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Minimal null control time of some 1D hyperbolic balance
laws with constant coefficients and properties of related
kernel equations

Long Hu* Guillaume Olivef
December 1, 2023

Abstract

In this work, we study the null controllability by one-sided boundary controls of one-
dimensional hyperbolic balance laws with constant coefficients. Our first result shows that,
when the system has only one negative or positive speed, the minimal null control time
of such systems depends on some orthogonality conditions for a particular sequence. This
sequence is explicit in function of the coefficients of the system but it is defined by a nonlinear
recurrence relation. Our second result then completes the previous one by giving explicit
bounds on the number of orthogonality conditions that have to be checked in two nontrivial
situations. The proofs rely on a careful analysis of the so-called kernel equations associated
with the system, including a new well-posedness result. Our results are also valid for the
finite-time stabilization property.

Keywords. Hyperbolic systems; Minimal control time; Backstepping method; Nonlinear
recurrence relation

2010 Mathematics Subject Classification. 35040, 93B05, 93D15, 11B

1 Introduction and main results

1.1 Problem description

In this paper, we are interested in the null controllability properties of a class of one-dimensional
(1ID) hyperbolic system with constant coefficients (see e.g. [BC16, Chap. 1] for applications).
The equations describing such phenomenons are

0 0

So(ta) + A (t,2) = My(t,2). (1a)
Above, t € (0,T) is the time variable, T > 0, z € (0,1) is the space variable and the state
isy: (0,7) x (0,1) = R™ (n > 2). The matrix A € R"*" will always be assumed diagonal
A =diag (N1, ..., \n), with m > 1 negative speeds and p > 1 positive speeds (m + p = n):

A< <A <O < A1 <00 < Apgpe (1b)

*School of Mathematics, Shandong University, Jinan, Shandong 250100, China. E-mail: hul@sdu.edu.cn
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30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

The matrix M € R™*™ couples the equations of the system inside the domain and will be called
the internal coupling matrix. We will consider an initial condition at time ¢ = 0:

y(0,2) = 1" (). (1c)

Let us now discuss the boundary conditions. The structure of A induces a natural splitting
of the state into components corresponding to negative and positive speeds, denoted respectively
by y_ and y,. For the above system to be well-posed in (0,7") x (0,1) with an initial condition
at time ¢ = 0, we then need to add boundary conditions at = 1 for y_ and at z = 0 for y,. We
will consider the following type of boundary conditions, motivated by its numerous applications
(see again [BC16]|):

y-(t,1) =u(t), y+(t,0)=Qy-(t0). (1d)
The function u is the so-called control, it will be at our disposal. It only acts on one part of
the boundary and, on the other part of the boundary, the equations are coupled by the matrix
Q@ € RP*™_ This matrix will be called the boundary coupling matrix. In what follows, ,
and together will be referred to as system .

We recall that system is well-posed in the following functional setting: for every 7" > 0,
y? € L2(0,1)" and u € L?(0,T)™, there exists a unique solution y to system (1)) with

y € C°([0,T); L*(0,1)™) n C°([0, 1]; L*(0, T)™).

By solution we mean “solution along the characteristics”. We refer for instance to [Cor+21] for a
proof of this well-posedness result in such a setting (see also [BC16, Appendix A] when u = 0).

The regularity C°([0,T]; L?(0,1)™) of the solution allows us to consider control problems in
the space L2(0,1)":

Definition 1.1. Let 7" > 0 be fixed. We say that system is null controllable in time T if,
for every y° € L?(0,1)", there exists u € L%(0,7)™ such that the corresponding solution y to
system (1) satisfies

y(T,-) =0.

Since controllability in time 73 implies controllability in any time 75 > T3, it is natural to
try to find the smallest possible control time, the so-called “minimal control time”.

Definition 1.2. For any A, M and @Q as above, we denote by Tins(A, M, Q) € [0,400] the
minimal null control time of system , that is

Tint(A, M, Q) =inf {T">0 | System is null controllable in time T'} . (2)

The time Tiue(A, M, @) is named “minimal” null control time according to the current litera-
ture, despite it is not always a minimal element of the set. We keep this naming here, but we use
the notation with the “inf” to avoid eventual confusions. The goal of this article is to characterize
Tint(A, M, Q) in some new situations.

In order to state our results and those of the literature, we need to introduce the following
times:

T

1
= ifi<m, T,=— ifi>m+1.
Y i1<m by i>m
The time T; is the time needed for the controllability of a single equation (the transport equation)
with speed A;. Note that the assumption implies in particular the following order relation:

3)

Ty < < T,
T, <o < Topsr.
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1.2 Literature

Here, we briefly describe the results of the literature about the null controllability of system .
All the results below are also valid for space-dependent versions of this system.

e It was first proved in the celebrated survey [Rus78| that system is null controllable in
any time 7" > Ty,1+1 + T, A strength of this result is that it is valid for any M and Q.
However, it was also observed in that paper that the minimal control time can be smaller
than T),+1 + T;,,. Finding the minimal control time even in the simpler case M = 0 was
then left as an open problem.

e For M = 0, the minimal null control time was eventually found in [Wec82]. The author
gave an explicit expression of this time in terms of some indices related to Q.

e Finding the minimal null control time for arbitrary M and @ is still an open challenging
problem. There has been a recent resurgence on the characterization of this time. A first
result in this direction was obtained in [CN19| and then completed in [CN21a]. Therein,
the authors introduced a class of boundary coupling matrices @) for which they showed that
the minimal null control time is smaller than 7;,.1 + 7},, whatever the internal coupling
matrix M is.

e For full row rank boundary coupling matrices (rank @) = p), the minimal null control time
was found in [HO21a]. In this case, it has been shown that this time is the same as for the
system without internal coupling (M = 0).

e For systems of n = 2 equations, the minimal null control time was found in [Cor+13| and
[HO21b|. In particular, it has been shown in the second reference that this time depends
on the internal coupling matrix M when the boundary coupling matrix is zero. This is a
feature that was not observed nor highlighted in all the other works and that the results
of the present paper will also share.

e Finally, the smallest and largest values that the minimal null control time can take with
respect to the internal coupling matrix M were found in [HO22|.

Other related works include for instance [Cor+21; |[CN21b; MA22| about time-dependent
versions of system and [Lil0; [LR10; Hul5; |CN20; |[CN22| for quasilinear versions of this
system (in a C! framework).

1.3 Notations and important definitions

To state the main results of this article we first need to introduce some notations.

All along this article, we denote by AT the transpose of a matrix A. For any integer N > 1,
Rév *N denotes the set of matrices of size N x N with diagonal entries all equal to zero. The matrix
Idy denotes the N x N identity matrix. A matrix (or matrix-valued function) of size N1 x Na
will simply be denoted using the corresponding lowercase letter when Ny = 1 (e.g. @ € RP*™
will be denoted by ¢ € R? when m = 1). The inner product of two vectors vy, vs € R"! will be
denoted by (v1,va).

