
HAL Id: hal-04318702
https://hal.science/hal-04318702v5

Submitted on 6 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Adobe Hidden Feature and its Impact on Sensor
Attribution

Jan Butora, Patrick Bas

To cite this version:
Jan Butora, Patrick Bas. The Adobe Hidden Feature and its Impact on Sensor Attribution. 12th ACM
Workshop on Information Hiding and Multimedia Security, Jun 2024, Baiona, Spain. �hal-04318702v5�

https://hal.science/hal-04318702v5
https://hal.archives-ouvertes.fr

The Adobe Hidden Feature
and its Impact on Sensor Attribution

Jan Butora
jan.butora@cnrs.fr

Univ. Lille, CNRS, Centrale Lille,
UMR 9189 CRIStAL

Lille, France

Bas Patrick
patrick.bas@cnrs.fr

Univ. Lille, CNRS, Centrale Lille,
UMR 9189 CRIStAL

Lille, France

ABSTRACT
If the extraction of sensor fingerprints represents nowadays an
important forensic tool for sensor attribution, it has been shown
recently in [2, 3, 13] that images coming from several sensors were
more prone to generate False Positives (FP) by presenting a com-
mon "leak". In this paper, we investigate the possible cause of this
leak and after inspecting the EXIF metadata of the sources causing
FP, we found out that they were related to the Adobe Lightroom or
Camera Raw software. The cross-correlation between residuals on
images presenting FP reveals periodic peaks showing the presence
of a periodic pattern. By developing our own images with Adobe
Lightroom we are able to show that all developments from raw
images (or 16 bits per channel coded) to 8 bits-coded images also
embed a periodic 128 × 128 pattern very similar to a watermark.
However, we also show that the watermark depends on both the
content and the architecture used to develop the image. The rest
of the paper presents two different ways of removing this water-
mark, one by removing it from the image noise component, and
the other by removing it in the pixel domain. We show that for a
camera presenting FP in [13], we were able to prevent the False
Positives. A discussion with Adobe representatives informed us
that the company decided to add this pattern in order to induce
dithering.

KEYWORDS
PRNU, False-Positive, Watermarking, Watermark Removal
ACM Reference Format:
Jan Butora and Bas Patrick. 2024. The Adobe Hidden Feature and its Impact
on Sensor Attribution . In Proceedings of the 2024 ACM Workshop on Infor-
mation Hiding and Multimedia Security (IH&MMSec ’24), June 24–26, 2024,
Baiona, Spain. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3658664.3659650

1 MOTIVATIONS
The use of the Photo-Response Non-Uniformity noise (PRNU) for
imaging sensor attribution is one operational success coming from
the forensic research with the seminal paper and associated patent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IH&MMSec ’24, June 24–26, 2024, Baiona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0637-0/24/06. . . $15.00
https://doi.org/10.1145/3658664.3659650

154775125@N05

25762059@N00

34392975@N03

46453464@N07

60548918@N07

7941986@N07

LeicaShopTiff

100

101

102

103

104

105

106

P
C

E
va

lu
e

Figure 1: The original PCEs for the Leica Q2 camera and 7 dif-
ferent devices. The first 6 labels are the FlickR identification
names and the last one is images coming from a Q2 camera
shared by the Leica Shop in Lille and developed using Adobe
Lightroom in 8-bit Tiff format. Matching and mismatching
tests are reported in green and red, respectively. The thresh-
old of 60 is highlighted by the red dashed line.

of Lukas, Goljan and Fridrich in 2005 [11, 16]. It relies on the fact
that each photo-site of the sensor is corrupted by a multiplicative
noise (i.e. proportional to the noiseless value) which is the same
for all acquisitions from the same sensor but completely different
from one sensor to another. This noise survives the development
processes and the mathematical model in the pixel domain can be
written as:

I = I𝑜 + KI𝑜 + Θ, (1)
where K, I𝑜 , I, and Θ denote respectively the PRNU component, the
noiseless image, the captured image, and a collection of independent
random noise components.

