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Minimal null control time of some 1D hyperbolic balance1

laws with constant coe�cients and properties of related2

kernel equations3

Long Hu* Guillaume Olive�4

December 1, 20235

Abstract6

In this work, we study the null controllability by one-sided boundary controls of one-7

dimensional hyperbolic balance laws with constant coe�cients. Our �rst result shows that,8

when the system has only one negative or positive speed, the minimal null control time9

of such systems depends on some orthogonality conditions for a particular sequence. This10

sequence is explicit in function of the coe�cients of the system but it is de�ned by a nonlinear11

recurrence relation. Our second result then completes the previous one by giving explicit12

bounds on the number of orthogonality conditions that have to be checked in two nontrivial13

situations. The proofs rely on a careful analysis of the so-called kernel equations associated14

with the system, including a new well-posedness result. Our results are also valid for the15

�nite-time stabilization property.16

Keywords. Hyperbolic systems; Minimal control time; Backstepping method; Nonlinear17

recurrence relation18
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1 Introduction and main results20

1.1 Problem description21

In this paper, we are interested in the null controllability properties of a class of one-dimensional22

(1D) hyperbolic system with constant coe�cients (see e.g. [BC16, Chap. 1] for applications).23

The equations describing such phenomenons are24

∂y

∂t
(t, x) + Λ

∂y

∂x
(t, x) = My(t, x). (1a)25

Above, t ∈ (0, T ) is the time variable, T > 0, x ∈ (0, 1) is the space variable and the state26

is y : (0, T ) × (0, 1) → Rn (n ≥ 2). The matrix Λ ∈ Rn×n will always be assumed diagonal27

Λ = diag (λ1, . . . , λn), with m ≥ 1 negative speeds and p ≥ 1 positive speeds (m+ p = n):28

λ1 < · · · < λm < 0 < λm+1 < · · · < λm+p. (1b)29
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The matrix M ∈ Rn×n couples the equations of the system inside the domain and will be called30

the internal coupling matrix. We will consider an initial condition at time t = 0:31

y(0, x) = y0(x). (1c)32

Let us now discuss the boundary conditions. The structure of Λ induces a natural splitting33

of the state into components corresponding to negative and positive speeds, denoted respectively34

by y− and y+. For the above system to be well-posed in (0, T )× (0, 1) with an initial condition35

at time t = 0, we then need to add boundary conditions at x = 1 for y− and at x = 0 for y+. We36

will consider the following type of boundary conditions, motivated by its numerous applications37

(see again [BC16]):38

y−(t, 1) = u(t), y+(t, 0) = Qy−(t, 0). (1d)39

The function u is the so-called control, it will be at our disposal. It only acts on one part of40

the boundary and, on the other part of the boundary, the equations are coupled by the matrix41

Q ∈ Rp×m. This matrix will be called the boundary coupling matrix. In what follows, (1a), (1c)42

and (1d) together will be referred to as system (1).43

We recall that system (1) is well-posed in the following functional setting: for every T > 0,
y0 ∈ L2(0, 1)n and u ∈ L2(0, T )m, there exists a unique solution y to system (1) with

y ∈ C0([0, T ];L2(0, 1)n) ∩ C0([0, 1];L2(0, T )n).

By solution we mean �solution along the characteristics�. We refer for instance to [Cor+21] for a44

proof of this well-posedness result in such a setting (see also [BC16, Appendix A] when u = 0).45

The regularity C0([0, T ];L2(0, 1)n) of the solution allows us to consider control problems in46

the space L2(0, 1)n:47

De�nition 1.1. Let T > 0 be �xed. We say that system (1) is null controllable in time T if,
for every y0 ∈ L2(0, 1)n, there exists u ∈ L2(0, T )m such that the corresponding solution y to
system (1) satis�es

y(T, ·) = 0.

Since controllability in time T1 implies controllability in any time T2 ≥ T1, it is natural to48

try to �nd the smallest possible control time, the so-called �minimal control time�.49

De�nition 1.2. For any Λ,M and Q as above, we denote by Tinf(Λ,M,Q) ∈ [0,+∞] the50

minimal null control time of system (1), that is51

Tinf(Λ,M,Q) = inf {T > 0 | System (1) is null controllable in time T} . (2)52

The time Tinf(Λ,M,Q) is named �minimal� null control time according to the current litera-53

ture, despite it is not always a minimal element of the set. We keep this naming here, but we use54

the notation with the �inf� to avoid eventual confusions. The goal of this article is to characterize55

Tinf(Λ,M,Q) in some new situations.56

In order to state our results and those of the literature, we need to introduce the following
times:

Ti =
1

−λi
if i ≤ m, Ti =

1

λi
if i ≥ m+ 1.

The time Ti is the time needed for the controllability of a single equation (the transport equation)57

with speed λi. Note that the assumption (1b) implies in particular the following order relation:58 {
T1 ≤ · · · ≤ Tm,
Tn ≤ · · · ≤ Tm+1.

(3)59
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1.2 Literature60

Here, we brie�y describe the results of the literature about the null controllability of system (1).61

All the results below are also valid for space-dependent versions of this system.62

� It was �rst proved in the celebrated survey [Rus78] that system (1) is null controllable in63

any time T ≥ Tm+1 + Tm. A strength of this result is that it is valid for any M and Q.64

However, it was also observed in that paper that the minimal control time can be smaller65

than Tm+1 + Tm. Finding the minimal control time even in the simpler case M = 0 was66

then left as an open problem.67

� For M = 0, the minimal null control time was eventually found in [Wec82]. The author68

gave an explicit expression of this time in terms of some indices related to Q.69

� Finding the minimal null control time for arbitrary M and Q is still an open challenging70

problem. There has been a recent resurgence on the characterization of this time. A �rst71

result in this direction was obtained in [CN19] and then completed in [CN21a]. Therein,72

the authors introduced a class of boundary coupling matrices Q for which they showed that73

the minimal null control time is smaller than Tm+1 + Tm, whatever the internal coupling74

matrix M is.75

� For full row rank boundary coupling matrices (rankQ = p), the minimal null control time76

was found in [HO21a]. In this case, it has been shown that this time is the same as for the77

system without internal coupling (M = 0).78

� For systems of n = 2 equations, the minimal null control time was found in [Cor+13] and79

[HO21b]. In particular, it has been shown in the second reference that this time depends80

on the internal coupling matrix M when the boundary coupling matrix is zero. This is a81

feature that was not observed nor highlighted in all the other works and that the results82

of the present paper will also share.83

� Finally, the smallest and largest values that the minimal null control time can take with84

respect to the internal coupling matrix M were found in [HO22].85

Other related works include for instance [Cor+21; CN21b; MA22] about time-dependent86

versions of system (1) and [Li10; LR10; Hu15; CN20; CN22] for quasilinear versions of this87

system (in a C1 framework).88

1.3 Notations and important de�nitions89

To state the main results of this article we �rst need to introduce some notations.90

All along this article, we denote by AT the transpose of a matrix A. For any integer N ≥ 1,91

RN×N0 denotes the set of matrices of sizeN×N with diagonal entries all equal to zero. The matrix92

IdN denotes the N ×N identity matrix. A matrix (or matrix-valued function) of size N1 ×N293

will simply be denoted using the corresponding lowercase letter when N2 = 1 (e.g. Q ∈ Rp×m94

will be denoted by q ∈ Rp when m = 1). The inner product of two vectors v1, v2 ∈ Rn−1 will be95

denoted by 〈v1, v2〉.96

Let us now introduce a sequence that will play a key role throughout this paper. For any97

i ∈ {1, . . . , n}, we �rst de�ne the following quantities.98

� For every r, j ∈ {1, . . . , n}, we denote by

αrj =
mrj

λi − λj
if j 6= i, αri =

mri

λi
.
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� Let then A,D ∈ R(n−1)×(n−1) be the matrices de�ned by

A = (αrj)r,j 6=i, D = diag

(
λi + λj
λi − λj

)
j 6=i

,

and let ψ0, w ∈ Rn−1 be the vectors de�ned by

ψ0 = (αij)j 6=i, v =

(
−1

2
αji

)
j 6=i

.

� Let (ψr)r∈N ⊂ Rn−1 be the sequence de�ned by ψ0 and99

ψ1 = ATψ0, ψr = ATψr−1 +D

r−2∑
`=0

〈
v, ψr−2−`〉ψ`, ∀r ≥ 2. (4)100

� Finally, for q ∈ Rn−1, let b ∈ Rn−1 be the nonzero vector de�ned by101

b = (βj)j 6=i, β = −Λ

(
1
q

)
. (5)102

All the above quantities depend on the index i but we omit it for clarity.103

With the previous notations, we introduce the following sets. For any k ∈ {2, . . . , n+ 1}, we104

denote by Ck the set of (M, q) ∈ Rn×n0 × Rn−1 such that, for every 2 ≤ i < k, we have qi−1 = 0105

and106

〈b, ψr〉 = 0, ∀r ∈ N. (6)107

Here, we use the convention that C2 = Rn×n0 × Rn−1. Additionally, we will denote by Cn+2 = ∅.108

Note that we then have C2 ⊃ C3 ⊃ · · · ⊃ Cn+1 ⊃ Cn+2.109

1.4 Main results and comments110

The �rst result of this article is the following characterization of the minimal null control time111

in the case of one negative speed.112

Theorem 1.3. Assume that m = 1. Let us denote by113

τi = max {T1 + Ti, T2} if 2 ≤ i ≤ n, τn+1 = max {T1, T2} , (7)114

(we have τ2 ≥ τ3 ≥ · · · ≥ τn+1 from (3)). Then, for any M ∈ Rn×n0 and q ∈ Rn−1, we have:115

1. Tinf(Λ,M, q) ∈ {τ2, . . . , τn+1}. Moreover, the in�mum is always reached (in (2)).116

2. For any k ∈ {2, . . . , n+ 1}, we have

Tinf(Λ,M, q) = τk ⇐⇒ (M, q) ∈ Ck \ Ck+1.