Let us now introduce a sequence that will play a key role throughout this paper. For any
i €{1,...,n}, we first define the following quantities.

e For every r,j € {1,...,n}, we denote by

Myj P . My
Qi = ifj#£14, oq= .
TN — Aj ’ A
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e Let then A, D € R(»=D*("=1) be the matrices defined by

R i A
A = (arj)rjzi, D = diag (>\,\j> L
2 ] Z

and let 1%, w € R™~! be the vectors defined by

1
V0 = (o), v= (Qaji> :
J#i
e Let (¢"),.en C R™7! be the sequence defined by " and

r—2
Yl=ATy0, " =ATy" '+ D> (v, 2 )yt Vr>2. (4)
=0

e Finally, for ¢ € R"!, let b € R ! be the nonzero vector defined by
1
b= @i B=-1(}). 5)

All the above quantities depend on the index 7 but we omit it for clarity.

With the previous notations, we introduce the following sets. For any k € {2,...,n+ 1}, we
denote by Cj, the set of (M,q) € Ry™™ x R"~! such that, for every 2 < i < k, we have ¢;_1 =0
and

b,y =0, VreN. (6)
Here, we use the convention that Co = R(*" x R"~!. Additionally, we will denote by C, 12 = 0.

Note that we then have C; DC3 D - D Cpy1 D Cpya.

1.4 Main results and comments

The first result of this article is the following characterization of the minimal null control time
in the case of one negative speed.

Theorem 1.3. Assume that m = 1. Let us denote by
i =max{Ty +T;, T} if2<i<n, 741 =max{T},Tp}, (7)
(we have 7o > T3 > -+ > T4 from ) Then, for any M € Rg™" and q € R™ !, we have:
1. Ting(A, M, q) € {12,...,Tn+1}. Moreover, the infimum is always reached (in )
2. For any k € {2,...,n+ 1}, we have

Ting(A,M,q) =7, <= (M,q) € Ci \ Cit1-

We recall that the set Cj, is defined at the end of Section [1.3

Remark 1.4. Theorem solves the open problem raised at the end of [HO21b, Section 5] for
systems with constant coefficients.
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Remark 1.5. Theorem remains valid if we replace everywhere in this article the null con-
trollability property by the finite-time stabilization property by L? bounded feedbacks (that
is when the control u is looked under the more particular form wu(t) = fol r(€)Ty(t, &) d¢ with
r € L?(0,1)"). This easily follows from the proof below.

Even though the set Cj, is explicit in function of the parameters of the system, the orthogo-
nality conditions @ that define this set can be difficult to study in general because the sequence
(¥")ren is defined by a nonlinear recurrence relation. Note however that there always exists an
integer N > 1 such that

" €span {¢° | s<N-—-1}, Vr >N,

so that
b,y =0, VreN <— (Ob¢")=0, Vre{0,...,N—1}. (8)

This means that @ only needs to be checked for the first IV values of r. However, such a IV
depends on the sequence and it is a priori unknown, so that, in practice, we do not know when
we have to stop checking the orthogonality conditions. Our second result provides information
on this issue in two particular cases:

Theorem 1.6. Leti € {1,...,n} be fized. Define
Ny =min{N >1 | holds} .
We have Ny < 3 forn =3 and Ny <6 forn = 4.
Remark 1.7. It would be interesting to find a bound of IV, with respect to n for arbitrary n.

Our main results can for instance be combined to deduce a very explicit characterization of
the minimal null control time in the following particular case:

Corollary 1.8. Assume that m =1 and p = 2. Then, for any M € RSX?’ and q € R?, we have:

1. Ting(A, M, q) = max {T1, Tz} if, and only if, (M,q) satisfies
¢g=0, mo1=mz =0.
2. Tine(A, M, q) = max {Ty + T3, T} if, and only if, (M,q) satisfies

g=0, mor=ma3=0, msz #0,

or
ma1 = rs$mas,
_ _ _ 2
@1=0, ¢@#0 and mo1 =me3 =0 or mgy = r°smiz, |
m32 = —TMmiz,
_ __Asqe _ A=)\
where r = X and s = S

3. In all the other situations, Tins(A, M,q) =Ty + T5.

For p = 3, there is no simple presentation as for p = 2, even though the orthogonality
conditions are explicit (see also Remark below) and we know that we only have to check
the first six conditions. Therefore, we only give a nontrivial example:
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Example 1.9. Let 0 € R\ {0} be arbitrary and consider system with

0 -3 1/(20) 0

0
A = diag (—1,1,2,3), M= 2.0 0 2 ;o gq=1{0
30 0 0 -0 1/3

0 2 1/20) 0

e Fori =2, we have b = (1 0 —l)T and

1 0
1 4
w=o), wi=-L(1), wroZp0 wro s gm0 g = Dy
1 7 \o 2 2 4
e For i =3, we have the same b and
1 0 3 3 9 45
wozo_ 0 , ¢1:_0_ 1 , w2:_7w07 w3:_7wl’ w4:7¢0, ¢5:7¢1.
1 0 4 2 8 16

From Theorems and we deduce that Tine(A, M, q) = 74 = 4/3.

Remark 1.10. For arbitrary n, we will see that the orthogonality conditions @ are satisfied if
one of the following three conditions holds:

(C1) Kal(A,v)" ¢° = Kal (4,b)" ¢° = 0, where Kal (4, h) = (h|Ah|---|A"2h) € R(+—Dx(n—1)
denotes the Kalman matrix of (4, h), for any h € R*~1,

(C2) There exists § # J C {1,...,n — 1} such that 1/)? =a,; =b, =0forevery j & Jand r € J.

(C3) <b, 1/)0> = 0 and there exists jo € {1,...,n — 1} such that b;, = 0 and rank A;, =1, where

(D_d' )wo ATe; > 2(n—1)x2
A, — Jo Jo cR (n—1)x ,
o ( ATPY 000 — (0,90) ey,

where dj, is the jo-th diagonal entry of D and ej, is the jo-th canonical vector of R 1L,

We will also see that, for n = 3 (resp. n = 4), it is necessary that one of the conditions [(C1)}
(C2)] (resp. [(CT) [(C2)] [(C3)) holds (it is however preferable to use Theorem [1.6]in these cases).

The rest of this article is organized as follows. In Section [2] we use the equivalence between
the controllability of system and that of a simpler system to obtain a characterization of
this property in terms of some orthogonality conditions for the derivatives at the origin of any
solution to the so-called kernel equations. In Section [3] we compute these derivatives for a
particular solution and we obtain a general formula for this solution. In Section [} we study the
orthogonality conditions associated with the previous solution and we deduce our main results. In
Section[5} we supplement ours results by studying the structure of the solution associated with the
orthogonality conditions. Finally, in Appendix[A] we give a simple proof of the characterization
of the controllability properties for the equivalent system and, in Appendix [B] we prove the
existence of a solution to the kernel equations by a new approach.
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2 An equivalent system and the kernel equations

The first step in the proof of our results is to consider a system which is equivalent to our initial
system from a control point of view.

Lemma 2.1. For any T > 0, system is null controllable in time T if, and only if, so is the
system

9y 9y _

—= A== =F _

Y (1,2) + AL (1,) = F(@)i(1,0),

g-(t1) =a(t),  §4(t,0) = Qi (£,0), ©)
g(07$) = go(x)a

where F € C°([0,1])"*™ is defined by

F(z) = —K(,0)A (Idm> , (10)
Q
and K € CO(T)™ ™ is any solution to
0K 0K

AK(z,2) — K(x,2)A = M,

in the closure of the triangle T = {(z,&) € R? | 0<&<z<l1}.