Estimating the PRNU component K̂ related to one given sensor
enables to extract a fingerprint of this sensor which can be used in
forensic tasks, to associate images captured with this sensor, or to
detect manipulations on specific areas.

For camera sensor attribution, the classical methodology to at-
tribute a picture to a given sensor was benchmarked by Goljan et
al. [12] in 2009 on a database of 106 JPEG images.

For a set of𝑁 reference images {I1, . . . , I𝑁 } sometimes called flat-
field images (the estimation is better if these images are both out of
focus and bright), the fingerprint K̂ is estimated using a maximum

https://doi.org/10.1145/3658664.3659650
https://doi.org/10.1145/3658664.3659650
https://doi.org/10.1145/3658664.3659650

IH&MMSec ’24, June 24–26, 2024, Baiona, Spain Jan Butora and Bas Patrick

likelihood estimator [10] applied on every image residual W𝑖 :

K̂ =

∑
𝑖

W𝑖 I𝑖∑
𝑖

I𝑖2 , (2)

where the residual is computed as W𝑖 = I𝑖 − 𝑓 (I𝑖), 𝑓 (.) being a
denoising function such as the ones proposed by Mihcak et al. [17]
or Cherchia et al. [8] which relies on the BM3D [9] denoising algo-
rithm combined with Markov Random Field model.

In order to potentially attribute a test image I𝑡 with the finger-
print K̂, the normalized correlation between the image residual
W𝑡 = I𝑡 − 𝑓 (I𝑡) and the potential fingerprint specific to the image
K̂I𝑡 is first computed:

NCC(𝑠1, 𝑠2) =
< W𝑡 (𝑠1, 𝑠2); K̂I𝑡 >
|W𝑡 (𝑠1, 𝑠2) |.|K̂I𝑡 |

, (3)

where (𝑠1, 𝑠2) represents the spatial shift, which could arise due to
cropping. Eventually, the statistic which is used to decide whether
or not the image can be attributed to the fingerprint K̂ is the Peak
to Correlation Energy (PCE) defined as:

PCE =
NCC(𝑠peak

1 , 𝑠
peak
2)2

1
𝑚𝑛−|N|

∑
(𝑠1,𝑠2)∉N

NCC(𝑠1, 𝑠2)2 , (4)

where N denotes a small neighborhood centered on the maximum
of the cross-correlation function located at (𝑠peak

1 , 𝑠
peak
2), and (𝑚,𝑛)

are the dimensions of the correlation function. On a large scale
database presented in [12], the authors proposed an attribution
threshold w.r.t. the PCE of 60, which in the setup of the reference
paper is associated with a practical FP rate of 2.4 × 10−5 without
considering potential translations on the test image. While the
neighborhood size was proposed to 11 × 11 region, we use only
2 × 2 neighborhood.

Recently different papers studied this attribution procedure on
modern sensors coming either from recent digital cameras or smart-
phones, and they found out that the benchmark proposed in 2009 [12]
was now subject to numerous FPs. A major overview of this prob-
lem was proposed by Iuliani et al. [13] by considering 33K pictures
uploaded on the FlickR photo-sharing platform coming from 45
smartphones and 25 modern digital cameras. This study exhibited
important FP rates (i.e. > 5%) for smartphones such as the iPhone
11 pro, the Huawei P20 pro or Mate 20 Pro, the Samsung Galaxy A50,
the Nokia Pureview 808, or the Xiaomi Redmi Note 7; and for digital
cameras such as the Canon M6 Mark II, the Fuji X-T30, the Leica Q2,
the Nikon D780 or Z50 or the Sony DSC-RX0.

