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The Dangers of Drawing Cohort Profiles From Period Data: 
A Research Note

Alyson A. van Raalte, Ugofilippo Basellini, Carlo Giovanni Camarda, 
Marília R. Nepomuceno, and Mikko Myrskylä

ABSTRACT  Drawing cohort profiles and cohort forecasts from grids of age–period 
data is common practice in demography. In this research note, we (1) show how demo­
graphic measures artificially fluctuate when calculated from the diagonals of age– 
period rates because of timing and cohort-size bias, (2) estimate the magnitude of these 
biases, and (3) illustrate how prediction intervals for cohort indicators of mortality 
may become implausible when drawn from Lee–Carter methods and age–period grids. 
These biases are surprisingly large, even when the cohort profiles are created from  
single-age, single-year period data. The danger is that we overinterpret deviations  
from expected trends that were induced by our own data manipulation.

KEYWORDS  Lexis diagram  •  Cohort fertility  •  Cohort life expectancy  •  Lee– 
Carter method

Introduction

As demographers, we are all aware that demographic events and person-years at risk 
can be split and aggregated into different formats on the Lexis diagram: age–period 
squares, cohort parallelograms, or, for even more flexibility, Lexis triangles (Carstensen 
2007; Keiding 1990; Wilmoth et al. 2021). But who among us has never created a cohort 
profile by “taking the diagonals” of an age–period grid? Perhaps this is because demo­
graphic data are usually preformatted for period analysis. Possibly we wanted to ana­
lyze cohort trends from a methodology that was designed specifically to be used on an 
age–period grid. Whatever the reason, taking the diagonals is common practice (e.g., 
Kermack et al. 1934; Myrskylä et al. 2013; Preston and Wang 2006; Shkolnikov et al. 
2011; Vogt et al. 2017), even when we suspect that it is not the best practice.

In this research note, we illustrate the dangers of drawing cohort profiles from 
period data using examples that we have recently encountered. The first two exam­
ples describe how demographic measures artificially fluctuate when calculated from 
the diagonals of age–period rates because of (1) timing and (2) cohort-size biases. 
The third example illustrates how drawing forecast uncertainty from the upper and 
lower bounds of a period Lee–Carter time series parameter results in implausible pre­
diction intervals when completing cohorts from period diagonals.
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It is well known that the larger the age–period square, the weaker the approxima­
tion of a real cohort. As the age–period square gets smaller, cohort patterns drawn 
from such squares start to approximate real (continuous-time) cohort lines. All of our 
empirical examples use single-year, single-age data and illustrate that the dangers do 
not vanish with this fine grid. The examples are fully replicable (https:​/​/osf​.io​/xn5w7​/)  
using data from the Human Mortality Database ([HMD] 2023) and the Human  
Fertility Database ([HFD] 2023).

Example 1: Cohort Summary Measures From Period Age-Specific  
Rates—Temporal Bias

Two key biases come into play when we calculate cohort summary measures from the 
diagonals of age–period data. The first is a bias from the timing of events and expo­
sure, while the second relates to changing cohort sizes.

To illustrate the first of these biases, we turn to the Lexis diagram. In Figure 1, the 
true cohort data are represented by green parallelograms and “period diagonals” by 
purple squares. The data from the upper Lexis triangles will always be one calendar 
year earlier for the age–period compared with age–cohort data, with single-year, single- 
age data. Lengthening the time/age data format increases discrepancies in timing.
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Fig. 1  Lexis representation of the difference between the two data structures. Properly structured age– 
cohort data are represented in green, and approximating cohorts by “taking the diagonals” of age–period 
data are represented in purple.
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1691Drawing Cohort Profiles From Period Data

In practice, the extent to which this temporal difference biases the cohort sum­
mary measure depends on how the measure is trending. If the processes happen to be 
stationary, there is no bias. In Figure 2, we contrast cohort completed fertility by age 
40, also known as the cohort total fertility rate (TFR), for Japanese females calcu­
lated from the two data formats: age–cohort parallelograms and the diagonals of age– 
period squares. When fertility trends were flat over cohorts (e.g., cohorts 1945–1955), 
the artificial and true cohort TFRs line up well. When fertility declined sharply (e.g., 
cohorts 1955–1970), there was a general overestimation of the cohort TFR from the 
period squares, marked as “A” in Figure 2. The cohort TFR was underestimated from 
cohort 1975 onward as fertility recovered.