By solution to we mean solution along the characteristics. This result is by now well-
known: it consists in using the invertible spatial transformation

i) =it - [ " Kyt € de.

in order to transform a solution of system into a solution of system @D (see e.g. [Hu+19,
Section 2.2]). This idea is the starting point of the so-called backstepping method for partial
differential equations and introduced more specifically for hyperbolic systems of two equations in
|[Cor+13]. Equations are thus called the kernel equations. The difficult point is not so much
the result of the previous lemma but rather to prove that actually has at least a solution.
It follows from the results of [Hu+16| that there are many solutions to the kernel equations
in T.

Remark 2.2. The choice of solution to the kernel equations does not affect the controlla-
bility properties of system because all the corresponding systems @— are equivalent from
a control point of view.

Now, two problems naturally arise:

1. Can we characterize the null controllability of the equivalent system @D in function of A, @
and F 7

2. If so, can this characterization be presented explicitly in terms of A, Q and M ?

These problems are still open in general. One particular case where the first problem has been
completely solved is the case m = 1 (one negative speed). This was done in [HO21b| Section 5].
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Theorem 2.3. Assume that m = 1. Then, system @D is null controllable in time T if, and only

if,
T Z max {Tl + Ti*,TQ},
2<i<n

where

P\ -f) e =0,
where £(f;) = sup I(f;) with I(f;) ={€€(0,1) | fi=01in (0,0}, if I(f;) #0, and £(f;) =0

otherwise.

. {Tz if gi—1 # 0,

The second problem could not be solved though because, even if the conditions for f are
explicit, the “map” M — f (“defined” by —, with m = 1) is quite complicated. It was
left as an open problem in the same paper. This is precisely where our main results step in.

From the above result of [HO21b| we see that the values at x = 0 of f and its derivatives
(assuming it is smooth) can affect the minimal null control time Tin¢(A, —, ¢, f) of the system
(Tr =T, if fi(N) (0) # 0 for some N > 0). Our idea is to show that these values in fact completely
characterize Tine(A, —, ¢, f) because M is constant and that we can explicitly relate them to M
thanks to the kernel equations.

It is clear that Tine(A, —, q, f) is solely characterized by f(0), f'(0), f”(0), etc. if we have

f is analytic in a neighborhood of [0, 1). (12)
Under such an assumption, Theorem [2.3] takes a simpler form:
Corollary 2.4. Assume that m =1, let ¢ € R"~! be given and assume (12)). Then, we have:
1. Ting(A,—,q, f) € {12, ..., Tnt1} (recall ) Moreover, the infimum is always reached.

2. For any k € {2,...,n+ 1}, we have

Tint(A,— ¢, )= = (¢ f) € Sk\ Skt1,

where, for every k € {2,...,n+ 1}, Sk is the set of (¢, f) € R"1 x C°([0,1])" such that
gi—1 = fi = 0 for every 2 < i < k (we use the convention that So = R"~! x C°([0,1])?),
and Spi2 = 0.

This result is immediate from the previous theorem but we give a simple and direct proof in
Appendix Note that it is the complete analogue of Theorem for system @ By Lemma
the minimal null control time for the initial system is thus also completely determined
by the sets Sx. However, apart from S,,11, these sets are not explicit in terms of M, which is
unsatisfactory.

Assumption is indeed satisfied in our framework because we can always find an analytic
solution to the kernel equations since M is constant. More precisely, we have the following result:

Theorem 2.5. Let m,p > 1 be arbitrary. Assume that M € R{*"™. For any 6 € R with § # 1,
there exists a unique K € C™°(R?*)"*" that satisfies for every (x,€) € R? and the condition

diag K (z,6x) =0, VxeR. (13)
Moreover, it satisfies the estimate

Y bounded V C R?,3C >0, |K]|

Ce(ymen SC°, Vs EN. (14)
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The kernel equations have been extensively studied in the literature (see e.g. |[Cor+13;
DVK13; HD15; [Hu+16; Hu+19; (CN19|) but Theorem does not follow from the results
contained therein. The most important difference is that, in Theorem the kernel exists on
a larger set than the triangle 7. This is crucial since we want z — f(z) = —K(z,0)A (1 q)T
to be analytic in an interval of the form (—¢,1), & > 0, which does not lie entirely in 7. This
yields nontrivial issues in the standard fixed point approach, notably because we now have to
consider points that are “on the other side” of the diagonal (x, ), that is the condition imposed
in the kernel equations at (z, ) cannot be consider as a boundary condition anymore. We have

developed in Appendix [B] a new approach to solve the kernel equations that encompasses in
particular the proof of Theorem

Remark 2.6. Estimate and Taylor’s theorem show that the solution K to — is in
fact a power series.

As a consequence of Theorem we see that, if ¢;_1 = 0, then f = —K(-,0)A (1 q)T
satisfies f; = 0 in (0,1) if, and only if,

o"k*
b,——(0,0) ) =0, VreN, 15
(15 0.0) =0. W (15)
where b € R"! is defined in () and k® = (k;j);z. It remains to relate the derivatives of the
kernel at the origin with M. This is the purpose of the next section. This will be done only for
a very well chosen particular solution to the kernel equations (i.e. for one é # 1) but this will be
enough for our purposes as already underlined in Remark

Remark 2.7. We emphasize that, in all the sections below and unless specifically mentioned,
the number of negative speeds m is arbitrary (the orthogonality conditions (15 are studied for
any nonzero b € R"1).

3 The derivatives of the kernel at the origin

3.1 Normalization of the equations

Let us first observe that a feature of the kernel equations (11I)-(T3) is that it does not couple
different rows of K:

\ ki ki

or 8§ (xag)/\J + ;kﬁ"(xvg)mﬁ =0,

/\Z‘k’ij(l‘,l‘) — kij(x, .Z‘))\j = mij (] 7é i), kii(x, 5.1‘) = O

(&) +

(16)

Therefore, all along Section 3} ¢ € {1,...,n} is fixed and we will drop the dependence on 4 for
clarity.

Let us now introduce some important notations. Some of them have already been introduced
in Section [I.3] but they are recalled here for the sake of the presentation.

e It is convenient to normalize the kernel equations by A; — A; for j # ¢ and by A; otherwise.
The kernel equations become

Ok, Ok; Y
iy (@ €) G @, vs + ;k‘r(w,f)%‘ =0,

ki(z,2) =0a;; (5 #1), ki(z,dz)=0,

(17)
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where k= (ki -+ ki)' and

Ai )\j . .
Hj )\i_>\J’ vj )\i_)\jv (G#4), pmi=uv )
o Myj . . L My
Qrj = N — )‘j7 (.7 # 1)7 Qpj 7)\2 .

Note that, with this normalization, we have in particular p; — v; = 1 for j # .

e Since the component k; plays a different role than all the other components k; with j # 1,
we rewrite in a matrix form separating both quantities. Let us denote by n® =n — 1
and introduce k¢ = (k;);z;. Then, system can be written as

DS (0.8) + D, G (5. + AR, + i, 0 .
Ok; ok;
o @6+ FE (0 + w ke (2,8) = 0, (18)

kS (z,x) =9, ki(x,61) =0,
where D, D,, A € R™ *"° are the matrices defined by
Dy, = diag (1) i, D, = diag (vj) 2, A= (wj)rjsi,
and ¢°,w € R™ are the vectors defined by
V0 = (aig)jzi, w = (i) jzi-

Note that we used that a;; = 0 (since M € RG*™). Finally, it will also be convenient to
use the matrix D € R™ *"" and the vector v € R™" defined by

D=D,+D,, v:—%w. (19)
3.2 Computation of the derivatives

The main result of this section is the following.