Complementary works partially analyzed the causes of these
wrong attributions and ways to anticipate potential false positives.
In [2] Albisani et al. show that some FP were associated with smart-
phone captures in portrait mode, i.e. presenting an out-of-focus
background generated artificially. In [12] Baracchi et al. focused
on captures in portrait mode coming from the iPhone X and pro-
posed a way to mitigate the wrong estimation of the fingerprint
in the background by weighting the fingerprint w.r.t. the depth
map associated with the capture. In [5], Bhat and Bianchi show
that steganalysis features such as SPAM [18] can be used to detect
smartphones presenting potential biases added during the image
development pipeline. In [15] Liu et al. consider a specific noise

0 50 100 150 200 250

0

50

100

150

200

250

0

1

2

3

4

5×106

Figure 2: Crop of the autocorrelation function of one residual
associated with a source generating FP.

coming from the software and they propose to mitigate it by de-
creasing the PCE values by a constant 𝐶 specific to the camera
when these values under the null hypothesis present a strong bias.
Note that this solution requires an a priori knowledge of the bias 𝐶 .

2 THE PROCESS DISCOVERY
This section (and the beginning of the next one) is presented as a
story, which means that the style is not very formal or academic.
It reflects how the authors experienced this research, going from
assumptions to surprising discoveries.

Before starting this analysis, we had several ideas in mind regard-
ing the possible causes of FP using the PRNU. Since the fingerprint
KI𝑜 is always added to the noiseless image, it can be seen as a "bias"
on the original image. False positives consequently needed to be
associated with extra biases, which are often named Non-Unique
Artifacts (NUAs) by the forensics community. The two main origins
of a bias we could imagine were: 1) the JPEG dimples [1] found
by Agarwal and Farid et al. which are due to hardware implemen-
tations of quantization strategies during the JPEG compression,
and 2) adding a constant noise during the capture or in the image
development pipeline.

We decided to focus on the Leica Q2 camera and we wanted first
to confirm the results presented in [13].

Using the python PRNU implementation from Bondi et al. [6]
but taking care of computing the NCC w.r.t. K̂I𝑡 and not only K̂
as in the original implementation, we were able to reproduce the
results as depicted in Fig. 1.

What was surprising was the fact that out of the seven different
sources, only five of them were subject to FP. After a deeper inspec-
tion of the EXIF metadata using verbose outputs1 of the different
sources, we found out that the sources generating FP were not Out
Of Camera (OOC) JPEGs but all had a tag related to Adobe software,
either Adobe Lightroom or Adobe Photoshop.

We then looked at the autocorrelation function of one residual
belonging to one of these sources and as illustrated in Fig. 2 we
were able to clearly see periodic peaks on a 128 × 128 grid. Finally
1this can be achieved using the command exiftool -v5 image.jpg

The Adobe Hidden Feature
and its Impact on Sensor Attribution IH&MMSec ’24, June 24–26, 2024, Baiona, Spain

0 20 40 60 80 100 120

0

20

40

60

80

100

120

−0.4

−0.2

0.0

0.2

0.4

Figure 3: Average of non-overlapping 128 × 128 patches of an
image residual.

averaging 128×128 patches taken from the very same grid exhibited
very similar patterns on the different sources coming from Adobe
(an example of the average pattern is depicted in Fig. 3).

The final "spit it out" test was to develop using either Lightroom
or Photoshop one constant image saved in a RAW format (DNG)
or a 16-bit tiff. We did not observe any changes after developing
the image with Photoshop, however, changes were observed after
exporting with its plug-in Camera Raw, or Adobe Lightroom. For
both formats, a periodic 128 × 128 pattern was present on the pro-
duced jpeg or 8-bit image except for Camera Raw when we directly
exported in 8 bits per channel PNG format.This was noticeable for
all the different OS we tested (iOS, macOS, Windows). Other tests
confirm the fact that the pattern is added on each RGB component
independently and that it is independent of the image content.

Once we were convinced that the signal which can be considered
as a watermark was embedded by Adobe Lightroom or Photoshop’s
plug-in Camera Raw, we performed different tests to understand
at which step of the development process was the watermark em-
bedded. We noticed that the watermark is not dependent on the
processes that the image could undergo (e.g. rotation, sharpening,
denoising, ...), which means that the watermark was not added in
the photo-site domain but on the contrary just before the conver-
sion from 16 bits per channel to 8 bits per channel.

