
HAL Id: hal-04318847
https://hal.science/hal-04318847

Submitted on 1 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Matroid-based Automatic Prover and Coq Proof
Generator for Projective Incidence Geometry

David Braun, Nicolas Magaud, Pascal Schreck

To cite this version:
David Braun, Nicolas Magaud, Pascal Schreck. A Matroid-based Automatic Prover and Coq Proof
Generator for Projective Incidence Geometry. Journal of Automated Reasoning, 2023, in press (1),
pp.3. �10.1007/s10817-023-09690-2�. �hal-04318847�

https://hal.science/hal-04318847
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

A Matroid-based Automatic Prover and Coq Proof
Generator for Projective Incidence Geometry

David Braun · Nicolas Magaud ·
Pascal Schreck

Received: date / Accepted: date

Abstract We present an automatic theorem prover for projective incidence
geometry. This prover does not consider coordinates. Instead, it follows a com-
binatorial approach based on the concept of rank. This allows to deal only with
sets of points and to capture relations between objects of the projective space
(equality, collinearity, coplanarity, etc.) in a homogenous way. Taking advan-
tage of the computational aspect of this approach, we automatically compute
by saturation the ranks of all sets of the powerset of the points of the geo-
metric configuration we consider. Upon completion of the saturation phase,
our prover then retraces the proof process and generates the corresponding
Coq code. This code is then formally checked by the Coq proof assistant, thus
ensuring that the proof is actually correct. We use the prover to verify some
well-known, non-trivial theorems in projective space geometry, among them:
Desargues’ theorem and Dandelin-Gallucci’s theorem.

Keywords automated theorem proving · Coq · projective geometry · matroid
theory · proof validation

1 Introduction

Recent proof developments achieved in our team [27,9,4] show that we need
more automated tools, not only to simplify formal proofs carried out in a
framework such as GeoCoq [10,32] but also to enhance constraint solving tools
[36]. Therefore, to ease the proof process, we chose to develop a prototype the-
orem prover in the specific context of incidence geometry. Incidence geometry
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is a simple but powerful framework, which allows to state and prove some
significant 3D theorems such as Desargues’ theorem and Dandelin-Gallucci’s
theorem. In more advanced ways to deal with geometry, such as Tarski’s ap-
proach, dealing with collinearity and coplanarity is even more challenging.
Although our prover is designed with projective incidence geometry [17] in
mind, it has no specific features preventing it from being used in a more gen-
eral framework, such as affine geometry.

Instead of relying on the usual synthetic axiom system for projective ge-
ometry, we choose an approach based on the concept of ranks [29]. Ranks are
related to matroid theory [33] and they allow geometric configurations to be
described using only sets of points. Using ranks and the underlying matroid
properties thus allows the switch to a combinatorial approach which is homo-
geneous and scalable to any dimension (including dimensions greater than 3).
As we show in [12], we can switch rather easily from the synthetic description
of projective geometry to a computational one based on ranks. Switching from
the synthetic description to the combinatorial one boils down to changing from
logic reasoning to computing. In [12], we also formally prove using Coq that
this change of reasoning paradigm is sound and complete; it can thus be used
in both directions. In this article, we mainly exploit the translation from the
usual synthetic description to the combinatorial matroid-based one and build
an automated prover relying on the matroid properties of ranks.

In order to develop an effective automated tool to prove geometry state-
ments, we assume that we work in a closed world, meaning that the automated
prover only deals with existing points and does not create any new points. Cre-
ating appropriate points to formally prove a statement is known to be difficult
and creating inappropriate points may lead to a combinatorial explosion. If
new points are required, then the user is in charge of adding such points ex-
plicitly in the context (e.g. by using some intersection existence theorems in
the context of projective geometry).

The automated prover, named Bip for matroid Based Incidence Prover,
is designed to prove equality between ranks of various sets of points. It is
based on rank interval computations. For each subset of the powerset of the
geometric configuration, we define the minimum and the maximum rank (in
the worst case, when no information is known, the rank of each non-empty
subset is between 1 and 4 for 3D configurations). We then use the matroid
properties which are enforced by the rank function and reformulate them as
rewrite rules to incrementally reduce the size of the interval for each subset.
This is achieved using a saturation algorithm, which is run on a valuated graph
implementing the inclusion lattice of the point powerset, labeled by the min-
imum and maximum rank. The saturation algorithm aims at computing the
rank of some given subsets of the initial configuration. This can be achieved
by computation, with an at-least exponential complexity. Using ranks hinders
intuition and readability for the user. That is one of the reasons why we choose
a formal approach to make sure the statement is correctly proved. Once the
saturation graph is built, it is traversed to build a Coq [6,16] proof script which
actually proves the statement at stake. Technical details about the implemen-
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tation can be found in [11] and the current implementation of the prover as
well as several examples of applications are available in the git repository:
https://github.com/pascalschreck/MatroidIncidenceProver.

From a practical point of view, we start with a proof outline in a geometric
setting (it can actually be a simple diagram, conjecturing a specific geometric
statement holds). We then translate it into a formal description using ranks.
This configuration (a list of subsets and their ranks) is fed to the automatic
prover, which returns a Coq proof script (a simple .v file). The Coq file is then
type-checked by Coq to make sure the proof is correct. The approach allows
us to prove automatically some emblematic theorems of 3D, e.g. Desargues’
theorem or Dandelin-Gallucci’s theorem [13]. Typically our prover can han-
dle geometric statements with an initial configuration of about 20 points (17
for Dandelin-Gallucci’s theorem and 21 for 4D-Desargues’ theorem). One of
the original features of our work that it is based on a two-level approach, in
which one independent program performs the proof search (using a saturation
process) and then Coq verifies that the produced proof is actually correct and
solve the goal.

Related Work Our work fits in the scope of automated theorem proving, es-
pecially its application to geometry. In geometry, most approaches rely on alge-
braic methods such as Wu’s method [38]. More generally, the TPTP project [37]
aims at providing a framework to test and evaluate automated theorem provers
(ATP), to help ensure performance results accurately reflect capabilities of
the ATP systems1. Among the most powerful Satisfiability Modulo Theories
(SMT) provers, we can cite Paradox [15], Vampire [24], Z3 [31] or CVC5 [3].
They are powerful enough to automatically prove some non-trivial geometric
theorems, expressed using first-order logic. However they only produce a de-
cision: satisfiable/unsatisfiable and do not necessarily produces a proof trace,
which allows to check independently that the proof is correct. A recent trend of
research consists in adapting ATP to make them generate proof traces which
can be verified by an external tool [2,1,20]. Tools such as SMTCoq [19] or Co-
qHammer [18] (inspired by Isabelle/HOL sledgehammer [7]) allow to connect
directly an ATP to an interactive theorem prover: the ATP produces the proof
and a trace of it, which can then be checked by the interactive theorem prover.
Some of the most advanced results connect HOL-Light and CVC Lite [28] or
the SMT-solver VeriT [8] and Coq [1].

Outline The article is organized as follows. Section 2 introduces two axiom
systems for 3D projective incidence geometry: the first one in a synthetic way
and the second one using ranks and matroids properties. Section 3 summarizes
the main features of the algorithm onto which our prover is built. Section 4
presents some details of the implementation of our prover as well as a simple ex-
ample. Section 5 explains how the prover generates some ready-to-be-checked
Coq proof scripts. Section 6 presents some significant examples of geometric

1 https://www.tptp.org/

https://github.com/pascalschreck/MatroidIncidenceProver
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theorems which have been proved automatically. In Section 7, we present some
concluding remarks and draw some promising perspectives.

