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Quasistatic response of loose cohesive granular materials

Walid Lammali1,⇤, Jean-Noël Roux1,⇤⇤, and Anh-Minh Tang1,⇤⇤⇤

1Lab Navier, Univ Gustave Ei↵el, École des Ponts, CNRS, 14-20 boulevard Newton, 77427 Champs-sur-Marne, France

Abstract. DEM-simulated model cohesive assemblies of spherical grains of diameter d, with contact tensile
strength F0, once prepared in loose states, are quasistatically subjected to growing isotropic pressure P, and then
to triaxial compression, maintaining lateral stresses �2 = �3 = P while increasing axial stress �1 = P + q and
strain ✏1. Reduced pressure P⇤ = d2P/F0 varies from 0.1 (cohesion dominated case, for which systems typically
equilibrate with solid fraction � ' 0.35), to large values for which the cohesionless behavior is retrieved.
In triaxial compression, while the moderate strain response (✏1 ⇠ 0.1) is influenced by initial coordination
numbers and mesoscale heterogeneities, the approach to the critical state, as both q (deviator) and � steadily
increase, gets slower for smaller P⇤. Critical ratio q/P strongly increases for decreasing P⇤, as roughly predicted
in an “e↵ective stress” scheme. Anomalously small elastic moduli are observed in the gel-like structures.
While extensive geometric rearrangements take place, no shear banding is observed. Loose cohesive granular
assemblies are thus capable of large quasistatic stable plastic strains and ductile rupture.

1 Introduction

Numerical grain-level investigations, by discrete element
methods (DEM)[1], of the properties of assemblies of
hard objects interacting by frictional contacts [2] are now
quite widespread, and their quasistatic mechanical behav-
ior, as probed, e.g., by the standard triaxial test used in
geotechnique labs with sands [3], is often addressed. Co-
hesive granular assemblies, such as powders and colloids,
are less frequently studied, but exhibit a wider variety of
static states. While the solid fraction � of cohesionless as-
semblies of spherical identical beads ranges from the ran-
dom close packing value ' 0.64 down to some friction-
dependent minimum, in the 0.55–0.6 range, much looser
static cohesive assemblies may be observed [4], in which
applied stresses are carried by tenuous, ramified contact
networks reminiscent of colloidal gels [5, 6].

The present contribution reports on a DEM investiga-
tion of the behavior of a simple model material, the prop-
erties of which are briefly recalled in Sec. 2, prepared in
P⇤-dependent states by isotropic compression (Sec 3), and
subjected to triaxial compression (Sec 4). A quick final
discussion (Sec 5) suggests perspectives.

2 Simulated model

2.1 Particle interactions

We use the same model system as in Refs. [4, 7]: spherical
beads of diameter d and mass m, with Hertz contact elas-
ticity, friction coe�cient µ = 0.3, and adhesive forces cho-
sen according to a simplified model of capillary attraction
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through small liquid bridges, which form in wet granular
assemblies at low saturation. This results in an attractive
contact force F0 = ⇡�d (� denoting the interfacial ten-
sion of the wetting liquid). One specific feature of this
force is its hysteresis: liquid bridges formed at intergranu-
lar contacts survive between receding pairs, as long as the
separation distance D does not exceed a rupture thresh-
old DR (here, DR = d/10, unless specified otherwise, cor-
responding to a meniscus volume 10�3d3). One should
distinguish the contact coordination contribution, zc, and
the distant interactions one, zd, to the total coordination
number z = zc + zd. The attractive force decrease as D
grows from zero to DR is modeled with a simple law [4, 7]
(“Maugis approximation”). The Coulomb inequality in-
volves the elastic repulsive normal force Fe

N only. Thus, a
contact with vanishing normal force (Fe

N � F0 = 0) may
transmit a tangential force as large as µF0. Remarkably,
this simple numerical model agrees quantitatively with ex-
perimental observations in simple shear flow [8, 9] and in
isotropic compression [4]. We use the same dimensionless
control parameter as in Refs. [4, 8, 9], reduced pressure
P⇤ = d2P/F0, comparing the adhesive force to pressure P.
Cohesive e↵ects are strong for small P⇤, stabilizing tenu-
ous, open structures [4]. Their influence gradually vanish
as P⇤ increases, until the properties of cohesionless sys-
tems are retrieved for P⇤ � 1 [4, 10].

2.2 Sample preparation

Our DEM procedure involve several 8000 particle sam-
ples for each set of parameters, all enclosed in boxes with
fully periodic boundary conditions. To compress samples
to large enough ‘axial’ strains ✏1 (counted positively) in
triaxial tests, tall rectangular parallelipipedic samples are
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prepared, with aspect ratio 2. Loose systems need to form
aggregated structures to support stresses [4, 6]. Our aggre-
gation procedure is ballistic: grains, randomly distributed
within the simulation cell, at solid fraction � = 0.3, are
attributed Maxwell-distributed random velocities, and left
to collide and interact until a unique, equilibrated clus-
ter of aggregated grains spans the system. The initial
mean quadratic velocity determines the final connectiv-
ity. F1 = max(d2P, F0) defining a relevant force scale,
our equilibrium condition requests forces and torques to
balance within respective tolerances 10�4F1 and 10�4F1d.

