of “closed
measures,” introduced in [10] in a more restrictive context. Let us briefly describe the
approach. We consider the probability measures

µi =

∑i
j=0 ǫjδ(xj ,θj+ηj+1)

∑i
j=0 ǫj

on R
n × R

n. These are a sort of “occupation measures” of the sequence (µi) in the
sense that they encode the “position” xj and “velocity” θj + ηj+1 = (xi+1 − xi)/ǫi of
the sequence (xi). We then consider the set A of weak* accumulation points of the
sequence (µi). The elements µ ∈ A are probability measures that encode the long-term,
recurring dynamics of (xi). With mild assumptions 4.1, 4.4, and 4.5, A is non-empty
and the measures µ it contains have the interesting property of being closed, that is,
the integrals of gradients vanish: for all φ ∈ C∞(Rn), we have

∫

Rn×Rn

〈∇φ(x), v〉 dµ(x, v) = 0.

The Young superposition principle, Th. 3.2, is available for measures with this closed-
ness property; its statement implies that the measures µ ∈ A can be understood as
being composed of occupation measures of solutions of the differential inclusion H
in a sense that is made precise in Definition 3.5. In particular, this means that the
measures µ are invariant for H, and that the projections π(suppµ) of their supports
are contained in the Birkhoff center of H, defined as the closure of all the recurrent
points of the solutions of the differential inclusion x′(t) ∈ H(x(t)); in this way, we
recover results of [8, 16, 17], formerly obtained using the theory of asymptotic pseudo-
trajectories [6, 7].

The projections π(suppµ), µ ∈ A, are also shown to compose the essential accu-
mulation set ess acc(xi) of the sequence (xi); this is a subset of the accumulation set
in which we know that (xi) spends substantial time. We thus clarify the link between
ess acc(xi) and the Birkhoff center of H.

We also focus on the stable zeros zers(H) of H, which are defined to be the points
x ∈ R

n such that 0 ∈ H(x) and the only solution of the differential inclusion x′(t) ∈
H(x(t)) is x(t) = x. We are able to show, roughly speaking, that the average of the
“velocities” vi := θi+ηi+1 of (xi) vanishes on zers(H). Moreover, this vanishing implies
the oscillation compensation property: if zers(H) = BC(H), then for all bounded,
continuous ψ : Rn → (0,+∞) we have (for some subsequence ik)

lim
k→+∞

∑

j6ik
ǫjψ(xj)vj

∑

j6ik
ǫjψ(xj)

= 0,

as long as lim infk
∑

j6ik
ǫjψ(xj)/

∑

j6ik
ǫj > 0. Using ψ to approximate the indicator

function of a ball B, the compensation of the oscillations can be seen to be roughly
equivalent (up to some technical assumptions) to saying that, on any ball B centered
at any point x ∈ ess acc(xi), the weighted average of the velocities vi,

∑

j6i
xj∈B

ǫjvj
∑

j6i
xj∈B

ǫj
=

∑

j6i
xj∈B

ǫj(θj + ηj+1)

∑

j6i
xj∈B

ǫj
=

1
∑

j6i
xj∈B

ǫj

∑

k

(x+k − x−k ),

2



vanishes asymptotically; here we have denoted x+k and x−k the points at which the
sequence (xi) enters and exits the ball B for the k-th time, respectively. Observe that
the asymptotic vanishing of this quantity implies a “slow down” of the sequence (xi)
(i.e., if x+k = xi+N and x−k = xi, the distance traversed ‖x+k − x−k ‖ = ‖xi+N − xi‖

grows smaller with respect to the time
∑i+N

j=i ǫj this takes), at least when we know

that ‖x+k −x−k ‖ is uniformly bounded away from 0. This generalizes some of the results
of [10].

The framework considered in this paper fits, in particular, the case in which H
is the Clarke subdifferential of a Lyapunov function V ; see Corollary 4.15. Other
interesting applications are presented in Section 5, and include the stochastic descent
and heavyball algorithms, and the best-response dynamics in games.

The plan of the paper is the following. Section 2 presents known facts about dif-
ferential inclusions and subdifferentials. Section 3 introduces Young’s superposition
principle for closed measures, along with useful consequences. Section 4 gives the main
results of the paper and is devoted to the development of the analysis of the long-term
dynamics of the iterates and their convergence. Section 5 gives some applications to
optimization and game theory.

2. Preliminaries

2.1. Notations

If (E, d) is a Polish space equipped with its Borel σ-field, we denote by P(E) the
set of probability measures on E. We denote by supp(ν) the support of a measure ν.
We denote by C(I,E) the set of continuous functions on I → E, where I is a real
interval. The set C(I,Rn) (where n is an integer) will always be equipped with the
topology of uniform convergence on compact intervals of I. We denote by Cb(R

n,R)
the set of bounded continuous functions on R

n → R, by C∞(Rn,R) the set of infinitely
differentiable functions on R

n → R. The notation 1A represents the indicator function
of a set A, equal to one on that set, zero otherwise. The closure of a set A is denoted
by cl(A). For every set A ⊂ R

n, define A⊥ = {u : 〈u, a〉 = 0, ∀a ∈ A}. We denote
by d(x,A) = inf{d(x, y) : y ∈ A} the distance between a point x ∈ E and a non-
empty subset A ⊂ E. We say that X is a set-valued map on E into E′, denoted
by X : E ⇒ E′, if X(x) is a subset of E′ for every x ∈ E. A point x ∈ E is
called a zero of X if 0 ∈ X(x). We denote by zer(X) the set of zeroes of X. We
denote by graph (X) := {(x, y) : y ∈ X(x)} the graph of X. We say that X is upper
semicontinuous (u.s.c.) if for every x ∈ E and every neighborhood V of X(x), there
exists a neighborhood U of x such that X(U) ⊂ V . The projection onto position space
will be denoted π : Rn × R

n → R
n, π(x, v) = x.

2.2. Differential inclusions

Let H : Rn ⇒ R
n be a u.s.c. set-valued map with non-empty compact convex values.

We say that an absolutely continuous mapping γ : R+ → R
n is a solution to the

differential inclusion

γ′(t) ∈ H(γ(t)), (DI)
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with initial condition x ∈ R
n, if γ(0) = x and if (DI) holds for almost every t ∈ R+.

We denote by SH(x) the subset of C(R+,Rn) of all solutions to (DI) issued from x. In
the particular case, where H satisfies the following linear growth condition:

∃C > 0, ∀x ∈ R
n, ‖H(x)‖ 6 C(1 + ‖x‖) , (1)

the set SH(x) is non-empty for every x ∈ R
n [2].

