

Minimal null control time of some 1D hyperbolic balance laws with constant coefficients and properties of related kernel equations

Long Hu, Guillaume Olive

To cite this version:

Long Hu, Guillaume Olive. Minimal null control time of some 1D hyperbolic balance laws with constant coefficients and properties of related kernel equations. 2023 . hal-04318642

HAL Id: hal-04318642 <https://hal.science/hal-04318642v1>

Preprint submitted on 1 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Minimal null control time of some 1D hyperbolic balance laws with constant coefficients and properties of related kernel equations

Long Hu^{*} Guillaume Olive[†]

⁵ December 1, 2023

⁶ Abstract

In this work, we study the null controllability by one-sided boundary controls of one-8 dimensional hyperbolic balance laws with constant coefficients. Our first result shows that, when the system has only one negative or positive speed, the minimal null control time of such systems depends on some orthogonality conditions for a particular sequence. This 11 sequence is explicit in function of the coefficients of the system but it is defined by a nonlinear recurrence relation. Our second result then completes the previous one by giving explicit bounds on the number of orthogonality conditions that have to be checked in two nontrivial situations. The proofs rely on a careful analysis of the so-called kernel equations associated with the system, including a new well-posedness result. Our results are also valid for the nite-time stabilization property.

¹⁷ Keywords. Hyperbolic systems; Minimal control time; Backstepping method; Nonlinear ¹⁸ recurrence relation

19 2010 Mathematics Subject Classification. 35L40, 93B05, 93D15, 11B

²⁰ 1 Introduction and main results

21 1.1 Problem description

²² In this paper, we are interested in the null controllability properties of a class of one-dimensional 23 (1D) hyperbolic system with constant coefficients (see e.g. [BC16, Chap. 1] for applications). ²⁴ The equations describing such phenomenons are

$$
\frac{\partial y}{\partial t}(t,x) + \Lambda \frac{\partial y}{\partial x}(t,x) = My(t,x). \tag{1a}
$$

26 Above, $t \in (0,T)$ is the time variable, $T > 0$, $x \in (0,1)$ is the space variable and the state 27 is $y:(0,T)\times(0,1)\to\mathbb{R}^n$ $(n\geq 2)$. The matrix $\Lambda\in\mathbb{R}^{n\times n}$ will always be assumed diagonal 28 $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, with $m \ge 1$ negative speeds and $p \ge 1$ positive speeds $(m + p = n)$:

$$
\boldsymbol{^{29}}
$$

4

$$
\lambda_1 < \cdots < \lambda_m < 0 < \lambda_{m+1} < \cdots < \lambda_{m+p}.\tag{1b}
$$

^{*}School of Mathematics, Shandong University, Jinan, Shandong 250100, China. E-mail: hul@sdu.edu.cn [†]Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland. E-mail: math.golive@gmail.com or guillaume.olive@uj.edu.pl

30 The matrix $M \in \mathbb{R}^{n \times n}$ couples the equations of the system inside the domain and will be called μ the internal coupling matrix. We will consider an initial condition at time $t = 0$:

$$
y(0, x) = y^{0}(x). \tag{1c}
$$

33 Let us now discuss the boundary conditions. The structure of Λ induces a natural splitting ³⁴ of the state into components corresponding to negative and positive speeds, denoted respectively ³⁵ by y_− and y₊. For the above system to be well-posed in $(0, T) \times (0, 1)$ with an initial condition 36 at time $t = 0$, we then need to add boundary conditions at $x = 1$ for y_+ and at $x = 0$ for y_+ . We ³⁷ will consider the following type of boundary conditions, motivated by its numerous applications $\frac{38}{180}$ (see again [BC16]):

$$
y_{-}(t,1) = u(t), \quad y_{+}(t,0) = Qy_{-}(t,0). \tag{1d}
$$

 The function u is the so-called control, it will be at our disposal. It only acts on one part of the boundary and, on the other part of the boundary, the equations are coupled by the matrix $Q \in \mathbb{R}^{p \times m}$. This matrix will be called the boundary coupling matrix. In what follows, (1a), (1c) 43 and (1d) together will be referred to as system (1).

We recall that system (1) is well-posed in the following functional setting: for every $T > 0$, $y^0 \in L^2(0,1)^n$ and $u \in L^2(0,T)^m$, there exists a unique solution y to system (1) with

$$
y \in C^{0}([0, T]; L^{2}(0, 1)^{n}) \cap C^{0}([0, 1]; L^{2}(0, T)^{n}).
$$

44 By solution we mean "solution along the characteristics". We refer for instance to $[Cor+21]$ for a

⁴⁵ proof of this well-posedness result in such a setting (see also [BC16, Appendix A] when $u = 0$).

46 The regularity $C^0([0,T];L^2(0,1)^n)$ of the solution allows us to consider control problems in 47 the space $L^2(0,1)^n$:

Definition 1.1. Let $T > 0$ be fixed. We say that system (1) is null controllable in time T if, for every $y^0 \in L^2(0,1)^n$, there exists $u \in L^2(0,T)^m$ such that the corresponding solution y to system (1) satisfies

$$
y(T, \cdot) = 0.
$$

48 Since controllability in time T_1 implies controllability in any time $T_2 \geq T_1$, it is natural to ⁴⁹ try to nd the smallest possible control time, the so-called minimal control time.

50 Definition 1.2. For any Λ, M and Q as above, we denote by $T_{\text{inf}}(\Lambda, M, Q) \in [0, +\infty]$ the 51 minimal null control time of system (1) , that is

$$
T_{\inf}(\Lambda, M, Q) = \inf \{ T > 0 \quad | \quad \text{System (1) is null controllable in time } T \}. \tag{2}
$$

53 The time $T_{\text{inf}}(\Lambda, M, Q)$ is named "minimal" null control time according to the current litera-⁵⁴ ture, despite it is not always a minimal element of the set. We keep this naming here, but we use $\frac{1}{55}$ the notation with the "inf" to avoid eventual confusions. The goal of this article is to characterize

56 $T_{\text{inf}}(\Lambda, M, Q)$ in some new situations.

In order to state our results and those of the literature, we need to introduce the following times:

$$
T_i = \frac{1}{-\lambda_i} \quad \text{if } i \leq m, \quad T_i = \frac{1}{\lambda_i} \quad \text{if } i \geq m+1.
$$

 \mathbf{F} . The time T_i is the time needed for the controllability of a single equation (the transport equation) ss with speed λ_i . Note that the assumption (1b) implies in particular the following order relation:

 $T_1 \leq \cdots \leq T_m$ $T_n \leq \cdots \leq T_{m+1}.$ (3)

⁶⁰ 1.2 Literature

 ϵ Here, we briefly describe the results of the literature about the null controllability of system (1). ⁶² All the results below are also valid for space-dependent versions of this system.

 \bullet It was first proved in the celebrated survey [Rus78] that system (1) is null controllable in 64 any time $T \geq T_{m+1} + T_m$. A strength of this result is that it is valid for any M and Q. ⁶⁵ However, it was also observed in that paper that the minimal control time can be smaller 66 than $T_{m+1} + T_m$. Finding the minimal control time even in the simpler case $M = 0$ was ⁶⁷ then left as an open problem.

68 • For $M = 0$, the minimal null control time was eventually found in [Wec82]. The author ⁶⁹ gave an explicit expression of this time in terms of some indices related to Q.

 \bullet Finding the minimal null control time for arbitrary M and Q is still an open challenging problem. There has been a recent resurgence on the characterization of this time. A first ⁷² result in this direction was obtained in [CN19] and then completed in [CN21a]. Therein, ⁷³ the authors introduced a class of boundary coupling matrices Q for which they showed that ⁷⁴ the minimal null control time is smaller than $T_{m+1} + T_m$, whatever the internal coupling $\frac{75}{100}$ matrix *M* is.

 \bullet For full row rank boundary coupling matrices (rank $Q = p$), the minimal null control time was found in [HO21a]. In this case, it has been shown that this time is the same as for the γ ⁸ system without internal coupling $(M = 0)$.

• For systems of $n = 2$ equations, the minimal null control time was found in [Cor+13] and ⁸⁰ [HO21b]. In particular, it has been shown in the second reference that this time depends \mathbf{s}_1 on the internal coupling matrix M when the boundary coupling matrix is zero. This is a ⁸² feature that was not observed nor highlighted in all the other works and that the results of the present paper will also share.

⁸⁴ Finally, the smallest and largest values that the minimal null control time can take with \bullet respect to the internal coupling matrix M were found in [HO22].

86 Other related works include for instance $[Cor+21; CN21b; MA22]$ about time-dependent \bullet versions of system (1) and [Li10; LR10; Hu15; CN20; CN22] for quasilinear versions of this ss system (in a C^1 framework).

89 1.3 Notations and important definitions

⁹⁰ To state the main results of this article we first need to introduce some notations.

All along this article, we denote by A^T the transpose of a matrix A. For any integer $N \ge 1$, $\mathbb{R}^{N\times N}_0$ denotes the set of matrices of size $N\!\times\!N$ with diagonal entries all equal to zero. The matrix 93 Id_N denotes the $N \times N$ identity matrix. A matrix (or matrix-valued function) of size $N_1 \times N_2$ will simply be denoted using the corresponding lowercase letter when $N_2 = 1$ (e.g. $Q \in \mathbb{R}^{p \times m}$ **95** will be denoted by $q \in \mathbb{R}^p$ when $m = 1$). The inner product of two vectors $v_1, v_2 \in \mathbb{R}^{n-1}$ will be 96 denoted by $\langle v_1, v_2 \rangle$.

⁹⁷ Let us now introduce a sequence that will play a key role throughout this paper. For any 98 $i \in \{1, \ldots, n\}$, we first define the following quantities.

• For every $r, j \in \{1, \ldots, n\}$, we denote by

$$
\alpha_{rj} = \frac{m_{rj}}{\lambda_i - \lambda_j} \quad \text{if } j \neq i, \quad \alpha_{ri} = \frac{m_{ri}}{\lambda_i}.
$$

• Let then $A, D \in \mathbb{R}^{(n-1)\times(n-1)}$ be the matrices defined by

$$
A = (\alpha_{rj})_{r,j \neq i}, \quad D = \text{diag}\left(\frac{\lambda_i + \lambda_j}{\lambda_i - \lambda_j}\right)_{j \neq i}
$$

and let $\psi^0, w \in \mathbb{R}^{n-1}$ be the vectors defined by

$$
\psi^{0} = (\alpha_{ij})_{j \neq i}, \quad v = \left(-\frac{1}{2}\alpha_{ji}\right)_{j \neq i}.
$$

• Let $(\psi^r)_{r \in \mathbb{N}} \subset \mathbb{R}^{n-1}$ be the sequence defined by ψ^0 and

$$
\psi^1 = A^{\mathsf{T}} \psi^0, \quad \psi^r = A^{\mathsf{T}} \psi^{r-1} + D \sum_{\ell=0}^{r-2} \langle v, \psi^{r-2-\ell} \rangle \psi^{\ell}, \quad \forall r \ge 2. \tag{4}
$$

,

o Finally, for $q \in \mathbb{R}^{n-1}$, let $b \in \mathbb{R}^{n-1}$ be the nonzero vector defined by

$$
b = (\beta_j)_{j \neq i}, \quad \beta = -\Lambda \begin{pmatrix} 1 \\ q \end{pmatrix}.
$$
 (5)

 103 All the above quantities depend on the index i but we omit it for clarity.

104 With the previous notations, we introduce the following sets. For any $k \in \{2, \ldots, n+1\}$, we 105 denote by \mathcal{C}_k the set of $(M, q) \in \mathbb{R}^{n \times n}_0 \times \mathbb{R}^{n-1}$ such that, for every $2 \leq i < k$, we have $q_{i-1} = 0$ ¹⁰⁶ and

$$
\langle b, \psi^r \rangle = 0, \quad \forall r \in \mathbb{N}.
$$
 (6)

108 Here, we use the convention that $C_2 = \mathbb{R}^{n \times n}_0 \times \mathbb{R}^{n-1}$. Additionally, we will denote by $C_{n+2} = \emptyset$. 109 Note that we then have $C_2 \supset C_3 \supset \cdots \supset C_{n+1} \supset C_{n+2}$.

¹¹⁰ 1.4 Main results and comments

¹¹¹ The rst result of this article is the following characterization of the minimal null control time ¹¹² in the case of one negative speed.

113 Theorem 1.3. Assume that $m = 1$. Let us denote by

$$
\tau_i = \max\{T_1 + T_i, T_2\} \quad \text{if } 2 \le i \le n, \quad \tau_{n+1} = \max\{T_1, T_2\},\tag{7}
$$

115 (we have $\tau_2 \geq \tau_3 \geq \cdots \geq \tau_{n+1}$ from (3)). Then, for any $M \in \mathbb{R}^{n \times n}_0$ and $q \in \mathbb{R}^{n-1}$, we have:

116 1. $T_{\text{inf}}(\Lambda, M, q) \in \{\tau_2, \ldots, \tau_{n+1}\}.$ Moreover, the infimum is always reached (in (2)).

2. For any $k \in \{2, ..., n+1\}$, we have

$$
T_{\inf}(\Lambda, M, q) = \tau_k \iff (M, q) \in \mathcal{C}_k \setminus \mathcal{C}_{k+1}.
$$

117 We recall that the set \mathcal{C}_k is defined at the end of Section 1.3.

¹¹⁸ Remark 1.4. Theorem 1.3 solves the open problem raised at the end of [HO21b, Section 5] for 119 systems with constant coefficients.

¹²⁰ Remark 1.5. Theorem 1.3 remains valid if we replace everywhere in this article the null con-121 trollability property by the finite-time stabilization property by L^2 bounded feedbacks (that is when the control u is looked under the more particular form $u(t) = \int_0^1 r(\xi)^\mathsf{T} y(t,\xi) d\xi$ with 123 $r \in L^2(0,1)^n$). This easily follows from the proof below.

Even though the set \mathcal{C}_k is explicit in function of the parameters of the system, the orthogonality conditions (6) that define this set can be difficult to study in general because the sequence $(\psi^r)_{r \in \mathbb{N}}$ is defined by a nonlinear recurrence relation. Note however that there always exists an integer $N \geq 1$ such that

$$
\psi^r \in \text{span } \{ \psi^s \quad | \quad s \le N - 1 \}, \quad \forall r \ge N,
$$

¹²⁴ so that

$$
\langle b, \psi^r \rangle = 0, \quad \forall r \in \mathbb{N} \quad \Longleftrightarrow \quad \langle b, \psi^r \rangle = 0, \quad \forall r \in \{0, \dots, N-1\}.
$$
 (8)

126 This means that (6) only needs to be checked for the first N values of r. However, such a N depends on the sequence and it is a priori unknown, so that, in practice, we do not know when we have to stop checking the orthogonality conditions. Our second result provides information on this issue in two particular cases:

Theorem 1.6. Let $i \in \{1, \ldots, n\}$ be fixed. Define

$$
N_{\psi} = \min \left\{ N \ge 1 \quad | \quad (8) \; holds \right\}.
$$

130 We have $N_{\psi} \leq 3$ for $n = 3$ and $N_{\psi} \leq 6$ for $n = 4$.

131 Remark 1.7. It would be interesting to find a bound of N_{ψ} with respect to n for arbitrary n.

¹³² Our main results can for instance be combined to deduce a very explicit characterization of ¹³³ the minimal null control time in the following particular case:

134 Corollary 1.8. Assume that $m = 1$ and $p = 2$. Then, for any $M \in \mathbb{R}^{3 \times 3}_0$ and $q \in \mathbb{R}^2$, we have:

1. $T_{\text{inf}}(\Lambda, M, q) = \max \{T_1, T_2\}$ if, and only if, (M, q) satisfies

$$
q = 0, \quad m_{21} = m_{31} = 0.
$$

2. $T_{\text{inf}}(\Lambda, M, q) = \max \{T_1 + T_3, T_2\}$ if, and only if, (M, q) satisfies

$$
q = 0
$$
, $m_{21} = m_{23} = 0$, $m_{31} \neq 0$,

or

$$
q_1 = 0
$$
, $q_2 \neq 0$ and $\begin{pmatrix} m_{21} = m_{23} = 0 & or \ m_{31} = r^2 s m_{13}, \\ m_{32} = -r m_{12}, \end{pmatrix}$,

135 where $r = -\frac{\lambda_3 q_2}{\lambda_1}$ and $s = \frac{\lambda_2 - \lambda_1}{\lambda_2 - \lambda_3}$.