2 Projective Incidence Geometry and its Description using
Matroids and Ranks

2.1 A Synthetic Axiom System for Projective Incidence Geometry

In the context of 3D, we provide an axiom system for projective space geom-
etry (see Table 1 for a mathematical description and Fig. 1 for a more visual
description). The system contains five axioms. The axiom (A1P3) expresses
that, given 2 points, there exists a line that goes through these two points.
Pasch’s axiom (A2P3) assumes that two coplanar lines always meet. The ax-
iom (A3P3) expresses the unicity property. The axiom (A4P3) states that
there is at least three points per line. Furthermore, we add the axiom Lower-
Dimension (A5P3) to capture projective geometry in an at least 3-dimensional
space (denoted by ≥3D). This axiom states that there exist two lines which
do not meet.

Pasch’s axiom does not limit the upper dimension, that is why, so far, our
axiom system only captures an at-least three-dimensional geometry (≥3D). It
is possible to limit this spatial geometry by adding the optional axiom (A6P3)
to constrain the dimension to be exactly 3. This axiom specifies that there is
always one line intersecting three other lines.

(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAD ∧ J ∈ lBC)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ p : Point, p /∈ l ∨ p /∈ m

(A6P3) Upper-Dimension : ∀ l1 l2 l3 : Line, l1 6= l2 ∧ l1 6= l3 ∧ l2 6= l3 ⇒
∃ l4 : Line, ∃ P1 P2 P3 : Point, P1 ∈ l1 ∧ P1 ∈ l4 ∧
P2 ∈ l2 ∧ P2 ∈ l4 ∧ P3 ∈ l3 ∧ P3 ∈ l4

Table 1 Standard axiom system for projective space geometry
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Fig. 1 Illustrations of the standard axiom system for projective space geometry

2.2 Matroids and Ranks

Using the standard axiomatization for projective space geometry of the previ-
ous section as a reference, we propose an alternative axiom system based on
the concept of rank.

2.2.1 Matroid Properties

The concept of rank comes from matroid theory [33]. Matroids were introduced
byWhitney in 1935 to abstractly capture the essence of dependence. Whitney’s
definition embraces a surprising diversity of combinatorial structures. Matroids
apply to a large class of objects, ranging from graph theory or fields to greedy
algorithms.

In our setting, matroids allow us to capture and generalize the main set
properties of linear dependence in vector space. When combined with a fi-
nite set of points, it captures incidence (collinearity, coplanarity, ...) between
these points. We propose to use the notion of rank, which respects the ma-
troid properties to formalize the theory of projective incidence geometry. Using
ranks allows us to deal only with points. This makes proof automation much
easier because we do not handle directly lines or planes. Formally, an integer
function rk on a finite set E is the rank function of a matroid if and only if
conditions of Table 2 are satisfied.
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(A1R3) non-negative and subcardinal : ∀ X ⊆ E, 0 ≤ rk (X) ≤
∣∣X∣∣

(A2R3) non-decreasing : ∀ X ⊆ Y, rk (X) ≤ rk (Y)

(A3R3) submodular : ∀ X,Y ⊆ E, rk (X∪Y) + rk (X∩Y) ≤ rk (X) + rk (Y)

Table 2 Matroid properties of the rank function

2.2.2 Rank to Describe Projective Incidence Geometry

In the context of projective geometry, the rank function on finite sets of points
is specified by the three conditions shown in Table 2. We specify the notions of
closure and flat which are alternative axiomatizations of the matroids. Let M
be a matroid on a finite set E with the rank function rk as above. The closure
cl of a subset A of E is the set: cl(A) = {x ∈ E | rk(A) = rk(A ∪ {x})}. A
set whose closure equals itself is said to be closed or a flat [14]. A set is a flat
if it is maximal for its rank, meaning that either the addition of any other
element to the set would increase the rank, or the flat is the whole incidence
space itself. In other words, the rank of a flat E is the cardinal of a smallest
set generating E. Table 3 provides some examples of subsets and their ranks.

rk({A,B}) = 1 A = B
rk({A,B}) = 2 A 6= B
rk({A,B,C}) = 2 A,B,C are collinear with at least two of them distinct
rk({A,B,C}) ≤ 2 A,B,C are collinear
rk({A,B,C}) = 3 A,B,C are not collinear
rk({A,B,C,D}) = 3 A,B,C,D are coplanar, not all collinear
rk({A,B,C,D}) = 4 A,B,C,D are not coplanar

Table 3 Some rank statements and their geometric interpretations

Using this definition, it can be shown that every projective space has a
matroid structure, but the converse is not true. To capture projective geometry,
we need to introduce some additional axioms to the matroid ones.

2.2.3 3D Rank-based Axiom System

In Table 4, we define a rank-based axiom system to describe projective space.
Axioms (A1P3) Line-Existence and (A3P3) Uniqueness are subsumed by the
three basic matroid properties of the rank function (presented in Table2).
Axioms (A4R3) Rk-Singleton and (A5R3) Rk-Couple are added to scale the
range of the rank function. Axioms (A6R3) Rk-Pasch and (A7R3) Rk-Three-
Points are straightforward translations of the corresponding axioms of Table 1.
(A8R3) Rk-Lower-Dimension and (A9R3) Rk-Upper-Dimension capture the
dimension of the space we consider. As our prover Bip does not handle exis-
tential quantifications automatically, but rather leaves the user to deal with
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these quantifications explicitly, simply setting bounds to the dimension, as do
axioms (A8R3) and (A9R3), is sufficient to capture that the dimension of the
space is exactly 3.

(A4R3) Rk-Singleton : ∀ P : Point, rk({P}) = 1

(A5R3) Rk-Couple : ∀ P Q : Point, P 6= Q ⇒ rk({P, Q}) = 2

(A6R3) Rk-Pasch : ∀ A B C D : Point, rk({A, B, C, D}) ≤ 3 ⇒ ∃ J : Point,
rk({A, B, J}) = rk({C, D, J}) = 2

(A7R3) Rk-Three-Points :
∀ A B : Point, ∃ C, rk({A, B, C}) = rk({B, C}) = rk({A, C}) = 2

(A8R3) Rk-Lower-Dimension : ∃ A B C D : Point, rk({A, B, C, D}) ≥ 4

(A9R3) Rk-Upper-Dimension : ∀ A B C D : Point, rk({A, B, C, D}) ≤ 4

Table 4 Rank-based axiom system for projective space geometry

Both the synthetic and the rank-based axiom systems for projective inci-
dence geometry are formalized in Coq. Their implementation is rather straight-
forward and relies on type classes to increase modularity of the code depending
on the dimension. Once formalized in Coq, these two axiom systems are shown
to be equivalent[12]. This equivalence allows back-and-forth translations be-
tween the synthetic description of projective geometry and its rank-based one.
From now on, we shall only consider the rank-based axiom system and show
how it can be used to build an automated prover for incidence geometry.

3 An algorithm based on interval reduction and saturation

Our algorithm relies on the following idea. The rank of a set of points is always
bounded by a minimum value (at least 1 for a non-empty set) and a maximum
value (the minimum of the cardinal of the considered set and of the rank of the
whole space - 4 in the case of 3D configurations). The hypotheses of a geometric
configuration may also narrow such intervals for some specific subsets. We then
use the inequalities derived from the matroid properties to reduce the interval
[rmin; rmax] for each subset of points of the geometric configuration, in the
same way as people do in interval arithmetic [30].