The limit set of a function γ ∈ C(R+,R
n) is defined as

L(γ) :=
⋂

t>0

cl (γ([t,+∞)) . (2)

It coincides with the set of points of the form limn γ(tn) for some sequence tn → ∞.

Definition 2.1. A point x ∈ R
n is said recurrent w.r.t (DI) if there exists γ ∈ SH(x)

such that x ∈ L(γ). The Birkhoff center, denoted by BC(H), is the closure of the set
of all recurrent points:

BC(H) := cl {x ∈ R
n : ∃γ ∈ SH(x), x ∈ L(γ)} .

Definition 2.2. Given Λ ⊂ R
n, we say that a continuous function V : Rn → R is a

Lyapunov function for Λ if for all γ : R+ → R
n solution to (DI), we have for all t > 0:

{

V (γ(t)) 6 V (γ(0))

V (γ(t)) < V (γ(0)), if γ(0) 6∈ Λ .

Proposition 2.3. Let H : Rn ⇒ R
n be a u.s.c. set-valued map with non-empty com-

pact convex values. Consider Λ ⊂ R
n and let V : Rn → R be a Lyapunov function for

Λ. Then, BC(H) ⊂ Λ.

Proof. Consider x ∈ BC(H) and γ ∈ SH(x) such that x ∈ L(γ). Assume by contradic-
tion that x /∈ Λ. Then, V (γ(1)) < V (x). Set ε := V (x)− V (γ(1)). As V is continuous,
there exists δ > 0 such that for every y, ‖y − x‖ < δ implies V (y) > V (x) − ε/2. As
x ∈ L(γ), there exists t > 1 such that ‖γ(t)−x‖ < δ. Thus, V (γ(t)) > V (x)− ε/2. As
V (γ(t)) 6 V (γ(1)), we obtain a contradiction.

2.3. Clarke subdifferential

Let f : Rn → R be a locally-Lipschitz continuous function. Denote by Reg(f) the
set of its differentiability points. Recall that Reg(f) is dense in R

n by Rademacher’s
theorem.

Definition 2.4 (Clarke subdifferential). The Clarke subdifferential of f at a point
x ∈ R

n is the set

∂f(x) := conv{v ∈ R
n : ∃(yi)i ∈ Reg(f)N, yi → x and ∇f(yi) → v} .

The corresponding set-valued map ∂f is u.s.c. with non-empty compact convex
values.
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Definition 2.5 (Path differentiability). A locally-Lipschitz function f : Rn → R is
said path-differentiable if, for every locally-Lipschitz curve γ : R → R

n, the composition
f ◦ γ is differentiable at almost every point t, and satisfies:

(f ◦ γ)′(t) = 〈v, γ′(t)〉

for every v ∈ ∂f(γ(t)).

3. Closed measures

3.1. The superposition principle

Let n be an integer.
Consider a probability measure µ ∈ P(Rn ×R

n). Let π : Rn ×R
n → R

n be the pro-
jection, π(x, v) := x. The disintegration theorem states that there exists a probability
transition kernel Rn ×B(Rn) → [0, 1], denoted by (x,A) 7→ µx(A) such that for every
bounded continuous function ϕ : Rn × R

n → R,

µ(ϕ) =

∫
(
∫

ϕ(x, v)dµx(v)

)

d(π∗µ)(x) , (3)

where π∗µ is the pushforward measure of µ through π i.e., π∗µ(A) = µ(A × R
n) for

every A ∈ B(Rn). Note that:

supp(π∗µ) = π(suppµ) .

We shall say that µ has the disintegration µ =
∫

µxd(π∗µ)(x) if Eq. (3) holds for
every bounded continuous function ϕ. Whenever it is well defined, we will refer to the
quantity

vµ(x) :=

∫

vdµx(v) ,

as the centroid field associated with µ.

Definition 3.1. A compactly supported probability measure µ ∈ P(Rn ×R
n) is said

closed, if for every g ∈ C∞(Rn,R),

∫

〈∇g(x), v〉dµ(x, v) = 0 .

We define the shift operator Θ: C(R,Rn) → C(R, C(R,Rn)) s.t. for every γ ∈
C(R,Rn), Θ(γ) : t 7→ γ(t + ·). A measure ϑ ∈ P(C(R,Rn)) is said Θ-invariant if
ϑ = ϑΘ−1

t for all t, where Θt(γ) := Θ(γ)(t).

Theorem 3.2 (Young’s superposition principle). Let µ ∈ P(Rn × R
n) be a closed

probability measure. There exists ϑ ∈ P(C(R,Rn)) such that:

i) ϑ is Θ-invariant.
ii) ϑ-almost every curve γ is Lipschitz continuous and differentiable at 0.
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iii) For every bounded measurable function ϕ : Rn × R
n → R,

∫

ϕ(x, vµ(x))d(π∗µ)(x) =

∫

ϕ(γ(0), γ′(0))dϑ(γ) . (4)

In addition, ϑ-almost every γ satisfies γ′(t) = vµ(γ(t)) for almost every t ∈ R.

Proof. The statement can be established as a consequence of [9, Th. 6.2]. In order
to make the paper self-contained, we provide a direct and constructive proof, which is
inspired of the proof of [1, Th. 8.2.1].
Smooth case. Consider a closed measure µ ∈ P(Rn×R

n) such that vµ(x) is a smooth
function. Consider a compact set U ⊂ R

n containing the supports of ρ and vµ. Consider
the flow Φ: U × R → U associated to the ODE x′(t) = vµ(x(t)), so that

Φ(x, 0) = x and
∂Φ

∂t
(x, t) = vµ(Φ(x, t)),

and denote Φt(x) = Φ(x, t). Consider any smooth function ϕ : Rn → R. Define g(t, x) =
ϕ(Φt(x)). Obviously, s 7→ g(t + s,Φ−s(x)) is constant. Computing the derivative of
this function at the point s = 0, we obtain the transport equation:

0 = ∂tg(t, x) − 〈∇xg(t, x), vµ(x)〉 .

Integrating w.r.t. π∗µ,

d

dt

∫

g(t, x)dπ∗µ(x) =

∫

〈∇xg(t, x), vµ(x)〉dπ∗µ(x) =

∫

〈∇xg(t, x), v〉dµ(x, v) = 0 ,

as µ is closed. Therefore,
∫

ϕ(Φt(x))dπ∗µ(x) is constant w.r.t. t. In other words, π∗µ
is an invariant measure of Φ.

We define ϑ as the probability measure on C(R,Rn), given for every g : C(R,Rn) →
R+ by:

ϑ(g) :=

∫

g(Φ(x, ·))dπ∗µ(x) .