Example 2: Cohort Summary Measures From Period Age-Specific 
Rates—Cohort-Size Bias

The second bias results from changing cohort size. The trend in cohort TFR derived 
from the diagonals of age–period rates shows especially large fluctuations around the 
1966 birth cohort (marked as “B” in Figure 2). This is only partially real. The true 
cohort trend is more stable. Changing cohort size explains the difference between 
the two trends. In 1965, there were 1.8 million births; births dropped to 1.4 million 
in 1966 (owing to beliefs related to being born in the year of the “Fire-Horse” (Kaku 
1975)), only to rebound to 1.9 million in 1967. Deriving summary cohort fertility 
measures from the age–period squares uses rates drawn from events and exposures of 
the smaller 1966 cohort mixed with events and exposures from the larger neighboring 
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Fig. 2  Completed cohort fertility by age 40 in Japan derived from cohort data (circles) and from diagonals 
of period data (crosses) for cohorts 1935–1980. The inset panel shows the percentage differences between 
the two measures (cohort from period diagonal minus the true cohort).
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cohorts. These interactions cause an artificial fluctuation in the corresponding esti­
mated cohort trends.

How Large Is the Bias on Demographic Measures? Empirical Estimates  
From the HFD and HMD

The timing and cohort-size biases demonstrated with Japanese fertility data affect any 
cohort demographic measure estimated from the diagonals of age–period squares. In 
practice, these two biases are challenging to separate.

We estimated the joint impact of these biases on empirical trends of fertility (cohort 
TFR), as well as mortality (cohort life expectancy), from countries with long time 
series of available data from the Human Fertility and Mortality Databases (Table 1).  
Overall, on average there was a 0.6% (in absolute values) difference in cohort TFR 
between true cohort data and cohort-from-period diagonals data. Life expectancy dif­
ferences amounted to 0.7% on average (in absolute values). Cohort-from-period fer­
tility was underestimated about one third of the time and overestimated about two 
thirds of the time, while cohort-from-period life expectancy was usually underesti­
mated. This is because although cohort fertility generally declined during the time 
frame investigated, there were also periods of recovery, while cohort life expectancy 
more consistently increased.

Example 3: Cohort Lifespan Variation Drawn From Period  
Lee–Carter Forecasts

Cohort mortality forecasts are often done by “taking the cohort diagonals” of a fore­
cast age–period surface (Alburez-Gutierrez et al. 2021; Andreev and Vaupel 2006; 
Shkolnikov et al. 2011). Our third example shows that we need to be careful in attrib­
uting forecast uncertainty with such an approach.

Table 1  Summary statistics of the joint impact of temporal and cohort-size biases on cohort total fertility 
rate and cohort life expectancy by taking the diagonals of an age–period grid

Measure

Average  
Deviation  

(% of absolute 
values)

Minimum 
Deviation (%)

Maximum 
Deviation (%)

Underestimated 
Values (%)

Overestimated 
Values (%)

Total Fertility Rate 0.6 −2.1 4.1 36 64
Life Expectancy 0.7 −4.8 2.7 80 20

Notes: “Underestimated” means that the cohort-from-period estimation was lower than the true cohort 
value. The fertility data come from 10 HFD countries with a long fertility series (Japan, France, Italy, the 
United States, Spain, Finland, Denmark, Sweden, the Netherlands, and England and Wales), while the 
mortality data are from seven HMD countries with a long mortality data series (the same countries listed 
above, excluding Japan, the United States, and Spain, since these countries do not have mortality data 
for full cohorts; moreover, for all countries we start the analysis from 1865—or later, depending on data  
availability—to use more reliable historical data).
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1693Drawing Cohort Profiles From Period Data

The Lee–Carter (1992) model1 and its various extensions have become the dom­
inant mortality forecasting methodology, used worldwide by statistical agencies and 
international organizations (Basellini et al. 2023). The prediction intervals are derived 
from the mortality time series parameter kt, usually either by:

	1.	 simulating trajectories of kt, constructing the life table measure of interest for 
each trajectory, and calculating the uncertainty from this simulated distribu­
tion; or

	2.	 using the upper and lower bounds of the simulated kt trajectories, and construct­
ing the life table measure of interest that corresponds to these bounds.