We start by introducing the main principles of our algorithm: transform-
ing the input into an initial graph, propagating the constraints, saturating
the problem and recording a trace, reconstructing the proof and finally using
Coq to check whether the produced proof is correct. We then show that our
algorithm behaves as expected and actually terminates.
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3.1 Principle

Let us assume that we have a geometric statement expressed using rank equal-
ities. Such a statement can either be written by hand or automatically derived
from a synthetic statement. The conclusion of the statement and its hypothe-
ses are translated into an inclusion lattice assigning already known data to the
minimum rank and the maximum rank of all subsets of the initial geometric
configuration. We then apply a saturation algorithm to carry out all the de-
ductions which are possible in this lattice by using all the properties of Table
2.

In order to achieve that, these properties are transformed into the rules
of Table 6 which can reduce the size of the intervals denoting the rank. The
automated prover applies these rules, one after another, on all the subsets of
the geometric configuration to tighten the interval between the minimum and
maximum possible values for the rank. Each time a new deduction is made,
the system updates the lattice accordingly, then propagating the new con-
straints to other subsets of points. The prover keeps computing new (smaller)
intervals until the expected result (the conclusion of the geometric statement)
is obtained or until there is no further deduction to make. In parallel, the
prover records the application of each rule in order to rebuild the trace of the
deductions leading to the computation of a new rank for a given set of points.
This path in the graph is then extracted as a proof script and fed to the Coq
proof assistant which verifies and validates it. The whole process is summa-
rized in Fig. 2. Note that the saturation phase and the recording of the path
are performed simultaneously.

Translating the 
geometric statement 

into rank intervals

Saturation step and 
trace recording

Proof 
reconstruction Proof checking

Fig. 2 The prover runs in four separate successive phases.

The prover can handle configurations in both projective and affine geome-
try. Indeed, it is only based on the matroid properties, which are independent
of the axioms capturing the projective aspect of the geometric context. Thus
deductions made by the prover are based on pure incidence geometry and the
results hold in both projective and affine geometry. Dealing with projective ge-
ometry requires dealing with existential quantifications (e.g. for intersections
of lines) and this difficult task is left to the user.

3.2 Rewrite rules

All the deductions made by the prover are performed using the basic matroid
properties of the rank function rk, presented in Table 2. The other axioms
(those of Table 4) are simply used to create new objects or to bound the
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dimension. We thus remove from the saturation process all rules which feature
an existential quantifier, e.g. (A6R3) or (A7R3). All points required to solve
the problem need to be created before running the algorithm, so that the
algorithm can use them. Axioms related to dimension may be used to tighten
the interval [rmin; rmax] for some subsets.

The matroid property (A1R3) is used to initialize the rank inteval for each
subset. We transform the matroid properties (A2R3) and (A3R3) of ranks into
eight properties, replacing the rank function by the min and max functions
rkMin and rkMax. Let us consider X and Y two arbitrary subsets of points
of the set of all points E. The sets X, Y , X ∪ Y and X ∩ Y must verify the
properties listed in Table 5.

(PS1) X ⊆ Y ⊆ E, rkMin(Y ) ≥ rkMin(X)
(PS2) X ⊆ Y ⊆ E, rkMax(X) ≤ rkMax(Y )
(PS3) X, Y ⊆ E, rkMax(X ∪ Y ) ≤ rkMax(X) + rkMax(Y )− rkMin(X ∩ Y )
(PS4) X, Y ⊆ E, rkMin(X) ≥ rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y )

Table 5 Properties of rkMin and rkMax used until saturation.

In order to use the properties of Table 5 in the algorithm, we transform
all of them into the (computable) rewrite rules of Table 6 which enable the
update of the minimal rank and maximal ranks for some subsets of E. In the
actual implementation, the rules RS1 to RS4 are duplicated to re-establish
the symmetry between the variables denoting sets X and Y , thus making the
implementation easier and the code more efficient.

(RS1) if X ⊆ Y and rkMin(X) > rkMin(Y ) then rkMin(Y ) ← rkMin(X)
(RS2) if X ⊆ Y and rkMax(Y ) < rkMax(X) then rkMax(X) ← rkMax(Y )
(RS3) if rkMax(X) + rkMax(Y )− rkMin(X ∩ Y ) < rkMax(X ∪ Y )

then rkMax(X ∪ Y ) ← (rkMax(X) + rkMax(Y )− rkMin(X ∩ Y ))
(RS4) if rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y ) > rkMin(X)

then rkMin(X) ← (rkMin(X ∩ Y ) + rkMin(X ∪ Y )− rkMax(Y ))

Table 6 Rewrite rules used to reduce the interval of acceptable values for the rkMin and
rkMax functions.

3.3 Termination, Correctness and Validation

Our automatic prover terminates by construction. But on the one hand, as
mentioned above, it can fail, even if the property to be proved is valid. This
is the case, for instance if some auxiliary points needed in the proof are not
provided by the user. Our prover is therefore not complete. On the other hand,
when it succeeds, there is no formal guarantee that it performed a correct
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deduction. That is why it generates a trace which is then proof-checked using
the Coq proof assistant. Correct proofs are only those accepted during the
proof-checking process carried out in Coq.

4 Implementation

In this section, we present the concrete implementation of the prover in C2.
We start with the data-structure we use and then present the algorithm in
details. Finally, we summarize how the Coq script is generated. Due to the
complexity in time and memory of the saturation algorithm, we choose to
implement it as an independent program rather than embedding it into the
Coq proof assistant.

4.1 Initialization of the algorithm

When starting the algorithm, the only input is the hand-written description
of the geometric configuration together with the overall number of points in-
volved. We start by building the powerset of this set of points. Each part
represents a subset of points of the initial geometric configuration.

We encode each sub-set of points as well as the values of the minimal and
the maximal rank as a 64-bit word. Rank values range from 1 to dim+ 1 and
subsets are represented using a boolean indicator function. Using an indica-
tor function makes computing usual operations on ranks such as unions and
intersections easy. By default, we bound the rank of each subset X of E with
the minimum rank: 1 and the maximum rank: min{|X|, 4} thanks to axioms
(A1R3) and (A9R3). We then refine these ranks using the hypotheses of the
geometric statement. In the following, we note (RS0) the application of this
rule to initialize the ranks of a set of points, when working in 3D:

(RS0) ∀X, non_empty(X)⇒ 1 ≤ rk(X) ≤ min{|X| , 4}

4.2 Saturation loop

The saturation step consists in applying all rules to the powerset of the initial
set of points. The overall idea is to make sure the extremal values for mini-
mum rank and maximum rank are coherent with respect to the rules of our
system. For instance, let us consider X = {A,B} and Y = {A,B,C} with the
assumption rkMin(X) ≥ 2. The initialization step yields that rkMin(Y ) ≥ 1
and rkMax(Y ) ≤ 3. However the property (PS1) is not verified by the sets
X and Y . Indeed, the minimum rank of Y is smaller than the minimum rank

2 The source code as well as some significant examples of use can be retrieved from the
git repository : https://github.com/pascalschreck/MatroidIncidenceProver.

https://github.com/pascalschreck/MatroidIncidenceProver
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of X whereas X ⊆ Y . Therefore the minimum rank of Y is updated to express
that it is greater than the one of X using the rule (RS1).

To complete the saturation step, the algorithm 1 applies all the rewrite
rules to each couple of (sub-)sets of points. If a rule is breached, the algo-
rithm updates the subset whose minimum or maximum rank is incorrect. To
ensure the correctness of the algorithm, we restrict the possible updates to two
cases: we increase the minimum rank or we decrease the maximum rank while
maintaining the invariant RkMin < RkMax. When the minimum and the
maximum ranks are equal, we have reached the actual rank for this (sub-)set
and it will not be modified any more. If the value of RkMin happens to be
strictly greater than the value of RkMax, then we face an incoherent context
with contradictory hypotheses and the algorithm fails. Otherwise, the algo-
rithm keeps applying the rewrite rules to all (sub-)sets until no more update
has been carried out during the last iteration of the algorithm. Once the sat-
uration step is completed, all possible deductions from the matroid properties
have been made.