Last but not least, the watermark was not present on exported
tiff images in 16 bits per channel.

3 WATERMARK PROPERTIES
Once we were sure that the embedding of a watermark was respon-
sible for the FPs obtained in the PRNU attribution, our goal was to
find a way to remove it to prevent FP.

From a watermarking security perspective [4], the security sce-
nario seems similar to a Constant Message Attack (CMA) [7] (the
same watermark is present in all the watermarked documents). In
this case, the attack is straightforward: once the watermark has
been properly estimated, a simple subtraction of this signal enables
removing it.

Unfortunately, our first tests revealed that it is not possible to
remove thewatermark by a plain subtraction of one unique 128×128

0 20 40 60 80 100 120

0

20

40

60

80

100

120

1.0

1.2

1.4

1.6

1.8

2.0

(a) 16bit value 382 → 1

0 20 40 60 80 100 120

0

20

40

60

80

100

120

2.0

2.2

2.4

2.6

2.8

3.0

(b) 16bit value 638 → 2

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0.0

0.2

0.4

0.6

0.8

1.0

(c) 8bit difference

Figure 4: Changes introduced after 16bit→ 8bit quantization
of two constant TIFF images of size 128×128. (a): 382 (16bit)→
1 (8bit), (b): 638 (16bit) → 2 (8bit). (c): Their difference image.

periodical pattern on the image, even when considering the impact
of JPEG compression. This is due to at least three factors:

(1) The constant watermark is embedded in the 16-bit domain,
but then suffers quantization to 8 bits. Depending on the
pixel values in the 16-bit domain, the effect in the 8-bit do-
main differs. As illustrated in Fig. 4 for two different con-
stant 16-bit images, the quantized images are slightly dif-
ferent, even though the values 382, 638 are equal modulo
256. Consequently, the watermarking process is not strictly
additive since the watermark in the 8-bit domain is content-
dependent. A classical CMA is consequently not possible.

(2) The image development pipeline is different between one
architecture and another. This feature was not expected and
prevented us from estimating one average unique watermark
(as done for the sensor fingerprint using (2)) and removing
it. Depending on the CPU/GPU used, but also on the OS, we
noticed that the watermark changed by about 10%. Fig. 5a
shows one estimated average 128×128 watermark estimated
on an Apple computer with a M1 chip. and Fig. b the differ-
ence w.r.t. the watermark generated from an Intel chip. Note
that to estimate an expectation of the watermark after 16
to 8-bit quantization, we add a small Gaussian noise on the
RAW image.

(3) The watermark is also shaped by the JPEG coder which de-
pends on parameters such as the quality factor. Fig. 5a and
Fig. 5c show the estimation of the watermark for two dif-
ferent quality factors used in Adobe Lightroom. Here again,
the two watermarks are considerably different.

While it is possible in principle to reverse-engineer the water-
mark for 8-bit tiff images and a given architecture (one has to

IH&MMSec ’24, June 24–26, 2024, Baiona, Spain Jan Butora and Bas Patrick

0 20 40 60 80 100 120

0

20

40

60

80

100

120 −0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

(a) Watermark estimated on M1
chip. (QF100)

0 20 40 60 80 100 120

0

20

40

60

80

100

120
−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

(b) Difference w.r.t. an Intel chip
(QF 100).

0 20 40 60 80 100 120

0

20

40

60

80

100

120 −0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

(c)Watermark estimated at QF 80.