We recall that the set Ck is de�ned at the end of Section 1.3.117

Remark 1.4. Theorem 1.3 solves the open problem raised at the end of [HO21b, Section 5] for118

systems with constant coe�cients.119
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Remark 1.5. Theorem 1.3 remains valid if we replace everywhere in this article the null con-120

trollability property by the �nite-time stabilization property by L2 bounded feedbacks (that121

is when the control u is looked under the more particular form u(t) =
∫ 1

0
r(ξ)Ty(t, ξ) dξ with122

r ∈ L2(0, 1)n). This easily follows from the proof below.123

Even though the set Ck is explicit in function of the parameters of the system, the orthogo-
nality conditions (6) that de�ne this set can be di�cult to study in general because the sequence
(ψr)r∈N is de�ned by a nonlinear recurrence relation. Note however that there always exists an
integer N ≥ 1 such that

ψr ∈ span {ψs | s ≤ N − 1} , ∀r ≥ N,

so that124

〈b, ψr〉 = 0, ∀r ∈ N ⇐⇒ 〈b, ψr〉 = 0, ∀r ∈ {0, . . . , N − 1} . (8)125

This means that (6) only needs to be checked for the �rst N values of r. However, such a N126

depends on the sequence and it is a priori unknown, so that, in practice, we do not know when127

we have to stop checking the orthogonality conditions. Our second result provides information128

on this issue in two particular cases:129

Theorem 1.6. Let i ∈ {1, . . . , n} be �xed. De�ne

Nψ = min {N ≥ 1 | (8) holds} .

We have Nψ ≤ 3 for n = 3 and Nψ ≤ 6 for n = 4.130

Remark 1.7. It would be interesting to �nd a bound of Nψ with respect to n for arbitrary n.131

Our main results can for instance be combined to deduce a very explicit characterization of132

the minimal null control time in the following particular case:133

Corollary 1.8. Assume that m = 1 and p = 2. Then, for any M ∈ R3×3
0 and q ∈ R2, we have:134

1. Tinf(Λ,M, q) = max {T1, T2} if, and only if, (M, q) satis�es

q = 0, m21 = m31 = 0.

2. Tinf(Λ,M, q) = max {T1 + T3, T2} if, and only if, (M, q) satis�es

q = 0, m21 = m23 = 0, m31 6= 0,

or

q1 = 0, q2 6= 0 and

m21 = m23 = 0 or


m21 = rsm23,

m31 = r2sm13,

m32 = −rm12,

 ,

where r = −λ3q2
λ1

and s = λ2−λ1

λ2−λ3
.135

3. In all the other situations, Tinf(Λ,M, q) = T1 + T2.136

For p = 3, there is no simple presentation as for p = 2, even though the orthogonality137

conditions are explicit (see also Remark 1.10 below) and we know that we only have to check138

the �rst six conditions. Therefore, we only give a nontrivial example:139
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Example 1.9. Let σ ∈ R \ {0} be arbitrary and consider system (1) with

Λ = diag (−1, 1, 2, 3), M =


0 −3 1/(2σ) 0
2 0 0 −2

3σ 0 0 −σ
0 2 1/(2σ) 0

 , q =

 0
0

1/3

 .

� For i = 2, we have b =
(
1 0 −1

)T
and

ψ0 =

1
0
1

 , ψ1 = − 1

σ

0
1
0

 , ψ2 = −3

2
ψ0, ψ3 = −3ψ1, ψ4 =

9

2
ψ0, ψ5 =

45

4
ψ1.

� For i = 3, we have the same b and

ψ0 = σ

1
0
1

 , ψ1 = −σ

0
1
0

 , ψ2 = −3

4
ψ0, ψ3 = −3

2
ψ1, ψ4 =

9

8
ψ0, ψ5 =

45

16
ψ1.

From Theorems 1.3 and 1.6, we deduce that Tinf(Λ,M, q) = τ4 = 4/3.140

Remark 1.10. For arbitrary n, we will see that the orthogonality conditions (6) are satis�ed if141

one of the following three conditions holds:142

(C1) Kal (A, v)
T
ψ0 = Kal (A, b)

T
ψ0 = 0, where Kal (A, h) = (h|Ah| · · · |An−2h) ∈ R(n−1)×(n−1)

143

denotes the Kalman matrix of (A, h), for any h ∈ Rn−1.144

(C2) There exists ∅ 6= J ( {1, . . . , n− 1} such that ψ0
j = arj = br = 0 for every j 6∈ J and r ∈ J .145

(C3)
〈
b, ψ0

〉
= 0 and there exists j0 ∈ {1, . . . , n− 1} such that bj0 = 0 and rank ∆j0 = 1, where

∆j0 =

(
(D − dj0)ψ0 ATej0

ATψ0 vj0ψ
0 −

〈
v, ψ0

〉
ej0

)
∈ R2(n−1)×2,

where dj0 is the j0-th diagonal entry of D and ej0 is the j0-th canonical vector of Rn−1.146

We will also see that, for n = 3 (resp. n = 4), it is necessary that one of the conditions (C1),147

(C2) (resp. (C1), (C2), (C3)) holds (it is however preferable to use Theorem 1.6 in these cases).148

The rest of this article is organized as follows. In Section 2, we use the equivalence between149

the controllability of system (1) and that of a simpler system to obtain a characterization of150

this property in terms of some orthogonality conditions for the derivatives at the origin of any151

solution to the so-called kernel equations. In Section 3, we compute these derivatives for a152

particular solution and we obtain a general formula for this solution. In Section 4, we study the153

orthogonality conditions associated with the previous solution and we deduce our main results. In154

Section 5, we supplement ours results by studying the structure of the solution associated with the155

orthogonality conditions. Finally, in Appendix A, we give a simple proof of the characterization156

of the controllability properties for the equivalent system and, in Appendix B, we prove the157

existence of a solution to the kernel equations by a new approach.158
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2 An equivalent system and the kernel equations159

The �rst step in the proof of our results is to consider a system which is equivalent to our initial160

system from a control point of view.161

Lemma 2.1. For any T > 0, system (1) is null controllable in time T if, and only if, so is the162

system163 
∂ỹ

∂t
(t, x) + Λ

∂ỹ

∂x
(t, x) = F (x)ỹ−(t, 0),

ỹ−(t, 1) = ũ(t), ỹ+(t, 0) = Qỹ−(t, 0),

ỹ(0, x) = ỹ0(x),

(9)164

where F ∈ C0([0, 1])n×m is de�ned by165

F (x) = −K(x, 0)Λ

(
Idm
Q

)
, (10)166

and K ∈ C0(T )n×n is any solution to167 Λ
∂K

∂x
(x, ξ) +

∂K

∂ξ
(x, ξ)Λ +K(x, ξ)M = 0,

ΛK(x, x)−K(x, x)Λ = M,

(11)168

in the closure of the triangle T =
{

(x, ξ) ∈ R2
∣∣ 0 < ξ < x < 1

}
.169

By solution to (11) we mean solution along the characteristics. This result is by now well-
known: it consists in using the invertible spatial transformation

ỹ(t, x) = y(t, x)−
∫ x

0

K(x, ξ)y(t, ξ) dξ,

in order to transform a solution of system (1) into a solution of system (9) (see e.g. [Hu+19,170

Section 2.2]). This idea is the starting point of the so-called backstepping method for partial171

di�erential equations and introduced more speci�cally for hyperbolic systems of two equations in172

[Cor+13]. Equations (11) are thus called the kernel equations. The di�cult point is not so much173

the result of the previous lemma but rather to prove that (11) actually has at least a solution.174

It follows from the results of [Hu+16] that there are many solutions to the kernel equations (11)175

in T .176

Remark 2.2. The choice of solution to the kernel equations (11) does not a�ect the controlla-177

bility properties of system (1) because all the corresponding systems (9)-(10) are equivalent from178

a control point of view.179

Now, two problems naturally arise:180

1. Can we characterize the null controllability of the equivalent system (9) in function of Λ, Q181

and F ?182

2. If so, can this characterization be presented explicitly in terms of Λ, Q and M ?183

These problems are still open in general. One particular case where the �rst problem has been184

completely solved is the case m = 1 (one negative speed). This was done in [HO21b, Section 5].185
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Theorem 2.3. Assume that m = 1. Then, system (9) is null controllable in time T if, and only
if,

T ≥ max
2≤i≤n

{T1 + T ∗i , T2} ,

where

T ∗i =

{
Ti if qi−1 6= 0,

Ti(1− `(fi)) if qi−1 = 0,

where `(fi) = sup I(fi) with I(fi) = {` ∈ (0, 1) | fi = 0 in (0, `)}, if I(fi) 6= ∅, and `(fi) = 0186

otherwise.187

The second problem could not be solved though because, even if the conditions for f are188

explicit, the �map� M 7−→ f (�de�ned� by (11)-(10), with m = 1) is quite complicated. It was189

left as an open problem in the same paper. This is precisely where our main results step in.190

From the above result of [HO21b] we see that the values at x = 0 of f and its derivatives191

(assuming it is smooth) can a�ect the minimal null control time Tinf(Λ,−, q, f) of the system192

(T ∗i = Ti if f
(N)
i (0) 6= 0 for some N ≥ 0). Our idea is to show that these values in fact completely193

characterize Tinf(Λ,−, q, f) because M is constant and that we can explicitly relate them to M194

thanks to the kernel equations.195

It is clear that Tinf(Λ,−, q, f) is solely characterized by f(0), f ′(0), f ′′(0), etc. if we have196

f is analytic in a neighborhood of [0, 1). (12)197

Under such an assumption, Theorem 2.3 takes a simpler form:198

Corollary 2.4. Assume that m = 1, let q ∈ Rn−1 be given and assume (12). Then, we have:199

1. Tinf(Λ,−, q, f) ∈ {τ2, . . . , τn+1} (recall (7)). Moreover, the in�mum is always reached.200

2. For any k ∈ {2, . . . , n+ 1}, we have

Tinf(Λ,−, q, f) = τk ⇐⇒ (q, f) ∈ Sk \ Sk+1,

where, for every k ∈ {2, . . . , n+ 1}, Sk is the set of (q, f) ∈ Rn−1 × C0([0, 1])n such that201

qi−1 = fi = 0 for every 2 ≤ i < k (we use the convention that S2 = Rn−1 × C0([0, 1])n),202

and Sn+2 = ∅.203

This result is immediate from the previous theorem but we give a simple and direct proof in204