136 3. In all the other situations,
$$
T_{\text{inf}}(\Lambda, M, q) = T_1 + T_2
$$
.

137 For $p = 3$, there is no simple presentation as for $p = 2$, even though the orthogonality ¹³⁸ conditions are explicit (see also Remark 1.10 below) and we know that we only have to check 139 the first six conditions. Therefore, we only give a nontrivial example:

Example 1.9. Let $\sigma \in \mathbb{R} \setminus \{0\}$ be arbitrary and consider system (1) with

$$
\Lambda = \text{diag}(-1, 1, 2, 3), \quad M = \begin{pmatrix} 0 & -3 & 1/(2\sigma) & 0 \\ 2 & 0 & 0 & -2 \\ 3\sigma & 0 & 0 & -\sigma \\ 0 & 2 & 1/(2\sigma) & 0 \end{pmatrix}, \quad q = \begin{pmatrix} 0 \\ 0 \\ 1/3 \end{pmatrix}.
$$

• For $i = 2$, we have $b = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}^T$ and

$$
\psi^0 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \psi^1 = -\frac{1}{\sigma} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \psi^2 = -\frac{3}{2} \psi^0, \quad \psi^3 = -3\psi^1, \quad \psi^4 = \frac{9}{2} \psi^0, \quad \psi^5 = \frac{45}{4} \psi^1.
$$

• For $i = 3$, we have the same b and

$$
\psi^0 = \sigma \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \psi^1 = -\sigma \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \psi^2 = -\frac{3}{4} \psi^0, \quad \psi^3 = -\frac{3}{2} \psi^1, \quad \psi^4 = \frac{9}{8} \psi^0, \quad \psi^5 = \frac{45}{16} \psi^1.
$$

140 From Theorems 1.3 and 1.6, we deduce that $T_{\text{inf}}(\Lambda, M, q) = \tau_4 = 4/3$.

141 Remark 1.10. For arbitrary n, we will see that the orthogonality conditions (6) are satisfied if ¹⁴² one of the following three conditions holds:

143 (C1) Kal
$$
(A, v)^{\top} \psi^0 = \text{Kal}(A, b)^{\top} \psi^0 = 0
$$
, where Kal $(A, h) = (h|Ah| \cdots |A^{n-2}h) \in \mathbb{R}^{(n-1)\times(n-1)}$
denotes the Kalman matrix of (A, h) , for any $h \in \mathbb{R}^{n-1}$.

145 (C2) There exists $\emptyset \neq J \subsetneq \{1, \ldots, n-1\}$ such that $\psi_j^0 = a_{rj} = b_r = 0$ for every $j \notin J$ and $r \in J$.

(C3) $\langle b, \psi^0 \rangle = 0$ and there exists $j_0 \in \{1, ..., n-1\}$ such that $b_{j_0} = 0$ and rank $\Delta_{j_0} = 1$, where

$$
\Delta_{j_0} = \begin{pmatrix} (D - d_{j_0})\psi^0 & A^\mathsf{T} e_{j_0} \\ A^\mathsf{T} \psi^0 & v_{j_0} \psi^0 - \langle v, \psi^0 \rangle e_{j_0} \end{pmatrix} \in \mathbb{R}^{2(n-1) \times 2},
$$

146 where d_{j_0} is the j₀-th diagonal entry of D and e_{j_0} is the j₀-th canonical vector of \mathbb{R}^{n-1} .

147 We will also see that, for $n = 3$ (resp. $n = 4$), it is necessary that one of the conditions (C1), 148 (C2) (resp. $(C1)$, $(C2)$, $(C3)$) holds (it is however preferable to use Theorem 1.6 in these cases).

 The rest of this article is organized as follows. In Section 2, we use the equivalence between the controllability of system (1) and that of a simpler system to obtain a characterization of this property in terms of some orthogonality conditions for the derivatives at the origin of any solution to the so-called kernel equations. In Section 3, we compute these derivatives for a particular solution and we obtain a general formula for this solution. In Section 4, we study the orthogonality conditions associated with the previous solution and we deduce our main results. In Section 5, we supplement ours results by studying the structure of the solution associated with the orthogonality conditions. Finally, in Appendix A, we give a simple proof of the characterization of the controllability properties for the equivalent system and, in Appendix B, we prove the existence of a solution to the kernel equations by a new approach.

¹⁵⁹ 2 An equivalent system and the kernel equations

¹⁶⁰ The rst step in the proof of our results is to consider a system which is equivalent to our initial ¹⁶¹ system from a control point of view.

162 Lemma 2.1. For any $T > 0$, system (1) is null controllable in time T if, and only if, so is the ¹⁶³ system

$$
\begin{cases}\n\frac{\partial \tilde{y}}{\partial t}(t, x) + \Lambda \frac{\partial \tilde{y}}{\partial x}(t, x) = F(x)\tilde{y}_{-}(t, 0), \\
\tilde{y}_{-}(t, 1) = \tilde{u}(t), \quad \tilde{y}_{+}(t, 0) = Q\tilde{y}_{-}(t, 0), \\
\tilde{y}(0, x) = \tilde{y}^{0}(x),\n\end{cases}
$$
\n(9)

165 where $F \in C^0([0,1])^{n \times m}$ is defined by

$$
F(x) = -K(x,0)\Lambda \begin{pmatrix} \mathrm{Id}_m \\ Q \end{pmatrix},\tag{10}
$$

167 and $K \in C^0(\overline{\mathcal{T}})^{n \times n}$ is any solution to

$$
\begin{cases}\n\Lambda \frac{\partial K}{\partial x}(x,\xi) + \frac{\partial K}{\partial \xi}(x,\xi)\Lambda + K(x,\xi)M = 0, \\
\Lambda K(x,x) - K(x,x)\Lambda = M,\n\end{cases} (11)
$$

169 in the closure of the triangle $\mathcal{T} = \{(x, \xi) \in \mathbb{R}^2 \mid 0 < \xi < x < 1\}$.

By solution to (11) we mean solution along the characteristics. This result is by now wellknown: it consists in using the invertible spatial transformation

$$
\tilde{y}(t,x) = y(t,x) - \int_0^x K(x,\xi)y(t,\xi) d\xi,
$$

 170 in order to transform a solution of system (1) into a solution of system (9) (see e.g. [Hu+19, ¹⁷¹ Section 2.2]). This idea is the starting point of the so-called backstepping method for partial 172 differential equations and introduced more specifically for hyperbolic systems of two equations in 173 [Cor+13]. Equations (11) are thus called the kernel equations. The difficult point is not so much ¹⁷⁴ the result of the previous lemma but rather to prove that (11) actually has at least a solution. 175 It follows from the results of $[Hu+16]$ that there are many solutions to the kernel equations (11) 176 in $\overline{\mathcal{T}}$.

 177 Remark 2.2. The choice of solution to the kernel equations (11) does not affect the controlla-¹⁷⁸ bility properties of system (1) because all the corresponding systems (9)-(10) are equivalent from ¹⁷⁹ a control point of view.

- ¹⁸⁰ Now, two problems naturally arise:
- 181 1. Can we characterize the null controllability of the equivalent system (9) in function of Λ , Q 182 and F ?
- 183 2. If so, can this characterization be presented explicitly in terms of Λ , Q and M?

These problems are still open in general. One particular case where the first problem has been 185 completely solved is the case $m = 1$ (one negative speed). This was done in [HO21b, Section 5]. **Theorem 2.3.** Assume that $m = 1$. Then, system (9) is null controllable in time T if, and only if,

$$
T \ge \max_{2 \le i \le n} \{T_1 + T_i^*, T_2\},\
$$

where

$$
T_i^* = \begin{cases} T_i & \text{if } q_{i-1} \neq 0, \\ T_i(1 - \ell(f_i)) & \text{if } q_{i-1} = 0, \end{cases}
$$

186 where $\ell(f_i) = \sup I(f_i)$ with $I(f_i) = \{ \ell \in (0, 1) \mid f_i = 0 \text{ in } (0, \ell) \}, \text{ if } I(f_i) \neq \emptyset, \text{ and } \ell(f_i) = 0$ ¹⁸⁷ otherwise.

188 The second problem could not be solved though because, even if the conditions for f are 189 explicit, the "map" $M \mapsto f$ ("defined" by (11)-(10), with $m = 1$) is quite complicated. It was ¹⁹⁰ left as an open problem in the same paper. This is precisely where our main results step in.

191 From the above result of $[HO21b]$ we see that the values at $x = 0$ of f and its derivatives 192 (assuming it is smooth) can affect the minimal null control time $T_{\text{inf}}(\Lambda, -, q, f)$ of the system ده $(T_i^*=T_i \text{ if } f_i^{(N)}(0) \neq 0 \text{ for some } N \geq 0).$ Our idea is to show that these values in fact completely 194 characterize $T_{\text{inf}}(\Lambda, -, q, f)$ because M is constant and that we can explicitly relate them to M ¹⁹⁵ thanks to the kernel equations.

196 It is clear that $T_{\text{inf}}(\Lambda, -, q, f)$ is solely characterized by $f(0), f'(0), f''(0)$, etc. if we have

$$
f \text{ is analytic in a neighborhood of } [0,1). \tag{12}
$$

¹⁹⁸ Under such an assumption, Theorem 2.3 takes a simpler form:

199 Corollary 2.4. Assume that $m = 1$, let $q \in \mathbb{R}^{n-1}$ be given and assume (12). Then, we have:

200 1. $T_{\text{inf}}(\Lambda, -, q, f) \in \{\tau_2, \ldots, \tau_{n+1}\}$ (recall (7)). Moreover, the infimum is always reached.

2. For any $k \in \{2, ..., n+1\}$, we have

$$
T_{\inf}(\Lambda, -, q, f) = \tau_k \iff (q, f) \in \mathcal{S}_k \setminus \mathcal{S}_{k+1},
$$

201 where, for every $k \in \{2,\ldots,n+1\}$, S_k is the set of $(q, f) \in \mathbb{R}^{n-1} \times C^0([0,1])^n$ such that 202 $q_{i-1} = f_i = 0$ for every $2 \leq i < k$ (we use the convention that $\mathcal{S}_2 = \mathbb{R}^{n-1} \times C^0([0,1])^n$), 203 and $S_{n+2} = \emptyset$.

²⁰⁴ This result is immediate from the previous theorem but we give a simple and direct proof in ²⁰⁵ Appendix A. Note that it is the complete analogue of Theorem 1.3 for system (9). By Lemma 2.1, the minimal null control time for the initial system (1) is thus also completely determined 207 by the sets S_k . However, apart from S_{n+1} , these sets are not explicit in terms of M, which is ²⁰⁸ unsatisfactory.

 209 Assumption (12) is indeed satisfied in our framework because we can always find an analytic $_{210}$ solution to the kernel equations since M is constant. More precisely, we have the following result:

Theorem 2.5. Let $m, p \ge 1$ be arbitrary. Assume that $M \in \mathbb{R}_0^{n \times n}$. For any $\delta \in \mathbb{R}$ with $\delta \ne 1$, 212 there exists a unique $K \in C^{\infty}(\mathbb{R}^2)^{n \times n}$ that satisfies (11) for every $(x,\xi) \in \mathbb{R}^2$ and the condition

$$
\operatorname{diag} K(x, \delta x) = 0, \quad \forall x \in \mathbb{R}.\tag{13}
$$

 214 Moreover, it satisfies the estimate

$$
\forall\ bounded\ V \subset \mathbb{R}^2, \exists C > 0, \quad \|K\|_{C^s(\overline{V})^{n \times n}} \le C^s, \quad \forall s \in \mathbb{N}.\tag{14}
$$

216 The kernel equations (11) have been extensively studied in the literature (see e.g. [Cor+13; 217 DVK13; HD15; Hu+16; Hu+19; CN19]) but Theorem 2.5 does not follow from the results 218 contained therein. The most important difference is that, in Theorem 2.5, the kernel exists on a larger set than the triangle \mathcal{T} . This is crucial since we want $x \longmapsto f(x) = -K(x,0)\Lambda(1-q)^{\mathsf{T}}$ 219 220 to be analytic in an interval of the form $(-\varepsilon, 1)$, $\varepsilon > 0$, which does not lie entirely in \mathcal{T} . This 221 yields nontrivial issues in the standard fixed point approach, notably because we now have to 222 consider points that are "on the other side" of the diagonal (x, x) , that is the condition imposed 223 in the kernel equations at (x, x) cannot be consider as a boundary condition anymore. We have ²²⁴ developed in Appendix B a new approach to solve the kernel equations that encompasses in ²²⁵ particular the proof of Theorem 2.5.

226 Remark 2.6. Estimate (14) and Taylor's theorem show that the solution K to (11)-(13) is in ²²⁷ fact a power series.

As a consequence of Theorem 2.5, we see that, if $q_{i-1} = 0$, then $f = -K(·, 0)\Lambda (1 - q)^{\mathsf{T}}$ 228 229 satisfies $f_i = 0$ in $(0, 1)$ if, and only if.

$$
\left\langle b, \frac{\partial^r k^{\mathfrak{c}}}{\partial x^r}(0,0) \right\rangle = 0, \quad \forall r \in \mathbb{N},\tag{15}
$$

231 where $b \in \mathbb{R}^{n-1}$ is defined in (5) and $k^{\mathfrak{c}} = (k_{ij})_{j \neq i}$. It remains to relate the derivatives of the 232 kernel at the origin with M. This is the purpose of the next section. This will be done only for 233 a very well chosen particular solution to the kernel equations (i.e. for one $\delta \neq 1$) but this will be enough for our purposes as already underlined in Remark 2.2.

235 Remark 2.7. We emphasize that, in all the sections below and unless specifically mentioned, 236 the number of negative speeds m is arbitrary (the orthogonality conditions (15) are studied for ²³⁷ any nonzero $b \in \mathbb{R}^{n-1}$).

²³⁸ 3 The derivatives of the kernel at the origin

²³⁹ 3.1 Normalization of the equations

240 Let us first observe that a feature of the kernel equations $(11)-(13)$ is that it does not couple $_{241}$ different rows of K:

$$
242\\
$$

$$
\begin{cases}\n\lambda_i \frac{\partial k_{ij}}{\partial x}(x,\xi) + \frac{\partial k_{ij}}{\partial \xi}(x,\xi)\lambda_j + \sum_{r=1}^n k_{ir}(x,\xi)m_{rj} = 0, \\
\lambda_i k_{ij}(x,x) - k_{ij}(x,x)\lambda_j = m_{ij} \quad (j \neq i), \quad k_{ii}(x,\delta x) = 0.\n\end{cases}
$$
\n(16)

243 Therefore, all along Section 3, $i \in \{1, ..., n\}$ is fixed and we will drop the dependence on i for ²⁴⁴ clarity.

²⁴⁵ Let us now introduce some important notations. Some of them have already been introduced ²⁴⁶ in Section 1.3 but they are recalled here for the sake of the presentation.