As Φ preserves π∗µ, it follows that ϑ is Θ-invariant. Let φ(x, v) be a bounded continu-
ous function, and set g(γ) = φ(γ(0), γ′(0)). Note that g is well-defined ϑ-a.e., because
ϑ-almost every γ is differentiable at 0. Moreover, γ′(0) = vµ(γ(0)) almost everywhere.
By definition of ϑ, Eq. (4) follows.
General case. We follow the same steps as in the proof of [1, Th. 8.2.1]. Consider
a closed measure µ. Consider a smooth and compactly supported ψ : Rn → R+ such
that

∫

ψ(x)dx = 1. For every ε > 0, set ψε(x) = ψ(x/ε)/εn. Define for every x ∈ R
n,

ρε(x) :=

∫

ψε(x−y)π∗µ(dy) and vǫ(x) :=

{

ρε(x)
−1

∫

ψε(x− y)vdµ(y, v), ρε(x) 6= 0,

0, ρε(x) = 0.

It is an easy exercise to verify that the measure defined by:

µε(dx, dv) := ρε(x)dx⊗ δvε(x)(dv)
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is closed, and satisfies the smoothness assumption of the previous paragraph. Thus,
there exists a Θ-invariant measure ϑε on C(R,Rn) satisfying Eq. (4). In particular,
setting evt(γ) := γ(t) for every γ ∈ C(R,Rn), it holds that, for all t,

(evt)∗ϑε = ρε(x)dx . (5)

We prove that the family (ϑε : 0 < ε < 1) is tight in P(C(R,Rn)). As π∗µ and ψ are
compactly supported, there exists a compact set K ⊂ R

n such that, for all ε ∈ (0, 1)
and for ϑε-almost every γ, γ(0) ∈ K. Moreover, for every T > 0,

∫
(
∫ T

0
‖γ′(t)‖2dt

)

dϑε(γ) = T

∫

‖vε(γ(0))‖
2dϑε(γ)

= T

∫

‖vε(x)‖
2ρε(x)dx

6 T

∫

‖vµ(x)‖
2π∗µ(dx) , (6)

where the last inequality follows from [1, Lemma 8.1.10]. For every c > 0, the set K

of absolutely continuous curves γ such that γ(0) ∈ K and
∫ T
0 ‖γ′(t)‖2dt < c is rela-

tively compact in C([0, T ],Rn). The tightness of (ϑε)ε follows from (6) and Markov’s
inequality.

As a consequence, there exists a measure ϑ such that ϑεi converges weak* to ϑ,
along some subsequence (εi). The measure ϑεi being Θ-invariant, the same holds for
ϑ, and the first point is proved. Also, letting εi tend to zero in Eq. (5), we obtain that
(evt)∗ϑ = π∗µ for every t.

Consider a fixed T > 0. For any smooth and compactly supported vector field
w ∈ C∞

c (Rn,Rn), consider the map Fw : C(R,Rn) → R+ given by:

Fw(γ) :=

∫ T

0

∥

∥

∥

∥

γ(t)− γ(0) −

∫ t

0
w(γ(s))ds

∥

∥

∥

∥

dt . (7)

Observe that Fvε(γ) = 0 for ϑε-a.e. γ.
Let δ > 0. From the Stone-Weierstrass theorem and the existence of C∞ bump

functions, it follows that compactly-supported, C∞ functions are dense in L1(π∗µ).
In particular, there exists w ∈ C∞

c (Rn,Rn) such that
∫

‖w(x) − vµ(x)‖π∗µ(dx) < δ.
Define:

wε(x) := ρε(x)
−1

∫

ψε(x− y)w(y)π∗µ(dy) .

Using that Fvε is equal to zero ϑε-a.e., and using the fact that (evs)∗ϑε = ρε(x)dx, we
obtain:

∫

Fw(γ) dϑε(γ) 6

∫

Fwε
(γ) dϑε(γ) +

∫ ∫ T

0

∫ t

0
‖wε(γ(s))− w(γ(s))‖dsdt dϑε(γ)

6 T 2

∫

‖wε(x)− vε(x)‖ρε(x)dx + T 2

∫

‖wε(x)− w(x)‖ρε(x)dx . (8)
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The integral in the first term in the right-hand side of Eq. (8) satisfies:

∫

‖wε(x)− vε(x)‖ρε(x)dx 6

∫ ∫

ψε(x− y)‖w(y) − vµ(y)‖π∗µ(dy)dx

=

∫

‖w(y) − vµ(y)‖π∗µ(dy) 6 δ .

The second term in Eq. (8) can be handled by noting that ‖w(x)−w(y)‖ 6 C‖x− y‖
for some Lipschitz constant C (which may depend on δ). By straightforward algebra,

∫

‖wε(x)− w(x)‖ρε(x)dx 6 Cε

∫

‖x‖ψ(x)dx .

Finally, letting ε tend to zero in Eq. (8) along the sequence (εi), and by using the
continuity of the map Fw, we obtain that

∫

Fwdϑ 6 T 2δ. Define Fvµ as in Eq. (7),
with vµ in place of w. The function Fvµ is well defined ϑ-almost everywhere, and
satisfies:

∫

Fvµ(γ)dϑ(γ) 6 T 2δ +

∫ ∫ T

0

∫ t

0
‖w(γ(s)) − vµ(γ(s))‖dsdtdϑ(γ)

6 T 2δ + T 2

∫

‖w(x) − vµ(x)‖π∗µ(x) ,

where the last inequality is due to the fact that (evs)∗ϑ = π∗µ for all s. Therefore,
∫

Fvµdϑ is bounded by 2T 2δ. As δ was arbitrary, the former is equal to zero. We
conclude that for ϑ-almost every γ,

∀t ∈ R, γ(t) = γ0 +

∫ t

0
vµ(γ(s))ds .

This proves the second point and the last point of the theorem. Moreover, note that
for ϑ-almost every γ, γ′(t) = vµ(γ(t)) for almost every t. Hence, the third point follows
by the Θ-invariance of ϑ.

3.2. Consequences

We review some consequences of Young’s superposition principle.

Proposition 3.3. Let f : Rn → R a path-differentiable function and µ ∈ P(Rn ×R
n)

be a closed measure. Then, for every measurable map ξ : Rn → R
n such that ξ(x) ∈

∂f(x) for π∗µ-almost every x,
∫

〈ξ(x), v〉dµ(x, v) = 0.