Appendix A. Note that it is the complete analogue of Theorem 1.3 for system (9). By Lemma205

2.1, the minimal null control time for the initial system (1) is thus also completely determined206

by the sets Sk. However, apart from Sn+1, these sets are not explicit in terms of M , which is207

unsatisfactory.208

Assumption (12) is indeed satis�ed in our framework because we can always �nd an analytic209

solution to the kernel equations sinceM is constant. More precisely, we have the following result:210

Theorem 2.5. Let m, p ≥ 1 be arbitrary. Assume that M ∈ Rn×n0 . For any δ ∈ R with δ 6= 1,211

there exists a unique K ∈ C∞(R2)n×n that satis�es (11) for every (x, ξ) ∈ R2 and the condition212

diagK(x, δx) = 0, ∀x ∈ R. (13)213

Moreover, it satis�es the estimate214

∀ bounded V ⊂ R2,∃C > 0, ‖K‖Cs(V )n×n ≤ Cs, ∀s ∈ N. (14)215
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The kernel equations (11) have been extensively studied in the literature (see e.g. [Cor+13;216

DVK13; HD15; Hu+16; Hu+19; CN19]) but Theorem 2.5 does not follow from the results217

contained therein. The most important di�erence is that, in Theorem 2.5, the kernel exists on218

a larger set than the triangle T . This is crucial since we want x 7−→ f(x) = −K(x, 0)Λ
(
1 q

)T
219

to be analytic in an interval of the form (−ε, 1), ε > 0, which does not lie entirely in T . This220

yields nontrivial issues in the standard �xed point approach, notably because we now have to221

consider points that are �on the other side� of the diagonal (x, x), that is the condition imposed222

in the kernel equations at (x, x) cannot be consider as a boundary condition anymore. We have223

developed in Appendix B a new approach to solve the kernel equations that encompasses in224

particular the proof of Theorem 2.5.225

Remark 2.6. Estimate (14) and Taylor's theorem show that the solution K to (11)-(13) is in226

fact a power series.227

As a consequence of Theorem 2.5, we see that, if qi−1 = 0, then f = −K(·, 0)Λ
(
1 q

)T
228

satis�es fi = 0 in (0, 1) if, and only if,229 〈
b,
∂rkc

∂xr
(0, 0)

〉
= 0, ∀r ∈ N, (15)230

where b ∈ Rn−1 is de�ned in (5) and kc = (kij)j 6=i. It remains to relate the derivatives of the231

kernel at the origin with M . This is the purpose of the next section. This will be done only for232

a very well chosen particular solution to the kernel equations (i.e. for one δ 6= 1) but this will be233

enough for our purposes as already underlined in Remark 2.2.234

Remark 2.7. We emphasize that, in all the sections below and unless speci�cally mentioned,235

the number of negative speeds m is arbitrary (the orthogonality conditions (15) are studied for236

any nonzero b ∈ Rn−1).237

3 The derivatives of the kernel at the origin238

3.1 Normalization of the equations239

Let us �rst observe that a feature of the kernel equations (11)-(13) is that it does not couple240

di�erent rows of K:241 λi
∂kij
∂x

(x, ξ) +
∂kij
∂ξ

(x, ξ)λj +

n∑
r=1

kir(x, ξ)mrj = 0,

λikij(x, x)− kij(x, x)λj = mij (j 6= i), kii(x, δx) = 0.

(16)242

Therefore, all along Section 3, i ∈ {1, . . . , n} is �xed and we will drop the dependence on i for243

clarity.244

Let us now introduce some important notations. Some of them have already been introduced245

in Section 1.3 but they are recalled here for the sake of the presentation.246

� It is convenient to normalize the kernel equations by λi−λj for j 6= i and by λi otherwise.247

The kernel equations (16) become248 µj
∂kj
∂x

(x, ξ) +
∂kj
∂ξ

(x, ξ)νj +

n∑
r=1

kr(x, ξ)αrj = 0,

kj(x, x) = αij (j 6= i), ki(x, δx) = 0,

(17)249
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where k =
(
ki1 · · · kin

)T
and

µj =
λi

λi − λj
, νj =

λj
λi − λj

, (j 6= i), µi = νi = 1,

αrj =
mrj

λi − λj
, (j 6= i), αri =

mri

λi
.

Note that, with this normalization, we have in particular µj − νj = 1 for j 6= i.250

� Since the component ki plays a di�erent role than all the other components kj with j 6= i,251

we rewrite (17) in a matrix form separating both quantities. Let us denote by nc = n− 1252

and introduce kc = (kj)j 6=i. Then, system (17) can be written as253 
Dµ

∂kc

∂x
(x, ξ) +Dν

∂kc

∂ξ
(x, ξ) +ATkc(x, ξ) + ki(x, ξ)ψ

0 = 0,

∂ki
∂x

(x, ξ) +
∂ki
∂ξ

(x, ξ) + 〈w, kc(x, ξ)〉 = 0,

kc(x, x) = ψ0, ki(x, δx) = 0,

(18)254

where Dµ, Dν , A ∈ Rnc×nc

are the matrices de�ned by

Dµ = diag (µj)j 6=i, Dν = diag (νj)j 6=i, A = (αrj)r,j 6=i,

and ψ0, w ∈ Rnc

are the vectors de�ned by

ψ0 = (αij)j 6=i, w = (αji)j 6=i.

Note that we used that αii = 0 (since M ∈ Rn×n0 ). Finally, it will also be convenient to255

use the matrix D ∈ Rnc×nc

and the vector v ∈ Rnc

de�ned by256

D = Dµ +Dν , v = −1

2
w. (19)257

3.2 Computation of the derivatives258

The main result of this section is the following.259

Theorem 3.1. For the solution to (18) with δ = −1, we have260

∂γ+σkc

∂xγ∂ξσ
(0, 0) =

γ∑
r=0

σ∑
s=0

(−1)r
(
γ

r

)(
σ

s

)
ψγ+σ−(r+s),r+s, ∀γ, σ ∈ N, (20)261

where (ψr,s)r,s∈N is the sequence de�ned by262

ψr,0 = ψr, ψr,s = 0 if r < s, ψr,s =

r−s∑
`=0

〈v, ψr−1−`,s−1〉ψ`,0 if r ≥ s ≥ 1, (21)263

where (ψr)r∈N is the sequence de�ned in (4).264

Combining this result with the estimates (14) and Taylor's theorem, we obtain an explicit265

formula for the solution to (18) when δ = −1:266
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Corollary 3.2. For δ = −1, the solution to (18) is given by

kc(x, ξ) =

+∞∑
r=0

+∞∑
s=0

(−1)r

r!s!
ψr,s(x− ξ)r(x+ ξ)s, ki(x, ξ) = −

∫ x

x−ξ
2

〈w, kc(σ, σ − x+ ξ)〉 dσ,

for every (x, ξ) ∈ R2, where (ψr,s)r,s∈N is the sequence de�ned by (21) and the series is normally267

convergent on any compact set of R2.268

Remark 3.3. Explicit solutions to the kernel equations were also obtained in [VK14, Section269

3.4] for systems of n = 2 equations.270

Proof of Theorem 3.1. 1. To explain the special role played by δ = −1, we start the compu-
tations with an arbitrary δ 6= 1. The �rst idea is to form a system involving only kc by
expressing ki as a function of kc:

ki(x, ξ) = −
∫ x

x−ξ
1−δ

〈w, kc(σ, σ − x+ ξ)〉 dσ.

As a result, kc solvesDµ
∂kc

∂x
(x, ξ) +Dν

∂kc

∂ξ
(x, ξ) +ATkc(x, ξ)−

(∫ x

x−ξ
1−δ

〈w, kc(σ, σ − x+ ξ)〉 dσ

)
ψ0 = 0,

kc(x, x) = ψ0.

We now transform this system into a Cauchy problem by introducing the transformation

h(t, θ) = kc
(
−t+ θ

2
,
t+ θ

2

)
.

Using that Dµ −Dν = Idnc , we can check that h satis�es the system271 
∂h

∂t
(t, θ) = D

∂h

∂θ
(t, θ) +ATh(t, θ) +

(∫ θ

− 1+δ
1−δ t

〈v, h(t, η)〉 dη

)
ψ0,

h(0, θ) = ψ0,

(22)272

where we recall that D and v are de�ned in (19). Note as well that

∂γ+σkc

∂xγ∂ξσ
(x, ξ) =

γ∑
r=0

σ∑
s=0

(−1)r
(
γ

r

)(
σ

s

)
∂γ+σh

∂tγ+σ−(r+s)∂θr+s
(−x+ ξ, x+ ξ), ∀γ, σ ∈ N,

so that the derivatives of kc at (0, 0) can be deduced from those of h. They will be computed
from (22) and we see that the computations considerably simplify if the lower bound of the
integral vanishes, that is if we choose δ = −1. For this choice, we de�ne

ψr,s =
∂r+sh

∂tr∂θs
(0, 0).

We are going to show that it satis�es (21).273
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2. All along the rest of the proof, we will use the notation cr,s = 〈v, ψr,s〉. First observe that274

system (22) (with δ = −1) yields the following identities:275 
ψr+1,0 = Dψr,1 +ATψr,0,

ψr+1,s = Dψr,s+1 +ATψr,s + cr,s−1ψ0,0,

ψ0,s = 0,

(23)276

for every r ≥ 0 and s ≥ 1. The second property in (21) is easily proved by induction on277

r ≥ 1. To establish the two other identities, it is su�cient to prove the following statement278

for any N ≥ 1:279 
ψs+q,s =

q∑
`=0

cs−1+q−`,s−1ψ`,0, ∀s ≥ 1, ∀0 ≤ q ≤ N,

ψr,0 = ATψr−1,0 +D

r−2∑
`=0

cr−2−`,0ψ`,0, ∀2 ≤ r ≤ N + 1.

(24)280

We prove it by induction. For N = 1, this is clear. Indeed, for any s ≥ 1, we have

ψs,s = Dψs−1,s+1 +ATψs−1,s + cs−1,s−1ψ0,0 (by (23)),

= cs−1,s−1ψ0,0 (by the second property in (21)), (25)

ψs+1,s = Dψs,s+1 +ATψs,s + cs,s−1ψ0,0 (by (23)),

= ATψs,s + cs,s−1ψ0,0 (by the second property in (21)),

= cs−1,s−1ψ1,0 + cs,s−1ψ0,0 (by (25)),

and

ψ2,0 = Dψ1,1 +ATψ1,0 (by (23)),

= c0,0Dψ0,0 +ATψ1,0 (by (25)).