Theorem 3.1. For the solution to with 6 = —1, we have

o1 tole R A\ (o
&W@f" (070) = Z Z(_l) <7") <s>w'y+o'(r+s),r+sv V’}/,O' S Na (20)

r=0 s=0

where (¥ s)r.sen @5 the sequence defined by

r—S

1/)7‘,0 = 1)1)7” q/}7“,5 =0 if?” <s, wr,s = Z <'U,7/Jr—1—e,s—1>1/1z,o if?" 2 S Z 1; (21)

£=0
where (Y7 )ren is the sequence defined in .
Combining this result with the estimates and Taylor’s theorem, we obtain an explicit
formula for the solution to when 6§ = —1:

10
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Corollary 3.2. For § = —1, the solution to is given by

+o0 400 x

K0 =3 > G o7, b= [ ko0 9)dn

r=0 s=0 5

for every (z,£) € R%, where (1,.s)rsen is the sequence defined by and the series is normally
convergent on any compact set of R2.

Remark 3.3. Explicit solutions to the kernel equations were also obtained in [VK14| Section
3.4] for systems of n = 2 equations.

Proof of Theorem[3.1. 1. To explain the special role played by § = —1, we start the compu-
tations with an arbitrary 6 # 1. The first idea is to form a system involving only k¢ by
expressing k; as a function of k°:

ki(z, &) = —/f (w, k(0,0 —x 4+ &)) do.

1—6

As a result, k¢ solves

ok* ok* *
DP«%C&&) + Duaig(xvé-) +Ach($7§) - (ﬁi <w7kc(070 - 1’+€)> dU) 1/10 = 07
kS (z,z) = ¢°.

We now transform this system into a Cauchy problem by introducing the transformation

c[—t+0 t+0
ooy =1 (2,159

Using that D, — D, = Id,«, we can check that h satisfies the system

oh oh o
a(tv 9) = D%(L@) + ATh(t7 9) + </}+§t <1), h(tv 77)> d77> 1/)0, (22)
h(070) = wo,

where we recall that D and v are defined in . Note as well that

oVtoke 2 A\ (o top
0z 9E° (z,8) = Z 70(_1) <’r‘) <S> Otr+o—(r+s) ggr+s (—x+&x+E), Vy,0€N,

r=0s

so that the derivatives of k¢ at (0, 0) can be deduced from those of h. They will be computed
from (22) and we see that the computations considerably simplify if the lower bound of the

integral vanishes, that is if we choose § = —1. For this choice, we define
O"tsh
s = 0,0).
v 6‘tT808< )

We are going to show that it satisfies .

11
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2. All along the rest of the proof, we will use the notation ¢, s = (v, 1, ). First observe that

system (22) (with § = —1) yields the following identities:

errl,O = Dwr,l + ATwr,Ou
errl,s = D¢r,s+1 + ATwr,s + Cr,sfldjO,Oa
1/’0,5 = Oa

(23)

for every r > 0 and s > 1. The second property in is easily proved by induction on
r > 1. To establish the two other identities, it is sufficient to prove the following statement

for any N > 1:

q
Yargs =Y Catrq-te1te0, Vs >1,¥0<q< N,

=0
r—2

Yro=ATY._10+ D Zcr—z—e,ow,o, V2<r<N+1.
=0

We prove it by induction. For N = 1, this is clear. Indeed, for any s > 1, we have

ws,s = Dws—l,s-‘rl + ATws—l,s + Cs—l,s—l'(/JO,O (by )a
=cs_1,5-1%0,0 (by the second property in )7

ws+l,s = Dws,s—&-l + ATws,s + Cs,s—le,O (by )a
= ATtpg s+ s 5100  (by the second property in (1)),
= Co—1,5-1%1,0 + Cs,s—1%0,0  (by (25)),

and

Yo,0=Dip11 + AT (by ([23)),
= co,0Dbo0 + ATp1o  (by (25)).

(25)

Assume now that holds for N > 1 and let us prove it for N 4+ 1. We first show that

N+1

YsrNt1,s = E Cs+N—t,s—1%e0, Vs> 1.
=0

For any s > 1, we have

werNJrl,s = D’(/}erN,erl + ATws+N,s + cs+N,sflw0,0 (by )a

N—1 N
T
=D Z CorN—1—,s%e0+ A E Co—14N—2,5—1%2,0
=0 =0
+ cstn,s—1%0,0 (by assumption (24)),
N—1 N+1
T
=D Z Cs—',—N—l—Z,sd}K,O + Z Cs—i—N—r,s—lA %-1,0
(=0 r=2

+ Cs—14N,5—1%1,0 + Cs+N,s—1%0,0-

12
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283

285
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296

297

Therefore, if we show the identity

N—-1 N+1 r—2
Z Cs+N—1—€,s¢€,0 = Z Cs+N—r,s—1 ZCT—Q—K,Owé,O , (27)
=0 r=2 =0

then we can use the second condition in to obtain the desired identity . To establish
(27), we use the first condition in to deduce that, for every 0 </ < N — 1,

N-1—¢
(V4 N—1-1,5) = E Co—14+N—1—f—j,5—1C4,0
j=0
N+1
= § Cs4+N—r,s—1Cr—2—£,0-

r=~42

Finally, a simple change of order of summation leads to . It remains to show the second
identity in for r = N + 2, namely

N

N
YNy2,0 = A Yni10+ D Z CN—£,0%0,0-
=0

We have

Unt2,0 = DYniig + ATy (by (23)),
N

=D Z en—eo¥e0 + ATYni10  (by @29)).

=0
O

Remark 3.4. Theoretically, we can also compute all the derivatives at (0,0) of the solution to
for arbitrary § # 1. This can be done by taking derivatives and inverting some matrix.
However, the size of this matrix grows with the order of derivatives and computations rapidly
become more and more complicated. It seems difficult with such a strategy to obtain a suitable
formula for arbitrary §. At the same time, we see from that a different choice of & means
more derivatives to be computed, as for instance with 6 = 0 which leads to an integral of the
form ff ;- In addition to that, we recall that one choice of ¢ is actually sufficient for the purposes
of this paper (Remark [2.2).

4 Study of the orthogonality conditions

In this section, we use the computations obtained in the previous section to study the orthogo-
nality conditions . We start with the conclusion of the proof of our first main result.

Proof of Theorem[1.3 We recall that, from the results of the previous sections, we only have to
show the equivalence between the orthogonality conditions and @ First observe that, from
the definition of the sequence (¢, s)r scn, it is clear that @ is equivalent to

(b, ¢rs) =0, Vr,seN.
We can check that this condition is equivalent to using and (21). O

13
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Remark 4.1. The proof above and the analyticity of k¢ in R? shows that the following four
properties are in fact equivalent:

. (b, kS (z,€)) = 0 for every (z,&) € R2.
2. (b,k(z,0)) =0 for every = € R.

3. (b, ¢ 0) =0 for every r € N.
4

—_

. (b, ¢y s) =0 for every r,s € N.