Figure 5: For a constant RAW image with added Gaussian
white noise with 𝜎 = 2, developed with Lightroom to JPEG,
we show (a) the estimated watermark when developed to QF
100 on Apple M1 chip, (b) the difference between estimated
watermarks at QF 100 when the same image was developed
with Apple M1 chip and Intel chip, (c) estimated watermark
when developed to QF 100 on Apple M1 chip.

develop 216 constant 16-bit tiff images of size 128× 128), it becomes
computationally unfeasible for JPEG images due to dependencies
within a block of 64 pixels and different qualities. To sum up, to
correctly remove the watermark, we concluded that we need to
estimate the watermark for each source (i.e. each set of template
images used to estimate the camera fingerprint). We show in the
next section two strategies to remove it and consequently prevent
the occurrence of FP during sensor attribution.

4 REMOVING THEWATERMARK
In this section, we introduce two methods for removing the water-
mark from the estimated PRNUs.

Before we start to explain how to remove the watermark gener-
ated by Adobe, we mention another class of Non-Unique Artifacts
(NUAs) represented by the JPEG dimples [1] and how to estimate
and remove them. In short, dimples can create a non-zero bias on
non-overlapping 8× 8 patches, which also can be seen as a periodic
pattern. See Fig. 6 for the bias introduced by the dimples in the pixel
domain estimated from a single image taken with the Q2 camera.

To efficiently remove the watermark wI ∈ R128×128,2 we in-
troduce its effect, together with the JPEG dimples d ∈ R8×8 into
the model of the developed image (1). To ease the notation, we
assume in the following that all variables are grayscale patches of
size 128 × 128, which can be achieved by taking non-overlapping
2We put the image I into subscript to emphasize the watermark’s dependency on the
image content.

0 2 4 6

0

1

2

3

4

5

6

7
−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 6: Estimate of JPEG dimples in the pixel domain from
a single image taken with the Q2 camera JPEG compressed
with QF 100.

crops of the images (or copying the 8× 8 dimples several times) and
by converting potential color images into grayscale. Our model of
the watermarked image is then:

I = I𝑜 + KI𝑜 + d + wI + Θ. (5)

4.1 Removing the dimples
Before removing the watermark, we remove the JPEG dimples that
can be seen as an additional periodic pattern. We estimate the
dimples by zeroing out the image mean, and averaging over all
non-overlapping 8 × 8 patches I𝑝 ∈ P8 of the image:

d̂ =
1

|P8 |
∑︁

I𝑝 ∈P8

I𝑝 − Ī. (6)

We then remove the bias created by the dimples by simply sub-
tracting the estimate (6) from every image patch, I′𝑝 = I𝑝 − d̂. We
will refer to the dimple-free image as I′.

4.2 Canceling the component in the image
residual

With the watermarked model of the image (5), we can now express
the image residual as:

W = I′ − 𝑓 (I′)
= IK + ŵI + Θ

+ (I𝑜 − 𝑓 (I′)) + (I𝑜 − I)K + (wI − ŵI) + (d − d̂)
= IK + ŵI + Ω, (7)

where ŵI is the estimate of the watermark, and Ω is a sum of
the five accumulated independent noise components.

Next, we estimate the expected watermark from the (dimple-free)
residual W, as the average 128 × 128 patch:

ŵ =
1

|P128 |
∑︁

w𝑝 ∈P128

w𝑝 . (8)

Note that this is only the average watermark, and every patch 𝑝

carries a possibly different realization of this watermark due to its
dependency on the image content, as mentioned in Section 3. We
thus employ a modified version of the Gram-Schmidt orthogonal-
ization process to remove a potentially different watermark from
every patch. Let W′ the dimple-free residual patch orthogonalized

The Adobe Hidden Feature
and its Impact on Sensor Attribution IH&MMSec ’24, June 24–26, 2024, Baiona, Spain

154775125@N05

25762059@N00

34392975@N03

46453464@N07

60548918@N07

7941986@N07

LeicaShopTiff

100

101

102

103

104

105

106

P
C

E
va

lu
e

Figure 7: PCE statistics computed from Leica Q2 camera with
the proposed residual canceling. Matching and mismatching
tests are reported in green and red, respectively. The thresh-
old of 60 is highlighted by the red dashed line.