Assume now that (24) holds for N ≥ 1 and let us prove it for N + 1. We �rst show that281

ψs+N+1,s =

N+1∑
`=0

cs+N−`,s−1ψ`,0, ∀s ≥ 1. (26)282

For any s ≥ 1, we have

ψs+N+1,s = Dψs+N,s+1 +ATψs+N,s + cs+N,s−1ψ0,0 (by (23)),

= D

N−1∑
`=0

cs+N−1−`,sψ`,0 +AT
N∑
`=0

cs−1+N−`,s−1ψ`,0

+ cs+N,s−1ψ0,0 (by assumption (24)),

= D

N−1∑
`=0

cs+N−1−`,sψ`,0 +

N+1∑
r=2

cs+N−r,s−1A
Tψr−1,0

+ cs−1+N,s−1ψ1,0 + cs+N,s−1ψ0,0.
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Therefore, if we show the identity283

N−1∑
`=0

cs+N−1−`,sψ`,0 =

N+1∑
r=2

cs+N−r,s−1

(
r−2∑
`=0

cr−2−`,0ψ`,0

)
, (27)284

then we can use the second condition in (24) to obtain the desired identity (26). To establish
(27), we use the �rst condition in (24) to deduce that, for every 0 ≤ ` ≤ N − 1,

〈v, ψs+N−1−`,s〉 =

N−1−`∑
j=0

cs−1+N−1−`−j,s−1cj,0

=

N+1∑
r=`+2

cs+N−r,s−1cr−2−`,0.

Finally, a simple change of order of summation leads to (27). It remains to show the second
identity in (24) for r = N + 2, namely

ψN+2,0 = ATψN+1,0 +D

N∑
`=0

cN−`,0ψ`,0.

We have

ψN+2,0 = DψN+1,1 +ATψN+1,0 (by (23)),

= D

N∑
`=0

cN−`,0ψ`,0 +ATψN+1,0 (by (24)).

285

Remark 3.4. Theoretically, we can also compute all the derivatives at (0, 0) of the solution to286

(18) for arbitrary δ 6= 1. This can be done by taking derivatives and inverting some matrix.287

However, the size of this matrix grows with the order of derivatives and computations rapidly288

become more and more complicated. It seems di�cult with such a strategy to obtain a suitable289

formula for arbitrary δ. At the same time, we see from (22) that a di�erent choice of δ means290

more derivatives to be computed, as for instance with δ = 0 which leads to an integral of the291

form
∫ θ
−t. In addition to that, we recall that one choice of δ is actually su�cient for the purposes292

of this paper (Remark 2.2).293

4 Study of the orthogonality conditions294

In this section, we use the computations obtained in the previous section to study the orthogo-295

nality conditions (15). We start with the conclusion of the proof of our �rst main result.296

Proof of Theorem 1.3. We recall that, from the results of the previous sections, we only have to
show the equivalence between the orthogonality conditions (15) and (6). First observe that, from
the de�nition (21) of the sequence (ψr,s)r,s∈N, it is clear that (6) is equivalent to

〈b, ψr,s〉 = 0, ∀r, s ∈ N.

We can check that this condition is equivalent to (15) using (20) and (21).297
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Remark 4.1. The proof above and the analyticity of kc in R2 shows that the following four298

properties are in fact equivalent:299

1. 〈b, kc(x, ξ)〉 = 0 for every (x, ξ) ∈ R2.300

2. 〈b, kc(x, 0)〉 = 0 for every x ∈ R.301

3. 〈b, ψr,0〉 = 0 for every r ∈ N.302

4. 〈b, ψr,s〉 = 0 for every r, s ∈ N.303

We are now going to study the orthogonality conditions (6) for the sequence (ψr)r∈N and304

prove our second main result. For the rest of Section 4, the matrices A,D ∈ Rnc×nc

and the305

vectors ψ0, v, b ∈ Rnc

can in fact be arbitrary. We emphasize that n is also arbitrary, it is only306

during the proof of Theorem 1.6 that we will assume that n = 3 or n = 4.307

4.1 Some invariant subspaces of the sequence308

We start the general study of the orthogonality conditions (6) with the description of two simple309

invariant subspaces of the sequence (ψr)r∈N.310

Proposition 4.2. Assume that ψ0 ∈ E for some E ⊂ Rnc

satisfying one of the following two
conditions:

AT(E) ⊂ E, E ⊂ ker vT. (28)

AT(E) ⊂ E, D(E) ⊂ E. (29)

Then, ψr ∈ E for every r ∈ N.311

Proof. We prove the result by induction on r. For r = 0 this is trivial and for r = 1 this follows
from the de�nition ψ1 = ATψ0 and the property AT(E) ⊂ E. Assume then that ψ` ∈ E for
every 0 ≤ ` ≤ r for some r ≥ 1 and let us show that ψr+1 ∈ E. Since r + 1 ≥ 2, we have

ψr+1 = ATψr +

r−1∑
`=0

〈
v, ψr−1−`〉Dψ`.

Clearly, the �rst part ATψr belongs to E since ψr ∈ E and AT(E) ⊂ E. The remaining part312

also belongs to E since either
〈
v, ψ`

〉
= 0 for every 0 ≤ ` ≤ r (if E ⊂ ker vT) or Dψ` ∈ E for313

every 0 ≤ ` ≤ r (if D(E) ⊂ E).314

If we can �nd a subspace E such as in the previous proposition and which is in addition315

included in ker bT, then we see that the whole sequence will be guaranteed to stay in ker bT.316

4.2 Characterization of rank one sequences317

In this section, we characterize when the rank of (ψr)r∈N is equal to one, and we use it to prove318

Theorem 1.6 in the case n = 3. We recall that, by de�nition, rank (ψr)r∈S = dim span {ψr | r ∈ S}319

for any S ⊂ N.320

From now on, it will be convenient to use the following notation:

Es = span {ψr | r ≤ s} , ∀s ∈ N.

First of all, it is clear that

rank (ψr)r∈N = 1 ⇐⇒
(
ψ0 6= 0, ψr ∈ E0, ∀r ≥ 1

)
.

We have the following characterization:321
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Proposition 4.3. The following three conditions are equivalent:322

1. ψr ∈ E0 for every r ≥ 1.323

2. ψr ∈ E0 for every r ∈ {1, 2}.324

3. E0 satis�es (28) or (29).325

Proof. The implication 1 =⇒ 2 is trivial. The implication 3 =⇒ 1 follows from Proposition 4.2.
Let us show that 2 =⇒ 3. We write

ψr = αrψ
0, r = 1, 2,

for some αr ∈ R. The condition for r = 1 gives ATψ0 = α1ψ
0, which is equivalent to AT(E0) ⊂326

E0. The condition for r = 2 gives ATψ1 +
〈
v, ψ0

〉
Dψ0 = α2ψ

0, which implies
〈
v, ψ0

〉
Dψ0 ∈ E0,327

that is either E0 ⊂ ker vT or D(E0) ⊂ E0. This establishes the desired equivalences.328

329

Proof of Theorem 1.6 (case n = 3). Assume that

〈b, ψr〉 = 0, ∀r ∈ {0, 1, 2} .

Since nc = 2, we have dim ker bT = 1 and thus

rank (ψr)r∈{0,1,2} ≤ 1.

As a result, ψr ∈ E0 for r ∈ {1, 2} and it follows that ψr ∈ E0 for every r ≥ 1 by Proposition330

4.3.331

4.3 Characterization of rank two sequences332

In this section, we characterize when the rank of (ψr)r∈N is equal to two, and we use it to prove333

Theorem 1.6 in the case n = 4. The study of rank two sequences is considerably more di�cult334

than for rank one.335

We start with the following simple observation.336

Proposition 4.4. Let {0, 1, 2} ⊂ S ⊂ N. We have rank (ψr)r∈S = 2 if, and only if, we have one337

of the following two conditions:338

1. rank (ψ0|ψ1) = 1, rank (ψ0|ψ2) = 2 and ψr ∈ E2 for every r ∈ S \ {0, 1, 2}.339

2. rank (ψ0|ψ1) = 2 and ψr ∈ E1 for every r ∈ S \ {0, 1}.340

Proof. We only need to observe that the situation rank (ψ0|ψ1) = rank (ψ0|ψ2) = 1 does not341

happen. Indeed, in that situation we have ψ1, ψ2 ∈ E0 and thus ψr ∈ E0 for every r ≥ 1 by342

Proposition 4.3, which shows that the sequence cannot be of rank two.343

We now characterize both conditions of Proposition 4.4.344

Proposition 4.5. Assume that rank (ψ0|ψ1) = 1 and rank (ψ0|ψ2) = 2. Then, the following345

three conditions are equivalent:346

1. ψr ∈ E2 for every r ≥ 3.347

2. ψr ∈ E2 for every r ∈ {3, 4}.348
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3. E2 satis�es (29).349

Proof. The implication 1 =⇒ 2 is trivial. The implication 3 =⇒ 1 follows from Proposition350

4.2. Let us show that 2 =⇒ 3. From the de�nition of ψ2 and the rank assumptions, we have351 〈
v, ψ0

〉
6= 0 and Dψ0 ∈ span

{
ψ0, ψ2

}
. Using these facts, we can �rst check that the condition352

ψ3 ∈ E2 gives AT(E2) ⊂ E2 and then that the condition ψ4 ∈ E2 yields D(E2) ⊂ E2.353

The second condition in Proposition 4.4 is more di�cult to characterize.354

Proposition 4.6. Assume that rank (ψ0|ψ1) = 2. Then, the following two conditions are equiv-355

alent:356

1. ψr ∈ E1 for every r ≥ 2.357

2. ψr ∈ E1 for every r ∈ {2, . . . , 5}.358

Before proving Proposition 4.6, we prove our second main result.359

Proof of Theorem 1.6 (case n = 4). Assume that

〈b, ψr〉 = 0, ∀r ∈ {0, . . . , 5} .