247 **I** It is convenient to normalize the kernel equations by $\lambda_i - \lambda_j$ for $j \neq i$ and by λ_i otherwise. ²⁴⁸ The kernel equations (16) become

$$
\begin{cases}\n\mu_j \frac{\partial k_j}{\partial x}(x,\xi) + \frac{\partial k_j}{\partial \xi}(x,\xi)\nu_j + \sum_{r=1}^n k_r(x,\xi)\alpha_{rj} = 0, \\
k_j(x,x) = \alpha_{ij} \quad (j \neq i), \quad k_i(x,\delta x) = 0,\n\end{cases}
$$
\n(17)

where $k = (k_{i1} \cdots k_{in})^{\mathsf{T}}$ and

$$
\mu_j = \frac{\lambda_i}{\lambda_i - \lambda_j}, \quad \nu_j = \frac{\lambda_j}{\lambda_i - \lambda_j}, \quad (j \neq i), \quad \mu_i = \nu_i = 1,
$$

$$
\alpha_{rj} = \frac{m_{rj}}{\lambda_i - \lambda_j}, \quad (j \neq i), \quad \alpha_{ri} = \frac{m_{ri}}{\lambda_i}.
$$

250 Note that, with this normalization, we have in particular $\mu_j - \nu_j = 1$ for $j \neq i$.

Since the component k_i plays a different role than all the other components k_j with $j \neq i$, we rewrite (17) in a matrix form separating both quantities. Let us denote by $n^c = n - 1$ and introduce $k^{\mathfrak{c}} = (k_j)_{j \neq i}$. Then, system (17) can be written as

$$
\begin{cases}\nD_{\mu}\frac{\partial k^{\mathfrak{c}}}{\partial x}(x,\xi) + D_{\nu}\frac{\partial k^{\mathfrak{c}}}{\partial \xi}(x,\xi) + A^{\mathsf{T}}k^{\mathfrak{c}}(x,\xi) + k_{i}(x,\xi)\psi^{0} = 0, \\
\frac{\partial k_{i}}{\partial x}(x,\xi) + \frac{\partial k_{i}}{\partial \xi}(x,\xi) + \langle w, k^{\mathfrak{c}}(x,\xi) \rangle = 0, \\
k^{\mathfrak{c}}(x,x) = \psi^{0}, \quad k_{i}(x,\delta x) = 0,\n\end{cases}
$$
\n(18)

where $D_{\mu}, D_{\nu}, A \in \mathbb{R}^{n^{\mathfrak{c}} \times n^{\mathfrak{c}}}$ are the matrices defined by

$$
D_{\mu} = \text{diag}(\mu_j)_{j \neq i}, \quad D_{\nu} = \text{diag}(\nu_j)_{j \neq i}, \quad A = (\alpha_{rj})_{r, j \neq i},
$$

and $\psi^0, w \in \mathbb{R}^{n^c}$ are the vectors defined by

$$
\psi^0 = (\alpha_{ij})_{j \neq i}, \quad w = (\alpha_{ji})_{j \neq i}.
$$

255 Note that we used that $\alpha_{ii} = 0$ (since $M \in \mathbb{R}^{n \times n}_{0}$). Finally, it will also be convenient to 256 use the matrix $D \in \mathbb{R}^{n^c \times n^c}$ and the vector $v \in \mathbb{R}^{n^c}$ defined by

$$
D = D_{\mu} + D_{\nu}, \quad v = -\frac{1}{2}w.
$$
 (19)

²⁵⁸ 3.2 Computation of the derivatives

²⁵⁹ The main result of this section is the following.

260 Theorem 3.1. For the solution to (18) with $\delta = -1$, we have

$$
\frac{\partial^{\gamma+\sigma} k^{\mathfrak{c}}}{\partial x^{\gamma}\partial \xi^{\sigma}}(0,0) = \sum_{r=0}^{\gamma} \sum_{s=0}^{\sigma} (-1)^{r} \binom{\gamma}{r} \binom{\sigma}{s} \psi_{\gamma+\sigma-(r+s),r+s}, \quad \forall \gamma, \sigma \in \mathbb{N},\tag{20}
$$

262 where $(\psi_{r,s})_{r,s\in\mathbb{N}}$ is the sequence defined by

263
$$
\psi_{r,0} = \psi^r, \quad \psi_{r,s} = 0 \quad \text{if } r < s, \quad \psi_{r,s} = \sum_{\ell=0}^{r-s} \langle v, \psi_{r-1-\ell,s-1} \rangle \psi_{\ell,0} \quad \text{if } r \ge s \ge 1,
$$
 (21)

264 where $(\psi^r)_{r \in \mathbb{N}}$ is the sequence defined in (4).

²⁶⁵ Combining this result with the estimates (14) and Taylor's theorem, we obtain an explicit 266 formula for the solution to (18) when $\delta = -1$:

Corollary 3.2. For $\delta = -1$, the solution to (18) is given by

$$
k^{\mathfrak{e}}(x,\xi) = \sum_{r=0}^{+\infty} \sum_{s=0}^{+\infty} \frac{(-1)^r}{r!s!} \psi_{r,s}(x-\xi)^r (x+\xi)^s, \quad k_i(x,\xi) = -\int_{\frac{x-\xi}{2}}^x \langle w, k^{\mathfrak{e}}(\sigma, \sigma - x + \xi) \rangle \, d\sigma,
$$

²⁶⁷ for every $(x,\xi) \in \mathbb{R}^2$, where $(\psi_{r,s})_{r,s \in \mathbb{N}}$ is the sequence defined by (21) and the series is normally 268 convergent on any compact set of \mathbb{R}^2 .

269 Remark 3.3. Explicit solutions to the kernel equations were also obtained in [VK14, Section 270 3.4 for systems of $n = 2$ equations.

Proof of Theorem 3.1. 1. To explain the special role played by $\delta = -1$, we start the computations with an arbitrary $\delta \neq 1$. The first idea is to form a system involving only $k^{\mathfrak{c}}$ by expressing k_i as a function of k^c :

$$
k_i(x,\xi) = -\int_{\frac{x-\xi}{1-\delta}}^x \langle w, k^{\mathfrak{c}}(\sigma, \sigma - x + \xi) \rangle d\sigma.
$$

As a result, $k^{\mathfrak{c}}$ solves

$$
\begin{cases} D_{\mu} \frac{\partial k^{\mathfrak{c}}}{\partial x}(x,\xi) + D_{\nu} \frac{\partial k^{\mathfrak{c}}}{\partial \xi}(x,\xi) + A^{\mathsf{T}} k^{\mathfrak{c}}(x,\xi) - \left(\int_{\frac{x-\xi}{1-\delta}}^{x} \langle w, k^{\mathfrak{c}}(\sigma, \sigma - x + \xi) \rangle \, d\sigma \right) \psi^{0} = 0, \\ k^{\mathfrak{c}}(x,x) = \psi^{0}. \end{cases}
$$

We now transform this system into a Cauchy problem by introducing the transformation

$$
h(t, \theta) = k^{\mathfrak{c}} \left(\frac{-t + \theta}{2}, \frac{t + \theta}{2} \right).
$$

271 Using that $D_{\mu} - D_{\nu} = \text{Id}_{n^{\mathfrak{c}}}$, we can check that h satisfies the system

$$
\begin{cases} \frac{\partial h}{\partial t}(t,\theta) = D\frac{\partial h}{\partial \theta}(t,\theta) + A^{\mathsf{T}}h(t,\theta) + \left(\int_{-\frac{1+\delta}{1-\delta}t}^{\theta} \langle v,h(t,\eta) \rangle \,d\eta\right)\psi^{0}, \\ h(0,\theta) = \psi^{0}, \end{cases} \tag{22}
$$

where we recall that D and v are defined in (19). Note as well that

$$
\frac{\partial^{\gamma+\sigma} k^{\mathfrak{c}}}{\partial x^{\gamma} \partial \xi^{\sigma}}(x,\xi) = \sum_{r=0}^{\gamma} \sum_{s=0}^{\sigma} (-1)^{r} \binom{\gamma}{r} \binom{\sigma}{s} \frac{\partial^{\gamma+\sigma} h}{\partial t^{\gamma+\sigma-(r+s)} \partial \theta^{r+s}}(-x+\xi, x+\xi), \quad \forall \gamma, \sigma \in \mathbb{N},
$$

so that the derivatives of $k^{\mathfrak{c}}$ at $(0,0)$ can be deduced from those of h. They will be computed from (22) and we see that the computations considerably simplify if the lower bound of the integral vanishes, that is if we choose $\delta = -1$. For this choice, we define

$$
\psi_{r,s} = \frac{\partial^{r+s}h}{\partial t^r \partial \theta^s}(0,0).
$$

 273 We are going to show that it satisfies (21) .

274 2. All along the rest of the proof, we will use the notation $c_{r,s} = \langle v, \psi_{r,s} \rangle$. First observe that ²⁷⁵ system (22) (with $δ = -1$) yields the following identities:

$$
\begin{cases}\n\psi_{r+1,0} = D\psi_{r,1} + A^{\mathsf{T}}\psi_{r,0}, \\
\psi_{r+1,s} = D\psi_{r,s+1} + A^{\mathsf{T}}\psi_{r,s} + c_{r,s-1}\psi_{0,0}, \\
\psi_{0,s} = 0,\n\end{cases}
$$
\n(23)

277 for every $r \geq 0$ and $s \geq 1$. The second property in (21) is easily proved by induction on 278 $r \geq 1$. To establish the two other identities, it is sufficient to prove the following statement 279 for any $N \geq 1$:

$$
\begin{cases}\n\psi_{s+q,s} = \sum_{\ell=0}^{q} c_{s-1+q-\ell,s-1} \psi_{\ell,0}, & \forall s \ge 1, \forall 0 \le q \le N, \\
\psi_{r,0} = A^{\mathsf{T}} \psi_{r-1,0} + D \sum_{\ell=0}^{r-2} c_{r-2-\ell,0} \psi_{\ell,0}, & \forall 2 \le r \le N+1.\n\end{cases}
$$
\n(24)

We prove it by induction. For $N = 1$, this is clear. Indeed, for any $s \geq 1$, we have

$$
\psi_{s,s} = D\psi_{s-1,s+1} + A^{\mathsf{T}} \psi_{s-1,s} + c_{s-1,s-1} \psi_{0,0} \quad \text{(by (23))},
$$

= $c_{s-1,s-1} \psi_{0,0}$ (by the second property in (21)), (25)

$$
\psi_{s+1,s} = D\psi_{s,s+1} + A^{\mathsf{T}}\psi_{s,s} + c_{s,s-1}\psi_{0,0} \quad \text{(by (23))},
$$

= $A^{\mathsf{T}}\psi_{s,s} + c_{s,s-1}\psi_{0,0}$ (by the second property in (21)),
= $c_{s-1,s-1}\psi_{1,0} + c_{s,s-1}\psi_{0,0}$ (by (25)),

and

$$
\psi_{2,0} = D\psi_{1,1} + A^{\mathsf{T}}\psi_{1,0} \quad \text{(by (23))},
$$

= $c_{0,0}D\psi_{0,0} + A^{\mathsf{T}}\psi_{1,0} \quad \text{(by (25))}.$

281 Assume now that (24) holds for $N \ge 1$ and let us prove it for $N + 1$. We first show that

$$
\psi_{s+N+1,s} = \sum_{\ell=0}^{N+1} c_{s+N-\ell,s-1} \psi_{\ell,0}, \quad \forall s \ge 1.
$$
 (26)

For any $s \geq 1$, we have

$$
\psi_{s+N+1,s} = D\psi_{s+N,s+1} + A^{\mathsf{T}} \psi_{s+N,s} + c_{s+N,s-1} \psi_{0,0} \text{ (by (23))},
$$

\n
$$
= D \sum_{\ell=0}^{N-1} c_{s+N-1-\ell,s} \psi_{\ell,0} + A^{\mathsf{T}} \sum_{\ell=0}^{N} c_{s-1+N-\ell,s-1} \psi_{\ell,0}
$$

\n
$$
+ c_{s+N,s-1} \psi_{0,0} \text{ (by assumption (24))},
$$

\n
$$
= D \sum_{\ell=0}^{N-1} c_{s+N-1-\ell,s} \psi_{\ell,0} + \sum_{r=2}^{N+1} c_{s+N-r,s-1} A^{\mathsf{T}} \psi_{r-1,0}
$$

\n
$$
+ c_{s-1+N,s-1} \psi_{1,0} + c_{s+N,s-1} \psi_{0,0}.
$$

²⁸³ Therefore, if we show the identity

$$
\sum_{\ell=0}^{N-1} c_{s+N-1-\ell,s} \psi_{\ell,0} = \sum_{r=2}^{N+1} c_{s+N-r,s-1} \left(\sum_{\ell=0}^{r-2} c_{r-2-\ell,0} \psi_{\ell,0} \right), \tag{27}
$$

then we can use the second condition in (24) to obtain the desired identity (26) . To establish (27), we use the first condition in (24) to deduce that, for every $0 \le \ell \le N - 1$,

$$
\langle v, \psi_{s+N-1-\ell,s} \rangle = \sum_{j=0}^{N-1-\ell} c_{s-1+N-1-\ell-j,s-1} c_{j,0}
$$

$$
= \sum_{r=\ell+2}^{N+1} c_{s+N-r,s-1} c_{r-2-\ell,0}.
$$

Finally, a simple change of order of summation leads to (27). It remains to show the second identity in (24) for $r = N + 2$, namely

$$
\psi_{N+2,0} = A^{\mathsf{T}} \psi_{N+1,0} + D \sum_{\ell=0}^{N} c_{N-\ell,0} \psi_{\ell,0}.
$$

We have

$$
\psi_{N+2,0} = D\psi_{N+1,1} + A^{\mathsf{T}} \psi_{N+1,0} \quad \text{(by (23))},
$$

$$
= D \sum_{\ell=0}^{N} c_{N-\ell,0} \psi_{\ell,0} + A^{\mathsf{T}} \psi_{N+1,0} \quad \text{(by (24))}.
$$

285

286 Remark 3.4. Theoretically, we can also compute all the derivatives at $(0,0)$ of the solution to 287 (18) for arbitrary $\delta \neq 1$. This can be done by taking derivatives and inverting some matrix. ²⁸⁸ However, the size of this matrix grows with the order of derivatives and computations rapidly ²⁸⁹ become more and more complicated. It seems dicult with such a strategy to obtain a suitable 290 formula for arbitrary δ. At the same time, we see from (22) that a different choice of δ means 291 more derivatives to be computed, as for instance with $\delta = 0$ which leads to an integral of the ²⁹² form \int_{-t}^{θ} . In addition to that, we recall that one choice of δ is actually sufficient for the purposes ²⁹³ of this paper (Remark 2.2).

²⁹⁴ 4 Study of the orthogonality conditions

²⁹⁵ In this section, we use the computations obtained in the previous section to study the orthogo- $_{296}$ nality conditions (15). We start with the conclusion of the proof of our first main result.

Proof of Theorem 1.3. We recall that, from the results of the previous sections, we only have to show the equivalence between the orthogonality conditions (15) and (6). First observe that, from the definition (21) of the sequence $(\psi_{r,s})_{r,s\in\mathbb{N}}$, it is clear that (6) is equivalent to

$$
\langle b, \psi_{r,s}\rangle = 0, \quad \forall r, s \in \mathbb{N}.
$$

297 We can check that this condition is equivalent to (15) using (20) and (21) .

13

 \Box

 \Box

298 Remark 4.1. The proof above and the analyticity of k^c in \mathbb{R}^2 shows that the following four ²⁹⁹ properties are in fact equivalent:

$$
\text{300} \qquad 1. \ \langle b, k^c(x, \xi) \rangle = 0 \text{ for every } (x, \xi) \in \mathbb{R}^2.
$$

$$
\text{301} \qquad 2. \ \langle b, k^{\mathfrak{c}}(x,0) \rangle = 0 \text{ for every } x \in \mathbb{R}.
$$

$$
302 \t 3. \langle b, \psi_{r,0} \rangle = 0 \text{ for every } r \in \mathbb{N}.
$$

303 4. $\langle b, \psi_{r,s} \rangle = 0$ for every $r, s \in \mathbb{N}$.

