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Abstract—If the extraction of sensor fingerprints represents
nowadays an important forensic tool for sensor attribution, it
has been shown recently in [1]-[3] that images coming from
several sensors were more prone to generate False Positives (FP)
by presenting a common ”’leak”. In this paper, we investigate the
possible cause of this leak and after inspecting the EXIF metadata
of the sources causing FP, we found out that they were related
to the Adobe Lightroom software. The cross-correlation between
residuals on images presenting FP reveals periodic peaks showing
the presence of a periodic pattern. By developing our own images
with Adobe Lightroom we are able to show that all developments
from raw images (or 16 bits-coded) to 8 bits-coded images also
embed a periodic 128 x 128 pattern very similar to a watermark.
However, we also show that the watermark depends on both the
content and the architecture used to develop the image. The
rest of the paper presents two different ways of removing this
watermark, one by removing it from the image noise component,
and the other by removing it in the pixel domain. We show that
for a camera presenting FP in [3], we were able to prevent the
False Positives. A question remains on why Adobe decided to
implement such a feature in their software.

Index Terms—PRNU, False-Positive, Watermarking, Water-
mark Removal

I. MOTIVATIONS

The use of the Photo-Response Non-Uniformity noise
(PRNU) for imaging sensor attribution is one operational
success coming from the forensic research with the seminal
paper and associated patent of Lukas, Goljan and Fridrich in
2005 [4], [S]]. It relies on the fact that each photo-site of the
sensor is corrupted by a multiplicative noise (i.e. proportional
to the noiseless value) which is the same for all acquisitions
from the same sensor but completely different from one sensor
to another. This noise survives the development processes and
the mathematical model in the pixel domain can be written as:

I=1°+KI°+ O, (D

where K, I, I, and © denote respectively the PRNU compo-
nent, the noiseless image, the captured image, and a collection
of independent random noise components.

Estimating the PRNU component K related to one given
sensor enables to extract a fingerprint of this sensor which
can be used in forensic tasks, to associate images captured
with this sensor, or to detect manipulations on specific areas.
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Fig. 1: The original PCEs for the Leica Q2 camera and 7
different devices. The first 6 labels are the FlickR identification
names and the last one is images coming from a Q2 camera
shared by the Leica Shop in Lille and developed using Adobe
Lightroom in 8-bit Tiff format. Matching and mismatching
tests are reported in green and red, respectively. The threshold
of 60 is highlighted by the red dashed line.

For camera sensor attribution, the classical methodology
to attribute a picture to a given sensor was benchmarked by
Goljan et al. [6] in 2009 on a database of 10° JPEG images.

For a set of N reference images {I,...,Ix} sometimes
called flat-field images (the estimation is better if these images
are both out of focus and bright), the fingerprint K is estimated
using a maximum likelihood estimator [7] applied on every
image residual W;:

E W1,
K= Z L — 2)

where the residual is computed as W; = I, — f(I;), f(.) being



a denoising function such as the ones proposed by Mihcak et
al. [8]] or Cherchia et al. [|9]] which relies on the BM3D [10]
denoising algorithm combined with Markov Random Field
model.

In order to potentially attribute a test image I' with the
fingerprint K, the normalized correlation between the image
residual W¢ = I — f(T*) and the potential fingerprint specific
to the image KI' s first computed:

< Wt(Sl,Sg);KIt >
|[Wt (s, 59). | KTt

NCC(Sl,Sg) = (3)

where (s, s2) represents the spatial shift, which could arise
due to cropping. Eventually, the statistic which is used to
decide whether or not the image can be attributed to the
fingerprint K is the Peak to Correlation Energy (PCE) defined
as:

I\ICC(Sli‘)cak7 Sgcak)g

> NCCf(sy,582)?
(s1,82)¢N

PCE = “4)
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where N denotes a small neighborhood centered on
the maximum of the cross-correlation function located
at (sP°™ sP°™) and (m,n) are the dimensions of the
correlation function. On a large scale database presented
in [6], the authors proposed an attribution threshold w.r.t.
the PCE of 60, which in the setup of the reference paper
is associated with a practical FP rate of 2.4 x 10~° without
considering potential translations on the test image. While
the neighborhood size was proposed to 11 x 11 region, we
use only 2 x 2 neighborhood.