4.3 Recording the performed deductions

In parallel to the saturation step, the solver records all the deductions made in
order to retrace a path from the conclusion to the hypotheses and to rebuild a
formal proof to be fed to Coq in the end. Most deductions are not relevant to
reach the expected conclusion from the hypotheses of the geometric statement.
The proof path depends on the order used to traverse all subsets X and Y
and on the order in which the rewrite rules are applied.

We build a directed acyclic graph (DAG) 3, named deduction graph (DG)
in the following. Each node of the graph represents a subset together with its
current ranks RkMin and RkMax as well as the rule applied to build this
node. At the beginning, we build a node for each subset with ranks initialized
using the rule (RS0). When a rule improves the rank of a subset, a new node is
added to the deduction graph (DG). This node contains the considered subset
and its new ranks updated according to a rule of Table 6. To connect this
node to the deduction graph (DG), we use the context of the rule that we just
applied. The subset is thus connected by oriented edges to all the parts which
occur in the premisses of the rule. This allows to trace the evolution of the
interval between the minimum and the maximum ranks of a given subset by
visiting its parent nodes.

The algorithm is summarized in 1. One may note that it consists in three
main loops (one on all subsets X of E, one on all subsets Y of E, and one
on all rewrite rules RSi). The subsets are traversed based on their indicator
functions, represented as binary numbers, following the usual order on natural

3 In theory, this graph is an hypergraph where edges are oriented and tagged by the
applied rewrite rules.
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numbers. Rules RSi are duplicated to maintain the symmetry of the computa-
tions, which is broken due to the scopes of the loop variables X and Y . In the
actual implementation, there are 8 rewrite rules (RS1 to RS4 and their sym-
metric ones). In the pseudo-code, the properties (PSi) and the rules (RSi) are
thus numbered from 1 to 8. Altogether its complexity is at least 2n × 2n × 8,
i.e. 2(2n+3).
Algorithm 1: Saturation and construction of the deduction graph.
Input(s) : initialized deduction graph
Output(s): updated deduction graph

1 While something was modified in the previous iteration Do
2 ForEach subset X of E Do
3 ForEach subset Y of E such that X 6= Y Do
4 ForEach rewrite rule (RSi) i ∈ [1; 8] Do
5 If the property (PSi with i ∈ [1; 8]) is not verified Then
6 Build a node in the deduction graph which records
7 the application of the rewrite rule (PSi) and its
8 arguments to update the minimum and maximum
9 ranks of X and Y to ensure RkMin < RkMax

10 End If
11 End ForEach
12 End ForEach
13 End ForEach
14 End While

4.4 A detailled small example

To illustrate the inner workings of our algorithm and show some intermediate
states of the prover, we choose a very simple example of statement in 2D we
may want to prove automatically.

A

D

B

C

Fig. 3 The geometric configuration of Table 7.
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(* An example of a 4-points lemma to be saturated *)
Lemma example : forall A B C D : Point,
rk(A::B::D::nil) = 3 ->
rk(A::C::D::nil) = 2 ->
rk(A::C::nil) = 2 ->
rk(C::D::nil) = 2 ->
rk(A:: B:: C::nil) = 3.

Table 7 An example of a geometric statement we want to saturate (using Coq syntax).

points A B C D
hypotheses

A B D : 3
A C D : 3
A C : 2
C D : 2

conclusion
A B C : 3

Table 8 An example of a geometric statement we want to saturate (using the input language
of our prover).

Let us consider the plane ABD. We build a new point C distinct from A
and D lying on the line AD. In this case, we can deduce that the set of points
ABC forms a plane (i.e. has rank 3). The initial Coq statement is presented
in Table 7 and a geometric interpretation is provided in Fig. 3. In Table 8, our
statement is described using the input language of our automatic prover. The
input is structured using the keywords points, hypotheses, and conclusion.
We first provide the list of all the points involved. Then the hypotheses, which
are all of the form rk{A,B,C} = 3 are simply written as A B C : 3. Finally,
one or more conclusion statements appear right after the keyword conclusion.
The generated Coq proof script is available in Appendix A.

Before saturating the geometric statement, we first build the deduction
graph (DG) which represents the initial configuration (Fig. 4). As the state-
ment features 4 points, the initial layer of the deduction graph has 24−1 nodes
where each node represents a (non-empty) subset with its maximum rank on
the left and its minumum rank on the right.

Fig. 4 The initialized deduction graph for the geometric configuration of Table 7.

We then run the saturation process once on all subsets of the initial set by
applying all the rules in a specific order, say: RS1 RS3 RS2 RS4 RS5 RS7 RS6
RS8.We obtain a new improved but partial deduction graph (Fig. 5). Nodes
with new information are printed in orange. The red digits denote the order
in which the deductions were made by the algorithm.
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Fig. 5 The partially saturated deduction graph of the geometric configuration of Table 7.

Finally, the algorithm runs a second saturation loop. New nodes (in red in
Fig. 6) are computed and we obtain the expected result: the rank of the sub-set
of points ABC is exactly 3. We then complete the saturation process which
leads to an additionnal result, which appears in the node 11. In this example,
the minimum and maximum ranks are equal for all subsets of points. This
may not always be the case depending on how well-constrained the problem
is. If it is under-constrained, the algorithm can not find the exact rank of each
subset. It can also be the case when it is well-constrained or over-constrained
(the range of the ranks of some specific sub-sets can be larger than 1).

Each time, in a node, the minimal and the maximal rank get equal, a Coq
statement and the associated proof script can be generated. Overall, while
building the lemma (and proof) that rk({A,B,C}) = 2, we obtain a by-
product lemma (and proof) which states that rk({A,B,C,D}) = 3.

5 Extracting the proof

Once the proof search phase is completed, we generate a proof trace for Coq.
It consists in the statement of the expected theorem, followed by a sequence
of tactics retracing the actions of the automatic prover. This sequence can be
replayed by Coq and thus allows to validate the proposed proof.

5.1 Proof script generation and tagging of nodes

The third step consists in building a proof script acceptable by Coq which
proves the expected results using the deduction graph. This is achieved by
a recursive postfix traversal starting from the node whose rank was searched
for. Indeed, we need for each node of the graph to build its children nodes
before generating the piece of script corresponding to this node. Fig. 7 shows
the postfix traversal in our running example, reconstructing the proof that
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Fig. 6 The deduction graph fully saturated of the geometric configuration of Table 7.

the subset ABC represents exactly a plane. Nodes printed in green are those
involved in the postfix traversal and they are annotated in blue with the or-
der in which the proofs of the nodes are built to be used in the subsequent
deductions.

Fig. 7 Reconstruction path in the deduction graph correspondong to the geometric config-
uration of Table 7.
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Not all nodes are useful to build the proof script. Some nodes may however
be traversed several times. We add a tagging mechanism to classify the nodes
and thus avoid unnecessary traversals. The tag can have five different values:

– 0: the node does not belong to the reconstruction path of the proof.
– 1: the node belongs to the reconstruction path and has not been handled

yet.
– 2: the node has already been handled but subproofs brought by its children

node are still expected.
– 3: the proof of this node has already been reconstructed in the currrent

proof being processed.
– 4: the proof of this node has already been reconstructed in another lemma.

(* previous block *)
...

(* block of the result we search *)
assert(Hx : rk(P1 :: P2 :: P3 :: nil) >= 3).
{

(* checking the hypotheses for soundness *)
...
(* simplifying the intersection and union of subsets *)
...
(* applying the appropriate rule *)
assert(HT := rule_2 ...);apply HT. (* applying RS7 *)

}

(* next block *)
...