We are now going to study the orthogonality conditions @ for the sequence (¢¥"),en and
prove our second main result. For the rest of Section |4} the matrices A, D € R *"" and the
vectors 10, v,b € R can in fact be arbitrary. We emphasize that n is also arbitrary, it is only
during the proof of Theorem that we will assume that n =3 or n = 4.

4.1 Some invariant subspaces of the sequence

We start the general study of the orthogonality conditions @ with the description of two simple
invariant subspaces of the sequence (¢"),¢en.

Proposition 4.2. Assume that v° € E for some E C R™ satisfying one of the following two
conditions:

AY(E)CE, ECkerv'. (28)
AY(EYCE, D(E)CE. (29)
Then, y" € E for every r € N.

Proof. We prove the result by induction on r. For r = 0 this is trivial and for » = 1 this follows
from the definition ¢! = AT¢° and the property AT(E) C E. Assume then that ¢* € E for
every 0 < ¢ < r for some r > 1 and let us show that ¢"*! € E. Since r + 1 > 2, we have

r—1
¢r+1 _ ATQ/}T + Z <’U, ¢r7172>Dw£'

£=0

Clearly, the first part AT¢" belongs to E since 1" € F and AT(E) C E. The remaining part
also belongs to E since either (v,9") = 0 for every 0 < ¢ < r (if E C kerv") or Dy* € E for
every 0 < /¢ <r (it D(E) C E). O

If we can find a subspace E such as in the previous proposition and which is in addition
included in ker b", then we see that the whole sequence will be guaranteed to stay in kerd!'.

4.2 Characterization of rank one sequences

In this section, we characterize when the rank of (¢"),¢n is equal to one, and we use it to prove

Theorem [1.6]in the case n = 3. We recall that, by definition, rank (¢"),cs = dimspan {¢" | r € S}

for any S C N.
From now on, it will be convenient to use the following notation:

E;, =span {¢y" | r<s}, VseN.
First of all, it is clear that
rank (V" ),en =1 <<= (¥°#0, ¢ €E, Vr>1).

We have the following characterization:

14



322

324

325

326

327

329

336

337

338

339

343

344

345

346

347

348

Proposition 4.3. The following three conditions are equivalent:
1. ¥ € Ey for every r > 1.
2. Y™ € Ey for every r € {1,2}.
3. Ey satisfies or .

Proof. The implication [T = [2|is trivial. The implication 3] = [I] follows from Proposition [.2]
Let us show that 2l = Bl We write

Y=o, r=1,2,

for some a, € R. The condition for » = 1 gives AT9" = a;1/°, which is equivalent to AT(Ey) C
Ey. The condition for r = 2 gives ATy! + <v, 1/10>D’(/)0 = ay1)?, which implies <v, 1/10>D1/J0 € Ey,
that is either Ey C kerv' or D(Ey) C Ey. This establishes the desired equivalences.

O

Proof of Theorem (case n = 3). Assume that
by =0, ¥re{0,1,2}.
Since n® = 2, we have dimkerb” = 1 and thus

rank (¢¥"),cf0,1,2y < 1.
As a result, ¥" € Ej for r € {1,2} and it follows that y" € E, for every r > 1 by Proposition
43l O
4.3 Characterization of rank two sequences

In this section, we characterize when the rank of (¢"),¢cy is equal to two, and we use it to prove
Theorem [1.6] in the case n = 4. The study of rank two sequences is considerably more difficult
than for rank one.

We start with the following simple observation.

Proposition 4.4. Let {0,1,2} C S C N. We have rank (¢"),cs = 2 if, and only if, we have one
of the following two conditions:

1. rank (0|1) = 1, rank (¢°|?) = 2 and ¢" € Ey for every r € S\ {0,1,2}.
2. rank (Y°|¢1) = 2 and ¢ € E; for every r € S\ {0,1}.

Proof. We only need to observe that the situation rank (1/°[1)!) = rank (¢°[¢?) = 1 does not
happen. Indeed, in that situation we have 1!, ¢? € Ey and thus ¢" € E; for every » > 1 by
Proposition which shows that the sequence cannot be of rank two. O

We now characterize both conditions of Proposition [£.4]

Proposition 4.5. Assume that rank (¢°[y!) = 1 and rank (¢°[1)?) = 2. Then, the following
three conditions are equivalent:

1. Y" € Ey for every r > 3.

2. Y € Ey for every r € {3,4}.
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3. E5 satisfies .

Proof. The implication [1] = [2] is trivial. The implication [3] = [i] follows from Proposition
Let us show that [2 = [3| From the definition of ¢? and the rank assumptions, we have
(v,9°) # 0 and Dy° € span {¢°,¢?}. Using these facts, we can first check that the condition
® € By gives AT(Es) C E and then that the condition ¢* € Ey yields D(Ey) C Es. O

The second condition in Proposition [£:4] is more difficult to characterize.

Proposition 4.6. Assume that rank (¢°[1)) = 2. Then, the following two conditions are equiv-
alent:

1. ¥" € Ey for every r > 2.
2. Y" € Ey for everyr € {2,...,5}.
Before proving Proposition we prove our second main result.

Proof of Theorem (case n = 4). Assume that
(b7 =0, Vre{o,...,5}.
Since n¢ = 3, we have dimkerb" = 2 and thus

rank (") ,eqo,....5) < 2.

If the rank is in fact less than or equal to 1, then we conclude as in the proof of Theorem [1.6|in
the case n = 3. If the rank is exactly equal to 2, then the conclusion follows from Propositions

[4:4] [A75] and [4.6] O

We now turn to the proof of the key proposition.

Proof of Proposition[{.6. If E; satisfies or (29), then the result follows from Proposition [4.2}
Therefore, from now on, we assume that F; does not meet any of these conditions.

1. Let N > 4 be arbitrary and consider the property: for every r € {2,..., N}, there exist
ar, Br € R such that

Y=o + Byt (30)
Let us also set

Qo = 1u 50 = 07

a1 = Oa Bl = 1;
so that the previous identity is always true for » = 0,1. Using the definition of the
sequence we see that, for r > 2, identity is equivalent to

(31)

OMXJO + BMZJI :ar—lAT¢0 + /BT—lATwl

r—2 r—2
+ (Z Cr2zaz> Dy + (Z Cr2zﬁe> Dy,

=0 =0

where we introduced, for every s € {0,..., N},

cs = as(v,9%) + Be(v, ¥").
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Let us eliminate the terms AT+%, ATy!. By definition of the sequence, we have ATy = 1.
On the other hand, condition for r = 2 yields

ATl = agy)® + Bogp! — oDy’ (32)
As a result, for » > 3, identity is equivalent to

@ [ ur = (DY°| DY) fr-1, (33)

where wu,., fr_1 € R? are the vectors defined by

_ ap — Br_10o o /B'r—l(_CO) + ET;Q CT—Q—ZO‘Z>
= (/Br — (o1 + ﬂr—lﬂz)) 1= ( Sile Crfzfeﬂe . (34)

Let us make some observations.

e For any ri,7o, if Af,, 14+ ufr,—1 = 0 for some A\, u € R, then Au,, + pu,, = 0. Indeed,
denoting by u = Au,, + p,.,, we have (¢°|4)!)u = 0 and thus u = 0 since we assumed
that 1°,9! are linearly independent.

o fr,_1 and f,,_1 are linearly dependent for any r1,r2. Indeed, otherwise we obtain
(WO 1U = (Dy°|Dypt) for some matrix U € R?*2. This means that D(E;) C Ej.
It then follows from that AT(E;) C Ey as well. Therefore, E; satisfies (29), but
this situation has been excluded from the beginning of the proof.

e fy and f3 are linearly dependent only if ¢y # 0. Indeed, if ¢g = 0, then ATy € E;
by ([32), so that AT(E;) C Ey. If ¢y = 0, we also have det(f2|f3) = ¢}, which cannot
be zero since otherwise ¢y = ¢; = 0, that is 1 C kerv', and thus E; satisfies
(excluded).