304 We are now going to study the orthogonality conditions (6) for the sequence $(\psi^r)_{r \in \mathbb{N}}$ and 305 prove our second main result. For the rest of Section 4, the matrices $A, D \in \mathbb{R}^{n^c \times n^c}$ and the vectors $\psi^0, v, b \in \mathbb{R}^{n^c}$ can in fact be arbitrary. We emphasize that n is also arbitrary, it is only 307 during the proof of Theorem 1.6 that we will assume that $n = 3$ or $n = 4$.

³⁰⁸ 4.1 Some invariant subspaces of the sequence

³⁰⁹ We start the general study of the orthogonality conditions (6) with the description of two simple **310** invariant subspaces of the sequence $(\psi^r)_{r \in \mathbb{N}}$.

Proposition 4.2. Assume that $\psi^0 \in E$ for some $E \subset \mathbb{R}^{n^c}$ satisfying one of the following two conditions:

$$
A^{\mathsf{T}}(E) \subset E, \quad E \subset \ker v^{\mathsf{T}}.
$$
\n
$$
(28)
$$

$$
A^{\mathsf{T}}(E) \subset E, \quad D(E) \subset E. \tag{29}
$$

311 Then, $\psi^r \in E$ for every $r \in \mathbb{N}$.

Proof. We prove the result by induction on r. For $r = 0$ this is trivial and for $r = 1$ this follows from the definition $\psi^1 = A^{\mathsf{T}} \psi^0$ and the property $A^{\mathsf{T}}(E) \subset E$. Assume then that $\psi^{\ell} \in E$ for every $0 \leq \ell \leq r$ for some $r \geq 1$ and let us show that $\psi^{r+1} \in E$. Since $r + 1 \geq 2$, we have

$$
\psi^{r+1} = A^{\mathsf{T}} \psi^r + \sum_{\ell=0}^{r-1} \langle v, \psi^{r-1-\ell} \rangle D \psi^{\ell}.
$$

312 Clearly, the first part $A^{\mathsf{T}}\psi^r$ belongs to E since $\psi^r \in E$ and $A^{\mathsf{T}}(E) \subset E$. The remaining part 313 also belongs to E since either $\langle v, \psi^\ell \rangle = 0$ for every $0 \leq \ell \leq r$ (if $E \subset \ker v^{\sf T}$) or $D \psi^\ell \in E$ for 314 every $0 \leq \ell \leq r$ (if $D(E) \subset E$). \Box

 $\frac{315}{100}$ If we can find a subspace E such as in the previous proposition and which is in addition 316 included in ker b^{T} , then we see that the whole sequence will be guaranteed to stay in ker b^{T} .

317 4.2 Characterization of rank one sequences

318 In this section, we characterize when the rank of $(\psi^r)_{r \in \mathbb{N}}$ is equal to one, and we use it to prove 319 Theorem 1.6 in the case $n=3$. We recall that, by definition, rank $(\psi^r)_{r\in S}=\dim \text{span }\{\psi^r \quad | \quad r\in S\}$ 320 for any $S \subset \mathbb{N}$.

From now on, it will be convenient to use the following notation:

$$
E_s = \text{span}\,\left\{\psi^r \quad | \quad r \le s\right\}, \quad \forall s \in \mathbb{N}.
$$

First of all, it is clear that

$$
rank(\psi^r)_{r \in \mathbb{N}} = 1 \iff (\psi^0 \neq 0, \quad \psi^r \in E_0, \quad \forall r \ge 1).
$$

³²¹ We have the following characterization:

- ³²² Proposition 4.3. The following three conditions are equivalent:
- 323 1. $\psi^r \in E_0$ for every $r \geq 1$.
- 324 2. $\psi^r \in E_0$ for every $r \in \{1, 2\}$.
- 325 3. E_0 satisfies (28) or (29).

Proof. The implication $1 \implies 2$ is trivial. The implication $3 \implies 1$ follows from Proposition 4.2. Let us show that $2 \implies 3$. We write

$$
\psi^r = \alpha_r \psi^0, \quad r = 1, 2,
$$

326 for some $\alpha_r \in \mathbb{R}$. The condition for $r = 1$ gives $A^{\mathsf{T}} \psi^0 = \alpha_1 \psi^0$, which is equivalent to $A^{\mathsf{T}}(E_0) \subset$ 327 E_0 . The condition for $r = 2$ gives $A^{\mathsf{T}} \psi^1 + \langle v, \psi^0 \rangle D\psi^0 = \alpha_2 \psi^0$, which implies $\langle v, \psi^0 \rangle D\psi^0 \in E_0$,

328 that is either $E_0 \subset \text{ker } v^{\mathsf{T}}$ or $D(E_0) \subset E_0$. This establishes the desired equivalences.

329

Proof of Theorem 1.6 (case n = 3). Assume that

$$
\langle b, \psi^r \rangle = 0, \quad \forall r \in \{0, 1, 2\}.
$$

 \Box

Since $n^{\mathfrak{c}} = 2$, we have dim ker $b^{\mathsf{T}} = 1$ and thus

$$
rank(\psi^r)_{r \in \{0,1,2\}} \le 1.
$$

330 As a result, $\psi^r \in E_0$ for $r \in \{1,2\}$ and it follows that $\psi^r \in E_0$ for every $r \ge 1$ by Proposition ³³¹ 4.3. \Box

³³² 4.3 Characterization of rank two sequences

333 In this section, we characterize when the rank of $(\psi^r)_{r \in \mathbb{N}}$ is equal to two, and we use it to prove **334** Theorem 1.6 in the case $n = 4$. The study of rank two sequences is considerably more difficult ³³⁵ than for rank one.

³³⁶ We start with the following simple observation.

Proposition 4.4. Let $\{0,1,2\} \subset S \subset \mathbb{N}$. We have rank $(\psi^r)_{r \in S} = 2$ if, and only if, we have one ³³⁸ of the following two conditions:

339 1. rank
$$
(\psi^0|\psi^1) = 1
$$
, rank $(\psi^0|\psi^2) = 2$ and $\psi^r \in E_2$ for every $r \in S \setminus \{0, 1, 2\}$.

340
2. rank
$$
(\psi^0|\psi^1) = 2
$$
 and $\psi^r \in E_1$ for every $r \in S \setminus \{0,1\}$.

341 Proof. We only need to observe that the situation rank $(\psi^0|\psi^1) = \text{rank}(\psi^0|\psi^2) = 1$ does not λ_{142} happen. Indeed, in that situation we have $\psi^1, \psi^2 \in E_0$ and thus $\psi^r \in E_0$ for every $r \geq 1$ by ³⁴³ Proposition 4.3, which shows that the sequence cannot be of rank two. \Box

³⁴⁴ We now characterize both conditions of Proposition 4.4.

345 Proposition 4.5. Assume that rank $(\psi^0|\psi^1) = 1$ and rank $(\psi^0|\psi^2) = 2$. Then, the following ³⁴⁶ three conditions are equivalent:

347 1.
$$
\psi^r \in E_2
$$
 for every $r \geq 3$.

348 2. $\psi^r \in E_2$ for every $r \in \{3, 4\}$.

349 3. E_2 satisfies (29).

350 Proof. The implication $1 \implies 2$ is trivial. The implication $3 \implies 1$ follows from Proposition 351 4.2. Let us show that $2 \implies 3$. From the definition of ψ^2 and the rank assumptions, we have 352 $\langle v, \psi^0 \rangle \neq 0$ and $D\psi^0 \in \text{span } \{ \psi^0, \psi^2 \}.$ Using these facts, we can first check that the condition 353 $\psi^3 \in E_2$ gives $A^{\mathsf{T}}(E_2) \subset E_2$ and then that the condition $\psi^4 \in E_2$ yields $D(E_2) \subset E_2$. \Box

³⁵⁴ The second condition in Proposition 4.4 is more dicult to characterize.

355 Proposition 4.6. Assume that rank $(\psi^0|\psi^1) = 2$. Then, the following two conditions are equiv-³⁵⁶ alent:

357 $1. \psi^r \in E_1$ for every $r \geq 2$.

358 2. $\psi^r \in E_1$ for every $r \in \{2, ..., 5\}$.

³⁵⁹ Before proving Proposition 4.6, we prove our second main result.

Proof of Theorem 1.6 (case n = 4). Assume that

$$
\langle b, \psi^r \rangle = 0, \quad \forall r \in \{0, \dots, 5\}.
$$

Since $n^{\mathfrak{c}} = 3$, we have dim ker $b^{\mathsf{T}} = 2$ and thus

$$
rank(\psi^r)_{r \in \{0,\dots,5\}} \le 2.
$$

³⁶⁰ If the rank is in fact less than or equal to 1, then we conclude as in the proof of Theorem 1.6 in $\mathbf{361}$ the case $n = 3$. If the rank is exactly equal to 2, then the conclusion follows from Propositions ³⁶² 4.4, 4.5 and 4.6. П

³⁶³ We now turn to the proof of the key proposition.

364 Proof of Proposition 4.6. If E_1 satisfies (28) or (29), then the result follows from Proposition 4.2. 365 Therefore, from now on, we assume that E_1 does not meet any of these conditions.

366 1. Let $N \geq 4$ be arbitrary and consider the property: for every $r \in \{2, \ldots, N\}$, there exist 367 $\alpha_r, \beta_r \in \mathbb{R}$ such that

$$
\psi^r = \alpha_r \psi^0 + \beta_r \psi^1. \tag{30}
$$

³⁶⁹ Let us also set

370
\n370
\n
$$
\alpha_0 = 1, \quad \beta_0 = 0,
$$

\n $\alpha_1 = 0, \quad \beta_1 = 1,$ (31)

so that the previous identity is always true for $r = 0, 1$. Using the definition (4) of the sequence we see that, for $r \geq 2$, identity (30) is equivalent to

$$
\alpha_r \psi^0 + \beta_r \psi^1 = \alpha_{r-1} A^{\mathsf{T}} \psi^0 + \beta_{r-1} A^{\mathsf{T}} \psi^1
$$

+
$$
\left(\sum_{\ell=0}^{r-2} c_{r-2-\ell} \alpha_\ell \right) D\psi^0 + \left(\sum_{\ell=0}^{r-2} c_{r-2-\ell} \beta_\ell \right) D\psi^1,
$$

where we introduced, for every $s \in \{0, \ldots, N\},\$

$$
c_s = \alpha_s \langle v, \psi^0 \rangle + \beta_s \langle v, \psi^1 \rangle.
$$

371 Let us eliminate the terms $A^{\mathsf{T}} \psi^0, A^{\mathsf{T}} \psi^1$. By definition of the sequence, we have $A^{\mathsf{T}} \psi^0 = \psi^1$. 372 On the other hand, condition (30) for $r = 2$ yields

$$
A^{\mathsf{T}}\psi^1 = \alpha_2\psi^0 + \beta_2\psi^1 - c_0D\psi^0. \tag{32}
$$

374 As a result, for $r \geq 3$, identity (30) is equivalent to

$$
(\psi^0|\psi^1)u_r = (D\psi^0|D\psi^1)f_{r-1},\tag{33}
$$

376 where $u_r, f_{r-1} \in \mathbb{R}^2$ are the vectors defined by

$$
u_r = \begin{pmatrix} \alpha_r - \beta_{r-1}\alpha_2 \\ \beta_r - (\alpha_{r-1} + \beta_{r-1}\beta_2) \end{pmatrix}, \quad f_{r-1} = \begin{pmatrix} \beta_{r-1}(-c_0) + \sum_{\ell=0}^{r-2} c_{r-2-\ell}\alpha_\ell \\ \sum_{\ell=0}^{r-2} c_{r-2-\ell}\beta_\ell \end{pmatrix}.
$$
 (34)

- ³⁷⁸ Let us make some observations.
- 379 For any r_1, r_2 , if $\lambda f_{r_1-1} + \mu f_{r_2-1} = 0$ for some $\lambda, \mu \in \mathbb{R}$, then $\lambda u_{r_1} + \mu u_{r_2} = 0$. Indeed, 380 denoting by $u = \lambda u_{r_1} + \mu u_{r_2}$, we have $(\psi^0 | \psi^1) u = 0$ and thus $u = 0$ since we assumed $\text{that } \psi^0, \psi^1 \text{ are linearly independent.}$
- 382 f_{r_1-1} and f_{r_2-1} are linearly dependent for any r_1, r_2 . Indeed, otherwise we obtain 383 $(\psi^0|\psi^1)U = (D\psi^0|D\psi^1)$ for some matrix $U \in \mathbb{R}^{2 \times 2}$. This means that $D(E_1) \subset E_1$. **It then follows from (32) that** $A^{T}(E_1) \subset E_1$ as well. Therefore, E_1 satisfies (29), but this situation has been excluded from the beginning of the proof.
- 386 f_2 and f_3 are linearly dependent only if $c_0 \neq 0$. Indeed, if $c_0 = 0$, then $A^{\mathsf{T}} \psi^1 \in E_1$ **by** (32), so that $A^{\mathsf{T}}(E_1) \subset E_1$. If $c_0 = 0$, we also have $\det(f_2|f_3) = c_1^2$, which cannot **be zero since otherwise** $c_0 = c_1 = 0$, that is $E_1 \subset \ker v^{\mathsf{T}}$, and thus E_1 satisfies (28) ³⁸⁹ (excluded).

The necessary condition $\det(f_2|f_{r-1}) = 0$ is equivalent to the identity

$$
\left(\sum_{\ell=0}^{r-2} c_{r-2-\ell} \beta_{\ell}\right) f_2 - c_0 f_{r-1} = 0,
$$

which, by the first observation above, in turn implies that

$$
\left(\sum_{\ell=0}^{r-2} c_{r-2-\ell} \beta_{\ell}\right) u_3 - c_0 u_r = 0.
$$

390 Since $c_0 \neq 0$, this gives the following formulas:

$$
\begin{cases}\nf_{r-1} = \left(\sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell} \beta_{\ell}\right) f_2, \\
u_r = \left(\sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell} \beta_{\ell}\right) u_3,\n\end{cases} \tag{35}
$$

where we introduced $\bar{c}_s = \frac{c_s}{c_0}$. Conversely, it is clear that if we have (35), then (33) will 393 also hold for $r \geq 3$, provided that it holds for $r = 3$.

 $\mathbf{394}$ Finally, observe that the second formula in (35), combined with the definition (34) of u_r , 395 uniquely determines all the α_r , β_r for $r \ge 4$ as a function of α_2 , β_2 and α_3 , β_3 :

$$
\begin{cases}\n\alpha_r = \beta_{r-1}\alpha_2 + \left(\sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell}\beta_\ell\right) (\alpha_3 - \beta_2\alpha_2), \\
\beta_r = \alpha_{r-1} + \beta_{r-1}\beta_2 + \left(\sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell}\beta_\ell\right) (\beta_3 - (\alpha_2 + \beta_2^2)),\n\end{cases} (36)
$$

 397 and that the first formula in (35) is equivalent to

$$
\beta_{r-1} = \sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell} \left(\alpha_{\ell} + (\beta_2 - \bar{c}_1) \beta_{\ell} \right). \tag{37}
$$

399 In summary, we have shown that the property considered is equivalent to: $c_0 \neq 0$ and there 400 exist α_2, β_2 and α_3, β_3 such that (30) holds for $r = 2, 3$ and such that the sequence defined 401 by (36) (with (31)) satisfies (37) for every $r \in \{4, ..., N\}$.