against the expected watermark ŵ. A Gram-Schmidt orthogonal-
ization states that

W′ = W − 𝑝𝑟𝑜 𝑗ŵ (W)ŵ, (9)

where 𝑝𝑟𝑜 𝑗ŵ (W) = <W,ŵ>
∥ŵ∥2 . However, in a case where

𝑝𝑟𝑜 𝑗ŵ (W) < 0, the update (9) adds an undesirable multiple of the
expected watermark. To this end, we modify the projection to

𝑝𝑟𝑜 𝑗ŵ (W) = max
(
0, < W, ŵ >

∥ŵ∥2

)
, (10)

thus the final estimate of the watermark can be expressed as

ŵI = 𝑝𝑟𝑜 𝑗ŵ (W)ŵ. (11)

Finally, we want to point out that if the dimples or the watermark
are not present, the estimate ŵI, d̂ will be very close to zero.

Following the same reasoning as in [16], observing W, I, ŵI, d̂,
the ML estimate K̂ for the PRNU can be found as

K̂ =

∑
𝑖

(
W𝑖 − ŵI𝑖

)
I𝑖∑

𝑖
I𝑖2 . (12)

The results based on (12) are shown in Fig. 7 andwe can observe that
the proposed methodology effectively mitigates all the False Posi-
tives previously present (see Fig. 1). The code used to generate the
results is available at https://github.com/janbutora/prnu-python.

4.3 Canceling the component in the image
An alternative approach is to remove the watermark from the ob-
served image I itself, which could be more desirable for forensics
users wanting to continue to process the image.

For simplicity, we use the estimates of the average watermark ŵ
and dimples d̂ from the previous Section. However, the estimate of
the watermark in a given patch is computed from the dimple-free

154775125@N05

25762059@N00

34392975@N03

46453464@N07

60548918@N07

7941986@N07

LeicaShopTiff

100

101

102

103

104

105

106

P
C

E
va

lu
e

Figure 8: PCE statistics computed from Leica Q2 camera with
the proposed spatial canceling. Matching and mismatching
tests are reported in green and red, respectively. The thresh-
old of 60 is highlighted by the red dashed line.

image I′. The dimple-free, watermark-free image is then

I′′ = I′ − 𝑝𝑟𝑜 𝑗ŵ (I′)ŵ (13)

The ML estimate of the PRNU can be obtained as:

K̂ =

∑
𝑖

W′′
𝑖

I′′
𝑖∑

𝑖

(
I′′
𝑖

)2 , (14)

where W′′
𝑖
= I′′

𝑖
− 𝑓 (I′′

𝑖
) is the residual of the updated image. The

results with the PRNU (14) are shown in Fig. 8 and as previously,
we can observe that although having slightly different results, the
proposed method effectively prevents the False Positives.

Note that after the residual or the image has been stripped of the
potential watermark and dimples using (9) or (13), we do not need
to update the test image or its residuals in order to compute the
PCE value (4), because the watermark/dimples of test images can
be simply considered as independent noise components w.r.t. the
sensor fingerprint. Consequently, we did not update the residuals
in our experiments.

While both proposed methods remove all false positives, the
residual and spatial canceling provide respectively the true positive
rate of 0.95 and 0.92, and average PCE on images from other cameras
around 1.5 and -11.9.

5 DISCUSSION
In this paper, we reverse-engineered a part of Adobe Lightroom
and found that a pattern, very similar to a public watermark, was
embedded by the software before the conversion from 16 bits to 8
bits. We know also that this watermark has been used since at least
20143, and it appears in all the six different development engines
proposed by Adobe Lightroom. We also have checked that for two
different Adobe Lightroom users, the watermark remains identical.

3for example here: https://www.flickr.com/photos/isaacyuphotography/15961122615.

https://github.com/janbutora/prnu-python
https://www.flickr.com/photos/isaacyuphotography/15961122615

IH&MMSec ’24, June 24–26, 2024, Baiona, Spain Jan Butora and Bas Patrick

Because this embedding has an important impact on camera
sensor attribution using PRNU, specifically by creating false pos-
itives, we decided to propose methods to remove the watermark
and consequently help the forensic community.