The necessary condition det(f2|f-—1) = 0 is equivalent to the identity

r—2
(Z crzgﬂe> fa—cofr-1 =0,
(=0

which, by the first observation above, in turn implies that

r—2
<Z CT2€B€> uz — coty = 0.

£=0

Since ¢y # 0, this gives the following formulas:

r—2
fol = (Z Cr2€ﬁ€> f2a

£=0 (35)

where we introduced ¢, = 2—0 Conversely, it is clear that if we have , then will
also hold for r > 3, provided that it holds for r = 3.
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Finally, observe that the second formula in (35]), combined with the definition of u,,
uniquely determines all the ., 5, for » > 4 as a function of as, 82 and ag, f3:

r—2
Qpr = 6r71a2 + (Z cr2€ﬁl> (043 - ,320(2) P

=0 (36)

r—2

Br =aap_1+ 5r—1ﬂ2 + (Z 67"—2—@5@) (/83 - (042 + /822)) )

£=0
and that the first formula in is equivalent to

r—2

Br-1 = Z Cr—a—¢ (e + (B2 — ¢1)Be) - (37)

£=0

In summary, we have shown that the property considered is equivalent to: ¢y # 0 and there
exist aso, B2 and as, B3 such that holds for r = 2,3 and such that the sequence defined

by (with (3I)) satisfies for every r € {4,...,N}.

. Let us now study the sequence (36)). The proof of the result will be complete after we show

that the following three conditions are equivalent:

(a) Condition holds for every r > 4.
(b) Condition holds for r =4, 5.

(c) as and B3 are given by
Bs = (az+ B3) — (B2 — @1)* + az + (B2 — &1) Ba,
as = Pacs — (B2 — 1) (B3 — (a2 + 53)).

We start with the implication 2b] = [2c] Condition for 7 = 4 immediately gives 33 as
a function of as, fs:

(38)

2
B3 = Z Co—¢ (o + (B2 — &1)Be) -

£=0

On the other hand, condition for r =5 gives

2
Ba=> E_q(ar+ (B —1)Be) + (o5 + (B2 — €1)B3) + T3 (a0 + (B2 — 1))
=1
2

=203+ Fafs+ e (o + (B2 — 1)Be)

=1
whereas, by definition (36)),

2

Ba = az+ P3Pz + (Z 52—@5@) (B3 = (a2 + 3)) -

£=0

Identifying both expressions gives ag as a function of as, fa:

2

263 (o + (B2 —e1)Be) + (Z zﬁe) (B3 = (a2 + 53)) -

18
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We can check that the previous formulas are equivalent to (we prefer the expressions
in because they make appear some coefficients involved in (36)).

Let us now prove the implication 2c = 2al We prove it by induction on r. For r = 4,
this holds by very definition of 3 as we have seen above. Assume now that holds for
some arbitrary r > 4, and let us prove it for » 4 1, that is to prove that we have

Br= s e (aet (Ba—e)Be) (39)

£=0

By definition of 3,, we have

r—2
Br =0p_1 + Br_181 + (B2 — ¢1) (57«—1 — (B2 — &1) ZQ«-z-eﬁe)
=0

3
[ V)

+(Bs— (a2 + B3+ (Ba—1)) Y Er—aife

~
Il
o

Using the induction hypothesis and the definition of B3, we obtain
r—2
Br=¢Cr—1+ ZET—2—Z (B2 — 1) + (a2 + (B2 — €1)B2)Be) -
=0
Now observe that, using the definition of a3, we have

agy1 + (B2 — €1)Bes1 = Beaa + (B2 — &1)(ag + Bef2)
= (B2 — c1)ag + (az + (B2 — ¢1)B2)Be.

Formula easily follows this identity and the previous one.

5 Kernel associated with the orthogonality conditions

In this section, we supplement our results by giving a more explicit characterization of the
conditions found in the previous section and that guaranteed the orthogonality conditions. Then,
we discuss the structure of the associated kernel.

5.1 Kernel associated with the invariant subspaces

Here we discuss properties related to the invariant subspaces of Section We recall that, for
any vector h € R™ | we denote the Kalman matrix of (4, h) by

Kal (A7 h) = (h|Ah|A2h| cee |An571h) c Rncx'n,"
Proposition 5.1. 1. There ezists E satisfying [28), v° € E and E C kerb", if, and only if,

Kal (A,v)" ° = Kal (4,b)" 4° = 0. (40)
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2. Assume that Kal (A, v)T Y9 = 0. Then, for any 6 # 1, the solution to the kernel equations
ki(w,€) =0, k(2,6) = 00, (z,€) e B2,

423 If, moreover, Kal (A, b)T Y0 =0, then the orthogonality conditions are satisfied.
Proof. 1. Assume that holds. Let us define

E =kerKal (4,v)" NkerKal (A,b)" .

424 By assumption, ¢° € E and it is clear that E C kerv" and E C kerb". Finally, E is stable
425 by AT thanks to Cayley-Hamilton theorem. Conversely, assume that holds for some
a26 E C kerb" with ¢ € E. Since ¥ € F and F is stable by AT, we have (AT)*y° € E for
az7 every k € N. Since E C kerv' and E C kerb', we obtain (40).

2. We see from the kernel equations that k; = 0 if, and only if, we have

k¢ ok* T

Dﬂa(xag) + DVaif(xvg) + A kc(x’g) = 07

(v, k*(2,€)) =0,

kc(xa x) = 7/10'
428 Using that D, — D, = Id,, it is clear that k°(z,§) = e‘AT(”_f)z/JO satisfies the first
420 equation. The second condition follows from the assumption Kal (A4, U)T 9 = 0 and Cayley-
430 Hamilton theorem. The third condition is trivial. Finally, the orthogonality conditions are
431 clearly satisfied under the additional assumption Kal (A, b)T P9 = 0.
432 D
433 Let us now address the second type of invariant subspaces introduced in Section .1}

sa  Proposition 5.2. Assume that 4%, b # 0.

1. There exists E satisfying , Y° € E and E C kerb' if, and only if, there exists a
nonempty J C {1,...,n} such that

V) =ar;=b, =0, VjgJ Vrel

435 2. Assume that there exists a nonempty J C {1,...,n‘} such that 1/)? = a,; = 0 for every

436 j& Jandr € J. Then, for any 0 # 1, the solution to the kernel equations satisfies
437 k; =0, VjglJ (41)
438 If, moreover, b, = 0 for every r € J, then the orthogonality conditions are satisfied.
Proof. 1. Since D is a diagonal matrix with distinct entries, its invariant subspaces are of the
form
E =span{e. | reJ},
430 for some J C {1,...,n°}, where ey, ..., ey, are the canonical vectors of R”". Since 1/° # 0
440 (resp. b # 0), we have J #£ 0 (resp. J # {1,...,n°}). Then, we easily check that such a
a1 subspace is invariant by AT if, and only if, ar; = 0 for every r € J and j ¢ J and that it
442 is included in ker b if, and only if, b, = 0 for every j € J.
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2. Property is a consequence of the uniqueness of the solution to the kernel equations.
The orthogonality conditions are clearly satisfied under the additional assumption that
b, = 0 for every r € J.