Proof. By Prop. 3.2, there exists a measure ϑ on C(R,Rn) such that:

∫

〈ξ(x), v〉dµ(x, v) =

∫

〈ξ(x), vµ(x)〉π∗µ(dx) =

∫

〈ξ(γ(0)), γ′(0)〉ϑ(dγ) .

As ϑ is shift-invariant, the above value coincides with
∫

〈ξ(γ(t)), γ′(t)〉ϑ(dγ), for every
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t. Thus, for every T > 0

∫

〈ξ(x), v〉dµ(x, v) =
1

T

∫ T

0

∫

〈ξ(γ(t)), γ′(t)〉ϑ(dγ)dt .

By Fubini’s theorem, the right-hand side is equal to 1
T

∫

(f(γ(T )) − f(γ(0)))ϑ(dγ),
which is equal to zero, using the fact that ϑ is Θ-invariant.

Theorem 3.4. Consider an u.s.c. map H : Rn ⇒ R
n with non-empty compact convex

values. Let µ ∈ P(Rn×R
n) be a closed probability measure. Assume that for π∗µ-almost

every x,

vµ(x) ∈ H(x) . (9)

Then, π(suppµ) ⊂ BC(H). Moreover, vµ = 0, π∗µ-a.e. on the set zers(H) := {x ∈
zer(H) : SH(x) = {t 7→ x}} i.e., the set of zeroes x of H such that any solution to
(DI) issued from x is constant.

Proof. Define the measurable map L : C(R,Rn) ⇒ R
n given by Eq. (2). Note that

L = L ◦ Θ. As ϑ is Θ-invariant, (ev0, L)∗ϑ = (evt, L)∗ϑ for every t, where evt stands
for the projection evt(γ) = γ(t). Moreover, for every γ ∈ C(R,Rn), d(γ(t), L(γ)) → 0.
By the dominated convergence theorem,

∫

1 ∧ d(γ(0), L(γ))dϑ(γ) = lim
t→∞

∫

1 ∧ d(γ(t), L(γ))dϑ(γ) = 0 .

Therefore, ϑ-almost every γ satisfies γ(0) ∈ L(γ). Moreover, γ is a solution to (DI) on
[0,+∞) by the last statement of Th. 3.2. Therefore, γ(0) is a recurrent point of (DI).
As the distribution of γ(0) is equal to π∗µ, the first point is proved.

If, moreover, γ(0) ∈ zers(H), then γ ≡ γ(0). In particular, γ′(0) = 0. Using the
superposition principle,

0 =

∫

‖γ′(0)‖1zers(H)(γ(0))dϑ(γ) =

∫

‖vµ(x)‖1zers(H)(x)dπ∗µ(x) .

Here, we used the fact that zers(H) is measurable. Indeed, if SI : R
n → C(R,Rn) is the

map such that SI(x) is the constant function t 7→ x, the set zers(H) coincides with {x ∈
R
n : (SH−SI)(x) = {t 7→ 0}}. By [2], SH : Rn ⇒ C(R,Rn) is an upper semicontinuous

map with closed graph and is therefore measurable by [14, Th. 18.20]. The same holds
for SH − SI . Thus, zers(H) = (SH − SI)

−1(t 7→ 0) is also measurable.

Definition 3.5 (H-invariant measure [17, 25]). A probability measure ν ∈ P(Rn) is
H-invariant (for (DI)) if there exists a Θ-invariant measure ϑ ∈ P(C(R,Rn)) which
is supported by the set of (complete) solutions to (DI), and such that ν = ϑ(ev0)

−1,
where ev0 is the projection ev0(γ) := γ(0).

Remark 3.6. Consider a closed measure µ satisfying Eq. (9), and denote by ϑ the
measure of Th. 3.2. By the last point of Th. 3.2, ϑ is supported by the set of (complete)
solutions to (DI). The superposition principle also shows that π∗µ = ϑ(ev0)

−1. As a
consequence, π∗µ is an invariant measure to (DI) in the sense of Faure and Roth [17],
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and the two measures ϑ represent the same object in both cases. Compare also with
Corollary 4.10.

Theorem 3.7. Consider an u.s.c. map H : Rn ⇒ R
n with non-empty compact con-

vex values. Consider the differential inclusion (DI) and let V : Rn → R be a path-
differentiable Lyapunov function for some Λ ⊂ R

n. Let µ ∈ P(Rn × R
n) be a closed

measure satisfying Eq. (9) π∗µ-almost everywhere. Then, vµ(x) ∈ ∂V (x)⊥ for π∗µ-
almost every x.

Proof. Let ϑ be the measure given by Th. 3.2. By Prop. 2.3 and Th. 3.4, for ϑ-almost
every γ,

γ(R) ⊂ π(supp(µ)) ⊂ BC(H) ⊂ Λ .

Therefore, V ◦ γ is constant. As V is path-differentiable, this implies that for almost
every t and for every v ∈ ∂V (γ(t)), 〈v, γ′(t)〉 = 0. In other words, γ′(t) ∈ ∂V (γ(t))⊥.
As ϑ is Θ-invariant, γ′(0) ∈ ∂V (γ(0))⊥, ϑ-a.e. The result follows from Eq. (4) where
φ(x, v) is taken as the indicator function of graph(∂V ⊥).

4. Stochastic approximation

This is the main section of the paper. In Section 4.1, we give the precise framework
of the random sequences (xi) that interest us, we define the measures µi. Then, in
Section 4.2, we study the accumulation points of the sequence (µi) establishing their
closedness in Proposition 4.9 and their invariance for x′(t) = H(x(t)) in Corollary
4.10, as well as their link to the Birkhoff center. We then proceed, in Section 4.3 to
define and study the essential accumulation set and to link it to the Birkhoff center of
H. Finally, we collect in Section 4.4 our discussion regarding oscillation compensation
properties for general differential inclusions H and for those associated to Lyapunov
functions V .

4.1. The Framework

We introduce a set-valued map H : Rn ⇒ R
n, which satisfies the following assumption.

Assumption 4.1. The map H : Rn ⇒ R
n is u.s.c. with non-empty compact convex

values.