Although not considered in this paper, we observed that for
images taken in the portrait orientation, the watermark is still
embedded as if the image was landscape-oriented. It is therefore
recommended to check for the presence of all four 90◦ rotations
of the watermark. Note that this feature is not detrimental to the
proposed removal techniques since the watermark is both estimated
and removed per image.

As a scientific remark, it is interesting to notice that even if the
additive embedding process is extremely simple, the fact that it
is done in the 16-bit domain and that the watermark is further
processed by specific hardware and/or JPEG parameters makes its
removal rather sophisticated. This is because once processed by the
development pipeline, it is no longer a constant pattern in the 8-bit
domain and it needs to be specifically estimated before canceling it.

Now one question remains, why does Adobe add a 128 × 128
periodical pattern on each channel before conversion to 8 bits?

We asked Adobe andwere told that the pattern is used as a way to
perform dithering and prevent undesirable effects such as banding.
They also informed us that this dithering function is implemented
in the Adobe DNG SDK which can be used to develop RAW images
in the DNG format4, specifically within the dng_utils.cpp func-
tion. After inspecting the code, we noticed that the pseudo-random
generator involved is always initialized with the same seed, causing
its watermark-like behavior. Furthermore, the following comment
was found in the dng_negative.cpp file (line 5820) related to the
dithering procedure: “BULLS***: "Noise_Planes_Issue". For each pixel
we are applying the same noise to each plane. This does not seem ideal
at it will shift all planes equally for each pixel. Is this really what
we want? Maybe it helps to preseve hue slightly? Not sure if this was
100% intentional or not.” From this comment, we have the feeling
the very goal of this function was not extremely clear.

Nevertheless, it is worth mentioning that this pattern can be
used to perform forensic analyses by detecting the presence of this
pattern. Note however that the watermark embedding process is
not secure since the watermark can easily be estimated as shown
in the previous section, but its periodicity makes it very robust
to classical geometrical transforms such as rotations, scaling, and
cropping operations as the method proposed by Kutter in 1998 [14].

As a closing remark, we have also noticed that within the FlickR
database presented in [12], some digital cameras such as the Nikon
D780 or Z50 generated FP which are not related to the Adobe
Lightroom watermark because we have not observed any peri-
odic patterns. However, another (non-periodic) watermark can still
be present even in these cases. A more extensive analysis will con-
sequently be needed to fully solve these problems.

Acknowledgements
The authors would like to thank Patrick De Smet (NICC, ENFSI
DIWG) for pointing out the false positives associated with cam-
era sensor attribution, Alessandro Piva (Univ of Florence, Amped

4the DNG format, developed by Adobe, stands for Digital NeGative and is a very
popular raw format used by camera manufacturers, but also iOS or Android devices.

Software), Marco Fontani (FORLab) and Massimo Iuliani (Univ of
Florence, Amped Software) for sharing the database used in [13]
and their feedback on the potential use of the hidden feature, Teddy
Furon (INRIA) for proposing the torture test of feeding Adobe Light-
room with a constant RAW image, Jessica Fridrich (Binghamton
University) for helping us to analyze different hypotheses regarding
the potential uses of a random pattern during the development pro-
cess, Francis Bas for testing Adobe Lightroom on Windows, Robert
Christensen from Adobe for his very informative feedbacks, and
finally the Leica shop in Lille for sharing a Q2 camera.

This work received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No
101021687 (project “UNCOVER”) and the French Defense & Innova-
tion Agency. This work was also supported by a French government
grant managed by the Agence National de la Recherche under the
France 2030 program, reference ANR-22-PECY-0011.

REFERENCES
[1] Shruti Agarwal and Hany Farid. Photo forensics from rounding artifacts. In

Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia
Security, pages 103–114, 2020.