Recently different papers studied this attribution procedure
on modern sensors coming either from recent digital cameras
or smartphones, and they found out that the benchmark
proposed in 2009 [6] was now subject to numerous FPs. A
major overview of this problem was proposed by Iuliani et
al. [3] by considering 33K pictures uploaded on the FlickR
photo-sharing platform coming from 45 smartphones and 25
modern digital cameras. This study exhibited important FP
rates (i.e. > 5%) for smartphones such as the iPhone 11 pro,
the Huawei P20 pro or Mate 20 Pro, the Samsung Galaxy
AS50, the Nokia Pureview 808, or the Xiaomi Redmi Note 7;
and for digital cameras such as the Canon M6 Mark II, the
Fuji X-T30, the Leica Q2, the Nikon D780 or Z50 or the Sony
DSC-RXO0.

Complementary works partially analyzed the causes of these
wrong attributions and ways to anticipate potential false posi-
tives. In [2]] Albisani et al. show that some FP were associated
with smartphone captures in portrait mode, i.e. presenting an
out-of-focus background generated artificially. In [|6] Baracchi
et al. focused on captures in portrait mode coming from
the iPhone X and proposed a way to mitigate the wrong
estimation of the fingerprint in the background by weighting
the fingerprint w.r.t. the depth map associated with the capture.
In [11]], Bhat and Bianchi show that steganalysis features such
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Fig. 2: Crop of the autocorrelation function of one residual
associated with a source generating FP.

as SPAM [12] can be used to detect smartphones presenting
potential biases added during the image development pipeline.
In [13] Liu et al. considers a specific noise coming from the
software and proposes to mitigate it by decreasing the PCE
values by a constant C' specific to the camera when these
values under the null hypothesis present a strong bias. Note
that this solution requires an a priori knowledge of the bias

C.

II. THE PROCESS DISCOVERY

This section (and the beginning of the next one) is presented
as a story, which means that the style is not very formal or
academic. It reflects how the authors experienced this research,
going from assumptions to surprising discoveries.

Before starting this analysis, we had several ideas in mind
regarding the possible causes of FP using the PRNU. Since
the fingerprint KI° is always added to the noiseless image, it
can be seen as a “bias” on the original image. False positives
consequently needed to be associated with extra biases, which
are often named Non Unique Artefacts (NUAs) by the foren-
sics community. The two main origins of a bias we could
imagine were: 1) the JPEG dimples [14] found by Agarwal
and Farid et al. which are due to hardware implementations
of quantization strategies during the JPEG compression, and
2) adding a constant noise during the capture or in the image
development pipeline.

We decided to focus on the Leica Q2 camera and we wanted
first to confirm the results presented in [3|.

Using the python PRNU implementation from Bondi et
al. |15] but taking care of computing the NCC w.r.t. KI!
and not only K as in the original implementation, we were
able to reproduce the results as depicted in Fig. [I]



What was surprising was the fact that out of the seven
different sources, only five of them were subject to FP. After
a deeper inspection of the EXIF metadata using verbose
outputsﬂ of the different sources, we found out that the sources
generating FP were not Out Of Camera (OOC) JPEGs but all
had a tag related to Adobe software, either Adobe Lightroom
or Adobe Photoshop.

We then looked at the autocorrelation function of one
residual belonging to one of these sources and as illustrated
in Fig. [J] we were able to clearly see periodic peaks on a
128 x 128 grid. Finally averaging 128 x 128 patches taken
from the very same grid exhibited very similar patterns on
the different sources coming from Adobe (an example of the
average pattern is depicted in Fig. 3).