Table 9 A block corresponding to the application of rule RS7.

Tag 0 automatically removes the node from the reconstruction process for the
considered lemma. Tag 1 is used during the preprocessing step to traverse all
nodes needed to reconstruct the proof. This preprocessing step is unavoid-
able when the theorem is decomposed into intermediate lemmas. Tag 2 states
that the proof of this node is about to be reconstructed. Tag 3 states that the
node has already been traversed and reconstructed in the proof currently being
reconstructed. Tag 4 is used to distinguish between nodes which have been pre-
viously reconstructed in other proofs. These proofs now form the intermediate
lemmas which can be reused in other reconstruction steps.

Then, to complete the reconstruction of the proof, the algorithm translates
each rewrite rule into a piece of code in Coq. This is embedded into a block
containing all the proof steps required to the minimum and maximum ranks
of the reconstructed node. In the block, we check that the required hypotheses
are available in the context and then prove the expected result. A simplified
view of a block is shown in Table 9. The recursive algorithm 2 summarizes the
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reconstruction step for a node. The initial tag 1 or 4 (for already reconstructed
lemmas) is set during the preprocessing phase in the main function.

Algorithm 2: Reconstruction step.
Input(s) : Node to be reconstructed
Output(s): A text file with the corresponding Coq code

1 If the node has some children Then
2 ForEach child Do
3 If child.tag == 1 Then
4 child.tag ← 2
5 Algorithm 2 (child)
6 End If
7 End ForEach
8 End If
9 The node is tagged with 3

10 Generation of the Coq code associated to the application of the rule
stored in the node

5.2 Validation by the Coq proof assistant

The generated proof block is then easily exported into some Gallina code4
which contains the statement and its hypotheses, together with the formal
Coq script proving it. All this is ultimately checked correct by the Coq proof
assistant. In our Gallina output, we choose to implement sets of points as
lists of points. The reconstruction process respects some naming conventions
to make the Coq proof script generation simpler: name spaces for local and
global hypotheses are different. Names of intermediate lemmas are automati-
cally determined, thus being easier to retrieve and reuse in subsequent proof
steps. Likewise, tactics are chosen to be as simple as possible, so that the per-
formance of the proof checking step, both with respect to time and memory
usage, remains acceptable even if the proof is huge.

Structuring the proofs using blocks allows the handling of hypotheses with
the same scope rules as in many programmming languages and avoids clutter-
ing the system with meaningless or inrelevant hypotheses. All local hypotheses
introduced in a block are discharged as soon as the expected result for the block
is obtained. The only remaining hypothesis is the global one declared right be-
fore the beginning of the block. This means names can be reused in local
hypotheses. For global hypotheses, they are named according to the points at
stake together with the minumum and maximum ranks, e.g HP3P6P9m2 (resp.
HP4P8P9M3) states that rk{P3, P6, P9} ≤ 2 (resp. rk{P4, P8, P9} ≥ 3). Sym-
bols m and M stand for minimum and maximum respectively.

To improve the proof checking step, we need to decompose the proof into
several intermediate lemmas, which must be stored and included as global

4 Gallina is the specification language of Coq: a full description of it can be found in Coq
reference manual [16].
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hypotheses whenever the system requires them (this corresponds to lemmas
whose node is tagged with 4). This decomposition reduces the size of the proof
and the number of hypotheses to be dealt with. Overall this leads to smaller
proof terms which once proven can be freely reused in other proofs.

Finally we carefully ensure that all proof steps in Coq are as efficient as
possible. We avoid using generic automated deduction procedures (e.g. tauto,
intuition or lia) and rather use explicit, straight-to-the-point, immediate
tactics. In most cases, these tactics simply consist in applying a specific lemma
to the current goal, thus being completely deterministic and do not require any
(costly) proof search steps. Witness generation and the like is handled by the
C program generating the proof script.

6 Some results

Incidence geometry theorems are stated using a geometric rank function. Prov-
ing them can be seen as solving a constraint problem where the unknown is
the rank function itself. The valuation is only known for a few specific sets
of points (which correspond to the hypotheses of the statement). After the
first toy example presented in the previous section, we now consider more
challenging configurations to illustrate the ways our solver can be used.

6.1 Instructions for use and first example

Whereas the first version of Bip required examples to be hard-coded in a C file
and the solver to be re-compiled each time a new problem was submitted, the
current version offers a friendlier modus operandi. The statement is written in
a text file describing the context (for instance the dimension of the considered
incidence space) and the list of the ranks which are imposed. The solver is
then launched with this file as an argument and it produces two files. The first
one is a text file with the rank of each subset, or at least the best interval
rank found by Bip. It is by essence a large file and so far we simply use it
for verification and debugging purposes. However, it could also be used for
discovering new theorems (derivable from the context). The second one is a
Coq file which contains the proof of the theorem in the case where the Bip
prover terminates successfully.

Let us try it on a simple but significant example. We want to prove that in
a 3D projective space two different planes intersect along a line. As discussed
above, the question of the existence of some points is not considered by Bip and
this is actually false in dimension 5. The characterization of the dimension is
out of the scope of Bip in terms of existence of intersection points. Instead, we
just prove that, in 3D, if there are two points, sayM and N in the intersection
of two planes, then the line defined by points M and N is the intersection of
the two planes (See Figure 8).

We first prove that the intersection is included in the line spanned by M
and N (in short line (MN)). The two planes are each defined by three points
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Fig. 8 Intersection of two planes

points
A B C Ap Bp Cp M N P # Ap is for A’

hypotheses
A B C : 3 # A B C define a plane
Ap Bp Cp : 3 # Ap Bp Cp define a plane
A B C Ap Bp Cp : 4 # the planes are different
M A B C : 3 # M belongs to (ABC)
N A B C : 3
P A B C : 3
M Ap Bp Cp : 3 # M belongs to (A’B’C’)
N Ap Bp Cp : 3
P Ap Bp Cp : 3
M N : 2 # points M and N are different

conclusion
M N P : 2 # points M N and P are collinear

Table 10 In 3D, the intersection of two planes is included into a line

—A,B and C for the first one, and A′, B′ and C ′ for the second one— such
that rk{A,B,C} = 3 and rk{A′, B′, C ′} = 3. Note that rk{A,B,C} = 3
implies that all three points are different. The property that two planes are
different is translated into rk{A,B,C,A′, B′, C ′} = 4, i.e. the six points span
the whole space. Then, rk{A,B,C,M} = 3 and rk{A,B,C,N} = 3 express
that points M and N are in the plane (ABC). We do the same with the plane
(A’B’C’). We finally obtain the formal description shown in Table 10, which
will be the input of our prover.

The size of the output files is dependent of the number of points in the
statement. As the statement is quite small and only contains a few points (9),
the size of the output file with the whole rank function is only about 58 Kb,
and the size of the proof in Coq is about 43 Kb (and a bit less than 1000 lines
including 500 lines of preamble). The corresponding Coq statement is shown
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Lemma LMNP : forall A B C Ap Bp Cp M N P ,
rk(A :: B :: C :: nil) = 3 ->
rk(Ap :: Bp :: Cp :: nil) = 3 ->
rk(A :: B :: C :: Ap :: Bp :: Cp :: nil) = 4 ->
rk(A :: B :: C :: M :: nil) = 3 ->
rk(Ap :: Bp :: Cp :: M :: nil) = 3 ->
rk(A :: B :: C :: N :: nil) = 3 ->
rk(Ap :: Bp :: Cp :: N :: nil) = 3 ->
rk(M :: N :: nil) = 2 ->
rk(A :: B :: C :: P :: nil) = 3 ->
rk(Ap :: Bp :: Cp :: P :: nil) = 3 ->
rk(M :: N :: P :: nil) = 2.