Since nc = 3, we have dim ker bT = 2 and thus

rank (ψr)r∈{0,...,5} ≤ 2.

If the rank is in fact less than or equal to 1, then we conclude as in the proof of Theorem 1.6 in360

the case n = 3. If the rank is exactly equal to 2, then the conclusion follows from Propositions361

4.4, 4.5 and 4.6.362

We now turn to the proof of the key proposition.363

Proof of Proposition 4.6. If E1 satis�es (28) or (29), then the result follows from Proposition 4.2.364

Therefore, from now on, we assume that E1 does not meet any of these conditions.365

1. Let N ≥ 4 be arbitrary and consider the property: for every r ∈ {2, . . . , N}, there exist366

αr, βr ∈ R such that367

ψr = αrψ
0 + βrψ

1. (30)368

Let us also set369

α0 = 1, β0 = 0,

α1 = 0, β1 = 1,
(31)370

so that the previous identity is always true for r = 0, 1. Using the de�nition (4) of the
sequence we see that, for r ≥ 2, identity (30) is equivalent to

αrψ
0 + βrψ

1 =αr−1A
Tψ0 + βr−1A

Tψ1

+

(
r−2∑
`=0

cr−2−`α`

)
Dψ0 +

(
r−2∑
`=0

cr−2−`β`

)
Dψ1,

where we introduced, for every s ∈ {0, . . . , N},

cs = αs
〈
v, ψ0

〉
+ βs

〈
v, ψ1

〉
.
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Let us eliminate the terms ATψ0, ATψ1. By de�nition of the sequence, we have ATψ0 = ψ1.371

On the other hand, condition (30) for r = 2 yields372

ATψ1 = α2ψ
0 + β2ψ

1 − c0Dψ0. (32)373

As a result, for r ≥ 3, identity (30) is equivalent to374

(ψ0|ψ1)ur = (Dψ0|Dψ1)fr−1, (33)375

where ur, fr−1 ∈ R2 are the vectors de�ned by376

ur =

(
αr − βr−1α2

βr − (αr−1 + βr−1β2)

)
, fr−1 =

(
βr−1(−c0) +

∑r−2
`=0 cr−2−`α`∑r−2

`=0 cr−2−`β`

)
. (34)377

Let us make some observations.378

� For any r1, r2, if λfr1−1 +µfr2−1 = 0 for some λ, µ ∈ R, then λur1 +µur2 = 0. Indeed,379

denoting by u = λur1 +µur2 , we have (ψ0|ψ1)u = 0 and thus u = 0 since we assumed380

that ψ0, ψ1 are linearly independent.381

� fr1−1 and fr2−1 are linearly dependent for any r1, r2. Indeed, otherwise we obtain382

(ψ0|ψ1)U = (Dψ0|Dψ1) for some matrix U ∈ R2×2. This means that D(E1) ⊂ E1.383

It then follows from (32) that AT(E1) ⊂ E1 as well. Therefore, E1 satis�es (29), but384

this situation has been excluded from the beginning of the proof.385

� f2 and f3 are linearly dependent only if c0 6= 0. Indeed, if c0 = 0, then ATψ1 ∈ E1386

by (32), so that AT(E1) ⊂ E1. If c0 = 0, we also have det(f2|f3) = c21, which cannot387

be zero since otherwise c0 = c1 = 0, that is E1 ⊂ ker vT, and thus E1 satis�es (28)388

(excluded).389

The necessary condition det(f2|fr−1) = 0 is equivalent to the identity(
r−2∑
`=0

cr−2−`β`

)
f2 − c0fr−1 = 0,

which, by the �rst observation above, in turn implies that(
r−2∑
`=0

cr−2−`β`

)
u3 − c0ur = 0.

Since c0 6= 0, this gives the following formulas:390 
fr−1 =

(
r−2∑
`=0

c̄r−2−`β`

)
f2,

ur =

(
r−2∑
`=0

c̄r−2−`β`

)
u3,

(35)391

where we introduced c̄s = cs
c0
. Conversely, it is clear that if we have (35), then (33) will392

also hold for r ≥ 3, provided that it holds for r = 3.393
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Finally, observe that the second formula in (35), combined with the de�nition (34) of ur,394

uniquely determines all the αr, βr for r ≥ 4 as a function of α2, β2 and α3, β3:395 
αr = βr−1α2 +

(
r−2∑
`=0

c̄r−2−`β`

)
(α3 − β2α2) ,

βr = αr−1 + βr−1β2 +

(
r−2∑
`=0

c̄r−2−`β`

)(
β3 − (α2 + β2

2)
)
,

(36)396

and that the �rst formula in (35) is equivalent to397

βr−1 =

r−2∑
`=0

c̄r−2−` (α` + (β2 − c̄1)β`) . (37)398

In summary, we have shown that the property considered is equivalent to: c0 6= 0 and there399

exist α2, β2 and α3, β3 such that (30) holds for r = 2, 3 and such that the sequence de�ned400

by (36) (with (31)) satis�es (37) for every r ∈ {4, . . . , N}.401

2. Let us now study the sequence (36). The proof of the result will be complete after we show402

that the following three conditions are equivalent:403

(a) Condition (37) holds for every r ≥ 4.404

(b) Condition (37) holds for r = 4, 5.405

(c) α3 and β3 are given by406 {
β3 = (α2 + β2

2)− (β2 − c̄1)2 + α2 + (β2 − c̄1)β2,

α3 = β2α2 − (β2 − c̄1)(β3 − (α2 + β2
2)).

(38)407

We start with the implication 2b =⇒ 2c. Condition (37) for r = 4 immediately gives β3 as
a function of α2, β2:

β3 =

2∑
`=0

c̄2−` (α` + (β2 − c̄1)β`) .

On the other hand, condition (37) for r = 5 gives

β4 =

2∑
`=1

c̄3−` (α` + (β2 − c̄1)β`) + c̄0 (α3 + (β2 − c̄1)β3) + c̄3 (α0 + (β2 − c̄1)β0)

= 2α3 + β2β3 +

2∑
`=1

c̄3−` (α` + (β2 − c̄1)β`) ,

whereas, by de�nition (36),

β4 = α3 + β3β2 +

(
2∑
`=0

c̄2−`β`

)(
β3 − (α2 + β2

2)
)
.

Identifying both expressions gives α3 as a function of α2, β2:

α3 = −
2∑
`=1

c̄3−` (α` + (β2 − c̄1)β`) +

(
2∑
`=0

c̄2−`β`

)(
β3 − (α2 + β2

2)
)
.
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We can check that the previous formulas are equivalent to (38) (we prefer the expressions408

in (38) because they make appear some coe�cients involved in (36)).409

Let us now prove the implication 2c =⇒ 2a. We prove it by induction on r. For r = 4,410

this holds by very de�nition of β3 as we have seen above. Assume now that (37) holds for411

some arbitrary r ≥ 4, and let us prove it for r + 1, that is to prove that we have412

βr =

r−1∑
`=0

c̄r−1−` (α` + (β2 − c̄1)β`) . (39)413

By de�nition (36) of βr, we have

βr =αr−1 + βr−1c̄1 + (β2 − c̄1)

(
βr−1 − (β2 − c̄1)

r−2∑
`=0

c̄r−2−`β`

)

+
(
β3 − (α2 + β2

2) + (β2 − c̄1)2
) r−2∑
`=0

c̄r−2−`β`.

Using the induction hypothesis (37) and the de�nition (38) of β3, we obtain

βr = c̄r−1 +

r−2∑
`=0

c̄r−2−` ((β2 − c̄1)α` + (α2 + (β2 − c̄1)β2)β`) .

Now observe that, using the de�nition of α3, we have

α`+1 + (β2 − c̄1)β`+1 = β`α2 + (β2 − c̄1)(α` + β`β2)

= (β2 − c̄1)α` + (α2 + (β2 − c̄1)β2)β`.

Formula (39) easily follows this identity and the previous one.414

415

5 Kernel associated with the orthogonality conditions416

In this section, we supplement our results by giving a more explicit characterization of the417

conditions found in the previous section and that guaranteed the orthogonality conditions. Then,418

we discuss the structure of the associated kernel.419

5.1 Kernel associated with the invariant subspaces420

Here we discuss properties related to the invariant subspaces of Section 4.1. We recall that, for
any vector h ∈ Rnc

, we denote the Kalman matrix of (A, h) by

Kal (A, h) = (h|Ah|A2h| · · · |An
c−1h) ∈ Rn

c×nc

.

Proposition 5.1. 1. There exists E satisfying (28), ψ0 ∈ E and E ⊂ ker bT, if, and only if,421

Kal (A, v)
T
ψ0 = Kal (A, b)

T
ψ0 = 0. (40)422
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2. Assume that Kal (A, v)
T
ψ0 = 0. Then, for any δ 6= 1, the solution to the kernel equations

(18) is

ki(x, ξ) = 0, kc(x, ξ) = e−A
T(x−ξ)ψ0, ∀(x, ξ) ∈ R2.

If, moreover, Kal (A, b)
T
ψ0 = 0, then the orthogonality conditions (15) are satis�ed.423

Proof. 1. Assume that (40) holds. Let us de�ne

E = ker Kal (A, v)
T ∩ ker Kal (A, b)

T
.

By assumption, ψ0 ∈ E and it is clear that E ⊂ ker vT and E ⊂ ker bT. Finally, E is stable424

by AT thanks to Cayley-Hamilton theorem. Conversely, assume that (28) holds for some425

E ⊂ ker bT with ψ0 ∈ E. Since ψ0 ∈ E and E is stable by AT, we have (AT)kψ0 ∈ E for426

every k ∈ N. Since E ⊂ ker vT and E ⊂ ker bT, we obtain (40).427

2. We see from the kernel equations (18) that ki = 0 if, and only if, we have
Dµ

∂kc

∂x
(x, ξ) +Dν

∂kc

∂ξ
(x, ξ) +ATkc(x, ξ) = 0,

〈v, kc(x, ξ)〉 = 0,

kc(x, x) = ψ0.