3 Isotropic compression

Once the initial aggregated state is achieved, the sample is
subjected to stepwise increasing isotropic pressure values,
and equilibrated at di↵erent P⇤ levels The resulting com-

Figure 1. Isotropic compression curve for initial low (blue) and
larger (green) coordination number (obtained with small or large
initial kinetic energy in aggregation process).

pression curve (Fig. 1) is found independent of the details
of the procedure, but remains sensitive to the initial solid
fraction �0, and to the initial connectivity (see also [4]).
Fig. 2 shows how better coordinated systems (right im-

Figure 2. Views of slices (thickness 3d) cut through simulated
systems compressed to P⇤ = 0.1 (near initial states of compres-
sion in Fig. 1). Left: � = 0.359, zc = 4.50, zd ' 0.05. Right:
� = 0.319, zc = 4.73, zd = 0.29.

age), obtained with a stronger agitation in the initial ag-
gregation stage (i.e., larger initial kinetic energy per grain,
compared to F0Dr [4, 6]), comprise larger holes and dense
regions. (The contact network only seems disconnected
because a slab of thickness 3d is shown). The Delaunay

tesselation of the set of grain centres enables the partition
of the void space into disjoint pores. The decrease of pore
size in the compression is shown in Fig 3, which quanti-
fies the enduring e↵ects of the initial aggregation-induced
geometric di↵erence between the states depicted in Fig. 2.

Figure 3. Volume-averaged pore volume Vm, normalised by
grain volume Vg, versus P⇤ in isotropic compressions of Fig. 1
(same colour code).

Such tenuous force-carrying structures have anoma-
lous elastic moduli, expressing their response to small
stress increments without network rearrangement or ir-
reversible sliding in contacts. This is shown in Fig. 4,
in which bulk (B) and shear (G) moduli, computed with

Figure 4. Normalised elastic moduli, B/Be and G/Ge, versus P⇤,
in compression of low-coordination system of Fig. 2.

the matrix method of Refs. [10, 11], are normalised by
reference values Be, Ge. Those are Voigt (homogeneous
strain) estimates of the moduli, and their values, for Hertz-
Mindlin and a material with Young modulus E and Poisson
ratio ⌫, read

Be =
P1/3

e

2

"
zc�E

3⇡(1 � ⌫2)

#2/3

and Ge =
(15 � 12⌫)Be

10 � 5⌫
. (1)

In Eq. 1, Pe denotes the elastic normal force contribution
to the average stress, given by [7]

Pe = P +
z�F0

⇡d2 . (2)

Ratios B/Be and G/Ge, anomalously small in loose states,
grow with P⇤, and finally approach values typical of low-
coordination cohesionless grain packs [11].
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4 Triaxial compression
4.1 Macroscopic behaviour

Trixial compression tests are applied to several states at
di↵erent P⇤ values, from 10�1 to large ones. Variations
of deviator q (normalised by initial pressure P0) and solid
fraction �, versus axial strain ✏1 are shown in Fig. 5. The

Figure 5. Upper graph: normalised deviator stress q/p0, versus
axial strain. From top to bottom: P⇤ = 0.1 (black); P⇤ = 0.1,
but (only in that case) large initial coordination number (light
blue); P⇤ = 0.1, without distant interactions, DR = 0 (yellow);
P⇤ = 0.316 (dark blue); P⇤ = 1 (green); P⇤ = 6.32 (red); P⇤ = 1,
i.e. no cohesion (purple). Error bars extend from the lowest to the
highest value obtained in 3 samples. Lower graph: solid fraction
� vs. ✏1, same colour code.

test is carried out on controlling strain rate ✏̇1, such that the
inertial number I = ✏̇1

p
m/dP be equal to 10�4. It is pur-

sued until all measured values approach the plateau corre-
sponding to the critical state, at strains ✏1 which increase
as P⇤ decreases, from ⇠ 0.35 in cohesionless systems up to
about 0.8 at P⇤ = 0.1. The e↵ect of the initial coordination
number (and density heterogeneities, see Figs. 2 and 3)
only vanishes after this large strain interval. Interestingly,
distant attractive forces have quite a notable influence on
the critical shear resistance [12], but hardly a↵ect the crit-
ical density. We did not record any strain localization, in
contrast with the observation of shear bands at P⇤ = 0.1 in
enduring quasistatic shear flow [7].