Table 11 Lemma expressing that the intersection of two planes is included into a line

points
A B C Ap Bp Cp M N P

hypotheses
A B C : 3 # A B C define a plane
Ap Bp Cp : 3 # A’ B’ C’ define a plane
A B C Ap Bp Cp : 4 # the planes are different
M A B C : 3 # M belongs to (ABC)
N A B C : 3
M Ap Bp Cp : 3 # M belongs to (A’B’C’)
N Ap Bp Cp : 3
M N : 2 # points M and N are different
M N P : 2 # M N and P are colinear

conclusion # now, there are two terms into the conclusion
A B C P : 3 # P belongs to (ABC)
Ap Bp Cp P : 3 # P belongs to (A’B’C’)

Table 12 In 3D, the intersection of two planes is included into a line

in Table 11. Generating the proof takes less than 1s and the verification by
Coq only few seconds.

Let us then prove that (MN) ⊂ (ABC)∩ (A′B′C ′). The statement is very
similar (See Table 12) except that the conclusion is now the conjunction of
two equalities. In this case, Bip produces a Coq proof which includes, among
others, two lemmas, one for each statement of the conjunction. The size of the
produced files is close to the size of the previous theorem, even if we consider
a double conclusion.

6.2 Desargues’ theorem

Desargues’s theorem is very important in projective incidence geometry. It is
a plane theorem whose proof requires to consider a three-dimensional setting:
more precisely, this is a theorem about a plane figure embedded in a 3D space.
Desargues statement in 2D deals with couples of triangles (embedded in a
single plane) whereas the 3D version deals with couples of tetrahedrons. The
proof of Desargues in 2D only works when the plane which contains both
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triangles can be embedded into a 3D space. It is false in a strict 2D setting.
For instance, Moulton’s plane is a famous example of a 2D model of incidence
geometry where the property of Desargues does not hold [26]. The proof of the
2D property relies on a proof of an auxiliary lemma (carried out in a 3D setting,
considering a tetrahedron traversed by a plane). We call such a configuration
a 2.5D configuration of Desargues (i.e. a 2D configuration embedded into a 3D
space) to avoid the confusion with the usual 3D configuration.

Theorem 1 (Desargues’ theorem) Let E be a 3D projective space and
P , Q, R, P ′, Q′, R′ be points of this space. Let PQR and P ′Q′R′ be 2
non-degenerated triangles. If lines (PP’), (QQ’) and (RR’) intersect in a
single point O, then points α = (PR) ∩ (P ′R′), β = (QR) ∩ (Q′R′) and
γ = (PQ) ∩ (P ′Q′) are on the same line.

Fig. 9 Desargues’ theorem 1, in its 2.5D configuration.

This theorem was proven interactively using Coq a few years ago [23]. It
proceeds as follows: we prove the property in the case the two triangles are
not coplanar. This configuration is called Desargues 2.5D (as shown in Fig. 9).
We then derive a proof that it holds in 2D when the 2 triangles are coplanar
(as shown in Fig. 10).

6.2.1 Case where triangles PQR and P ′Q′R′ are not coplanar

This is the easy part. The main feature of the proof is that the intersection
of two planes PQR and P ′Q′R′ is a line which contains points α, β and γ.
But, taking a deeper look to the statement, it can be observed that implicitly
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points P and P ′ must be different as well as Q and Q′, and, R and R′. It is
less obvious to observe that the point O has to be different to at least one
point among P,Q,R, P ′, Q′, R′. We face here a well known problem about the
non-degeneracy conditions which can be numerous but still difficult to find.
We choose here to describe the general case where the point O neither belongs
to the plane (PQR) nor to the plane (P ′Q′R′). The corresponding statement
is given at Table 13

Fig. 10 Desargues’ theorem 1, in its 2D configuration together with the extrusion of triangle
P’Q’R’ to 3D

The sizes of the output files are respectively 118 Kb for the rank function
—the size approximately doubles each time a point is added— and about 380
Kb for the Coq proof, with around 4 900 lines.

6.2.2 Case where both triangles PQR, P ′Q′R′ and the perspective point O′

lie in the same plane Π

In this situation, one cannot use the fact that two planes intersect each other
along a line because the figure lies in an unique plane Π. The key is to go back
to the previous case by extruding the figure using a point outside plane Π:

– first choose a point, say S, outside of the plane Π and consider the tetra-
hedron SP ′Q′R′,

– second choose a point, say O, on the line (SO′) and different from S and
O′,

– lines OP and (SP ′) are coplanar (they belong to the plane (PO′S)), then
they meet in a point we call P ′′,
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points P Q R Pp Qp Rp Oo alpha beta gamma
# O means zero in Coq, we use Oo instead

hypotheses
P Pp : 2
Q Qp : 2
R Rp : 2
P Pp Oo : 2
Q Qp Oo : 2
R Rp Oo : 2
P Q R Oo : 4 # Oo is not in plane PQR
Pp Qp Rp Oo : 4
P Q R : 3
Pp Qp Rp : 3
P Q R Pp Qp Rp : 4 # non coplanarity
P Q beta : 2 # alpha, beta, gamma definitions
Pp Qp beta : 2
P R alpha : 2
Pp Rp alpha : 2
Q R gamma : 2
Qp Rp gamma : 2

conclusion
alpha beta gamma : 2

Table 13 Statement for the 2.5D version of Desargues’s theorem

– construct Q′′ and R′′ in the same way.

We thus have two tetrahedrons, one with apex S and the second with apex O,
with a common triangle P ′′Q′′R′′, where we can apply the previous reasoning.
The construction is more intricate and there are more non-degeneracy condi-
tions to consider. Actually, in the statement given in Table 14, we examine all
the triples in the plane Π:

– some have a rank 2, for instance points P , P ′ and O′ have to be collinear,
– some have rank 3, for instance the fact P , Q and P ′ cannot be collinear

because this implies that lines (PQ) and (P ′Q′) are equal and then the
point γ cannot be defined,

– and finally, some can have rank 2 or 3 for instance the set (P,Q′, R′): for
such triples imposing a rank entails the generality of the theorem.

With 15 points, it takes less than 2 minutes to solve this statement. The
file which contains the rank function has a size of 4 Mb (a bit more than 32
× 118 Kb) and the Coq file is about 1.0 Mb and a bit less than 13 000 lines.

6.2.3 One step beyond

Desargues’s theorem has a very combinatorial nature and it has in fact a
version in any dimension greater than 2. For instance in dimension 3, it states
that given two tetrahedrons T and T ′ which are in perspective from a point
O, the six points defined by the intersection of the corresponding edges of T
and T ′ are in a plane and form a complete quadrilateral as shown in Fig. 11
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points P Q R Pp Qp Rp Ps Qs Rs Op Oo Sc alpha beta gamma
# O means zero in Coq, thus O -> Oo
# ... the same for S, thus S -> Sc
# moreover Pp stands for P’ and Ps stands for P’’