Using that Dµ − Dν = Idnc , it is clear that kc(x, ξ) = e−A
T(x−ξ)ψ0 satis�es the �rst428

equation. The second condition follows from the assumption Kal (A, v)
T
ψ0 = 0 and Cayley-429

Hamilton theorem. The third condition is trivial. Finally, the orthogonality conditions are430

clearly satis�ed under the additional assumption Kal (A, b)
T
ψ0 = 0.431

432

Let us now address the second type of invariant subspaces introduced in Section 4.1.433

Proposition 5.2. Assume that ψ0, b 6= 0.434

1. There exists E satisfying (29), ψ0 ∈ E and E ⊂ ker bT if, and only if, there exists a
nonempty J ( {1, . . . , nc} such that

ψ0
j = arj = br = 0, ∀j 6∈ J, ∀r ∈ J.

2. Assume that there exists a nonempty J ( {1, . . . , nc} such that ψ0
j = arj = 0 for every435

j 6∈ J and r ∈ J . Then, for any δ 6= 1, the solution to the kernel equations (18) satis�es436

kcj = 0, ∀j 6∈ J. (41)437

If, moreover, br = 0 for every r ∈ J , then the orthogonality conditions (15) are satis�ed.438

Proof. 1. Since D is a diagonal matrix with distinct entries, its invariant subspaces are of the
form

E = span {er | r ∈ J} ,

for some J ⊂ {1, . . . , nc}, where e1, . . . , enc are the canonical vectors of Rnc

. Since ψ0 6= 0439

(resp. b 6= 0), we have J 6= ∅ (resp. J 6= {1, . . . , nc}). Then, we easily check that such a440

subspace is invariant by AT if, and only if, arj = 0 for every r ∈ J and j 6∈ J and that it441

is included in ker bT if, and only if, br = 0 for every j ∈ J .442
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2. Property (41) is a consequence of the uniqueness of the solution to the kernel equations.443

The orthogonality conditions are clearly satis�ed under the additional assumption that444

br = 0 for every r ∈ J .445

446

Remark 5.3. The �rst item in the above propositions gives explicit conditions that guarantee447

that the orthogonality conditions (15) hold (when combined with the results of the previous448

sections). We found these conditions with an algebraic approach. On the other hand, once these449

conditions are known, the second item of the above propositions show how to use them to obtain450

an analytic proof of the orthogonality conditions. Observe in addition that these di�erent proofs451

are valid for arbitrary δ 6= 1.452

5.2 Kernel associated with nontrivial rank two sequences453

In the same spirit as in the previous section, we now we discuss the following property, related454

to Proposition 4.6:455

E1 ⊂ ker bT, ψr ∈ E1, ∀r ∈ {2, . . . , 5} . (42)456

Below, we denote by c0 =
〈
v, ψ0

〉
.457

Proposition 5.4. 1. Assume that rank (ψ0|ψ1) = 2, E1 satis�es neither (28) nor (29), c0 6=
0 and

〈
b, ψ0

〉
= 0. Then, condition (42) holds if, and only if, there exists j0 ∈ {1, . . . , nc}

such that
bj0 = 0, rank ∆j0 = 1,

where ∆j0 ∈ R2nc×2 is given by

∆j0 =

(
(D − dj0)ψ0 ATej0

ATψ0 vj0ψ
0 − c0ej0

)
,

where dj0 is the j0-th diagonal entry of D and ej0 is the j0-th canonical vector of Rnc

.458

2. Assume that n = 4, i = 2,

b =

 1
0
−ρ

 , ρ 6= 0,

c0 6= 0, α24 6= 0,
〈
b, ψ0

〉
= 0 and rank ∆2 = 1. Then, the solution to the kernel equations459

(18) with δ = −1 is given, for some σ ∈ R \ {0}, by460 

k21 = k24ρ,

k22 =
1

−σα24

(
σµ3

∂k24

∂x
+ σν3

∂k24

∂ξ
− α32k24

)
,

k23 =
1

−σα24

(
∂k24

∂x
+
∂k24

∂ξ
− σα23k24

)
,

(43)461

where k24 ∈ C∞(R2) is the solution to462 
µ3
∂2k24

∂x2
(x, ξ) + (µ3 + ν3)

∂2k24

∂x∂ξ
(x, ξ) + ν3

∂2k24

∂ξ2
(x, ξ) = −2c0k24(x, ξ),

µ3
∂k24

∂x
(x,−x) + ν3

∂k24

∂ξ
(x,−x) =

α32

σ
k24(x,−x),

k24(x, x) = α24.

(44)463
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To see that (44) indeed has a solution, we can introduce h = µ3
∂k24
∂x +ν3

∂k24
∂ξ and observe that464

(k24, h) satis�es a �rst-order hyperbolic system similar to the kernel equations (16) and whose465

well-posedness can be established as in the proof of Theorem 2.5.466

Proof of Proposition 5.4. 1. Under the assumptions of the proposition and from the proof
of Proposition 4.6, we have ψr ∈ E1 for every r ∈ {2, . . . , 5} if, and only if, there exist
α2, β2 ∈ R such that {

ψ2 = α2ψ
0 + β2ψ

1,

ψ3 = α3ψ
0 + β3ψ

1,

where α3, β3 are given by (38). We can check that this is equivalent to the existence of467

ρ, θ ∈ R such that468 {
(AT − ρ)ψ1 = −c0(D − θ)ψ0 + c̄1(ψ1 − ρψ0),

(D − θ)(ψ1 − ρψ0) = 0,
(45)469

where we recall that c̄1 =
〈v,ψ1〉
c0

. Since D is diagonal with distinct entries and ψ0, ψ1 are470

linearly independent, the second condition in (45) is equivalent to the existence of some471

j0 ∈ {1, . . . , nc} and r ∈ R \ {0} such that472

θ = dj0 , ψ1 = ρψ0 + rej0 . (46)473

Plugging the second identity in the �rst condition in (45) and recalling that ψ1 = ATψ0,
we see that this condition simply becomes

rATej0 = −c0(D − dj0)ψ0 + rc̄1ej0 .

Comparing the j0-th components of both quantities, using that the diagonal of A is zero474

and r 6= 0, we see that c̄1 = 0. Recalling (46), the condition c̄1 = 0 is equivalent to475

ρ = −r̄vj0 with r̄ = r
c0
. In summary, there exist ρ, θ ∈ R such that (45) holds if, and only476

if, there exist j0 ∈ {1, . . . , nc} such that477

∃r̄ ∈ R \ {0} ,

{
(D − dj0)ψ0 + r̄ATej0 = 0,

ψ1 + r̄(vj0ψ
0 − c0ej0) = 0.

(47)478

We can check that this condition is equivalent to rank ∆j0 = 1. Finally, it is clear that479

E1 ⊂ ker bT, i.e.
〈
b, ψ1

〉
= 0, if, and only if, bj0 = 0.480

2. Since i = 2, we have (for the notations, see Section 3.1)

AT =

 0 α31 α41

α13 0 α43

α14 α34 0

 , D = 2diag (µ1, µ3, µ4)−Id3, ψ0 =

α21

α23

α24

 , v = −1

2

α12

α32

α42

 .

Clearly,
〈
b, ψ0

〉
= 0 is equivalent to481

α21 = α24ρ. (48)482
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On the other hand, using the characterization (47), we see that rank ∆2 = 1 if, and only if,

α31 = σ(µ1 − µ3)ρα24, (49)

α34 = σ(µ4 − µ3)α24, (50)

α41 = − ρ
σ

(
α32 + σ2(µ1 − µ3)α23

)
, (51)

α42 + α12ρ = σ(α43 + α13ρ), (52)

α14 = − 1

ρσ

(
α32 + σ2(µ4 − µ3)α23

)
, (53)

where σ = − 2
r̄ . Using these conditions we easily check that ((kc)T, k2) = (k21, k23, k24, k22)483

de�ned by (43)-(44) satis�es the kernel equations (18) with δ = −1.484

485

To conclude this section we will present a method which shows how conditions (48)-(53) can486

also be found from an analytic point of view.487

Another proof of Proposition 5.4, item 2. 1. For every j, let us denote by Pj the �rst-order
linear partial di�erential operator

Pj = µj
∂

∂x
+

∂

∂ξ
νj .

Since we want the orthogonality condition 〈b, kc(·, 0)〉 = 0, we look for a solution satisfying

k21 = k24ρ,

(recall also Remark 4.1). In particular, we assume (48). Then, the problem is to �nd a488

solution to489 
k22α21 + k23α31 = (−ρP1 − α41)k24,

P2k22 + k23α32 + k24(α42 + α12ρ) = 0,

P3k23 + k22α23 + k24(α43 + α13ρ) = 0,

k22α24 + k23α34 = (−P4 − α14ρ)k24.

(54)490

Let us denote by

ω = det

(
α21 α31

α24 α34

)
.

Assume that ω 6= 0 (this will follow a posteriori from (49), (50), using also that σ, ρ, α24 6=491

0). Then, the �rst and fourth equations in (54) give492 
k22 =

1

ω
(−α34ρP1 + α31P4 − α34α41 + α31α14ρ) k24,

k23 =
1

ω
(α24ρP1 − α21P4 + α24α41 − α21α14ρ) k24.

(55)493

Plugging these relations in the second and third equations in (54) give the following two
second-order partial di�erential equations for k24:

Qk24 = 0, Q̃k24 = 0,
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where Q = Q(2) +Q(1) +Q(0), with

Q(2) = P2 (−α34ρP1 + α31P4) ,

Q(1) = (−α34α41 + α31α14ρ)P2 + (α24ρP1 − α21P4)α32,

Q(0) = (α24α41 − α21α14ρ)α32 + ω(α42 + α12ρ),

and Q̃ = Q̃(2) + Q̃(1) + Q̃(0), with

Q̃(2) = P3 (α24ρP1 − α21P4) ,

Q̃(1) = (α24α41 − α21α14ρ)P3 + (−α34ρP1 + α31P4)α23,

Q̃(0) = (−α34α41 + α31α14ρ)α23 + ω(α43 + α13ρ).