⁴⁰² 2. Let us now study the sequence (36). The proof of the result will be complete after we show ⁴⁰³ that the following three conditions are equivalent:

- 404 (a) Condition (37) holds for every $r \geq 4$.
- 405 (b) Condition (37) holds for $r = 4, 5$.
- 406 (c) α_3 and β_3 are given by

 $\int \beta_3 = (\alpha_2 + \beta_2^2) - (\beta_2 - \bar{c}_1)^2 + \alpha_2 + (\beta_2 - \bar{c}_1)\beta_2,$ 407 $\alpha_3 = \beta_2 \alpha_2 - (\beta_2 - \bar{c}_1)(\beta_3 - (\alpha_2 + \beta_2^2))$. (38)

We start with the implication 2b \implies 2c. Condition (37) for $r = 4$ immediately gives β_3 as a function of α_2, β_2 :

$$
\beta_3 = \sum_{\ell=0}^2 \bar{c}_{2-\ell} \left(\alpha_\ell + (\beta_2 - \bar{c}_1) \beta_\ell \right).
$$

On the other hand, condition (37) for $r = 5$ gives

$$
\beta_4 = \sum_{\ell=1}^2 \bar{c}_{3-\ell} \left(\alpha_{\ell} + (\beta_2 - \bar{c}_1) \beta_{\ell} \right) + \bar{c}_0 \left(\alpha_3 + (\beta_2 - \bar{c}_1) \beta_3 \right) + \bar{c}_3 \left(\alpha_0 + (\beta_2 - \bar{c}_1) \beta_0 \right)
$$

= $2\alpha_3 + \beta_2\beta_3 + \sum_{\ell=1}^2 \bar{c}_{3-\ell} \left(\alpha_{\ell} + (\beta_2 - \bar{c}_1) \beta_{\ell} \right),$

whereas, by definition (36) ,

$$
\beta_4 = \alpha_3 + \beta_3 \beta_2 + \left(\sum_{\ell=0}^2 \bar{c}_{2-\ell} \beta_\ell\right) \left(\beta_3 - \left(\alpha_2 + \beta_2^2\right)\right).
$$

Identifying both expressions gives α_3 as a function of α_2, β_2 :

$$
\alpha_3 = -\sum_{\ell=1}^2 \bar{c}_{3-\ell} \left(\alpha_\ell + (\beta_2 - \bar{c}_1) \beta_\ell \right) + \left(\sum_{\ell=0}^2 \bar{c}_{2-\ell} \beta_\ell \right) \left(\beta_3 - (\alpha_2 + \beta_2^2) \right).
$$

⁴⁰⁸ We can check that the previous formulas are equivalent to (38) (we prefer the expressions $\frac{1}{409}$ in (38) because they make appear some coefficients involved in (36)).

410 Let us now prove the implication $2c \implies 2a$. We prove it by induction on r. For $r = 4$, this holds by very definition of β_3 as we have seen above. Assume now that (37) holds for 412 some arbitrary $r \geq 4$, and let us prove it for $r + 1$, that is to prove that we have

$$
\beta_r = \sum_{\ell=0}^{r-1} \bar{c}_{r-1-\ell} \left(\alpha_\ell + (\beta_2 - \bar{c}_1) \beta_\ell \right). \tag{39}
$$

By definition (36) of β_r , we have

$$
\beta_r = \alpha_{r-1} + \beta_{r-1}\bar{c}_1 + (\beta_2 - \bar{c}_1) \left(\beta_{r-1} - (\beta_2 - \bar{c}_1) \sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell} \beta_\ell\right) + (\beta_3 - (\alpha_2 + \beta_2^2) + (\beta_2 - \bar{c}_1)^2) \sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell} \beta_\ell.
$$

Using the induction hypothesis (37) and the definition (38) of β_3 , we obtain

$$
\beta_r = \bar{c}_{r-1} + \sum_{\ell=0}^{r-2} \bar{c}_{r-2-\ell} \left((\beta_2 - \bar{c}_1) \alpha_\ell + (\alpha_2 + (\beta_2 - \bar{c}_1) \beta_2) \beta_\ell \right).
$$

Now observe that, using the definition of α_3 , we have

$$
\alpha_{\ell+1} + (\beta_2 - \bar{c}_1)\beta_{\ell+1} = \beta_{\ell}\alpha_2 + (\beta_2 - \bar{c}_1)(\alpha_{\ell} + \beta_{\ell}\beta_2) = (\beta_2 - \bar{c}_1)\alpha_{\ell} + (\alpha_2 + (\beta_2 - \bar{c}_1)\beta_2)\beta_{\ell}.
$$

⁴¹⁴ Formula (39) easily follows this identity and the previous one.

415

⁴¹⁶ 5 Kernel associated with the orthogonality conditions

⁴¹⁷ In this section, we supplement our results by giving a more explicit characterization of the ⁴¹⁸ conditions found in the previous section and that guaranteed the orthogonality conditions. Then, ⁴¹⁹ we discuss the structure of the associated kernel.

⁴²⁰ 5.1 Kernel associated with the invariant subspaces

Here we discuss properties related to the invariant subspaces of Section 4.1. We recall that, for any vector $h \in \mathbb{R}^{n^c}$, we denote the Kalman matrix of (A, h) by

$$
Kal(A, h) = (h|Ah|A^2h|\cdots|A^{n^{\epsilon}-1}h) \in \mathbb{R}^{n^{\epsilon} \times n^{\epsilon}}.
$$

421 Proposition 5.1. 1. There exists E satisfying (28), $\psi^0 \in E$ and $E \subset \text{ker } b^{\mathsf{T}}$, if, and only if,

422
$$
Kal(A, v)^{\mathsf{T}} \psi^0 = Kal(A, b)^{\mathsf{T}} \psi^0 = 0.
$$
 (40)

 \Box

2. Assume that Kal $(A, v)^{\mathsf{T}} \psi^0 = 0$. Then, for any $\delta \neq 1$, the solution to the kernel equations (18) is

$$
k_i(x,\xi) = 0
$$
, $k^c(x,\xi) = e^{-A^T(x-\xi)}\psi^0$, $\forall (x,\xi) \in \mathbb{R}^2$.

423 If, moreover, Kal $(A, b)^{\mathsf{T}} \psi^0 = 0$, then the orthogonality conditions (15) are satisfied.

Proof. 1. Assume that (40) holds. Let us define

$$
E = \ker \mathrm{Kal}\left(A, v\right)^{\mathsf{T}} \cap \ker \mathrm{Kal}\left(A, b\right)^{\mathsf{T}}.
$$

424 By assumption, $\psi^0 \in E$ and it is clear that $E \subset \ker v^{\mathsf{T}}$ and $E \subset \ker b^{\mathsf{T}}$. Finally, E is stable \mathbf{b}_y A^T thanks to Cayley-Hamilton theorem. Conversely, assume that (28) holds for some 426 $E \subset \ker b^{\mathsf{T}}$ with $\psi^0 \in E$. Since $\psi^0 \in E$ and E is stable by A^{T} , we have $(A^{\mathsf{T}})^k \psi^0 \in E$ for every $k \in \mathbb{N}$. Since $E \subset \ker v^{\mathsf{T}}$ and $E \subset \ker b^{\mathsf{T}}$, we obtain (40).

2. We see from the kernel equations (18) that $k_i = 0$ if, and only if, we have

$$
\begin{cases} D_{\mu} \frac{\partial k^{\mathfrak{c}}}{\partial x}(x,\xi) + D_{\nu} \frac{\partial k^{\mathfrak{c}}}{\partial \xi}(x,\xi) + A^{\mathsf{T}} k^{\mathfrak{c}}(x,\xi) = 0, \\ \langle v, k^{\mathfrak{c}}(x,\xi) \rangle = 0, \\ k^{\mathfrak{c}}(x,x) = \psi^0. \end{cases}
$$

428 Using that $D_{\mu} - D_{\nu} = \mathrm{Id}_{n^{\mathfrak{c}}}$, it is clear that $k^{\mathfrak{c}}(x,\xi) = e^{-A^{\mathsf{T}}(x-\xi)}\psi^0$ satisfies the first equation. The second condition follows from the assumption Kal $\left(A,v\right)^{\mathsf{T}}\psi^0=0$ and Cayley-⁴³⁰ Hamilton theorem. The third condition is trivial. Finally, the orthogonality conditions are 431 clearly satisfied under the additional assumption $\text{Kal}(A, b)^\mathsf{T} \psi^0 = 0$. \Box 432

⁴³³ Let us now address the second type of invariant subspaces introduced in Section 4.1.

434 Proposition 5.2. Assume that $\psi^0, b \neq 0$.

1. There exists E satisfying (29), $\psi^0 \in E$ and $E \subset \text{ker } b^T$ if, and only if, there exists a nonempty $J \subseteq \{1, \ldots, n^c\}$ such that

$$
\psi_j^0 = a_{rj} = b_r = 0, \quad \forall j \notin J, \forall r \in J.
$$

435 2. Assume that there exists a nonempty $J \subsetneq \{1, \ldots, n^c\}$ such that $\psi_j^0 = a_{rj} = 0$ for every 436 j \notin J and $r \in J$. Then, for any $\delta \neq 1$, the solution to the kernel equations (18) satisfies

$$
k_j^{\mathfrak{c}} = 0, \quad \forall j \notin J. \tag{41}
$$

$$
438 \hspace{1.5cm} If, \; moreover, \; b_r = 0 \; for \; every \; r \in J, \; then \; the \; orthogonality \; conditions \; (15) \; are \; satisfied.
$$

Proof. 1. Since D is a diagonal matrix with distinct entries, its invariant subspaces are of the form

$$
E = \text{span}\{e_r \mid r \in J\},\
$$

439 for some $J \subset \{1,\ldots,n^{\mathfrak{c}}\}$, where $e_1,\ldots,e_{n^{\mathfrak{c}}}$ are the canonical vectors of $\mathbb{R}^{n^{\mathfrak{c}}}$. Since $\psi^0 \neq 0$ 440 (resp. $b \neq 0$), we have $J \neq \emptyset$ (resp. $J \neq \{1, \ldots, n^c\}$). Then, we easily check that such a subspace is invariant by A^T if, and only if, $a_{rj} = 0$ for every $r \in J$ and $j \notin J$ and that it 442 is included in ker b^{T} if, and only if, $b_r = 0$ for every $j \in J$.

⁴⁴³ 2. Property (41) is a consequence of the uniqueness of the solution to the kernel equations. ⁴⁴⁴ The orthogonality conditions are clearly satised under the additional assumption that 445 $b_r = 0$ for every $r \in J$.

446

 Remark 5.3. The first item in the above propositions gives explicit conditions that guarantee that the orthogonality conditions (15) hold (when combined with the results of the previous sections). We found these conditions with an algebraic approach. On the other hand, once these conditions are known, the second item of the above propositions show how to use them to obtain ⁴⁵¹ an analytic proof of the orthogonality conditions. Observe in addition that these different proofs 452 are valid for arbitrary $\delta \neq 1$.

⁴⁵³ 5.2 Kernel associated with nontrivial rank two sequences

⁴⁵⁴ In the same spirit as in the previous section, we now we discuss the following property, related ⁴⁵⁵ to Proposition 4.6:

$$
E_1 \subset \ker b^{\mathsf{T}}, \quad \psi^r \in E_1, \quad \forall r \in \{2, \dots, 5\}.
$$
 (42)

 \Box

457 Below, we denote by $c_0 = \langle v, \psi^0 \rangle$.

Proposition 5.4. 1. Assume that rank $(\psi^0|\psi^1) = 2$, E_1 satisfies neither (28) nor (29), $c_0 \neq$ 0 and $\langle b, \psi^0 \rangle = 0$. Then, condition (42) holds if, and only if, there exists $j_0 \in \{1, \ldots, n^c\}$ such that

$$
b_{j_0} = 0, \quad \text{rank } \Delta_{j_0} = 1,
$$

where $\Delta_{j_0} \in \mathbb{R}^{2n^{\mathfrak{c}} \times 2}$ is given by

$$
\Delta_{j_0} = \begin{pmatrix} (D - d_{j_0})\psi^0 & A^{\mathsf{T}} e_{j_0} \\ A^{\mathsf{T}} \psi^0 & v_{j_0} \psi^0 - c_0 e_{j_0} \end{pmatrix},
$$

⁴⁵⁸ where d_{j_0} is the j₀-th diagonal entry of D and e_{j_0} is the j₀-th canonical vector of \mathbb{R}^{n^c} .

2. Assume that $n = 4$, $i = 2$,

$$
b = \begin{pmatrix} 1 \\ 0 \\ -\rho \end{pmatrix}, \quad \rho \neq 0,
$$

459 $c_0 \neq 0, \ \alpha_{24} \neq 0, \ \langle b, \psi^0 \rangle = 0$ and $\text{rank } \Delta_2 = 1$. Then, the solution to the kernel equations 460 (18) with $\delta = -1$ is given, for some $\sigma \in \mathbb{R} \setminus \{0\}$, by

$$
\begin{cases}\nk_{21} = k_{24}\rho, \\
k_{22} = \frac{1}{-\sigma\alpha_{24}} \left(\sigma\mu_3 \frac{\partial k_{24}}{\partial x} + \sigma\nu_3 \frac{\partial k_{24}}{\partial \xi} - \alpha_{32} k_{24} \right), \\
k_{23} = \frac{1}{-\sigma\alpha_{24}} \left(\frac{\partial k_{24}}{\partial x} + \frac{\partial k_{24}}{\partial \xi} - \sigma\alpha_{23} k_{24} \right),\n\end{cases} (43)
$$

462 where $k_{24} \in C^{\infty}(\mathbb{R}^2)$ is the solution to

 λ

$$
\begin{cases}\n\mu_3 \frac{\partial^2 k_{24}}{\partial x^2}(x,\xi) + (\mu_3 + \nu_3) \frac{\partial^2 k_{24}}{\partial x \partial \xi}(x,\xi) + \nu_3 \frac{\partial^2 k_{24}}{\partial \xi^2}(x,\xi) = -2c_0 k_{24}(x,\xi), \\
\mu_3 \frac{\partial k_{24}}{\partial x}(x,-x) + \nu_3 \frac{\partial k_{24}}{\partial \xi}(x,-x) = \frac{\alpha_{32}}{\sigma} k_{24}(x,-x), \\
k_{24}(x,x) = \alpha_{24}.\n\end{cases} (44)
$$

464 To see that (44) indeed has a solution, we can introduce $h = \mu_3 \frac{\partial k_{24}}{\partial x} + \nu_3 \frac{\partial k_{24}}{\partial \xi}$ and observe that (k_{24}, h) satisfies a first-order hyperbolic system similar to the kernel equations (16) and whose ⁴⁶⁶ well-posedness can be established as in the proof of Theorem 2.5.