hypotheses
P Q R : 3 # independence relations headed by point P
P Q Pp : 3 # for instance this implies that P Q Pp Qp and Op are collinear
P Q Qp : 3 # idem
P Q Op : 3 # idem
P R Pp : 3 # idem for P Pp R Rp and Op
P R Rp : 3
P R Op : 3
P Pp Qp : 3
P Pp Rp : 3
P Pp Op : 2 # collinearity
P Qp Op : 3
P Rp Op : 3 # end for point P
Q R Qp : 3
Q R Rp : 3
Q R Op : 3
Q Pp Qp : 3
Q Pp Op : 3
Q Qp Rp : 3
Q Qp Op : 2 # collinearity
Q Rp Op : 3 # end for point Q
R Pp Rp : 3
R Pp Op : 3
R Qp Rp : 3
R Qp Op : 3
R Rp Op : 2 # collinearity, end for point R
Pp Qp Rp : 3
Pp Qp Op : 3
Pp Rp Op : 3 # end for point Pp
Qp Rp Op : 3
P Q R Pp Qp Rp Op : 3 # coplanarity of the initial figure
P Q R Sc : 4 # point Sc is chosen out of plane PQR
P Q R Oo : 4 # the same for point Oo
Oo Sc : 2 # Sc and Oo are différent
Op Oo Sc : 2 # and collinear with Op
Ps P Oo : 2 # definition of Ps
Ps Pp Sc : 2
Qs Q Oo : 2 # definition of Qs
Qs Qp Sc : 2
Rs R Oo : 2 # definition of Rs
Rs Rp Sc : 2
P R alpha : 2 # definition of alpha
Pp Rp alpha : 2
Q R beta : 2 # definition of beta
Qp Rp beta : 2
P Q gamma : 2 # definition of gamma
Pp Qp gamma : 2

conclusion
alpha beta gamma : 2

Table 14 Statement for Desargues’s theorem in 2D
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Fig. 11 Desargues’s theorem in 3D

[34]. 15 points are involved in this theorem but it is solved in few minutes.
The Coq proof is about 31 000 lines long.

We also succeed in proving the 4D version of this theorem: given two pen-
tachores P and P ′ which are in perspective from a point O, the ten points
defined by the intersection of the corresponding edges belong in a 3D space
and form a figure which is precisely the one depicted in Figure 9. 21 points
are involved in this theorem, and it takes about one week to solve it [35]. The
Coq file is 47.4 Mb large. It contains 497 157 lines (with a lot of comments)
and features 2517 intermediate lemmas.

In dimension n, let us call a n-complete hyper-tetrahedron the configura-
tion G of (n+1)(n+2)

2 points and defined by G = H ∪H ′ where

– H is a set of n + 1 points in general position, that is a hypertetrahedron
in dimension n,

– H ′ is the intersection ofH by an independent hyperplane P ; in other words,
H ′ is a set of

(
n+1
2

)
new points each of them is the intersection of an edge

of H with hyperplane P .

A 2-complete hypertetrahedron is a complete quadrilateral and a 3-complete
hypertetrahedron is the configuration depicted at Figure 9. We then have the
following theorem:

Theorem 2 (Desargues’s theorem in dimension n + 1) Let E an inci-
dence space of dimension n + 1 and two hypertetrahedrons T and T ′ in this
space in perspective from a point O independent of each tetrahedron, that is,
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O does not belong to any hyperface of T or T ′. Then the intersection points of
the corresponding edges of T and T ′ form a n-complete hypertetrahedron.

We do not have yet a formal proof of this theorem and it is out of reach of
our prover since it requires a proof by recursion on the dimension of the space.
A proof of a more complicated formulation can be found in [5]. Note also that
there exist other generalizations of Desargues’ theorem [22].

6.3 Dandelin-Gallucci’s theorem

In an incidence space with dimension at least 3, Dandelin-Gallucci’s property
can be informally stated as follows:

Property 1 (Dandelin-Gallucci) Let us assume we have three skew lines a, b
and c and three other skew lines e, f and g, such that every line in {a, b, c}
meets every line in {e, f, g}. Then, all pairs of lines d and h, such that d meets
lines e, f and g, and such that h meets every line a, b and c, are concurrent.

It is important to note that this property is not satisfied by every projective
incidence space. In fact it is related to Pappus’ property which lives in a 2D
plane and can be stated as follows:

Property 2 (Pappus) In a projective incidence plane, let a and e be two dis-
tinct lines and let A, B, C, A′, B′ and C ′ be six different points with A, B
and C belonging to a and A′, B′ and C ′ belonging to e. These points define
respectively the lines lAB′ , lA′B , lAC′ , lA′C , lBC′ , lB′C . The three intersection
points X = lAB′ ∩ lA′B and Y = lAC′ ∩ lA′C and Z = lBC′ ∩ lB′C are collinear.

Dandelin-Gallucci’s theorem then establishes a strong link between an
iconic 2D property (Pappus) and a truly 3-dimensional one (Dandelin-Gallucci):

Theorem 3 (Dandelin-Gallucci) In a projective incidence space whose di-
mension is greater than or equal to 3, Dandelin-Gallucci’s property and Pap-
pus’ property are equivalent.

This proof only uses basic knowledge on incidence geometry. Fig. 12 illus-
trates the configuration and names some interesting lines. This proof sketch
highlights the role of Pappus points X, Y and Z which are not part of the
initial configuration and are later used to construct the point R as the in-
tersection of lines (YM) and (ZN). We then show that this new point R is
also the intersection of lines d and h. The details of the proof can be found in
Horváth’s article [21].

6.3.1 From Pappus to Dandelin-Gallucci

As mentioned above, the points X, Y and Z correspond to an instance of
Pappus’ property. This instance is chosen by hand. There are many possibilities
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Fig. 12 From Pappus to Dandelin-Gallucci (lines are noted with lower case letters a, b,
. . . ).

among such configurations: 9 pairs of lines can be chosen and for each pair
there are 6 possible configurations giving at least 56 Pappus’s configurations
resulting in 168 points which could be added. Considering the exponential
complexity of our naive algorithm, this is impossible to manage. This triple
of points being defined, we directly add the collinearity of these points as an
hypothesis. Generating automatically this collinearity property could also be
achieved by introducing a new rule corresponding to Pappus’ property in our
system. However, as the points involved in the instance of Pappus’ property
were already selected by hand, it would have been pointless to let the system
search for six points (the six input points of Pappus’ property so that it can
apply Pappus’ property) and thus re-discover the above-mentionned triple of
three collinear points.

The point R is then defined as the intersection of lines (YM) and (ZN)
(See Figure 12), but the coplanarity of these two lines has to be proved before.
This is why there are two parts of the proof. We just give here the second
statement which contains all the constraints (all the examples can be found
on the git repository already mentioned). The input statement provided to
Bip is given in Table 15 and should be easily readable. The introduction of
all the points follows a constructive definition of the figure, the names of the
lines defined by collinearity are given in comments. The whole figure contains
19 points but only 17 of them are required giving lighter outputs: the size of
the rank function file is about 16.4 Mb and the Coq proof about 2 Mb, that
is 25 000 lines. The computation time is about half an hour.
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points
Oo A B C Ap Bp Cp X Y Z M N Sp T U V R # points P and Q are not needed

hypotheses
Oo A : 2
Oo B : 2
Oo C : 2
A B : 2
A C : 2
B C : 2
Oo Ap : 2
Oo Bp : 2
Oo Cp : 2
Ap Bp : 2
Ap Cp : 2
Bp Cp : 2
Oo A B C : 2 # a
Ap M Sp : 2 # b
Oo A B C Ap M Sp : 4 # a and b are not coplanar
Bp N T : 2 # c
Oo A B C Bp N T : 4 # a and c are not coplanar
Ap M Sp Bp N T : 4 # b and c are not coplanar
Cp U V : 2 # d
Oo A B C Cp U V : 4 # a and d are not coplanar
Ap M Sp Cp U V : 4 # b and d are not coplanar
Bp N T Cp U V : 4 # c and d are not coplanar
Oo Ap Bp Cp : 2 # e
Oo A Ap : 3 # a and e are different
A M U : 2 # f
Oo Ap Bp Cp A M U : 4 # e and f are not coplanar
B N V : 2 # g
Oo Ap Bp Cp B N V : 4 # e and g are not coplanar
A M U B N V : 4 # f and g are not coplanar
C Sp T : 2 # h
Oo Ap Bp Cp C Sp T : 4 # e and h are not coplanar
A M U C Sp T : 4 # f and h are not coplanar
B N V C Sp T : 4 # g and h are not coplanar
X A Bp : 2 # 1st Pappus point
X Ap B : 2
Y A Cp : 2 # 2nd Pappus point
Y Ap C : 2
Z C Bp : 2 # 3rd Pappus point
Z Cp B : 2
X Y Z : 2 # Pappus colinearity
Y M R : 2 # addition of R
Z N R : 2

conclusion
C Sp T Cp U V : 3 # lines d and h are coplanar

Table 15 Statement for the Pappus to Dandelin-Gallucci direction.
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6.3.2 From Dandelin-Gallucci to Pappus

The opposite direction of the proof is similar but a lot of points have to be
added by hand: 10 points are involved by the hypotheses and 17 points are
needed by the proof. These points all come from the construction of a Dandelin-
Gallucci configuration which is done by hand following Horváth’s article [21].
With 17 points, the size of the rank function is the same as before, but the
Coq proof is a bit longer with 76 000 lines.