O

Remark 5.3. The first item in the above propositions gives explicit conditions that guarantee
that the orthogonality conditions hold (when combined with the results of the previous
sections). We found these conditions with an algebraic approach. On the other hand, once these
conditions are known, the second item of the above propositions show how to use them to obtain
an analytic proof of the orthogonality conditions. Observe in addition that these different proofs
are valid for arbitrary § # 1.

5.2 Kernel associated with nontrivial rank two sequences

In the same spirit as in the previous section, we now we discuss the following property, related

to Proposition
Ey Ckerd', "€ E;, Vre{2,...,5}. (42)

Below, we denote by co = (v,4°).

Proposition 5.4. 1. Assume that rank (¢°!) = 2, E; satisfies neither nor , co 7
0 and <b, w0> = 0. Then, condition holds if, and only if, there exists jo € {1,...,n‘}
such that

bj, =0, rankAj; =1,

where Aj, € R *2 s given by
A = (D - djo)wo ATejo
Jo ATwO Uj0¢0 — o€y, )
where d;, is the jo-th diagonal entry of D and e;, is the jo-th canonical vector of R™ .
2. Assume thatn =4, i = 2,
b=101], p#0,
—p

co # 0, agy # 0, <b, 1/10> =0 and rank Ay = 1. Then, the solution to the kernel equations
with 6 = —1 is given, for some o € R\ {0}, by

ko1 = k24p,
1 ok ok
koo = = (0%8;4 + 01/38724 - a32k24) ) (43)
k 1 31(124 8](324 _ k
23 = e ¢ oQo3kay |,
where koy € C°(R?) is the solution to
0%k 9%k 9%k
=g (@) + (13 + 1) 08 (@,6) + v =505 (2, €) = —2cokaa(2,),
Okaa Oka4 Q32 (44)

M387(~T7 —z) + V387£(13’ —z) = 71624(33, —x),

k‘24(l‘, l‘) = (94.
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To see that indeed has a solution, we can introduce h = us a§;4 —i—Vg%Z“ and observe that
(ko4, h) satisfies a first-order hyperbolic system similar to the kernel equations and whose
well-posedness can be established as in the proof of Theorem

Proof of Proposition[5.4} 1. Under the assumptions of the proposition and from the proof

of Proposition we have " € E; for every r € {2,...,5} if, and only if, there exist
s, B2 € R such that

VP = agy® + By,

where ag, 3 are given by . We can check that this is equivalent to the existence of
p, 0 € R such that

{W = ax® + By,

(AT = p)o" = —co(D = 0)y° + aa (v’ = py), (45)
(D - 0)(1/}1 - PZ/JO) - 07
{vv')
where we recall that ¢; = ~——. Since D is diagonal with distinct entries and ¢°, ¢! are

linearly independent, the second condition in is equivalent to the existence of some
jo € {1l,...,n‘} and r € R\ {0} such that

0=dj,, »'=p°+re,. (46)

Plugging the second identity in the first condition in and recalling that ' = ATy0,
we see that this condition simply becomes

rATejO = —Co(D — djg)'l/JO + ’I"Elejo.

Comparing the jo-th components of both quantities, using that the diagonal of A is zero
and r # 0, we see that & = 0. Recalling (46), the condition ¢ = 0 is equivalent to
p = —7vj, with ¥ = = In summary, there exist p, 0 € R such that holds if, and only

C

if, there exist jo € {1,...,n°} such that

(D - djo)wo + 'FATejo =0,

P+ 7 (v, — coey) = 0. (47)

3 e R\ {0}, {

We can check that this condition is equivalent to rank A;, = 1. Finally, it is clear that
Ey Ckerd', ie. (b,y") =0, if, and only if, bj, = 0.

. Since ¢ = 2, we have (for the notations, see Section |3.1))

0 a3 agn Qo1 1 [ @2
AT = @13 0 Q43 ) D= 2dla‘g (,Ul, M3, /J'4)_Id37 ¢0 - 23 5 v = —5 39
14 Q34 0 Q24 Q42

Clearly, (b,9%) = 0 is equivalent to

Q21 = iy p. (48)
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On the other hand, using the characterization (47), we see that rank Ay = 1 if, and only if,

az1 = o — p3)pasa, (49)
azg = o (pa — p3)aad, (50)
Qy1 = —g (az2 4+ 0% (1 — p3)ozs) (51)
2 + a12p = o(auz + ausp), (52)
Q14 = *pia (0432 + 02 (g — H3)0123) ) (53)

where ¢ = —2. Using these conditions we easily check that ((k°)7, ko) = (k21, ka3, ks, ko2)

defined by — satisfies the kernel equations with § = —1.
O

To conclude this section we will present a method which shows how conditions — can
also be found from an analytic point of view.

Another proof of Proposition[5.4, item[3 1. For every j, let us denote by P; the first-order
linear partial differential operator

0

P; = Mj@ + gfyj'

Since we want the orthogonality condition (b, k°(-,0)) = 0, we look for a solution satisfying

ko1 = kaap,

(recall also Remark . In particular, we assume . Then, the problem is to find a
solution to
kogaa1 + kazazr = (—pP1 — aur)kaa,

Pakaoo + kogasa + kaa(ouz + a12p) =0,
Pskos + kaaag + koa(cus + arzp) = 0,

koo + kogaigs = (—Pa — a1ap)koa.

w = det <a21 a31> .
Q24 034
Assume that w # 0 (this will follow a posteriori from , , using also that o, p, agy #
0). Then, the first and fourth equations in give

(54)

Let us denote by

1
koo = — (—a3apP1 + a31Ps — qgauar + ag1a14p) kaa,

(55)

— &

ko3 = " (a24pP1 — 1Py + aa0ua1 — az1a14p) k.

Plugging these relations in the second and third equations in give the following two
second-order partial differential equations for koy:

Qk24 = 07 Qk24 = 07
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499

500

502

504

505

506

where Q = Q@ + 9 4+ Q) with
Q¥ =Py (—azapP1 + as1Py) |
QW = (—agau1 + az1a1ap)P2 + (a24pP1 — 21P1) @32,
Q) = (ansaqr — azrarap)ass + w(ous + aizp),
and O = 0@ + 6 + 3O with
Q(z) = P3 (a24pP1 — a21Py),
QW = (az40u1 — a21014p)P3 + (—a34pP1 + az1Ps) iz,

0 = (—asaour + azionap)ass + w(ous + aizp).