The final “spit it out” test was to develop using either Adobe
Lightroom or Photoshop one constant image saved in a RAW
format (DNG) or a 16-bit tiff. For both formats, a periodic
128 x 128 pattern was present on the produced jpeg or 8-bit
image using Adobe Lightroom, but not Adobe Photoshop. This
was noticeable for all the different OS we tested (i0S, macOS,
Windows) . The pattern is added on each RGB component
independently.

Once we were convinced that the signal which can be con-
sidered as a watermark was embedded by Adobe Lightroom,
we performed different tests to understand at which step of
the development process was the watermark embedded. We
noticed that the watermark is not dependent on the processes
that the image could undergo (e.g. rotation, sharpening, de-
noising, ...), which means that the watermark was not added
in the photo-site domain but on the contrary just before the
conversion from 16 bits to 8§ bits.

Last but not least, the watermark was not present on tiff
images exported in 16 bits.

III. WATERMARK PROPERTIES

Once we were sure that the embedding of a watermark
was responsible for the FPs obtained in the PRNU attribu-
tion, our goal was to find a way to remove it in order to
prevent FP. From a watermarking security perspective [L6],
the security scenario seems similar to a Constant Message
Attack (CMA) (the same watermark is present in all
the watermarked documents), and in this case, the attack
is straightforward: once the watermark has been properly
estimated, a simple subtraction of this signal enables to remove
it.

Unfortunately, our first tests revealed that it is not possible
to remove the watermark by a plain subtraction of one unique
128 x 128 periodical pattern on the image, even when consid-
ering the impact of JPEG compression. This is due to at least
three factors:

1) The fact that the watermark is embedded in the 16-bit
domain, where it is constant, but then suffers quanti-
zation to 8 bits. Depending on the value of the pixel
component in the 16-bit domain, the modifications in

Ithis can be achieved using the command exiftool -v5 image.Jjpg
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Fig. 3: Average of non-overlapping 128 x 128 patches of an
image residual.
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Fig. 4: Changes introduced after 16bit — 8bit quantization of
two constant TIFF images of size 128 x 128. (a): 382 (16bit)
— 1 (8bit), (b): 638 (16bit) — 2 (8bit). (c): Their difference
image.

the 8-bit domain are different. As illustrated in Fig. [
for constant images and for two different values in the
16-bit domain, the quantized watermarks are correlated
but slightly different, even though the values 382,638
are equal modulo 256.

2) The fact that the image development pipeline is differ-
ent between one architecture and another. This feature
was not expected and prevented us from estimating
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(c) Watermark estimated at QF 80.

Fig. 5: For a constant RAW image with added Gaussian
white noise with o = 2, developed with Lightroom to JPEG,
we show (a) the estimated watermark when developed to QF
100 on Apple M1 chip, (b) the difference between estimated
watermarks at QF 100 when the same image was developed
with Apple M1 chip and Intel chip, (c) estimated watermark
when developed to QF 100 on Apple M1 chip.

one average unique watermark (as done for the sensor
fingerprint using (2)) and removing it. Depending on
the CPU/GPU used, but also on the OS, we noticed that
the watermark changed by about 10%. Fig. [5a] shows
one estimated average 128 x 128 watermark estimated
on an Apple computer with a M1 chip. and Fig. [b] the

difference w.r.t. the watermark generated from an Intel
chip. In both cases, the number of 128 x 128 patches
is such that the estimation error is negligible. Note that
to estimate an expectation of the watermark after 16 to
8-bit quantization, we add a small Gaussian noise on the
RAW image.

3) The fact that the watermark is also shaped by the
JPEG coder which depends on parameters such as the
quality factor. Fig. [5a| and Fig[5c| show the estimation of
the watermark for two different quality factors used in
Adobe Lightroom (which are different from the standard
ones). Here again, the two watermarks are considerably
different.