2. We are going to �nd conditions to guarantee that these two equations are compatible. To494

this end, it is for instance su�cient to have495

Q(r) = σQ̃(r), r = 0, 1, 2, (56)496

for some σ ∈ R. We �rst look at the operators of highest order. Using the identities497

α21 = α24ρ, µj − νj = 1 (j 6= 2), µ2 = ν2 = 1, (57)498

we have

α24ρP1 − α21P4 = α24ρ (P1 − P4)

= α24ρ(µ1 − µ4)P2. (58)

It follows that499

Q̃(2) = α24ρ(µ1 − µ4)P3P2. (59)500

Consequently, we see that (56) holds for r = 2 if we have501

−α34ρP1 + α31P4 = σα24ρ(µ1 − µ4)P3. (60)502

This identity holds if (α34, α31) satis�es(
−ρµ1 µ4

−ρν1 ν4

)(
α34

α31

)
= σα24ρ(µ1 − µ4)

(
µ3

ν3

)
,

which is equivalent to (50)-(49) (using ρ 6= 0 and (57)).503

3. Let us now compute the �rst-order di�erential operators. We have

Q(1) = (−α34α41 + α31α14ρ+ α24ρ(µ1 − µ4)α32)P2 (by (58)),

Q̃(1) = (α24α41 − α21α14ρ+ σα24ρ(µ1 − µ4)α23)P3 (by (60)).

As a result, we have (56) for r = 1, if Q(1) = Q̃(1) = 0, that is, if504 {
−α34α41 + α31α14ρ = −α24ρ(µ1 − µ4)α32,

α24α41 − α21α14ρ = −σα24ρ(µ1 − µ4)α23.
(61)505

This holds if (α41, α14) satis�es(
−α34 α31ρ
α24 −α21ρ

)(
α41

α14

)
= −α24ρ(µ1 − µ4)

(
α32

σα23

)
,

which is equivalent to (51) and (53) (using (48), (49), (50) and α24, ρ 6= 0).506
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4. Let us now compute the zero order terms. Using (61), we immediately see that

Q̃(0) = −α24ρ(µ1 − µ4)α32α23 + ω(α43 + α13ρ),

Q(0) = −σα24ρ(µ1 − µ4)α23α32 + ω(α42 + α12ρ).

As a result, we see that (56) holds for r = 0 if we have condition (52). Moreover, using507

(48), (49) and (50), we have508

ω = −σα2
24ρ(µ1 − µ4), (62)509

so that, using again (48) and the de�nition of c0, we obtain

Q(0) = σα24ρ(µ1 − µ4)(2c0).

It follows that k24 indeed satis�es the �rst equation in (44) (recall that Q(2) = σQ̃(2) with510

(59) and Q(1) = 0).511

5. Using (60), (61), (58) and (62), we can simplify the expressions in (55) to obtain
k22 =

1

−σα24
(σP3 − α32) k24,

k23 =
1

−σα24
(P2 − σα23) k24.

In addition, it follows from these formula that the remaining conditions are satis�ed. In-512

deed, the condition k22(x,−x) = 0 is exactly the condition that we require for k24 at513

(x,−x) in (44) and the condition k23(x, x) = α23 follows from the above expression since514

k24(x, x) = α24 and (P2k24)(x, x) = d
dxk24(x, x) = 0.515

516

Remark 5.5. In [VK14, Section 3.3], the authors showed that we can solve a kernel system of
two equations of the form 

∂k21

∂x
− ∂k21

∂ξ
+ k22α21 = 0,

∂k22

∂x
+
∂k22

∂ξ
+ k21α12 = 0,

k21(x, x) = α21, k22(x, 0) = 0,

with α21 6= 0 by �rst expressing k22 from the �rst equation and then showing that the resulting517

second order equation for k21 indeed has a solution. The method we introduced in the second518

proof of Proposition 5.4, item 2, can be seen as an extension of the method of [VK14] where,519

instead of dividing by a scalar (namely, α21), we invert a matrix.520
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A Controllability of the equivalent system526

In this appendix, we give a simple and direct proof of Corollary 2.4. We recall that it can be527

deduced from Theorem 2.3 but this result is based on the Titchmarsh convolution theorem (see528

[HO21b]) and we show here how to directly prove the corollary without resorting to this di�cult529

result.530

Proof of Corollary 2.4. It is enough to show that, if (q, f) ∈ Sk\Sk+1 for some k ∈ {2, . . . , n+ 1},531

then system (9) (with m = 1) is null controllable in time T if, and only if, T ≥ τk.532

1. We �rst observe that system (9) is equivalent to the same system with f1 = 0. This follows
from the invertible spatial transformation

ŷ1(t, x) = ỹ1(t, x)−
∫ x

0

h(x− ξ)ỹ1(t, ξ) dξ,

where the kernel h is the solution to

h(x)λ1 +

∫ x

0

h(x− ξ)f1(ξ) dξ = f1(x), 0 < x < 1.

Therefore, for the rest of the proof, we assume that f1 = 0.533

2. Assume now that (q, f) ∈ Sk \ Sk+1 for some k ∈ {2, . . . , n} (the result for k = n + 1 is
trivial). It will be convenient to use the notation q̂i = qi−1 for 2 ≤ i ≤ n. Let us write
system (9) (with f1 = 0) component-wise:

∂ỹ1

∂t
(t, x) + λ1

∂ỹ1

∂x
(t, x) = 0,

ỹ1(t, 1) = ũ(t),

ỹ1(0, x) = ỹ0
1(x),


∂ỹi
∂t

(t, x) + λi
∂ỹi
∂x

(t, x) = fi(x)v(t),

ỹi(t, 0) = q̂iv(t),

ỹi(0, x) = ỹ0
i (x),

for i ∈ {2, . . . , n}, and where we introduced v(t) = ỹ1(t, 0). It is clear that this system is534

null controllable in any time T ≥ τk = max {T1 + Tk, T2} since in this case taking ũ = 0 in535

(T − (T1 + Tk), T ) does the job. It is the necessary part that requires more work.536

3. First of all, we recall that the condition T ≥ max {T1, T2} is always necessary (see e.g.537

the proof of [HO21b, Lemma 3.3]). Under this condition and by mimicking the second538

step in the proof of [HO21b, Theorem 3.1], we see that the null controllability condition539

ỹk(T, x) = 0 is equivalent to540

q̂kα(τ) +

∫ τ

0

β(τ − σ)α(σ) dσ = 0, 0 < τ < Tk, (63)541

where α(θ) = v(−θ + T ) and β(θ) = fk(λkθ) for 0 < θ < Tk.542

4. We now have two possibilities for (63).543

(a) Case q̂k 6= 0. Then, by uniqueness of the solution to the Volterra equation of the544

second kind (63), we obtain α = 0 in (0, Tk). This means that v = 0 in (T − Tk, T ).545

Since this is true for any ỹ1
0 , it is possible only if T1 ≤ T − Tk, which is the desired546

condition.547
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(b) Case q̂k = 0. Since (q, f) ∈ Sk \ Sk+1, we necessarily have fk 6= 0. Since fk is analytic
in a neighborhood of [0, 1), this implies in particular that there exists N ≥ 1 such that

f
(N−1)
k (0) 6= 0, f

(`)
k (0) = 0, ∀` < N − 1.

Then, taking N times the derivative with respect to τ in (63) (with q̂k = 0), we obtain
the new Volterra equation

cα(τ) +

∫ τ

0

β(N)(τ − σ)α(σ) dσ = 0, 0 < τ < Tk,

where c = β(N−1)(0) = f
(N−1)
k (0)λN−1

k . Therefore, c 6= 0 and the situation is now548

identical to the previous case.549

550

B Solution to the kernel equations551

In this appendix, we present a new approach to solve the kernel equations that encompasses552

in particular the proof of Theorem 2.5. We recall that, when considering the kernel equations553

in the triangle T =
{

(x, ξ) ∈ R2
∣∣ 0 < ξ < x < 1

}
, the approach used in all current results554

in the literature ([Cor+13; DVK13; HD15; Hu+16; Hu+19; CN19], etc.) consists in adding555

�arti�cial boundary conditions� to close the system of kernel equations. In our approach, we will556

not consider the condition at (x, x) as a boundary condition but rather as an initial condition.557

We will simply let propagate this condition along the characteristics and �nd the corresponding558

so-called domain of determinacy, much in the spirit of the reference books [LY85; Bre00]. Then,559

another idea of our method is also to solve the equation for j = i and plug it into the other560

equations of the system to obtain a new system with initial conditions at (x, x) only (as in the561

proof of Theorem 3.1). Moreover, this gives a natural bound in |x− ξ| for the estimates needed562

to prove the contraction of the mapping de�ning the integral equations corresponding to the new563

system (rather than |x− (1− ε)ξ| as in [Hu+16; Hu+19]).564

All along this appendix, i ∈ {1, . . . , n} is �xed and we continue using the notation k =565

(kij)1≤j≤n to denote the transpose of the i-th row of K. We also emphasize that m ≥ 1 is566

arbitrary.567

First of all, it will be more convenient to work with the kernel equations normalized by λi:568 
∂kj
∂x

(x, ξ) + λ̄j
∂kj
∂ξ

(x, ξ) +

n∑
r=1

kr(x, ξ)m̄rj = 0,

kj(x, x) = fj (j 6= i), ki(x, δx) = 0,

(64)569

where

λ̄j =
λj
λi
, m̄rj =

mrj

λi
, fj =

mij

λi − λj
.

From now on, we will assume for instance that i ≥ m+ 1, so that λi > 0 and thus, from (1b),570

571

λ̄1 < · · · < λ̄i−1 < 1 < λ̄i+1 < · · · < λ̄n. (65)572

For every (x, ξ) ∈ R× R, we denote by s 7−→ ζj(s;x, ξ) the solution to
d

ds
ζj(s;x, ξ) = λ̄j , ∀s ∈ R,

ζj(x;x, ξ) = ξ.