Proof of Proposition 5.4. 1. Under the assumptions of the proposition and from the proof of Proposition 4.6, we have $\psi^r \in E_1$ for every $r \in \{2,\ldots,5\}$ if, and only if, there exist $\alpha_2, \beta_2 \in \mathbb{R}$ such that

$$
\begin{cases}\n\psi^2 = \alpha_2 \psi^0 + \beta_2 \psi^1, \\
\psi^3 = \alpha_3 \psi^0 + \beta_3 \psi^1,\n\end{cases}
$$

467 where α_3, β_3 are given by (38). We can check that this is equivalent to the existence of 468 $\rho, \theta \in \mathbb{R}$ such that

$$
\begin{cases}\n(A^{\mathsf{T}} - \rho)\psi^1 = -c_0(D - \theta)\psi^0 + \bar{c}_1(\psi^1 - \rho\psi^0), \\
(D - \theta)(\psi^1 - \rho\psi^0) = 0,\n\end{cases} \tag{45}
$$

where we recall that $\bar{c}_1 = \frac{\langle v, \psi^1 \rangle}{c_0}$ **are** where we recall that $\bar{c}_1 = \frac{\langle v, v \rangle}{c_0}$. Since D is diagonal with distinct entries and ψ^0, ψ^1 are ⁴⁷¹ linearly independent, the second condition in (45) is equivalent to the existence of some 472 $j_0 \in \{1, \ldots, n^c\}$ and $r \in \mathbb{R} \setminus \{0\}$ such that

$$
\theta = d_{j_0}, \quad \psi^1 = \rho \psi^0 + r e_{j_0}.
$$
\n(46)

Plugging the second identity in the first condition in (45) and recalling that $\psi^1 = A^{\mathsf{T}} \psi^0$, we see that this condition simply becomes

$$
rA^{\mathsf{T}}e_{j_0} = -c_0(D - d_{j_0})\psi^0 + r\bar{c}_1e_{j_0}.
$$

 ϵ_{474} Comparing the j₀-th components of both quantities, using that the diagonal of A is zero 475 and $r \neq 0$, we see that $\bar{c}_1 = 0$. Recalling (46), the condition $\bar{c}_1 = 0$ is equivalent to 476 $\rho = -\bar{r}v_{j_0}$ with $\bar{r} = \frac{r}{c_0}$. In summary, there exist $\rho, \theta \in \mathbb{R}$ such that (45) holds if, and only 477 if, there exist $j_0 \in \{1, \ldots, n^c\}$ such that

$$
\exists \bar{r} \in \mathbb{R} \setminus \{0\}, \quad \begin{cases} (D - d_{j_0}) \psi^0 + \bar{r} A^{\mathsf{T}} e_{j_0} = 0, \\ \psi^1 + \bar{r} (v_{j_0} \psi^0 - c_0 e_{j_0}) = 0. \end{cases} \tag{47}
$$

479 We can check that this condition is equivalent to rank $\Delta_{j_0} = 1$. Finally, it is clear that 480 $E_1 \subset \ker b^{\mathsf{T}}, \text{ i.e. } \langle b, \psi^1 \rangle = 0, \text{ if, and only if, } b_{j_0} = 0.$

2. Since $i = 2$, we have (for the notations, see Section 3.1)

$$
A^{\mathsf{T}} = \begin{pmatrix} 0 & \alpha_{31} & \alpha_{41} \\ \alpha_{13} & 0 & \alpha_{43} \\ \alpha_{14} & \alpha_{34} & 0 \end{pmatrix}, \quad D = 2 \text{diag}(\mu_1, \mu_3, \mu_4) - \text{Id}_3, \quad \psi^0 = \begin{pmatrix} \alpha_{21} \\ \alpha_{23} \\ \alpha_{24} \end{pmatrix}, \quad v = -\frac{1}{2} \begin{pmatrix} \alpha_{12} \\ \alpha_{32} \\ \alpha_{42} \end{pmatrix}.
$$

⁴⁸¹ Clearly, $\langle b, \psi^0 \rangle = 0$ is equivalent to

$$
\alpha_{21} = \alpha_{24}\rho. \tag{48}
$$

On the other hand, using the characterization (47), we see that rank $\Delta_2 = 1$ if, and only if,

$$
\alpha_{31} = \sigma(\mu_1 - \mu_3)\rho\alpha_{24},\tag{49}
$$

$$
\alpha_{34} = \sigma(\mu_4 - \mu_3)\alpha_{24},\tag{50}
$$

$$
\alpha_{41} = -\frac{\rho}{\sigma} \left(\alpha_{32} + \sigma^2 (\mu_1 - \mu_3) \alpha_{23} \right), \tag{51}
$$

$$
\alpha_{42} + \alpha_{12}\rho = \sigma(\alpha_{43} + \alpha_{13}\rho),\tag{52}
$$

$$
\alpha_{14} = -\frac{1}{\rho \sigma} \left(\alpha_{32} + \sigma^2 (\mu_4 - \mu_3) \alpha_{23} \right), \tag{53}
$$

483 where $\sigma = -\frac{2}{\bar{r}}$. Using these conditions we easily check that $((k^{\mathfrak{c}})^{\mathsf{T}}, k_2) = (k_{21}, k_{23}, k_{24}, k_{22})$ 484 defined by (43)-(44) satisfies the kernel equations (18) with $\delta = -1$. \Box 485

⁴⁸⁶ To conclude this section we will present a method which shows how conditions (48)-(53) can ⁴⁸⁷ also be found from an analytic point of view.

Another proof of Proposition 5.4, item 2. 1. For every j, let us denote by P_j the first-order linear partial differential operator

$$
\mathcal{P}_j = \mu_j \frac{\partial}{\partial x} + \frac{\partial}{\partial \xi} \nu_j.
$$

Since we want the orthogonality condition $\langle b, k^c(\cdot, 0)\rangle = 0$, we look for a solution satisfying

$$
k_{21}=k_{24}\rho,
$$

⁴⁸⁸ (recall also Remark 4.1). In particular, we assume (48). Then, the problem is to nd a ⁴⁸⁹ solution to

$$
\begin{cases}\n k_{22}\alpha_{21} + k_{23}\alpha_{31} = (-\rho \mathcal{P}_{1} - \alpha_{41})k_{24}, \\
 \mathcal{P}_{2}k_{22} + k_{23}\alpha_{32} + k_{24}(\alpha_{42} + \alpha_{12}\rho) = 0, \\
 \mathcal{P}_{3}k_{23} + k_{22}\alpha_{23} + k_{24}(\alpha_{43} + \alpha_{13}\rho) = 0, \\
 k_{22}\alpha_{24} + k_{23}\alpha_{34} = (-\mathcal{P}_{4} - \alpha_{14}\rho)k_{24}.\n\end{cases}
$$
\n(54)

Let us denote by

$$
\omega = \det \begin{pmatrix} \alpha_{21} & \alpha_{31} \\ \alpha_{24} & \alpha_{34} \end{pmatrix}.
$$

491 Assume that $\omega \neq 0$ (this will follow a posteriori from (49), (50), using also that $\sigma, \rho, \alpha_{24} \neq 0$ $\frac{492}{492}$ 0). Then, the first and fourth equations in (54) give

$$
\begin{cases}\nk_{22} = \frac{1}{\omega} \left(-\alpha_{34} \rho \mathcal{P}_1 + \alpha_{31} \mathcal{P}_4 - \alpha_{34} \alpha_{41} + \alpha_{31} \alpha_{14} \rho \right) k_{24}, \\
k_{23} = \frac{1}{\omega} \left(\alpha_{24} \rho \mathcal{P}_1 - \alpha_{21} \mathcal{P}_4 + \alpha_{24} \alpha_{41} - \alpha_{21} \alpha_{14} \rho \right) k_{24}.\n\end{cases} (55)
$$

Plugging these relations in the second and third equations in (54) give the following two second-order partial differential equations for k_{24} .

$$
Qk_{24}=0, \quad \tilde{Q}k_{24}=0,
$$

where $Q = Q^{(2)} + Q^{(1)} + Q^{(0)}$, with

$$
Q^{(2)} = P_2 \left(-\alpha_{34} \rho P_1 + \alpha_{31} P_4 \right),
$$

\n
$$
Q^{(1)} = \left(-\alpha_{34} \alpha_{41} + \alpha_{31} \alpha_{14} \rho \right) P_2 + \left(\alpha_{24} \rho P_1 - \alpha_{21} P_4 \right) \alpha_{32},
$$

\n
$$
Q^{(0)} = \left(\alpha_{24} \alpha_{41} - \alpha_{21} \alpha_{14} \rho \right) \alpha_{32} + \omega \left(\alpha_{42} + \alpha_{12} \rho \right),
$$

and $\tilde{\mathcal{Q}} = \tilde{\mathcal{Q}}^{(2)} + \tilde{\mathcal{Q}}^{(1)} + \tilde{\mathcal{Q}}^{(0)}$, with $\tilde{\mathcal{Q}}^{(2)} = \mathcal{P}_3 \left(\alpha_{24} \rho \mathcal{P}_1 - \alpha_{21} \mathcal{P}_4 \right),$ $\tilde{\mathcal{Q}}^{(1)} = (\alpha_{24}\alpha_{41} - \alpha_{21}\alpha_{14}\rho)\mathcal{P}_3 + (-\alpha_{34}\rho\mathcal{P}_1 + \alpha_{31}\mathcal{P}_4)\alpha_{23}$ $\tilde{\mathcal{Q}}^{(0)} = (-\alpha_{34}\alpha_{41} + \alpha_{31}\alpha_{14}\rho)\alpha_{23} + \omega(\alpha_{43} + \alpha_{13}\rho).$

⁴⁹⁴ 2. We are going to find conditions to guarantee that these two equations are compatible. To 495 this end, it is for instance sufficient to have

$$
\mathcal{Q}^{(r)} = \sigma \tilde{\mathcal{Q}}^{(r)}, \quad r = 0, 1, 2,\tag{56}
$$

497 for some $\sigma \in \mathbb{R}$. We first look at the operators of highest order. Using the identities

$$
\alpha_{21} = \alpha_{24}\rho, \quad \mu_j - \nu_j = 1 \quad (j \neq 2), \quad \mu_2 = \nu_2 = 1,\tag{57}
$$

we have

$$
\alpha_{24}\rho \mathcal{P}_1 - \alpha_{21}\mathcal{P}_4 = \alpha_{24}\rho (\mathcal{P}_1 - \mathcal{P}_4)
$$

=
$$
\alpha_{24}\rho(\mu_1 - \mu_4)\mathcal{P}_2.
$$
 (58)

⁴⁹⁹ It follows that

$$
\tilde{\mathcal{Q}}^{(2)} = \alpha_{24}\rho(\mu_1 - \mu_4)\mathcal{P}_3\mathcal{P}_2. \tag{59}
$$

 $\frac{501}{201}$ Consequently, we see that (56) holds for $r = 2$ if we have

$$
-\alpha_{34}\rho P_1 + \alpha_{31}P_4 = \sigma \alpha_{24}\rho(\mu_1 - \mu_4)P_3. \tag{60}
$$

This identity holds if $(\alpha_{34}, \alpha_{31})$ satisfies

$$
\begin{pmatrix} -\rho\mu_1 & \mu_4 \\ -\rho\nu_1 & \nu_4 \end{pmatrix} \begin{pmatrix} \alpha_{34} \\ \alpha_{31} \end{pmatrix} = \sigma \alpha_{24} \rho(\mu_1 - \mu_4) \begin{pmatrix} \mu_3 \\ \nu_3 \end{pmatrix},
$$

503 which is equivalent to (50)-(49) (using $\rho \neq 0$ and (57)).

3. Let us now compute the first-order differential operators. We have

$$
\mathcal{Q}^{(1)} = (-\alpha_{34}\alpha_{41} + \alpha_{31}\alpha_{14}\rho + \alpha_{24}\rho(\mu_1 - \mu_4)\alpha_{32})\mathcal{P}_2 \text{ (by (58)),}
$$

$$
\tilde{\mathcal{Q}}^{(1)} = (\alpha_{24}\alpha_{41} - \alpha_{21}\alpha_{14}\rho + \sigma\alpha_{24}\rho(\mu_1 - \mu_4)\alpha_{23})\mathcal{P}_3 \text{ (by (60)).}
$$

504 As a result, we have (56) for $r = 1$, if $\mathcal{Q}^{(1)} = \tilde{\mathcal{Q}}^{(1)} = 0$, that is, if

$$
\begin{cases}\n-\alpha_{34}\alpha_{41} + \alpha_{31}\alpha_{14}\rho = -\alpha_{24}\rho(\mu_1 - \mu_4)\alpha_{32}, \\
\alpha_{24}\alpha_{41} - \alpha_{21}\alpha_{14}\rho = -\sigma\alpha_{24}\rho(\mu_1 - \mu_4)\alpha_{23}.\n\end{cases}
$$
\n(61)

This holds if $(\alpha_{41}, \alpha_{14})$ satisfies

$$
\begin{pmatrix} -\alpha_{34} & \alpha_{31}\rho \\ \alpha_{24} & -\alpha_{21}\rho \end{pmatrix} \begin{pmatrix} \alpha_{41} \\ \alpha_{14} \end{pmatrix} = -\alpha_{24}\rho(\mu_1 - \mu_4) \begin{pmatrix} \alpha_{32} \\ \sigma\alpha_{23} \end{pmatrix},
$$

506 which is equivalent to (51) and (53) (using (48), (49), (50) and $\alpha_{24}, \rho \neq 0$).

4. Let us now compute the zero order terms. Using (61), we immediately see that

$$
\tilde{Q}^{(0)} = -\alpha_{24}\rho(\mu_1 - \mu_4)\alpha_{32}\alpha_{23} + \omega(\alpha_{43} + \alpha_{13}\rho),
$$

$$
Q^{(0)} = -\sigma\alpha_{24}\rho(\mu_1 - \mu_4)\alpha_{23}\alpha_{32} + \omega(\alpha_{42} + \alpha_{12}\rho).
$$

 $\frac{507}{100}$ As a result, we see that (56) holds for $r = 0$ if we have condition (52). Moreover, using 508 (48), (49) and (50), we have $\omega = -\sigma \alpha_{24}^2 \rho(\mu_1 - \mu_4),$ (62)

$$
\begin{array}{c} 509 \end{array}
$$

so that, using again (48) and the definition of c_0 , we obtain

$$
Q^{(0)} = \sigma \alpha_{24} \rho (\mu_1 - \mu_4)(2c_0).
$$

510 It follows that k_{24} indeed satisfies the first equation in (44) (recall that $\mathcal{Q}^{(2)} = \sigma \tilde{\mathcal{Q}}^{(2)}$ with \mathfrak{so}_{11} (59) and $\mathcal{Q}^{(1)} = 0$.

5. Using (60), (61), (58) and (62), we can simplify the expressions in (55) to obtain

$$
\begin{cases}\nk_{22} = \frac{1}{-\sigma \alpha_{24}} (\sigma \mathcal{P}_3 - \alpha_{32}) k_{24}, \\
k_{23} = \frac{1}{-\sigma \alpha_{24}} (\mathcal{P}_2 - \sigma \alpha_{23}) k_{24}.\n\end{cases}
$$

 $\frac{1}{512}$ In addition, it follows from these formula that the remaining conditions are satisfied. In- 513 deed, the condition $k_{22}(x, -x) = 0$ is exactly the condition that we require for k_{24} at 514 $(x, -x)$ in (44) and the condition $k_{23}(x, x) = \alpha_{23}$ follows from the above expression since **515** $k_{24}(x,x) = \alpha_{24}$ and $(\mathcal{P}_2 k_{24})(x,x) = \frac{d}{dx} k_{24}(x,x) = 0.$ \Box 516

Remark 5.5. In [VK14, Section 3.3], the authors showed that we can solve a kernel system of two equations of the form

$$
\begin{cases}\n\frac{\partial k_{21}}{\partial x} - \frac{\partial k_{21}}{\partial \xi} + k_{22}\alpha_{21} = 0, \\
\frac{\partial k_{22}}{\partial x} + \frac{\partial k_{22}}{\partial \xi} + k_{21}\alpha_{12} = 0, \\
k_{21}(x, x) = \alpha_{21}, \quad k_{22}(x, 0) = 0,\n\end{cases}
$$

517 with $\alpha_{21} \neq 0$ by first expressing k_{22} from the first equation and then showing that the resulting $\frac{1}{518}$ second order equation for k_{21} indeed has a solution. The method we introduced in the second ⁵¹⁹ proof of Proposition 5.4, item 2, can be seen as an extension of the method of [VK14] where, 520 instead of dividing by a scalar (namely, α_{21}), we invert a matrix.

⁵²¹ Acknowledgements

 This project was supported by National Natural Science Foundation of China (Nos. 12122110 and 12071258) and National Science Centre, Poland UMO-2020/39/D/ST1/01136. For the purpose of Open Access, the authors have applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.

⁵²⁶ A Controllability of the equivalent system

⁵²⁷ In this appendix, we give a simple and direct proof of Corollary 2.4. We recall that it can be ⁵²⁸ deduced from Theorem 2.3 but this result is based on the Titchmarsh convolution theorem (see \mathfrak{so} [HO21b]) and we show here how to directly prove the corollary without resorting to this difficult ⁵³⁰ result.

531 Proof of Corollary 2.4. It is enough to show that, if $(q, f) \in S_k \backslash S_{k+1}$ for some $k \in \{2, ..., n+1\}$, 532 then system (9) (with $m = 1$) is null controllable in time T if, and only if, $T \geq \tau_k$.