While it is possible in principle to reverse-engineer the wa-
termark for 8-bit tiff images and a given architecture (one has
to develop 2'¢ constant 16-bit tiff images of size 128 x 128),
it becomes computationally unfeasible for JPEG images due
to dependencies within a block of 64 pixels and different
quantization tables. To sum up, in order to correctly remove the
watermark, we reached the conclusion that we need to estimate
the watermark for each source (i.e. each set of template images
used to estimate the camera fingerprint). We show in the next
section two strategies to remove it and consequently prevent
the occurrence of FP during sensor attribution.

IV. REMOVING THE WATERMARK

In this section, we introduce two methods of removing the
watermark from the estimated PRNUs. Since we observed a
non-negligible effect of the JPEG dimples during our experi-
ments, we briefly remind the reader that they create a non-zero
bias on every one of the 64 DCT modes. While this makes
sense on the AC components that are typically modeled with
a symmetric distribution, the DC dimple is usually set to zero,
due to the lack of its statistical model. See Fig. [f] for the bias
introduced by the dimples in the pixel domain estimated from
a single image taken with the Q2 camera.

To efficiently remove the watermark wy € R'28%128F] we
introduce its effect, together with the JPEG dimples d € R®*8
into the model of the developped image (I). To ease the
notation, we assume in the following that all variables are
grayscale patches of size 128 x 128, which can be achieved
by taking non-overlapping crops of the images (or copying the
8 x 8 dimples several times) and by converting potential color
images into grayscale. Our model of the watermarked image
is then:

I=1°+KI°+d+wp+©. (5)

A. Canceling the component in the image residual
With the watermarked model of the image @), we can now

express the image residual as:

2We put the image I into subscript to emphasize the watermark’s depen-
dency on the image content.



W =1-f(I)
—IK+wi+d+©
+(I° = f(I)) + (I° = DK + (wy — W1) + (d — d)
—IK +w;+d+Q, (6)

where vx?I,fl are the estimates of the watermark and the
dimples, and €2 is a sum of the five accumulated independent
noise components.

First, since the image residual is zero-mean, we estimate
the dimples from it simply as the average 8 x 8 patch. Note
that while this averaging carries the potential watermark, we
assume that the 8 x 8 patches in the watermark are independent
of each other.

Next, we estimate the expected watermark w = E,[w],
where the expectation is over all non-overlapping 128 x 128
patches p, from the dimple-free residual W/ = W — El, as the
average 128 x 128 patch. Note that this is only the average
watermark, and every patch p carries a possibly different
realization of this watermark due to its dependency on the
image content, as mentioned in Section We thus employ a
modified version of the Gram-Schmidt orthogonalization pro-
cess in order to remove a potentially different watermark from
every patch. Let W’ be the dimple-free residual patch and
‘W the dimple-free residual patch orthogonalized against the
expected watermark w. A Gram-Schmidt orthogonalization
states that

W' =W’ — projs(W')w, @)
where proj(W’) = % However, in a case where

projw(W') < 0, the update adds a positive multiple of
the expected watermark, which is undesirable. To this end, we
modify the projection to

®)

W'
proj‘;v(wl) — max (07 <’VV>> ,

w2

thus the final estimate of the watermark can be expressed
as
w1 = proje (W' )w. 9)
Finally, we want to point out that if the dimples or the
watermark are not present, the estimate vGI,& will be very
close to zero.
Following the same reasoning as in [4], observing
W, 1, wry, d, the ML estimate K for the PRNU can be found

as
R Z(Wi_ai_WIJ I

K=_2¢
ST

(10)

where the subtractions are performed on every 8 x 8 and
128 x 128 patch respectively.

The results with the PRNU (I0) are shown in Fig. [7] and
we can observe that the proposed methodology effectively
mitigated all the False Positives previously present (see Fig.[I).

—0.4

0 2 4 6

Fig. 6: Estimate of JPEG dimples in the pixel domain from
a single image taken with the Q2 camera JPEG compressed
with QF 100.