The latter method is computationally simpler,2 in particular since sometimes it is 
feasible to avoid the simulation altogether and calculate the bounds of kt analytically. 
This approach is widely used, for instance, in the popular “demography” R package 
(Hyndman et al. 2023), and was suggested by Lee (2000:83) himself for period—not 
cohort—life table functions, since the variations in the log death rates will be “per­
fectly correlated with one another, because all are linear function of the same time-
varying parameter k.” For cohort life table measures, however, mortality schedules 
are completed from kt, kt + 1, kt + 2, and so on, and the associated complex relationship 
between their uncertainty bounds (Lee 2000).

We illustrate this with a Lee–Carter forecast3 of Swedish female mortality data, 
where cohort age-specific mortality was completed by employing the diagonals of a 
forecast age–period grid, using the 95% prediction intervals from the upper and lower 
bounds of the simulated kt trajectories (Figure 3, panel c). While the life expectancy 
prediction intervals (panel a) appear reasonable, the interquartile range intervals 
(panel b) do not. The interval first grows, then shrinks, goes to zero, and then grows 
again. The decline in uncertainty over cohorts is clearly implausible. These dynam­
ics occur regardless of the chosen index of variation, the input data (age–period or 
age–cohort), or the population (see Figures A1–A4 in the online appendix).

Discussion

Summary

Drawing cohort profiles from age–period data or models can lead to patently false 
conclusions. In the first instance, using age–period data to calculate cohort TFR and 

1  The Lee–Carter model expresses variation in death rates across age and time as follows: ln mx,t = ax + 
bxkt + εx,t, where ax is the pattern of log mortality at age x, kt is an index of the level of mortality at time t, 
bx describes how much mortality at a given age changes with the overall mortality level changes, and εx,t 
is the residual.
2  This was far more of a concern in the early 1990s than it is today. With modern computing, the difference 
in the time needed to calculate prediction intervals from the two methods is trivial. We argue that the first 
approach should now be used even in period calculations.
3  In our results, following the standard Lee–Carter estimation procedure, the model was fit to data from 
1960 to 2019, ax was set to equal the means over time of the ln mx,t, and the parameters bx and kt were esti­
mated with singular value decomposition. An adjusted kt (to match the observed number of deaths in each 
year) was forecast to decline linearly to 2100 using a random walk with drift.
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cohort e0 resulted in estimates that were on average 0.6% and 0.7% different from 
those calculated from age–cohort data, respectively. The largest deviations were a 
4.1% difference in cohort TFR and a −4.8% difference for cohort life expectancy at 
birth (e0). In the second example, drawing cohort profiles from period Lee–Carter 
forecasts resulted in implausible prediction intervals for lifespan variability measures, 
when based on taking the upper and lower bounds of the kt time series parameter.

Should the artificial fluctuations in cohort fertility and mortality caused by the 
input data be considered large or small? To put this difference into perspective, the 
average data-driven artifact estimated for any single cohort TFR amounts to about one 
third of the recent average yearly drop in U.S. period TFR over the period 2007–2019 
(HFD 2023), which is noteworthy for its size and has generated considerable discus­
sion (Guzzo and Hayford 2020; Hartnett and Gemmill 2020). In terms of mortality, 
the drop in period e0 in either the United States or the United Kingdom from 2014 to 
2017 was less than 0.1% (HMD 2023). In the pre-COVID-19 world, these life expec­
tancy declines received extensive attention in the media, as well as in demographic 
and public health circles (Hiam et al. 2018; Ho and Hendi 2018). The declines were 
seven times less than the average data-induced cohort life expectancy artifact.

While the examples used related to fertility and mortality, these issues are equally 
pertinent in migration research. Migration flows fluctuate by year and season. In 
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Fig. 3  Panel a: Observed (circles) and forecast (lines) cohort life expectancy at birth, e0, for birth cohorts 
1900–1980. Panel b: Observed (circles) and forecast (lines) cohort interquartile range, for birth cohorts 
1900–1980. Panel c: Estimated kt for the years 1960–2019 (circles) and forecast kt with 95% prediction 
intervals for the years 2020–2100 (lines) for Swedish females, ages 0–110+. The colors highlight the 
median, upper, and lower percentile forecasts of kt. IQR = interquartile range.
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Europe, 1.3 million refugees, primarily from Syria, Iraq, and Afghanistan, claimed 
asylum in 2015 (Eurostat 2016). This was more than double the level seen in any year 
over the preceding decade. Two thirds of these 2015 asylum seekers arrived in July 
or later that year. In a Lexis diagram with the year of arrival on the x-axis (“year”) 
and years since arrival on the y-axis (“age”), the late-2015 migration cohort would 
have some weight in “year 2015–age 0,” heavy weight in “year 2016–age 0,” some 
weight in “year 2016–age 1,” heavy weight in “year 2017–age 1,” and so on with the 
fluctuation continuing as this migration cohort is followed throughout its life course. 
An analysis of decisions on asylum seekers by year of arrival, based on square-based 
cohort inference, could be very different from decisions based on properly structured 
age–cohort data.