We define:

Hδ(x) := {y ∈ R
n : ∃z s.t. ‖z − x‖ 6 δ and d(y,H(z)) 6 δ} . (10)

Let (Ω,F , (Fi)i∈N,P) be a filtered probability space. Consider a real sequence (ǫi) ∈
(0,+∞)N. Assume that there exists a (Fi)-adapted stochastic process (xi, ηi, δi) on Ω
to (Rn × R

n × [0,∞))N, equipped with the Borel σ-field associated with the product
topology, such that the following inclusion holds almost everywhere:

xi+1 ∈ xi + ǫiH
δi(xi) + ǫiηi+1. (11)

Remark 4.2. Examples of processes satisfying Eq. (11) are provided in Section 5. In
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the general setting, one can construct such a process by setting Ω := (Rn × [0,∞))N,
F equal to the Borel σ-field associated with the product topology, (ηi, δi)i equal to the
canonical process on Ω, and (Fi) equal to the natural filtration. By Assumption 4.1
and the measurable selection theorem [13, Theorem III.9], there exists a Borel map
ϕ : Rn × [0,∞) → R

n, such that ϕ(x, δ) ∈ Hδ(x) for every (x, δ). Given an arbitrary
x0 ∈ R

n, the sequence of r.v. (xi) iteratively defined by xi+1 = xi+ ǫiϕ(xi, δi)+ ǫiηi+1

is adapted, and satisfies the inclusion (11).

We introduce the following event:

Γ := {(xi) is bounded and δi → 0} .

Remark 4.3. The set Γ is measurable, because it is the intersection of the measurable
set {lim supi δi = 0} and the countable union of the sets {supi ‖xi‖ 6 q} for q ∈ N.

We make the following assumptions.

Assumption 4.4. For every i ∈ N, the r.v. ‖ηi‖ is P- integrable, and satisfies P-a.e.:

E(ηi+1|Fi) = 0

Moreover, there exists q > 1, such that

sup
i

E (‖ηi+1‖
q|Fi) <∞, P-a.e. on Γ . (12)

Assumption 4.5. The step size sequence (ǫi) is positive and satisfies:

i)
∑

i ǫi = +∞.
ii) ǫi → 0.

We define the velocity

vi+1 =
xi+1 − xi

ǫi

We introduce the random measure µi on B(Rn)⊗ B(Rn) by

µi =

∑i
j=0 ǫjδ(xj ,vj+1)
∑i

j=0 ǫj
. (13)

Remark 4.6. Note that µi is a random variable on Ω to the space of Borel probability
measures on R

n×R
n, equipped with Borel σ-field associated with the weak* topology.

4.2. Weak* accumulation points

We start with a preliminary lemma.

Lemma 4.7. Let Assumptions 4.1, 4.4 and 4.5-i) hold. Define v̄i := vi−ηi and define
µ̄i in the same way as µi, only replacing vi+1 by v̄i+1 in Eq. (13). The following holds
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P-a.e. on Γ:

sup
i

∫

‖v‖qdµi(x, v) <∞ (14)

sup
i

∫

‖v‖qdµ̄i(x, v) <∞ (15)

lim
i→∞

∑

j6i ǫjh(xj)ηj+1
∑

j6i ǫj
= 0 , (16)

for every measurable function h : Rn → R which is bounded on bounded sets. In par-
ticular, (µi) and (µ̄i) are tight, P-a.e. on Γ.

Proof. Define v̄i := vi − ηi. By definition, v̄i+1 ∈ Hδi(xi).
We first establish Eq. (16). Denote by Mi+1 the numerator of the ratio in Eq. (16).

Note that (Mi) is a martingale. Set αi := E(‖Mi+1 −Mi‖
q |Fi) and si :=

∑

j6i αj. We

use Lemma A.1. On the event {supi si < ∞}, Mi converges a.s. to a finite random
variable. As

∑

i ǫi = ∞, we obtain that Mi+1/
∑

j6i ǫj → 0 a.s. on that event. On the

event {si → ∞}, we have that, almost surely,

Mi+1

(si log
2(si))1/q

→ 0 .

Note that αi = ǫqi |h(xi)|
q
E(‖ηi+1‖

q |Fi). Thus, by Assumption 4.4, αi/ǫ
q
i is uniformly

bounded a.e. on Γ. This implies that, for some random variable c, which is finite a.e.
on Γ,

Mi+1
∑

j6i ǫj
6 c

Mi+1

(si log
2(si))1/q

U
1/q
i , ,

where

Ui :=

(

∑

j6i ǫ
q
j

)

log2
(

∑

j6i ǫ
q
j

)

(

∑

j6i ǫj

)q .

Using that
∑

j6i ǫ
q
j 6

∑

j6i ǫj for large i, we obtain that Ui tends to zero. Thus,

Mi+1/
∑

j6i ǫj → 0 a.s. on the event {si → ∞} ∩ Γ.

We now establish Eq. (14). We decompose:

∑

j6i ǫj‖vj+1‖
q

∑

j6i ǫj
=

∑

j6i ǫjE(‖vj+1‖
q|Fj)

∑

j6i ǫj
+

∑

j6i ǫj (‖vj+1‖
q − E(‖vj+1‖

q|Fj))
∑

j6i ǫj
.

The second term in the right-hand side of the above equality tends to zero a.s. on Γ as
a consequence of Eq. (16), used with the martingale increment ‖vj+1‖

q−E(‖vj+1‖
q|Fj)

instead of ηj+1 (the proof is identical). Consider the first term. The sequence
E(‖vj+1‖

q|Fj) is uniformly bounded a.e. on Γ. Consequently, Eq. (14) is shown. The
proof of Eq. (15) follows the same line.

Recall that π : Rn × R
n → R

n is the projection, π(x, v) := x.
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Proposition 4.8. Let Assumptions 4.1, 4.4 and 4.5-i) hold. Then, P-a.e. ((xi), (δi))
on Γ, any weak* accumulation point µ of (µi) satisfies vµ(x) ∈ H(x) for π∗µ-almost
all x.

Proof. Let µ be an accumulation point of (µi), that is, µi → µ along some subse-
quence. Extracting a further subsequence, one can assume as well that µ̄i → µ̄ along
the same subsequence, for some other limiting measure µ̄.

For every bounded continuous function h,

∫

h(x)v dµi(x, v) −

∫

h(x)v dµ̄i(x, v) =

∑

j6i ǫjh(xj)ηj+1
∑

j6i ǫj
. (17)

The right-hand side tends a.s. to zero on Γ by Lem. 4.7. Eq. (14) and (15) of Lem. 4.7
ensure uniform integrability, and thus imply that the left-hand side of Eq. (17) con-
verges to

∫

h(x)vdµ(x, v)−
∫

h(x)vdµ̄(x, v). Thus, for every bounded continuous func-
tion h,

∫

h(x)v dµ(x, v) =

∫

h(x)v dµ̄(x, v) .

By disintegration,
∫

h(x)vµ(x)dπ∗µ(x) =
∫

h(x)vµ̄(x)dπ∗µ̄(x). As π∗µ = π∗µ̄, we con-
clude that vµ = vµ̄ π∗µ-a.e.