4.2 Critical state and yield criterion

The ratio of deviator stress q to average stress p = (�1 +
2�3)/3 = P0 + q/3 would vary linearly with 1/p in a sim-
ple Mohr-Coulomb model of plastic yielding at the critical
state, with cohesion c and internal friction angle ':

q
p
=

6
3 � sin'

+
6c cos'

(3 � sin')p
(3)

Fig. 6 shows (as for simple shear tests [7, 8]) a sublinear

Figure 6. Ratio q/p versus 1/p⇤ at critical state. Straight line:
Mohr-coulomb fit to large p⇤ data, using ' value of cohesionless
case. Red dots: numerical results. Crosses: predictions of Eq. 4.

growth of q/p with
1
p⇤
=

F0

d2(P0 + q/3)
, which is overes-

timated by the Mohr-Coulomb form identified at large p⇤.
Yet a rough estimate of q

p is obtained [7, 8] on assuming a
P⇤-independent ratio of q to the “e↵ective” average stress
due to repulsive elastic forces, introduced as Pe in Eq. 2:

q
Pe
=

6
3 � sin'

=

 
q
p

!

P⇤!1
. (4)

Fig. 6 shows that this prediction, although not very accu-
rate for p⇤ < 1, captures the correct trend.

4.3 Force networks

Coordination numbers zc and zd are shown in Fig. 7. Both
approach a critical state plateau. The plateau value of zc
exhibits little dependence on P⇤, despite the di↵erence in
densities, with however a somewhat lower value in the
absence of distant attraction. zd, on the other hand, in-
creases by a larger amount in denser systems under larger
P⇤ (initial pressure and constant lateral stress). But the me-
chanical influence of those distant forces then decreases
as 1/P⇤, and the contribution of distant forces to the de-
viatoric stress is maximal (about 10%) among simulated
tests for P⇤ = 0.1 at large strain, down to a few percents
for P⇤ � 1. The major contribution (at least 75%) is given
by repulsive elastic forces, with tangential forces supply-
ing typically 20%. The influence of distant forces on the
critical value of the deviator stress, as apparent in Fig. 5,
is mostly indirect, probably due to the stabilization of con-
tact networks: without distant interactions, zc decreases to
the smaller value of cohesionless systems.

Although we do not detail this approach here, it may
be shown that the deviatoric stress is simply related to
anisotropy parameters for fabric tensors and force inten-
sities, as often pointed out for a variety of granular sys-
tems [8, 13]. In this respect, the specific feature of the
loose systems studied here for smaller P⇤ values is the
larger contribution of the anisotropy of forces compared
to fabric terms: the contacts oriented near the major prin-
cipal stress direction tend to carry larger forces, but they
are not very much more numerous than those oriented dif-
ferently. This might be attributed to the structures shown
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Figure 7. Contact coordination (top graph) and distant inter-
action coordination number (bottom) versus axial strain. Same
colour code as in Fig. 5.

in Fig. 2 likely inducing correlated displacements deter-
mined by the mesoscale heterogeneities.

Elastic moduli [14, 15] enable a probe of contact net-
work anisotropy. In Fig. 8 the ratio of longitudinal moduli

Figure 8. Ratio C11/C33 of axial to transverse longitudinal elastic
moduli, versus ✏1 in triaxial compression (P⇤ = 0.1).

(those determining the velocity of longitudinal waves) in
the axial and lateral directions is plotted versus ✏1. Re-
lations of elastic moduli to stress and fabric anisotropies
could be exploited in experiments on such systems.

5 Discussion
Compared to cohesionless ones, cohesive granular assem-
blies exhibit a wider variety of structures and properties,
and the present communication contributed to the investi-
gation of the little known open, loose systems, with lower
reduced pressure P⇤ than in most published studies [12].
As P⇤ increases, irreversible compaction takes place. In
triaxial compression, the route to the critical state is longer,
involving important density increases. The deviator to
mean stress ratio achieves large values, as roughly pre-
dicted by an “e↵ective stress” approach. We showed the

enduring e↵ect (i.e., up to large strains) of the initial ge-
ometry (connectivity and pore size distribution, as deter-
mined by initial aggregation process) for the same density,
in isotropic or triaxial compression.

The preliminary results presented here should be fur-
ther completed and analysed in many ways. The slow plas-
tic strengthening and density increase in triaxial compres-
sion might be compared to the observed plastic response
of gel networks, although those are usually probed at con-
stant volume rather than constant normal (lateral) stress
and often modeled di↵erently (e.g., with bonds and angu-
lar elasticity [16]). Elastic properties of tenuous networks,
and their rupture properties call for detailed investigations.
Rolling resistance in contacts [10], which strongly a↵ects
loose cohesive structures, and plays an important in col-
loidal aggregates [17], should be introduced.

Most importantly, the mesoscale density hetero-
geneities of loose aggregated structures should be related
to their mechanical properties.
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