As a field, demography is slowly moving away from the analysis of aggregate 
population-level data toward the usage of rich individual-level data (Lee 2001), which 
we can aggregate ourselves by year of birth. These changes started with the imple­
mentation of repeated cross-sectional and panel surveys a few decades ago (Crimmins  
1993) and have progressed to include administrative and other big data sources 
(Kashyap 2021). The longer some of these studies (or registers) run, the more we can 
expect research designs that examine temporal change over the cohort dimension, as 
well as methodological development for proper cohort inference (see, e.g., Yang and 
Land (2013) for a discussion of how individual-level data are shaping methodologi­
cal developments in the field of age–period–cohort analysis). Nevertheless, analysis 
of aggregate data remains a core task of demographers, and it is likely we will face 
aggregated age–period data from statistical offices for some time to come.

Potential Solutions to Mitigate the Problems

Calculating Cohort Summary Measures From Period Data

National statistical agencies often provide data in aggregated age–period formats 
that are particularly suited to period analysis. When conducting cohort analyses, we 
should first split the data into Lexis triangles and then reshape it into cohort parallel­
ograms (Carstensen 2007). These methods have their assumptions, in particular, that 
births (or the event that defines the cohort) are evenly distributed at the beginning 
and end of the calendar year. This assumption is sometimes violated, for instance, 
after exceptional events such as wars, famines, or epidemics (Aassve et  al. 2020; 
Agadjanian and Prata 2002; Chandra et al. 2018; Lindstrom and Berhanu 1999); in 
anticipation of loss or gain in social benefits such as baby bonuses (Brunner and Kuhn 
2011; Thévenon and Gauthier 2011); depending on cultural beliefs, for example, the 
period boost in fertility among Chinese accompanying dragon years (Goodkind 1991, 
1995); or due to seasonal fluctuations such as the 2015 European migration wave.  
In these cases, exposures can be distributed by month of birth or other event defin­
ing the cohort, as is now done for the exposure populations in the HMD and HFD 
(Wilmoth et al. 2021).

If the data we have on hand come in the form of age–period rates and not the actual 
event and exposure counts, we envisage an adjustment of the rates that depends on 
the changes in cohort sizes, if known.
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Completing Cohort Profiles From Period Forecasts

The problem of the crossing prediction intervals is not a general feature of complet­
ing cohort mortality from period forecasts, but relates to an often-used approach of 
attributing uncertainty within the Lee–Carter forecasting methodology that is clearly 
inappropriate. Lee himself argued against using such an approach for cohort measures 
(Lee 2000) but never empirically elaborated on the point. Crossovers do not occur when 
measures are calculated on the implied death rates for each simulated time series trajec­
tory (see Figure A5 in the online appendix). However, this approach has not been empir­
ically tested to determine whether the obtained uncertainty intervals are well calibrated.

Conclusion

Drawing cohort profiles from period data and forecasts can lead to misleading con­
clusions, including erroneous fluctuation in cohort summary measures and implau­
sible uncertainty in cohort forecasts. No one will be surprised that we find bias. But 
we expect many to be surprised by the magnitude of bias, even when cohort profiles 
and forecasts are drawn from a single-age, single-period grid. The danger is that we 
go down rabbit holes explaining deviations from expected trends when the deviations 
themselves are an artifact of our own data manipulation.

We argue that cohort summary measures of fertility, mortality, and migration should 
always be calculated on the basis of age–cohort data. When unavailable, age–period 
data should be split into Lexis triangles and reformatted to cohort data using the most 
plausible assumptions. In the case of cohort forecasting, crossing prediction intervals 
can be avoided by period-based forecasting methodologies that are not based on the 
Lee–Carter framework, or by simulation approaches within the Lee–Carter frame­
work. However, we are of the opinion that uncertainty can only be properly accounted 
for with a cohort-based forecasting methodology. We end with a plea for researchers 
to further test and develop new cohort-based methods and models. ■
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