Let δ > 0 be arbitrary. As δi → 0 a.e. on Γ, v̄i+1 ∈ Hδ(xi) for every i large enough.
Equivalently, 1graphHδ(xi, v̄i+1) = 1 for large i. Thus,

∫

1graphHδ(x, v)dµ̄i(x, v) → 1 .

As graphHδ is closed,
∫

1graphHδ(x, v)dµ̄(x, v) = 1. Desintegrate µ̄ =
∫

µ̄xdπ∗µ(x).
By Fubini’s theorem,

∫

1graphHδ(x, v)dµ̄x(v) = 1 for π∗µ-a.e x. This proves that

supp(µx) ⊂ Hδ(x). Using that Hδ(x) is convex, it follows that vµ̄(x) ∈ Hδ(x) for
π∗µ-a.e. x. As δ is arbitrary, vµ̄(x) ∈

⋂

δ>0H
δ(x) = H(x). As vµ coincides with vµ̄

π∗-a.e., the conclusion follows.

Proposition 4.9. Let Assumptions 4.1, 4.4 and 4.5 hold. Then, P-a.e. ((xi), (δi))
on Γ, any accumulation point µ of (µi) satisfies, for every g ∈ C∞(Rn,R),
∫

〈∇g(x), v〉dµ(x, v) = 0 .

Proof. Consider a fixed ω ∈ Γ (we omit the dependency in ω) such that (xi) is
bounded and

∫

‖v‖qdµi(x, v) is uniformy bounded. Let µ be an accumulation point of
(µi). Consider g ∈ C∞(Rn,R). By uniform integrability,

∫

〈∇g(x), v〉dµ(x, v) = lim
i→∞

∫

〈∇g(x), v〉dµi(x, v) .

Set ti :=
∑i−1

j=0 ǫj for every i > 0. Equivalently, ǫi = ti+1 − ti. Let x : R+ → R
n be the

piecewise linear interpolated process associated with (xi), defined by:

x(t) := xi + vi+1(t− ti)
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for every t ∈ [ti, ti+1). For every i, define the measure µ̃i ∈ P(Rn ×R
n) given by:

µ̃i :=
1

ti+1

∫ ti+1

0
δ(x(t),x′(t))dt .

Define ϕ(x, v) := 〈∇g(x), v〉. After straightforward algebra,

µi(ϕ) − µ̃i(ϕ) =
1

ti+1

i
∑

j=0

∫ tj+1

tj

(ϕ(xj , vj+1)− ϕ(x(t), vj+1)) dt .

Note that ‖∇g(x)‖ is Lipschitz continuous and bounded on K. Thus, there exists a
constant C > 0 such that:

|µi(ϕ) − µ̃i(ϕ)| 6
1

ti+1

i
∑

j=0

∫ tj+1

tj

‖∇g(xj)−∇g(x(t))‖‖vj+1‖dt

6
C

ti+1

i
∑

j=0

‖vj+1‖

∫ tj+1

tj

(1 ∧ ‖xj − x(t)‖)dt

6
C

ti+1

i
∑

j=0

ǫj‖vj+1‖(1 ∧ ǫj‖vj+1‖) .

For every ε > 0, one has ǫi 6 ε for every i large enough. Taking limits,

lim sup
i→∞

|µi(ϕ)− µ̃i(ϕ)| 6 C

∫

‖v‖(1 ∧ ε‖v‖)dµ(x, v) .

As ε is arbitrary, and using that
∫

‖v‖dµ(x, v) < ∞, we obtain |µi(ϕ) − µ̃i(ϕ)| → 0.
Moreover,

µ̃i(ϕ) =
1

ti+1

∫ ti+1

0
〈∇g(x(t)), x′(t)〉dt =

g(xi+1)− g(x0)

ti+1
.

Thus, µ̃i(ϕ) → 0, and the result is proved.

Corollary 4.10. Let Assumptions 4.1, 4.4 and 4.5 hold. Then, P-a.e. ((xi), (δi)) on
Γ, any accumulation point µ of (µi) is H-invariant in the sense of Definition 3.5.

Proof. This follows immediately from the superposition principle, Th. 3.2 (which may
be applied by Proposition 4.9), together with Prop. 4.8.

We recall the definition of zers(H) in Th. 3.4.

Theorem 4.11. Let Assumptions 4.1, 4.4 and 4.5 hold. Then, P-a.e. on Γ, any ac-
cumulation point µ of (µi) is such that:

i) π(suppµ) ⊂ BC(H).
ii) vµ = 0, π∗µ-a.e. on zers(H).
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Proof. Let µ be chosen as in Prop. 4.9. Define µ′ ∈ P(Rn × R
n) as:

µ′(ϕ) =

∫

ϕ(x, vµ(x))dπ∗µ(x) ,

for every ϕ ∈ Cb(R
n × R

n,R). By Prop. 4.9,
∫

〈∇g(x), v〉dµ′(x, v) = 0 for every g ∈
C∞(Rn,R). As H is locally bounded, µ′ is compactly supported. In sum, we conclude
that µ′ is closed. By Prop. 4.8, vµ(x) ∈ H(x) for π∗µ-almost every x. As vµ = vµ′ , the
conclusion of Th. 4.11 follows from Prop. 3.4.

4.3. Essential accumulation set

Following the exposition of [10], we introduce the notion of essential accumulation
points of the sequence (xi). For every U ⊂ R

n, define:

τUi := µi(U × R
n) =

∑i
j=0 ǫj1U (xj)
∑i

j=0 ǫj
.

The quantity τUi should be interpreted as the average amount of time during which
the iterates are in the set U , up to iteration i.

Definition 4.12. For every ω ∈ Ω, a point x is an essential accumulation point of
the sequence (xi(ω)) if for every neighborhood U of x, lim supi τ

U
i (ω) > 0 .

We denote by ess acc (xi) the set of essential accumulation points. Th. 4.11 has the
following consequence.

Corollary 4.13. Let Assumptions 4.1, 4.4 and 4.5 hold. Then, P-a.e. on Γ,

ess acc (xi) ⊂ BC(H) .

In particular, if (DI) admits a Lyapunov function V : Rn → R for some Λ ⊂ R
n, then

ess acc (xi) ⊂ Λ.