1. We first observe that system (9) is equivalent to the same system with $f_1 = 0$. This follows from the invertible spatial transformation

$$
\hat{y}_1(t,x) = \tilde{y}_1(t,x) - \int_0^x h(x-\xi)\tilde{y}_1(t,\xi) d\xi,
$$

where the kernel h is the solution to

$$
h(x)\lambda_1 + \int_0^x h(x-\xi)f_1(\xi) d\xi = f_1(x), \quad 0 < x < 1.
$$

- 533 Therefore, for the rest of the proof, we assume that $f_1 = 0$.
	- 2. Assume now that $(q, f) \in \mathcal{S}_k \setminus \mathcal{S}_{k+1}$ for some $k \in \{2, ..., n\}$ (the result for $k = n + 1$ is trivial). It will be convenient to use the notation $\hat{q}_i = q_{i-1}$ for $2 \leq i \leq n$. Let us write system (9) (with $f_1 = 0$) component-wise:

$$
\begin{cases}\n\frac{\partial \tilde{y}_1}{\partial t}(t, x) + \lambda_1 \frac{\partial \tilde{y}_1}{\partial x}(t, x) = 0, \\
\tilde{y}_1(t, 1) = \tilde{u}(t), \\
\tilde{y}_1(0, x) = \tilde{y}_1^0(x),\n\end{cases}\n\begin{cases}\n\frac{\partial \tilde{y}_i}{\partial t}(t, x) + \lambda_i \frac{\partial \tilde{y}_i}{\partial x}(t, x) = f_i(x)v(t), \\
\tilde{y}_i(t, 0) = \hat{q}_i v(t), \\
\tilde{y}_i(0, x) = \tilde{y}_i^0(x),\n\end{cases}
$$

534 for $i \in \{2, \ldots, n\}$, and where we introduced $v(t) = \tilde{y}_1(t, 0)$. It is clear that this system is 535 null controllable in any time $T \ge \tau_k = \max \{T_1 + T_k, T_2\}$ since in this case taking $\tilde{u} = 0$ in $(T - (T_1 + T_k), T)$ does the job. It is the necessary part that requires more work.

537 3. First of all, we recall that the condition $T \ge \max\{T_1, T_2\}$ is always necessary (see e.g. the proof of [HO21b, Lemma 3.3]). Under this condition and by mimicking the second step in the proof of [HO21b, Theorem 3.1], we see that the null controllability condition $\tilde{y}_k(T, x) = 0$ is equivalent to

$$
\hat{q}_k \alpha(\tau) + \int_0^{\tau} \beta(\tau - \sigma) \alpha(\sigma) d\sigma = 0, \quad 0 < \tau < T_k,
$$
\n(63)

$$
\text{where } \alpha(\theta) = v(-\theta + T) \text{ and } \beta(\theta) = f_k(\lambda_k \theta) \text{ for } 0 < \theta < T_k.
$$

⁵⁴³ 4. We now have two possibilities for (63).

⁵⁴⁴ (a) Case $\hat{q}_k \neq 0$. Then, by uniqueness of the solution to the Volterra equation of the 545 second kind (63), we obtain $\alpha = 0$ in $(0, T_k)$. This means that $v = 0$ in $(T - T_k, T)$. Since this is true for any \tilde{y}_0^1 , it is possible only if $T_1 \leq T - T_k$, which is the desired ⁵⁴⁷ condition.

(b) Case $\hat{q}_k = 0$. Since $(q, f) \in S_k \setminus S_{k+1}$, we necessarily have $f_k \neq 0$. Since f_k is analytic in a neighborhood of [0, 1), this implies in particular that there exists $N \geq 1$ such that

$$
f_k^{(N-1)}(0) \neq 0, \quad f_k^{(\ell)}(0) = 0, \quad \forall \ell < N - 1.
$$

Then, taking N times the derivative with respect to τ in (63) (with $\hat{q}_k = 0$), we obtain the new Volterra equation

$$
c\alpha(\tau) + \int_0^{\tau} \beta^{(N)}(\tau - \sigma)\alpha(\sigma) d\sigma = 0, \quad 0 < \tau < T_k,
$$

where $c = \beta^{(N-1)}(0) = f_k^{(N-1)}$ ⁵⁴⁸ where $c = \beta^{(N-1)}(0) = f_k^{(N-1)}(0)\lambda_k^{N-1}$. Therefore, $c \neq 0$ and the situation is now ⁵⁴⁹ identical to the previous case.

550

551 B Solution to the kernel equations

⁵⁵² In this appendix, we present a new approach to solve the kernel equations that encompasses ⁵⁵³ in particular the proof of Theorem 2.5. We recall that, when considering the kernel equations ⁵⁵⁴ in the triangle $\mathcal{T} = \{(x, \xi) \in \mathbb{R}^2 \mid 0 < \xi < x < 1\}$, the approach used in all current results $\frac{555}{10}$ in the literature ([Cor+13; DVK13; HD15; Hu+16; Hu+19; CN19], etc.) consists in adding $\frac{1}{556}$ "artificial boundary conditions" to close the system of kernel equations. In our approach, we will $\frac{557}{100}$ not consider the condition at (x, x) as a boundary condition but rather as an initial condition. 558 We will simply let propagate this condition along the characteristics and find the corresponding ⁵⁵⁹ so-called domain of determinacy, much in the spirit of the reference books [LY85; Bre00]. Then, 560 another idea of our method is also to solve the equation for $j = i$ and plug it into the other \mathfrak{so}_1 equations of the system to obtain a new system with initial conditions at (x, x) only (as in the $\frac{1}{562}$ proof of Theorem 3.1). Moreover, this gives a natural bound in $|x - \xi|$ for the estimates needed ⁵⁶³ to prove the contraction of the mapping dening the integral equations corresponding to the new 564 system (rather than $|x-(1-\varepsilon)\xi|$ as in [Hu+16; Hu+19]).

565 All along this appendix, $i \in \{1, ..., n\}$ is fixed and we continue using the notation $k =$ 566 $(k_{ij})_{1\leq i\leq n}$ to denote the transpose of the *i*-th row of K. We also emphasize that $m\geq 1$ is ⁵⁶⁷ arbitrary.

First of all, it will be more convenient to work with the kernel equations normalized by λ_i :

$$
\begin{cases}\n\frac{\partial k_j}{\partial x}(x,\xi) + \bar{\lambda}_j \frac{\partial k_j}{\partial \xi}(x,\xi) + \sum_{r=1}^n k_r(x,\xi) \bar{m}_{rj} = 0, \\
k_j(x,x) = f_j \quad (j \neq i), \quad k_i(x,\delta x) = 0,\n\end{cases}
$$
\n(64)

where

$$
\bar{\lambda}_j = \frac{\lambda_j}{\lambda_i}, \quad \bar{m}_{rj} = \frac{m_{rj}}{\lambda_i}, \quad f_j = \frac{m_{ij}}{\lambda_i - \lambda_j}.
$$

570 From now on, we will assume for instance that $i \geq m+1$, so that $\lambda_i > 0$ and thus, from (1b), 571 $\bar{\lambda}$

$$
\bar{\lambda}_1 < \cdots < \bar{\lambda}_{i-1} < 1 < \bar{\lambda}_{i+1} < \cdots < \bar{\lambda}_n. \tag{65}
$$

 $k_r(x,\xi)\bar{m}_{rj}=0,$

 \Box

For every $(x, \xi) \in \mathbb{R} \times \mathbb{R}$, we denote by $s \longmapsto \zeta_j(s; x, \xi)$ the solution to

$$
\begin{cases}\n\frac{d}{ds}\zeta_j(s; x, \xi) = \bar{\lambda}_j, & \forall s \in \mathbb{R}, \\
\zeta_j(x; x, \xi) = \xi.\n\end{cases}
$$

Let us now consider the more general condition

$$
k_j(x, x) = f_j(x) \quad (j \neq i),
$$

where f_j is a function defined on an interval of the form $[a, b]$ with $a < 0 < b$. Even if f_j is constant in (64), we will need to consider space-dependent data to deduce the existence of smooth solutions by an inductive argument. We will describe the largest domain $D \subset \mathbb{R}^2$ where the system can then be solved along the characteristics. We first take care of the characteristics for $j \neq i$. Recalling the ordering (65), we introduce

$$
D^{\mathfrak{c}} = \left\{ (x,\xi) \in \mathbb{R}^2 \middle| \left\{ \begin{array}{l} \zeta_{i-1}(x;a,a) < \xi < \zeta_{i-1}(x;b,b) \\ \zeta_{i+1}(x;b,b) < \xi < \zeta_{i+1}(x;a,a) \end{array} \right\},\right\}
$$

(see Figure 1). Above, we use the usual conventions for $i = 1$ and $i = n$. We now take care of the characteristic for $j = i$. We can check that the line $\{(x, \delta x) \mid a < x < b\}$ intersects the boundary of D^c at exactly two points $(c, \delta c)$ and $(d, \delta d)$, with $c, d \in (a, b)$ and $c < 0 < d$ if $\delta < 1$ or $d < 0 < c$ if $\delta > 1$. Let then

$$
D = \{(x,\xi) \in D^c \mid \zeta_i(x;d,\delta d) < \xi < \zeta_i(x;c,\delta c)\},
$$

 ϵ_{553} (see Figure 2 with $\delta = -1$) and define $I = (c, d)$. Here and in what follows, it will be convenient 574 to use the notation (α, β) to denote the interval $(\min{\{\alpha, \beta\}}, \max{\{\alpha, \beta\}})$, whatever $\alpha, \beta \in \mathbb{R}$ are $\mathbf{575}$ (we use a similar notation for α , β).

Figure 1: Domain D^c

 \mathcal{X}

⁵⁷⁶ We will prove the following result.

577 Theorem B.1. Let $a < 0 < b$ and $s \in \mathbb{N}$ be fixed. For any $(f_j)_{j \neq i} \in C^s([a,b])^{n-1}$ and $f_i \in C^s(\overline{I}),$ **there exists a unique solution** $k = (k_j)_{1 \leq j \leq n} \in C^{s}(\overline{D})^n$ to

$$
\begin{cases}\n\frac{\partial k_j}{\partial x}(x,\xi) + \bar{\lambda}_j \frac{\partial k_j}{\partial \xi}(x,\xi) + \sum_{r=1}^n k_r(x,\xi) \bar{m}_{rj} = 0, \quad (x,\xi) \in D, \\
k_j(x,x) = f_j(x), \quad x \in (a,b) \quad (j \neq i), \\
k_i(x,\delta x) = f_i(x), \quad x \in I,\n\end{cases}
$$
\n(66)

⁵⁸⁰ Moreover, we have the estimate

$$
\|k\|_{C^{s}(\overline{D})^n} \leq C \max \left\{ \max_{j \neq i} \|f_j\|_{C^{s}([a,b])}, \quad \|f_i\|_{C^{s}(\overline{I})} \right\},
$$
\n(67)

582 for some $C > 0$ that does not depend on any f_i .

 ϵ_{ss} For $s = 0$, by solution we mean "solution along the characteristics", see below. The first part of Theorem 2.5 follows from the previous result and the following simple observation:

 $\forall V \subset \mathbb{R}^2, \exists a < 0 < b, \quad V \subset D.$ (68)

 $\frac{1}{587}$ On the other hand, using that the coefficients of the system are constant and arguing as in 588 the proof of [CN19, Lemma 6.2], we can show that (67) holds with $C = R^s$ for some $R > 0$ that ⁵⁸⁹ does not depend on s. This establishes the estimate in Theorem 2.5.

⁵⁹⁰ Let us now prove Theorem B.1. We start with a description of the key properties satised $\frac{1}{591}$ by the point where the j-th characteristic intersects the corresponding data line.

592 Lemma B.2. For every $j \in \{1, \ldots, n\}$, there exists $\sigma_j \in C^\infty(\overline{D})$ such that, for every $(x, \xi) \in \overline{D}$, ⁵⁹³ we have:

$$
\bullet \zeta_j(\sigma_j(x,\xi);x,\xi) = \sigma_j(x,\xi) \text{ with } \sigma_j(x,\xi) \in [a,b] \text{ for } j \neq i \text{ and } \zeta_i(\sigma_i(x,\xi);x,\xi) = \delta \sigma_i(x,\xi)
$$

with $\sigma_i(x,\xi) \in \overline{I}$.

$$
\bullet \quad (\mathit{s}, \zeta_j(\mathit{s}; x, \xi)) \in \overline{D} \; \textit{for every} \; \mathit{s} \in [\sigma_j(\mathit{x}, \xi), \mathit{x}].
$$

597 • For every $j \neq i$, we have

$$
|\sigma_j(x,\xi) - x| \le C |x - \xi| \,, \tag{69}
$$

$$
for some C > 0 that does not depend on j, x, \xi.
$$

600 We point out that ζ_j and σ_j are explicit. In particular, this is how we prove estimate (69). $\frac{601}{1000}$ Now, instead of writing (66) along all the characteristics (as it is usually done), we first 602 replace k_i by formally solving the corresponding equation (recall that $\bar{m}_{ii} = 0$):

$$
k_i(x,\xi) = f_i(\sigma_i(x,\xi)) - \int_{\sigma_i(x,\xi)}^x \sum_{r \neq i} k_r(\eta,\zeta_i(\eta;x,\xi)) \bar{m}_{ri} d\eta. \tag{70}
$$

Let us introduce the following notations to exclude the *i*-th components: $k^c = (k_j)_{j \neq i}, f^c =$ $(f_j)_{j\neq i}, \sigma^{\mathfrak{c}}=(\sigma_j)_{j\neq i}, \zeta^{\mathfrak{c}}=(\zeta_j)_{j\neq i}, M^{\mathfrak{c}}=(\bar{m}_{rj})_{r,j\neq i}, \psi=(\bar{m}_{ij})_{j\neq i}$ and $w=(\bar{m}_{ji})_{j\neq i}$. Then, plugging the previous expression of k_i in (66) and integrating along the characteristics, we can transform this system into the following system of integral equations for $k^{\mathfrak{c}}$:

$$
k_{\ell}^{\mathfrak{c}}(x,\xi) = f_{\ell}^{\mathfrak{c}}(\sigma_{\ell}^{\mathfrak{c}}(x,\xi)) - \int_{\sigma_{\ell}^{\mathfrak{c}}(x,\xi)}^{x} \sum_{r=1}^{n-1} k_{r}^{\mathfrak{c}}(s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi)) m_{r\ell}^{\mathfrak{c}} ds
$$

$$
- \int_{\sigma_{\ell}^{\mathfrak{c}}(x,\xi)}^{x} f_{i}(\sigma_{i}^{\mathfrak{c}}(s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi))) \psi_{\ell} ds
$$

$$
+ \int_{\sigma_{\ell}^{\mathfrak{c}}(x,\xi)}^{x} \left(\int_{\sigma_{i}^{\mathfrak{c}}(s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi))}^{x-1} k_{r}^{\mathfrak{c}}(\eta,\zeta_{i}(\eta;s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi))) w_{r} d\eta \right) \psi_{\ell} ds, \qquad (71)
$$

604 for every $\ell \in \{1, \ldots, n-1\}$ and $(x, \xi) \in \overline{D}$.