B. Cancelling the component in the image

An alternative approach is to remove the watermark from
the observed image I itself, which could be more desirable
for photographers. For simplicity, we use the estimates of
the average watermark w and dimples d from the previous
Section. However, the estimate of the watermark in a given
patch is computed from the dimple-free image I’ =T — d as:

Y

where the proj function is defined in (8). The dimple-free,
watermark-free image is then I” = I’ — wy,. The ML estimate
of the PRNU can be obtained as:

W

(2

where W7 = I/ — f(I/) is the residual of the updated
image. The results with the PRNU are shown in Fig.
and as previously, we can observe that although having slightly
different results, the proposed method effectively prevents the
False Positives.

We want to point out, that after the PRNU has been stripped
of the potential watermark and dimples, we do not need to
update the image residual under investigation W in order to
compute the PCE value (@), because the watermark/dimples
can be simply considered as independent noise components.
Consequently, we did not update the residuals in our experi-
ments.

WI/ = p’l”Oj‘;v (I/)W,

V. DISCUSSION

In this paper, we accidentally reverse-engineered a part
of Adobe Lightroom and found out that a watermark was
embedded by the software before the conversion from 16 bits
to 8 bits. We know also that this watermark has been used
since at least 2014{31 and it appears in all the six different
development engines proposed by Adobe Lightroom.

Because this embedding has an important impact on camera
sensor attribution using PRNU, specifically by creating false

3it was detected for example in this
https://www.flickr.com/photos/isaacyuphotography/15961122615, .

image:


https://www.flickr.com/photos/isaacyuphotography/15961122615
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Fig. 7: PCE statistics computed from Leica Q2 camera with
the proposed residual canceling. Matching and mismatching
tests are reported in green and red, respectively. The threshold
of 60 is highlighted by the red dashed line.

positives, we decided to propose methods to remove the
watermark and consequently help the forensic community.

As a scientific remark, it is interesting to notice that even if
the additive embedding process is extremely simple, the fact
that it is done in the 16-bit domain and that the watermark
is furthermore processed by specific hardware and/or JPEG
parameters makes its removal rather sophisticated. This is due
to the fact that once processed by the development pipeline,
it is no longer a constant pattern in the 8-bit domain and it
needs to be specifically estimated before canceling it.

Now one question remains, why does Adobe Lightroom
add a 128 x 128 periodical pattern on each channel before
conversion to 8 bits without telling it to its users?

We can only speculate at this point.

Is it to perform dithering on surrounding regions affected
by clipping? Or is it to have the possibility to perform forensic
analyses by locally detecting the presence of this pattern?
Note that this watermark is not secure, but its periodicity
makes it very robust to classical geometrical transforms such
as rotations, scaling, and cropping operations as the method
proposed by Kutter in 1998 [[18]]. Note also that in 2022 Adobe
showed its interest in providing authentic content by founding
the ”Content Authenticity Initiative’ﬂ and the “Coalition for
Content Provenance and Authenticity”E] S0 we can speculate
that the company could also have implemented other forensics
solutions in the past. It might have remained secret to prevent
enthusiast photographers from finding ways to remove it. The

“https://contentauthenticity.org
Shttps://c2pa.org
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Fig. 8: PCE statistics computed from Leica Q2 camera with
the proposed spatial canceling. Matching and mismatching
tests are reported in green and red, respectively. The threshold
of 60 is highlighted by the red dashed line.

authors of this paper have not contacted Adobe yet but will do
it once the preprint of this paper is published. Their answer,
if there is any, will be interesting.

As a closing remark, we have also noticed that within
the FlickR database presented in [6], some digital cameras
such as the Nikon D780 or Z50 generated FP which are not
related to the Adobe Lightroom watermark because we have
not observed any periodic patterns. However, another (non-
periodic) watermark can still be present even in these cases.
A more extensive analysis will consequently be needed to fully
solve these problems.
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