Proof. The last statement is immediate from Prop. 2.3. We show the first statement.
The proof follows from Th. 4.11 along with the following equality:

ess acc (xi) = cl
⋃

µ

π(suppµ) , (18)

where the union is taken over all weak* accumulation points of (µi). This point is estab-
lished in [10]. We provide a shorter proof, for completeness. Consider x ∈ ess acc (xi).
Choose k > 0 and set U equal to the closed ball of center x and radius 1/k. It holds
that lim supi π∗µi(U) > 0. Thus there exists ε > 0, a closed measure µ and a subse-
quence (µϕi

) s.t. µϕi
→ µ and π∗µi(U) → ε. As U is closed, π∗µ(U) > ε > 0 by the

Portmanteau Theorem. Thus, supp(π∗µ) ∩ U 6= ∅. There exists yk ∈ π(supp(µ)) s.t.
‖yk − x‖ 6 1/k. This proves the first inclusion.

Conversely, consider x in the right-hand side of (18), and let U be an open neigh-
borhood of x. There exists a point y ∈ U and an accumulation point µ of (µi) s.t.
y ∈ supp(π∗µ). As U is an open neighborhood of y, by definition of the support of a
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measure, it holds that π∗µ(U) > 0. There exists a subsequence (µϕi
) s.t. µϕi

→ µ. As
U is open, lim infi π∗µϕi

(U) > π∗µ(U) > 0. Thus, lim supi π∗µi(U) > 0, which proves
that x is an essential accumulation point.

4.4. Oscillation compensation

Definition 4.14. We say that (xi) has the oscillation compensation property if for
every ψ ∈ Cb(R

n,R),

lim
i→∞

∑

j6i ǫjψ(xj)vj+1
∑

j6i ǫj
= 0 . (19)

As explained in the introduction, the oscillation compensation property implies a
slow down of the sequence (xi). Alternatively, it is not difficult to show that, P-a.e. on
Γ, (xi) has the oscillation compensation property if, and only if:

lim
k→∞

∑

j6ik
ǫjψ(xj)vj+1

∑

j6ik
ǫjψ(xj)

= 0 . (20)

for every ψ ∈ Cb(R
n,R+) and every subsequence (ik) such that

lim inf
k→+∞

∑

j6ik
ǫjψ(xj)

∑

j6ik
ǫj

> 0. (21)

Corollary 4.15. Let Assumptions 4.1, 4.4 and 4.5 hold. Assume that the following
condition holds:

i) BC(H) = zers(H) ,

or the stronger condition:

ii) There exists a path-differentiable Lyapunov function V : Rn → R for some Λ ⊂
R
n, such that H(x) ∩ ∂V (x)⊥ = {0} for all x ∈ Λ.

Then, P-a.e. on Γ, (xi) has the oscillation compensation property.

Proof. We first establish that the second condition implies the first one. The second
condition implies that Λ ⊂ zer(H). Moreover, consider γ ∈ SH(x) for an arbitrary
x ∈ Λ. By Def. 2.2, γ([0,+∞)) ∈ Λ, and V ◦γ is constant. By the path-differentiability,
0 = 〈v, γ′(t)〉 for all v ∈ ∂V (γ(t)) and for almost all t. Thus, γ′(t) is orthogonal to
∂V (γ(t)). As γ(t) ∈ Λ, we obtain that γ′(t) = 0. Thus, γ(t) = x for all x. This proves
that x ∈ zers(H). Thus, BC(H) ⊂ Λ ⊂ zers(H).

Now consider the case where the first condition holds. By Th. 4.11, it holds that
every accumulation point µ of (µi) satisfies vµ = 0 π∗µ-a.e. This directly implies the
statement.

5. Applications

5.1. Stochastic subgradient descent

The following result generalizes results of [10] to the stochastic setting.
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Proposition 5.1. Let f : Rn → R be a path-differentiable function. Consider a ran-
dom sequence (xi) satisfying:

xi+1 ∈ xi − ǫi∂f(xi) + ǫiηi+1 .

Let Assumptions 4.4, 4.5 hold, with δi := 0. The following holds a.e. on the event
{supi ‖xi‖ <∞}:

i) ess acc(xi) ⊂ {x ∈ R
n : 0 ∈ ∂f(x)}.

ii) (xi) has the oscillation compensation property.

The reason why we require the function f to be path-differentiable is to ensure
that f is a Lyapunov function for its (negative) Clarke subdifferential −∂f , and for
Λ equal to the Clarke critical set. In contrast, weaker assumptions, like for example
f Lipschitz, can potentially yield dynamics that are too unwieldy. In addition, the
path-differentiability assumption is weak enough to cover most cases of interest in
applications; see [10] for a discussion.

Proof. Observing that V := f is a path-differentiable Lyapunov function for the
differential inclusion x′(t) ∈ −∂f(x(t)), the conclusion follows from Cor. 4.13 and
Cor. 4.15.

Remark 5.2. More generally, the subdifferential ∂f can be replaced by any conser-
vative field H : Rn ⇒ R

n (see [11] for definitions), hence extending the results to other
algorithms of the flavour of the stochastic subgradient descent, such as the celebrated
back-propagation algorithm.

5.2. Stochastic heavy ball

Let f : Rm → R be a path-differentiable function, for some integer m > 1. We consider
a random sequence (xi) on R

m × R
m, satisfying xi = (qi, pi), where:

qi+1 = qi + αipi+1 ,
pi+1 ∈ (1− βi)pi − βi∂f(qi) + βiηi+1 ,

(22)

where (αi), (βi) are two sequences of positive step sizes. This method is sometimes
refered to as Stochastic Heavy Ball (SHB) [3, 18]. It can be rewritten as a function of
the variable (qi) in the following way:

qi+1 ∈ qi + β′i (−∂f(qi) + ηi+1) + α′
i(qi − qi−1) ,

with the change of variable α′
i := αiα

−1
i−1(1−βi) and β

′
i := αiβi. We make the following

assumption:

Assumption 5.3. The sequences (αi), (βi) are positive, and satisfy
∑

αi = +∞ and
αi → 0. Moreover, there exists c > 0 s.t. αi/βi → c.

Proposition 5.4. Let f : Rm → R be a path-differentiable function. Consider the
sequence (xi), xi = (qi, pi) given by Eq. (22). Let Assumptions 4.4 and 5.3 hold. Then,

i) ess acc(xi) ⊂ {(x, 0) : 0 ∈ ∂f(x)}.
ii) (xi) has the oscillation compensation property.
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Proof. In order to keep the exposition concise, assume αi = cβi. The iterates (xi)
have the form (11), where δi = 0, where ηi+1 is replaced with (0, ηi+1), and where the
map H : Rm × R

m ⇒ R
m × R

m is given by:

H(q, p) := (−cp, ∂f(q)− p) .