7 Conclusion

7.1 Achievements

In this article, we present an automated prover, called Bip. It is designed to
carry out proofs of geometric statements in an incidence projective geome-
try setting. It relies on the concept of rank of a set of points to capture the
usual notions of geometry (colinearity, coplanarity, etc.). By dealing only with
points, it provides an homogeneous context to carry out proofs by compu-
tation. Starting from the hypotheses, which are expressed as rank equalities
for some specific sets (e.g. rk{A,B,C} = 3 expresses that the three points
A,B and C are coplanar), it proceeds by saturation of the context to make
deductions which allow to prove the conclusion of the theorem at stake. These
deduction steps rely on the matroid properties of the rank function. They
are recorded and then used to produce a Coq proof script which can then
be verified by Coq to ensure the considered statement is actually correct and
well-proved. We show that our prover performs well on well-known emblem-
atic theorems of projective incidence geometry such as Desargues’ theorem or
Dandelin-Gallucci’s theorem. We also manage to prove statements (e.g. De-
sargues’ theorem) in spaces of dimension greater to 3.

7.2 Future work

So far, our prover is called outside Coq to prove statements in one go. We aim
at having a more integrated system in the Coq proof environment. We designed
a prototype interface which allows to embed the prover and call it interactively
from Coq [25], allowing for more flexible interaction between automated and
interactive theorem proving. The user would only take care of creating new
points (if required) and the automated prover would deal with all the other
proof details automatically. This would allow to keep the structure and the key
steps of the proof visible, and, at the same time, to deal with more technical
parts of the proof automatically.

In the near future, we shall carry on proving statements in higher order
dimensions, which means studying configurations with more points and larger
initial rank intervals. Successfully proving such statements automatically re-
quires to improve the performances of the prover. We may also consider data
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mining approaches to discover new theorems of a given configuration, once the
saturation process is completed. Once relevant statements are identified, the
prover could generate the corresponding Coq proof scripts.
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A Appendix

Load "preamble2D.v".

Lemma LABCD : forall A B C D ,
rk(A :: C :: nil) = 2 -> rk(A :: B :: D :: nil) = 3 ->
rk(C :: D :: nil) = 2 -> rk(A :: C :: D :: nil) = 2 ->
rk(A :: B :: C :: D :: nil) = 3.
Proof.

intros A B C D
HACeq HABDeq HCDeq HACDeq .

assert(HABCDm2 : rk(A :: B :: C :: D :: nil) >= 2).
{
assert(HACmtmp : rk(A :: C :: nil) >= 2)

by (solve_hyps_min HACeq HACm2).
assert(Hcomp : 2 <= 2) by (repeat constructor).
assert(Hincl : incl (A :: C :: nil) (A :: B :: C :: D :: nil))

by (repeat clear_all_rk;my_inO).
apply (rule_5 (A :: C :: nil) (A :: B :: C :: D :: nil) 2 2 HACmtmp Hcomp Hincl).
}

assert(HABCDm3 : rk(A :: B :: C :: D :: nil) >= 3).
{
assert(HABDmtmp : rk(A :: B :: D :: nil) >= 3)

by (solve_hyps_min HABDeq HABDm3).
assert(Hcomp : 3 <= 3)

by (repeat constructor).
assert(Hincl : incl (A :: B :: D :: nil) (A :: B :: C :: D :: nil))

by (repeat clear_all_rk;my_inO).
apply (

rule_5 (A :: B :: D :: nil) (A :: B :: C :: D :: nil) 3 3 HABDmtmp Hcomp Hincl
).

}

assert(HABCDM : rk(A :: B :: C :: D :: nil) <= 3)
by (solve_hyps_max HABCDeq HABCDM3).
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assert(HABCDm : rk(A :: B :: C :: D :: nil) >= 1)
by (solve_hyps_min HABCDeq HABCDm1).

intuition.
Qed.

Lemma LABC : forall A B C D ,
rk(A :: C :: nil) = 2 -> rk(A :: B :: D :: nil) = 3 ->
rk(C :: D :: nil) = 2 -> rk(A :: C :: D :: nil) = 2 ->
rk(A :: B :: C :: nil) = 3.
Proof.

intros A B C D
HACeq HABDeq HCDeq HACDeq .

assert(HABCm2 : rk(A :: B :: C :: nil) >= 2).
{
assert(HACmtmp : rk(A :: C :: nil) >= 2)

by (solve_hyps_min HACeq HACm2).
assert(Hcomp : 2 <= 2)

by (repeat constructor).
assert(Hincl : incl (A :: C :: nil) (A :: B :: C :: nil))

by (repeat clear_all_rk;my_inO).
apply (

rule_5 (A :: C :: nil) (A :: B :: C :: nil) 2 2 HACmtmp Hcomp Hincl
).

}

assert(HABCm3 : rk(A :: B :: C :: nil) >= 3).
{
assert(HACDMtmp : rk(A :: C :: D :: nil) <= 2)

by (solve_hyps_max HACDeq HACDM2).
assert(HABCDeq : rk(A :: B :: C :: D :: nil) = 3)

by
(apply LABCD with (A := A) (B := B) (C := C) (D := D) ; assumption).

assert(HABCDmtmp : rk(A :: B :: C :: D :: nil) >= 3)
by (solve_hyps_min HABCDeq HABCDm3).

assert(HACmtmp : rk(A :: C :: nil) >= 2)
by (solve_hyps_min HACeq HACm2).

assert( Hincl :
incl (A :: C :: nil)
(list_inter (A :: B :: C :: nil) (A :: C :: D :: nil)))

by (repeat clear_all_rk;my_inO).
assert( HT1 :

equivlist (A :: B :: C :: D :: nil)
(A :: B :: C :: A :: C :: D :: nil))

by (clear_all_rk;my_inO).
assert( HT2 :

equivlist (A :: B :: C :: A :: C :: D :: nil)
((A :: B :: C :: nil) ++ (A :: C :: D :: nil))

) by (clear_all_rk;my_inO).
rewrite HT1 in HABCDmtmp;rewrite HT2 in HABCDmtmp.
apply (

rule_2
(A :: B :: C :: nil) (A :: C :: D :: nil) (A :: C :: nil)
3 2 2 HABCDmtmp HACmtmp HACDMtmp Hincl
).

}
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assert(HABCM : rk(A :: B :: C :: nil) <= 3)
by (solve_hyps_max HABCeq HABCM3).

assert(HABCm : rk(A :: B :: C :: nil) >= 1)
by (solve_hyps_min HABCeq HABCm1).

intuition.
Qed.
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