[2] Chiara Albisani, Massimo Iuliani, and Alessandro Piva. Checking PRNU Usabil-
ity on modern devices. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2535–2539. IEEE, 2021.

[3] Daniele Baracchi, Massimo Iuliani, Andrea G Nencini, and Alessandro Piva. Fac-
ing image source attribution on iPhone X. In Digital Forensics and Watermarking:
19th International Workshop, IWDW 2020, Melbourne, VIC, Australia, November
25–27, 2020, Revised Selected Papers 19, pages 196–207. Springer, 2021.

[4] Patrick Bas, Teddy Furon, François Cayre, Gwenaël Doërr, and Benjamin Mathon.
Watermarking security: fundamentals, secure designs and attacks, 2016.

[5] Nabeel Nisar Bhat and Tiziano Bianchi. Investigating inconsistencies in prnu-
based camera identification. In 2022 IEEE International Conference on Image
Processing (ICIP), pages 851–855. IEEE, 2022.

[6] Luca Bondi, Paolo Bestagini, and Nicolò Bonettini. Python porting of prnu
extractor and helper functions. https://github.com/polimi-ispl/prnu-python.
Accessed: 2023-11-30.

[7] François Cayre, Caroline Fontaine, and Teddy Furon. Watermarking security:
theory and practice. IEEE Transactions on Signal Processing, 53(10):3976–3987,
2005.

[8] Giovanni Chierchia, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva. A
bayesian-mrf approach for prnu-based image forgery detection. IEEE Transactions
on Information Forensics and Security, 9(4):554–567, 2014.

[9] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
Bm3d image denoising with shape-adaptive principal component analysis. In
SPARS’09-Signal Processing with Adaptive Sparse Structured Representations, 2009.

[10] Jessica Fridrich. Digital image forensics. IEEE Signal ProcessingMagazine, 26(2):26–
37, 2009.

[11] Jessica Fridrich, Miroslav Goljan, and Jan Lukas. Method and apparatus for
identifying an imaging device, August 31 2010. US Patent 7,787,030.

[12] Miroslav Goljan, Jessica Fridrich, and Tomáš Filler. Large scale test of sensor
fingerprint camera identification. In Media forensics and security, volume 7254,
pages 170–181. SPIE, 2009.

[13] Massimo Iuliani, Marco Fontani, and Alessandro Piva. A leak in PRNU based
source identification questioning fingerprint uniqueness. IEEE Access, 9:52455–
52463, 2021.

[14] M. Kutter. Watermarking resisting to translation, rotation and scaling. In Proc.
SPIE Int. Symp. on Voice, Video, and Data Communication, volume 3528, pages
423–431, Boston, U.S.A., November 1998.

[15] Liu Liu, Xinwen Fu, Xiaodong Chen, Jianpeng Wang, Zhongjie Ba, Feng Lin,
Li Lu, and Kui Ren. Fits: Matching camera fingerprints subject to software noise
pollution. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 1660–1674, 2023.

[16] Jan Lukas, Jessica Fridrich, andMiroslav Goljan. Determining digital image origin
using sensor imperfections. In Image and Video Communications and Processing
2005, volume 5685, pages 249–260. SPIE, 2005.

[17] M KivancMihcak, Igor Kozintsev, Kannan Ramchandran, and Pierre Moulin. Low-
complexity image denoising based on statistical modeling of wavelet coefficients.
IEEE Signal Processing Letters, 6(12):300–303, 1999.

[18] Tomáš Pevnỳ, Patrick Bas, and Jessica Fridrich. Steganalysis by subtractive
pixel adjacency matrix. IEEE Transactions on Information Forensics and Security,
5(2):215, 2010.

https://github.com/polimi-ispl/prnu-python

	Abstract
	1 Motivations
	2 The process discovery
	3 Watermark Properties
	4 Removing the Watermark
	4.1 Removing the dimples
	4.2 Canceling the component in the image residual
	4.3 Canceling the component in the image

	5 Discussion
	References