Considering (DI), the function V : Rm × R
m → R given by V (q, p) := f(q) + c‖p‖

2

2 ,
is a path differentiable Lyapunov function for the set Rm × {0}. Indeed, any solution
γ(t) = (q(t), p(t)) to (DI) satisfies, for almost every t,

(V ◦ γ)′(t) = −c‖p(t)‖2 . (23)

Thus, BC(H) ⊂ R
m×{0}. Consider an arbitrary recurrent point x (if it exists). Then,

x = (q, 0) for some q ∈ R
m. Consider γ ∈ SH(x) s.t. x ∈ L(γ). Set γ(t) = (q(t), p(t)).

As the function V ◦γ is constant, Eq. (23) implies that p(t) = 0 a.e. As q′(t) = −cp(t) =
0, we conclude that q(t) = x for all t. Lastly, the inclusion p′(t) ∈ ∂f(q(t))−p(t) reads
0 ∈ ∂f(x). Thus x ∈ zer(−∂f). This proves that BC(H) ⊂ {(x, 0) : 0 ∈ ∂f(x)}. As
γ is constant, this also proves that BC(H) = zers(H). The conclusion follows from
Cor. 4.13 and Cor. 4.15.

5.3. Fictitious play and best-response game dynamics

There are many possible dynamics for games; see for example [21]. The setting in this
section roughly corresponds to the one developed in [6, 7]. We consider the dynamics
of fictitious play, which in this case means that the players play simultaneously at each
turn, and they choose their respective actions with knowledge of the sequence (ξn) of
averages of the actions of a game (to be specified below). The dynamics of interest
will be that of the sequence (ξn).

Consider a game with m players and, for each i = 1, . . . ,m, let Xi be a compact,
convex subsets of Rn that will play the role of the possible (mixed) actions of player
i. Typically, Xi is a simplex, so that there are finitely many pure actions available to
player i, corresponding to the vertices of the simplex. Here are some useful notations:
we will denote the set of actions available to the opponents of player i by

X−i = X1 ×X2 × · · · ×Xi−1 ×Xi+1 × · · · ×Xm ⊂ R
n(m−1),

and for x = (x1, . . . , xm) ∈ X1 × · · · ×Xm,

x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xm) ∈ X−i.

Each player also has a payoff function U i : Xi×X−i → R. Player i wants to maximize
her payoff U i, so for each given vector ξ−i ∈ X−i of actions of its opponents, it makes
sense to define the best response set by

BRi(ξ−i) = argmax
ξi∈Xi

U i(ξi, ξ−i) ⊆ Xi,

and we will assume that the functions U i are such that each BRi(ξ−i) is convex and
compact. It follows from the Berge maximum theorem that, if U i is continuous, then
also the maps BRi are upper semicontinuous.
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Let xℓ = (x1ℓ , . . . , x
m
ℓ ) ∈ X1 × · · ·×Xm be the profile of actions taken by all players

at stage ℓ. We denote the average of the actions up to stage n by

ξn =
1

n

n
∑

ℓ=0

xℓ (24)

Player i chooses, at each stage n+ 1, a point

xin+1 ∈ BRi(ξ−i
n ). (25)

In the game-theoretical literature, this is known as the fictitious play assumption.
We let H : X1 × · · · ×Xm ⇒ X1 × · · · ×Xm be the map given by

H(ξ1, . . . , ξm) = (BR1(ξ−1)− ξ1)× · · · × (BRm(ξ−m)− ξm). (26)

ThenH(ξn) is a nonempty, convex and compact set (hence consistent with Assumption
4.1) that contains xn+1 − ξn.

We have, by (25),

ξn+1 − ξn ∈
1

n+ 1
H(ξn),

and the sequence (ξn, ηn, ǫn)n>1, with ηn = 0 and ǫn = 1/n, satisfies (11) and Assump-
tions 4.4 and 4.5, and the results of Th. 4.11 hold.

A Nash equilibrium is a point ξ ∈ X1 × · · · ×Xm such that U(ξ) > U(xi, ξ−i) for
all xi ∈ Xi and i = 1, . . . ,m; in other words, it is a point such that ξi ∈ BRi(ξ−i)
for all i. Observe that this is equivalent to having 0 ∈ H(ξ), so the constant solutions
ξ0 = ξ1 = . . . are precisely the Nash equilibria.

We also have:

Proposition 5.5. The essential accumulation set of the sequence (ξi) is contained in
the Birkhoff center BC(H), and satisfies the oscillation compensation property on the
stable zeros zers(H).

Remark 5.6. There are a few types of games that admit Lyapunov functions, among
which we count zero-sum and potential games; see for example [22] and [6, Section
5.3], respectively. In these cases, Theorem 3.7 and Corollary 4.15 (with the second
hypothesis) apply, and thus recover the results that were obtained before for example
in [6, 19, 22]. Although in many of these games the orbits of fictitious play converge to
the Nash equilibrium, there are some examples in which this is not the case; notably,
in the generalized rock-paper-scissors game the orbits accumulate around the so-called
Shapely polygons and they never converge [19].

Remark 5.7. It is possible to add a noise and to exchange the condition (25) with
the assumption that the expectation of xi falls in BRi(ξ−i), and still get a statement
like the one in Proposition 5.5.
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Appendix A. A lemma on martingales

The following lemma is a consequence of Chow’s martingale theorem (see [20, Theorem
2.17]). The proof can be found in [15, Th.1.III.11], and is partly reproduced here, for
completeness.

Lemma A.1. Let Mi =
∑i

j=1Xi be a R
n-valued (Fi)-adapted martingale. Consider

1 6 q 6 2 and r > 0. Define si :=
∑

j6i E(‖Xi+1‖
q)|Fi). Then, there exists a random

variable M∞, finite a.e., such that Mi →M∞ a.s. on the set {limi si <∞}. Moreover,
on the set {limi si = ∞},

Mi

(si−1 log
1+r(si−1))1/q

→ 0 a.s.

Proof. The first point of the Lemma is a consequence of Chow’s theorem (see [20,
Theorem 2.17]). Therefore, we only establish the second point, following the argu-
ments of [15, Th.1.III.11]. We introduce the martingale Ni =

∑

j6i Yi where Yi :=

(si−1 log
1+r(si−1))

−1/qXi. We observe that E(‖Yi+1‖
q|Fi) = αj(si−1 log

1+r(si−1))
−1 is

summable, because
∫∞
e (t log1+β(t))−1dt =

∫∞
1 t−(1+r)dt <∞. By the first point, there

exists an almost surely finite random variable N∞ such that Ni → N∞. The conclusion
follows from the Kronecker lemma [20, Section 2.6, pp.31].
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