27



Let us now consider the more general condition

kj(x, x) = fj(x) (j 6= i),

where fj is a function de�ned on an interval of the form [a, b] with a < 0 < b. Even if fj
is constant in (64), we will need to consider space-dependent data to deduce the existence of
smooth solutions by an inductive argument. We will describe the largest domain D ⊂ R2 where
the system can then be solved along the characteristics. We �rst take care of the characteristics
for j 6= i. Recalling the ordering (65), we introduce

Dc =

{
(x, ξ) ∈ R2

∣∣∣∣ ζi−1(x; a, a) < ξ < ζi−1(x; b, b)
ζi+1(x; b, b) < ξ < ζi+1(x; a, a)

}
,

(see Figure 1). Above, we use the usual conventions for i = 1 and i = n. We now take care of
the characteristic for j = i. We can check that the line {(x, δx) | a < x < b} intersects the
boundary of Dc at exactly two points (c, δc) and (d, δd), with c, d ∈ (a, b) and c < 0 < d if δ < 1
or d < 0 < c if δ > 1. Let then

D = {(x, ξ) ∈ Dc | ζi(x; d, δd) < ξ < ζi(x; c, δc)} ,

(see Figure 2 with δ = −1) and de�ne I = (c, d). Here and in what follows, it will be convenient573

to use the notation (α, β) to denote the interval (min {α, β} ,max {α, β}), whatever α, β ∈ R are574

(we use a similar notation for [α, β]).575

x

ξ

a b

Figure 1: Domain Dc

x

ξ

a b

×
c
×d

Figure 2: Domain D (in dark gray)

We will prove the following result.576

Theorem B.1. Let a < 0 < b and s ∈ N be �xed. For any (fj)j 6=i ∈ Cs([a, b])n−1 and fi ∈ Cs(I),577

there exists a unique solution k = (kj)1≤j≤n ∈ Cs(D)n to578 
∂kj
∂x

(x, ξ) + λ̄j
∂kj
∂ξ

(x, ξ) +

n∑
r=1

kr(x, ξ)m̄rj = 0, (x, ξ) ∈ D,

kj(x, x) = fj(x), x ∈ (a, b) (j 6= i),

ki(x, δx) = fi(x), x ∈ I,

(66)579
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Moreover, we have the estimate580

‖k‖Cs(D)n ≤ C max

{
max
j 6=i
‖fj‖Cs([a,b]) , ‖fi‖Cs(I)

}
, (67)581

for some C > 0 that does not depend on any fj.582

For s = 0, by solution we mean �solution along the characteristics�, see below.583

The �rst part of Theorem 2.5 follows from the previous result and the following simple584

observation:585

∀V ⊂ R2,∃a < 0 < b, V ⊂ D. (68)586

On the other hand, using that the coe�cients of the system are constant and arguing as in587

the proof of [CN19, Lemma 6.2], we can show that (67) holds with C = Rs for some R > 0 that588

does not depend on s. This establishes the estimate in Theorem 2.5.589

Let us now prove Theorem B.1. We start with a description of the key properties satis�ed590

by the point where the j-th characteristic intersects the corresponding data line.591

Lemma B.2. For every j ∈ {1, . . . , n}, there exists σj ∈ C∞(D) such that, for every (x, ξ) ∈ D,592

we have:593

� ζj(σj(x, ξ);x, ξ) = σj(x, ξ) with σj(x, ξ) ∈ [a, b] for j 6= i and ζi(σi(x, ξ);x, ξ) = δσi(x, ξ)594

with σi(x, ξ) ∈ I.595

� (s, ζj(s;x, ξ)) ∈ D for every s ∈ [σj(x, ξ), x].596

� For every j 6= i, we have597

|σj(x, ξ)− x| ≤ C |x− ξ| , (69)598

for some C > 0 that does not depend on j, x, ξ.599

We point out that ζj and σj are explicit. In particular, this is how we prove estimate (69).600

Now, instead of writing (66) along all the characteristics (as it is usually done), we �rst601

replace ki by formally solving the corresponding equation (recall that m̄ii = 0):602

ki(x, ξ) = fi(σi(x, ξ))−
∫ x

σi(x,ξ)

∑
r 6=i

kr(η, ζi(η;x, ξ))m̄ri dη. (70)603

Let us introduce the following notations to exclude the i-th components: kc = (kj)j 6=i, f
c =

(fj)j 6=i, σ
c = (σj)j 6=i, ζ

c = (ζj)j 6=i, M
c = (m̄rj)r,j 6=i, ψ = (m̄ij)j 6=i and w = (m̄ji)j 6=i. Then,

plugging the previous expression of ki in (66) and integrating along the characteristics, we can
transform this system into the following system of integral equations for kc:

kc`(x, ξ) =f c` (σc
`(x, ξ))−

∫ x

σc
` (x,ξ)

n−1∑
r=1

kcr(s, ζ
c
` (s;x, ξ))m

c
r` ds

−
∫ x

σc
` (x,ξ)

fi(σ
c
i (s, ζ

c
` (s;x, ξ)))ψ` ds

+

∫ x

σc
` (x,ξ)

(∫ s

σc
i (s,ζc` (s;x,ξ))

n−1∑
r=1

kcr(η, ζi(η; s, ζc` (s;x, ξ)))wr dη

)
ψ` ds, (71)

for every ` ∈ {1, . . . , n− 1} and (x, ξ) ∈ D.604
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All the quantities in (70) and (71) are well de�ned thanks to Lemma B.2. It remains to prove
the existence and uniqueness of a Cs solution kc to this system of integral equations. We start
with s = 0. As usual, we use the Banach �xed point theorem and suitable estimates. A solution
to this system is a �xed point of the map F (kc) = u0 + Φkc, where

u0
`(x, ξ) = f c` (σc

`(x, ξ))−
∫ x

σc
` (x,ξ)

fi(σ
c
i (s, ζ

c
` (s;x, ξ))ψ` ds,

and Φ is the linear map Φ = Φ1 + Φ2 with

(Φ1k
c)`(x, ξ) = −

∫ x

σc
` (x,ξ)

n−1∑
r=1

kcr(s, ζ
c
` (s;x, ξ))m

c
r` ds,

and

(Φ2k
c)`(x, ξ) =

∫ x

σc
` (x,ξ)

(∫ s

σc
i (s,ζc` (s;x,ξ))

n−1∑
r=1

kcr(η, ζi(η; s, ζc` (s;x, ξ)))wr dη

)
ψ` ds,

for every ` ∈ {1, . . . , n− 1} and (x, ξ) ∈ D.605

Let us now precisely set the functional framework. Let B = C0(D)n−1 and consider the606

standard norm ‖kc‖B = max1≤`≤n−1 max(x,ξ)∈D |kc`(x, ξ)|. Clearly, B is a Banach space and607

F (B) ⊂ B. Let us now prove that FN is a contraction for N ∈ N∗ large enough. This is608

equivalent to show that ΦN is a contraction. To this end, it is su�cient to prove the following609

key estimate:610

Lemma B.3. There exists C > 0 such that, for every N ∈ N∗, we have

∣∣(ΦNkc)`(x, ξ)∣∣ ≤ CN |x− ξ|N

N !
‖kc‖B ,

for every kc ∈ B, ` ∈ {1, . . . , n− 1} and (x, ξ) ∈ D.611

Proof. We prove the property by induction on N . Let us �rst consider N = 1. We have

|(Φ1k
c)`(x, ξ)| ≤ C1 |x− σc

`(x, ξ)| ‖kc‖B ,

with C1 = max`
∑
r |mc

r`| ≥ 0. Similarly,

|(Φ2k
c)j(x, ξ)| ≤ C2 |x− σc

`(x, ξ)| ‖kc‖B ,

with C2 = max`,(x,ξ),s |s− σc
i (s, ζ

c
` (s;x, ξ))|

∑
r |wr| |ψ`| ≥ 0. Finally, we have612

|x− σc
`(x, ξ)| ≤ C3 |x− ξ| , (72)613

for some C3 > 0 that does not depend on `, x, ξ (see (69)). This proves the property for N = 1.614

Let us now assume that the property holds for N and let us prove it for N + 1. We have

∣∣(Φ1ΦNkc)`(x, ξ)
∣∣ ≤ ∫

[σc
` (x,ξ),x]

n−1∑
r=1

∣∣(ΦNkc)r(s, ζc` (s;x, ξ))∣∣ |mc
r`| ds,

Using the induction assumption, we get∣∣(Φ1ΦNkc)`(x, ξ)
∣∣ ≤ C1

CN

N !
‖kc‖B

∫
[σc
` (x,ξ),x]

|s− ζc` (s;x, ξ)|
N
ds.
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Similarly, noting that η − ζi(η; s, ζc` (s;x, ξ)) = s− ζc` (s;x, ξ), we get∣∣(Φ2ΦNkc)`(x, ξ)
∣∣ ≤ C2

CN

N !
‖kc‖B

∫
[σc
` (x,ξ),x]

|s− ζc` (s;x, ξ)|
N
ds.

Now observe that |s− ζc` (s;x, ξ)| ≤ C4 |s− σc
`(x, ξ)| for some C4 > 0 that does not depend on

`, s, x, ξ. It follows that∫
[σc
` (x,ξ),x]

|s− ζc` (s;x, ξ)|
N
ds ≤ C4

∫
[σc
` (x,ξ),x]

|s− σc
`(x, ξ)|

N
ds = C4

|x− σc
`(x, ξ)|

N+1

N + 1
.

We conclude thanks to the estimate (72).615

616

Finally, the estimate (67) can be deduced from the identities kc = FN (kc)−FN (0)+FN (0) =617

ΦN (kc)−ΦN (0) +
∑N
r=0 Φru0, combined with the fact that ΦN is a contraction and that u0 can618

be estimated by the right-hand side of (67) (with s = 0). This concludes the proof of Theorem619

B.1 for s = 0.620

To prove the result for s ≥ 1 we can argue as in the proof of [Bre00, Theorem 3.6] and then621

use an induction argument.622

Remark B.4. The proof above can be adapted to deal with space-dependent systems, i.e. when623

λj and mrj depend on x. The additional condition for ki has to be modi�ed though, but we624

can for instance consider ki(x, 0) = fi(x). Note that we still have explicit formulas for the625

corresponding ζj and σj .626

Remark B.5. Our approach can be used to recover existence results in the triangle T . To this627

end, we simply extend the parameters λj and mrj to [a, b] ⊃ [0, 1] in a smooth way. Then, for628

a, b large enough, the domain D will contain the triangle T (recall (68)) and we apply Theorem629

B.1 in this D. This approach is di�erent from all the previous ones in the literature, which630

consisted in adding �arti�cial boundary conditions� at some parts of the boundary of T . Note in631

addition that extending λj andmrj outside [0, 1] in a smooth way is easier than building arti�cial632

boundary conditions that satisfy compatibility conditions associated with the kernel equations.633
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