All the quantities in (70) and (71) are well defined thanks to Lemma B.2. It remains to prove the existence and uniqueness of a C^s solution k^c to this system of integral equations. We start with $s = 0$. As usual, we use the Banach fixed point theorem and suitable estimates. A solution to this system is a fixed point of the map $F(k^{\mathfrak{c}}) = u^0 + \Phi k^{\mathfrak{c}}$, where

$$
u_{\ell}^{0}(x,\xi) = f_{\ell}^{\mathfrak{c}}(\sigma_{\ell}^{\mathfrak{c}}(x,\xi)) - \int_{\sigma_{\ell}^{\mathfrak{c}}(x,\xi)}^{x} f_{i}(\sigma_{i}^{\mathfrak{c}}(s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi))\psi_{\ell} ds,
$$

and Φ is the linear map $\Phi = \Phi_1 + \Phi_2$ with

$$
(\Phi_1 k^{\mathfrak{c}})_{\ell}(x,\xi) = -\int_{\sigma_{\ell}^{\mathfrak{c}}(x,\xi)}^{x} \sum_{r=1}^{n-1} k_r^{\mathfrak{c}}(s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi)) m_{r\ell}^{\mathfrak{c}} ds,
$$

and

$$
(\Phi_2 k^{\mathfrak{c}})_{\ell}(x,\xi) = \int_{\sigma_{\ell}^{\mathfrak{c}}(x,\xi)}^{x} \left(\int_{\sigma_{i}^{\mathfrak{c}}(s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi))}^{s} \sum_{r=1}^{n-1} k_r^{\mathfrak{c}}(\eta,\zeta_i(\eta;s,\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi))) w_r d\eta \right) \psi_{\ell} ds,
$$

605 for every $\ell \in \{1, \ldots, n-1\}$ and $(x, \xi) \in \overline{D}$.

606 Let us now precisely set the functional framework. Let $B = C^{0}(\overline{D})^{n-1}$ and consider the 607 standard norm $||k^c||_B = \max_{1 \leq \ell \leq n-1} \max_{(x,\xi) \in \overline{D}} |k^c_\ell(x,\xi)|$. Clearly, B is a Banach space and 608 $F(B) \subset B$. Let us now prove that F^N is a contraction for $N \in \mathbb{N}^*$ large enough. This is 609 equivalent to show that Φ^N is a contraction. To this end, it is sufficient to prove the following ⁶¹⁰ key estimate:

Lemma B.3. There exists $C > 0$ such that, for every $N \in \mathbb{N}^*$, we have

$$
\left|(\Phi^N k^{\mathfrak{c}})_{\ell}(x,\xi)\right| \leq \frac{C^N |x-\xi|^N}{N!} \left\|k^{\mathfrak{c}}\right\|_{B},
$$

611 for every $k^c \in B, \, \ell \in \{1, \ldots, n-1\}$ and $(x, \xi) \in \overline{D}$.

Proof. We prove the property by induction on N. Let us first consider $N = 1$. We have

$$
|(\Phi_1 k^{\mathfrak{c}})_{\ell}(x,\xi)| \leq C_1 |x - \sigma_{\ell}^{\mathfrak{c}}(x,\xi)| \, \|k^{\mathfrak{c}}\|_{B} \,,
$$

with $C_1 = \max_{\ell} \sum_r |m_{r\ell}^{\mathfrak{c}}| \geq 0$. Similarly,

$$
|(\Phi_2 k^{\mathfrak{c}})_j(x,\xi)| \leq C_2 |x - \sigma_{\ell}^{\mathfrak{c}}(x,\xi)| \, \|k^{\mathfrak{c}}\|_{B} \,,
$$

612 with $C_2 = \max_{\ell, (x,\xi),s} |s - \sigma_i^{\mathfrak{e}}(s, \zeta_{\ell}^{\mathfrak{e}}(s; x, \xi))| \sum_r |w_r| |\psi_{\ell}| \ge 0$. Finally, we have

$$
|x - \sigma_{\ell}^{\mathfrak{e}}(x,\xi)| \leq C_3 |x - \xi| \,, \tag{72}
$$

614 for some $C_3 > 0$ that does not depend on ℓ, x, ξ (see (69)). This proves the property for $N = 1$.

Let us now assume that the property holds for N and let us prove it for $N + 1$. We have

$$
\left|(\Phi_1 \Phi^N k^{\mathfrak{c}})_\ell(x,\xi)\right| \leq \int_{[\sigma_\ell^{\mathfrak{c}}(x,\xi),x]} \sum_{r=1}^{n-1} \left|(\Phi^N k^{\mathfrak{c}})_r(s,\zeta_\ell^{\mathfrak{c}}(s;x,\xi))\right| |m_{r\ell}^{\mathfrak{c}}| ds,
$$

Using the induction assumption, we get

$$
\left|(\Phi_1 \Phi^N k^{\mathfrak{c}})_{\ell}(x,\xi)\right| \leq C_1 \frac{C^N}{N!} \left\|k^{\mathfrak{c}}\right\|_{B} \int_{[\sigma_{\ell}^{\mathfrak{c}}(x,\xi),x]} \left|s - \zeta_{\ell}^{\mathfrak{c}}(s;x,\xi)\right|^N ds.
$$

Similarly, noting that $\eta - \zeta_i(\eta; s, \zeta_\ell^{\mathfrak{c}}(s; x, \xi)) = s - \zeta_\ell^{\mathfrak{c}}(s; x, \xi)$, we get

$$
\left|(\Phi_2 \Phi^N k^{\mathfrak{c}})_{\ell}(x,\xi)\right| \leq C_2 \frac{C^N}{N!} \left\|k^{\mathfrak{c}}\right\|_{B} \int_{[\sigma_{\ell}^{\mathfrak{c}}(x,\xi),x]} \left|s - \zeta_{\ell}^{\mathfrak{c}}(s;x,\xi)\right|^N ds.
$$

Now observe that $|s-\zeta_\ell^{\mathfrak{c}}(s;x,\xi)| \leq C_4 |s-\sigma_\ell^{\mathfrak{c}}(x,\xi)|$ for some $C_4 > 0$ that does not depend on ℓ, s, x, ξ . It follows that

$$
\int_{[\sigma_{\ell}^{\mathfrak{c}}(x,\xi),x]} |s-\zeta_{\ell}^{\mathfrak{c}}(s;x,\xi)|^{N} ds \leq C_{4} \int_{[\sigma_{\ell}^{\mathfrak{c}}(x,\xi),x]} |s-\sigma_{\ell}^{\mathfrak{c}}(x,\xi)|^{N} ds = C_{4} \frac{|x-\sigma_{\ell}^{\mathfrak{c}}(x,\xi)|^{N+1}}{N+1}.
$$

⁶¹⁵ We conclude thanks to the estimate (72). 616

617 Finally, the estimate (67) can be deduced from the identities $k^{\mathfrak{c}} = F^{N}(k^{\mathfrak{c}}) - F^{N}(0) + F^{N}(0) =$ 618 $\Phi^N(k^c) - \Phi^N(0) + \sum_{r=0}^N \Phi^r u^0$, combined with the fact that Φ^N is a contraction and that u^0 can be estimated by the right-hand side of (67) (with $s = 0$). This concludes the proof of Theorem 620 B.1 for $s = 0$.

621 To prove the result for $s \geq 1$ we can argue as in the proof of [Bre00, Theorem 3.6] and then ⁶²² use an induction argument.

623 Remark B.4. The proof above can be adapted to deal with space-dependent systems, i.e. when 624 λ_i and m_{r_i} depend on x. The additional condition for k_i has to be modified though, but we 625 can for instance consider $k_i(x, 0) = f_i(x)$. Note that we still have explicit formulas for the 626 corresponding ζ_i and σ_i .

627 Remark B.5. Our approach can be used to recover existence results in the triangle $\mathcal T$. To this 628 end, we simply extend the parameters λ_j and m_{rj} to $[a, b] \supset [0, 1]$ in a smooth way. Then, for 629 a, b large enough, the domain D will contain the triangle $\mathcal T$ (recall (68)) and we apply Theorem 630 B.1 in this D. This approach is different from all the previous ones in the literature, which 631 consisted in adding "artificial boundary conditions" at some parts of the boundary of $\mathcal T$. Note in 632 addition that extending λ_i and m_{r_i} outside [0, 1] in a smooth way is easier than building artificial ⁶³³ boundary conditions that satisfy compatibility conditions associated with the kernel equations.

⁶³⁴ References

- ⁶³⁵ [BC16] G. Bastin and J.-M. Coron. Stability and boundary stabilization of 1-D hyperbolic systems. ⁶³⁶ Vol. 88. Progress in Nonlinear Dierential Equations and their Applications. Subseries in ⁶³⁷ Control. Birkhäuser/Springer, [Cham], 2016, pp. xiv+307.
- ⁶³⁸ [Bre00] A. Bressan. Hyperbolic systems of conservation laws. Vol. 20. Oxford Lecture Series in Mathe-⁶³⁹ matics and its Applications. The one-dimensional Cauchy problem. Oxford University Press, 640 Oxford, 2000, pp. $xii+250$.
- 641 [Cor+21] J.-M. Coron, L. Hu, G. Olive, and P. Shang. "Boundary stabilization in finite time of one- $\frac{642}{100}$ dimensional linear hyperbolic balance laws with coefficients depending on time and space". 643 In: J. Differential Equations 271 (2021), pp. 1109-1170. DOI: [10.1016/j.jde.2020.09.037.](https://doi.org/10.1016/j.jde.2020.09.037)
- 644 [CN19] J.-M. Coron and H.-M. Nguyen. "Optimal time for the controllability of linear hyperbolic 645 systems in one-dimensional space". In: SIAM J. Control Optim. 57.2 (2019), pp. 1127-1156. 646 DOI: [10.1137/18M1185600.](https://doi.org/10.1137/18M1185600)
- ⁶⁴⁷ [CN20] J.-M. Coron and H.-M. Nguyen. Finite-time stabilization in optimal time of homogeneous ⁶⁴⁸ quasilinear hyperbolic systems in one dimensional space". In: *ESAIM Control Optim. Calc.* ⁶⁴⁹ Var. 26 (2020), Paper No. 119, 24. doi: [10.1051/cocv/2020061.](https://doi.org/10.1051/cocv/2020061)

 \Box

- ⁶⁵⁰ [CN21a] J.-M. Coron and H.-M. Nguyen. Null-controllability of linear hyperbolic systems in one 651 dimensional space". In: Systems Control Lett. 148 (2021), p. 104851. poi: 10.1016/j. ⁶⁵² [sysconle.2020.104851.](https://doi.org/10.1016/j.sysconle.2020.104851)
- ⁶⁵³ [CN21b] J.-M. Coron and H.-M. Nguyen. On the optimal controllability time for linear hyperbolic 654 systems with time-dependent coefficients. 2021. arXiv: [2103.02653.](https://arxiv.org/abs/2103.02653)
- 655 [CN22] J.-M. Coron and H.-M. Nguyen. "Lyapunov functions and finite-time stabilization in optimal ⁶⁵⁶ time for homogeneous linear and quasilinear hyperbolic systems". In: Ann. Inst. H. Poincaré 657 C Anal. Non Linéaire 39.5 (2022), pp. 1235-1260. DOI: [10.4171/aihpc/30.](https://doi.org/10.4171/aihpc/30)
- 658 $[Cor+13]$ J.-M. Coron, R. Vazquez, M. Krstic, and G. Bastin. "Local exponential H^2 stabilization of 659 a 2 \times 2 quasilinear hyperbolic system using backstepping". In: SIAM J. Control Optim. 51.3 (2013), pp. 2005-2035. DOI: [10.1137/120875739.](https://doi.org/10.1137/120875739)
- 661 [DVK13] F. Di Meglio, R. Vazquez, and M. Krstic. "Stabilization of a system of $n + 1$ coupled first-⁶⁶² order hyperbolic linear PDEs with a single boundary input. In: IEEE Trans. Automat. 663 *Control* 58.12 (2013), pp. 3097-3111. DOI: [10.1109/TAC.2013.2274723.](https://doi.org/10.1109/TAC.2013.2274723)
- ⁶⁶⁴ [Hu15] L. Hu. Sharp time estimates for exact boundary controllability of quasilinear hyperbolic 665 systems". In: SIAM J. Control Optim. 53.6 (2015), pp. 3383-3410. DOI: [10.1137/140983720.](https://doi.org/10.1137/140983720)
- 666 [HD15] L. Hu and F. Di Meglio. "Finite-time backstepping boundary stabilization of 3×3 hyperbolic 667 systems". In: 2015 European Control Conference (ECC). 2015, pp. 67-72. poi: [10.1109/ECC.](https://doi.org/10.1109/ECC.2015.7330527) ⁶⁶⁸ [2015.7330527.](https://doi.org/10.1109/ECC.2015.7330527)
- ⁶⁶⁹ [Hu+16] L. Hu, F. Di Meglio, R. Vazquez, and M. Krstic. Control of homodirectional and general ⁶⁷⁰ heterodirectional linear coupled hyperbolic PDEs. In: IEEE Trans. Automat. Control 61.11 671 (2016), pp. 3301-3314. DOI: [10.1109/TAC.2015.2512847.](https://doi.org/10.1109/TAC.2015.2512847)
- 672 [HO21a] L. Hu and G. Olive. "Minimal time for the exact controllability of one-dimensional first-order 673 linear hyperbolic systems by one-sided boundary controls". In: J. Math. Pures Appl. (9) 148 ⁶⁷⁴ (2021), pp. 2474. doi: [10.1016/j.matpur.2021.02.009.](https://doi.org/10.1016/j.matpur.2021.02.009)
- 675 [HO21b] L. Hu and G. Olive. "Null controllability and finite-time stabilization in minimal time of 676 one-dimensional first-order 2×2 linear hyperbolic systems". In: ESAIM Control Optim. 677 Calc. Var. 27 (2021), Paper No. 96, 18. DOI: [10.1051/cocv/2021091.](https://doi.org/10.1051/cocv/2021091)
- 678 [HO22] L. Hu and G. Olive. "Equivalent one-dimensional first-order linear hyperbolic systems and range of the minimal null control time with respect to the internal coupling matrix". In: J. 680 Differential Equations 336 (2022), pp. 654-707. DOI: [10.1016/j.jde.2022.07.023.](https://doi.org/10.1016/j.jde.2022.07.023)
- ⁶⁸¹ [Hu+19] L. Hu, R. Vazquez, F. Di Meglio, and M. Krstic. Boundary exponential stabilization of 682 1-dimensional inhomogeneous quasi-linear hyperbolic systems". In: SIAM J. Control Optim. 683 57.2 (2019), pp. 963-998. DOI: [10.1137/15M1012712.](https://doi.org/10.1137/15M1012712)
- ⁶⁸⁴ [LY85] T. T. Li and W. C. Yu. Boundary value problems for quasilinear hyperbolic systems. Duke ⁶⁸⁵ University Mathematics Series, V. Duke University, Mathematics Department, Durham, NC, 1985, pp. viii+325.
- 687 [Li10] T. Li. Controllability and observability for quasilinear hyperbolic systems. Vol. 3. AIMS Series 688 on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, ⁶⁸⁹ MO; Higher Education Press, Beijing, 2010, pp. x+222.
- 690 [LR10] T. Li and B. Rao. "Strong (weak) exact controllability and strong (weak) exact observability 691 for quasilinear hyperbolic systems". In: Chin. Ann. Math. Ser. B 31.5 (2010), pp. 723-742. ⁶⁹² doi: [10.1007/s11401-010-0600-9.](https://doi.org/10.1007/s11401-010-0600-9)
- 693 [MA22] Y. Mokhtari and F. Ammar-Khodja. "Boundary controllability of two coupled wave equa- ϵ_{94} tions with space-time first-order coupling in 1-D". In: *J. Evol. Equ.* 22.2 (2022), Paper No. ⁶⁹⁵ 31, 52. doi: [10.1007/s00028-022-00790-x.](https://doi.org/10.1007/s00028-022-00790-x)
- 696 [Rus78] D. L. Russell. "Controllability and stabilizability theory for linear partial differential equa- $\frac{697}{1000}$ tions: recent progress and open questions". In: SIAM Rev. 20.4 (1978), pp. 639–739. doi: ⁶⁹⁸ [10.1137/1020095.](https://doi.org/10.1137/1020095)

⁷⁰¹ pp. 3342. doi: [10.1016/j.sysconle.2014.02.008.](https://doi.org/10.1016/j.sysconle.2014.02.008)