. We are going to find conditions to guarantee that these two equations are compatible. To

this end, it is for instance sufficient to have
oM =00 r=0,1,2, (56)
for some o € R. We first look at the operators of highest order. Using the identities
Qg1 =aoup, py—vi=1 (j#2), pp=1r=1, (57)
we have
a24pP1 — a21Py = aagp (P1 — Py)
= ap(p1 — pa)Pa. (58)

It follows that R
Q® = agup(p1 — p14)P3Po. (59)

Consequently, we see that holds for r = 2 if we have
—a34pP1 + 3Py = oooap(pin — p14)Ps. (60)
This identity holds if (a4, 31) satisfies

—PH1 M4 Q34 \ . M3
<—PV1 l/4> (0431> oazap(pn = pa) (Va>7

which is equivalent to — (using p # 0 and )

. Let us now compute the first-order differential operators. We have

OW = (—azsaur + aziarap + azap(pn — pa)az2) P2 (by 68)),
OW = (ansour — azianap + casap(us — pa)aas) Py (by (60)).
As a result, we have for r =1, if QM = 9 = 0, that is, if

{01340441 + agianap = —ap(p1 — pa)asa, (61)

Q240041 — 2100140 = —00424,0(M1 - ,u4)0423~

This holds if (a1, a14) satisfies
—Q34  Qz1p Qa1 _ _ Q32
( Oro4 _a21p> (a14> aoap(pi1 — fia) (aa23> )
which is equivalent to and (using (48), (49), and agy, p # 0).
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517
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521

4. Let us now compute the zero order terms. Using (61)), we immediately see that
Q) = —aa4p(p1 — pra)azares + w(auz + aizp),
o = —oagap(pn — pa)agzase + w(oue + arep).

As a result, we see that holds for r = 0 if we have condition . Moreover, using
[@g), and (50), we have

w=—0a3up(p — pa), (62)
so that, using again and the definition of ¢y, we obtain

Q) = gagap(p1 — p1a)(2¢o).

It follows that ko4 indeed satisfies the first equation in (recall that Q) = ¢Q® with
and QM) =0).

5. Using (60), (61), and (62), we can simplify the expressions in to obtain

1
koo = (0P3 — au32) ks,
—0Qi24
1
ko3 = (PQ - 00423) kog.
—O0Q24

In addition, it follows from these formula that the remaining conditions are satisfied. In-
deed, the condition keo(x,—x) = 0 is exactly the condition that we require for koy at
(z,—z) in and the condition ka3(x,x) = g3 follows from the above expression since
kos(z,x) = aoq and (P2kaes)(z,z) = %km(x,x) =0.

O

Remark 5.5. In [VK14, Section 3.3], the authors showed that we can solve a kernel system of
two equations of the form

Oka1  Okoy
0z BT + Ka2(ro1 ;
Okaa  Okaa
— + —+k =0
oz + ¢ + Ko1012 )

koi(z,x) = o1,  koa(x,0) =0,

with sy # 0 by first expressing koo from the first equation and then showing that the resulting
second order equation for k9; indeed has a solution. The method we introduced in the second
proof of Proposition item [2) can be seen as an extension of the method of [VK14] where,
instead of dividing by a scalar (namely, ag1), we invert a matrix.
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A Controllability of the equivalent system

In this appendix, we give a simple and direct proof of Corollary We recall that it can be
deduced from Theorem but this result is based on the Titchmarsh convolution theorem (see
[HO21b]) and we show here how to directly prove the corollary without resorting to this difficult
result.

Proof of Corollary[2] It is enough to show that, if (¢, f) € Si\Sk+1 for some k € {2,...,n + 1},
then system @D (with m = 1) is null controllable in time 7' if, and only if, T' > 7.

1. We first observe that system @D is equivalent to the same system with f; = 0. This follows
from the invertible spatial transformation

lta) =i te) = [ hla = e €) de
0
where the kernel h is the solution to
h(z)M\ +/ hz =€) f1(&)d¢ = fi(z), O0<a<l1.
0

Therefore, for the rest of the proof, we assume that f; = 0.

2. Assume now that (q, f) € Sk \ Sk41 for some k € {2,...,n} (the result for k =n+1is
trivial). It will be convenient to use the notation §; = ¢;—1 for 2 < i < n. Let us write
system @D (with fi; = 0) component-wise:

Wy e m oy =0, (Pitt0)+ 22 (00) = fiayolt),

ot dx ot ox
g1 (t, 1) = a(t), 7i(t,0) = Giv(t),

for i € {2,...,n}, and where we introduced v(t) = §;1(¢,0). It is clear that this system is
null controllable in any time T > 7, = max {T} + T}, T} since in this case taking @ = 0 in
(T — (Th + Ty),T) does the job. It is the necessary part that requires more work.

3. First of all, we recall that the condition T > max {T1,T>} is always necessary (see e.g.
the proof of [HO21b, Lemma 3.3]). Under this condition and by mimicking the second
step in the proof of [HO21b, Theorem 3.1], we see that the null controllability condition
Ik (T, z) = 0 is equivalent to

qra(r) + /OT B(r—o)a(e)de =0, 0<71<Ty, (63)
where a(0) = v(—0+T) and 5(0) = fr(Arf) for 0 < 6 < Ty.
4. We now have two possibilities for (63]).
(a) Case gr # 0. Then, by uniqueness of the solution to the Volterra equation of the
second kind (63), we obtain o = 0 in (0,T}). This means that v = 0 in (T — T}, T).

Since this is true for any 3, it is possible only if Ty < T — T}, which is the desired
condition.
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(b) Case g = 0. Since (g, f) € Sk \ Sk-+1, we necessarily have fj # 0. Since fj, is analytic
in a neighborhood of [0, 1), this implies in particular that there exists N > 1 such that

FN D0y £0, fP0)=0, V<N-1.

Then, taking N times the derivative with respect to 7 in (with g = 0), we obtain
the new Volterra equation

calr)+ [ BM(r (o) dr =0, 0<7 <.
0

where ¢ = V-1(0) = f,gN_l)(O))\gfl. Therefore, ¢ # 0 and the situation is now
identical to the previous case.

O

B Solution to the kernel equations

In this appendix, we present a new approach to solve the kernel equations that encompasses
in particular the proof of Theorem [2.5] We recall that, when considering the kernel equations
in the triangle T = {(amf) € R? | 0<é<z < 1}, the approach used in all current results
in the literature (|[Cor+13; DVK13; HD15; Hu+16; Hu+19; [CN19|, etc.) consists in adding
“artificial boundary conditions” to close the system of kernel equations. In our approach, we will
not consider the condition at (x,z) as a boundary condition but rather as an initial condition.
We will simply let propagate this condition along the characteristics and find the corresponding
so-called domain of determinacy, much in the spirit of the reference books [LY85; [Bre00]. Then,
another idea of our method is also to solve the equation for j = ¢ and plug it into the other
equations of the system to obtain a new system with initial conditions at (z,z) only (as in the
proof of Theorem [3.1)). Moreover, this gives a natural bound in |z — ¢| for the estimates needed
to prove the contraction of the mapping defining the integral equations corresponding to the new
system (rather than |z — (1 —¢€)&| as in [Hu+16; [Hu+19]).

All along this appendix, i € {1,...,n} is fixed and we continue using the notation k =
(kij)1<j<n to denote the transpose of the i-th row of K. We also emphasize that m > 1 is
arbitrary.

First of all, it will be more convenient to work with the kernel equations normalized by A;:

Ok, _ Ok, n
ap @&+ /\jafg(x,ﬁ) + > k(. )iy =0,

r=1

k‘j(ﬂ?,l‘) = fj (] 7é i)v ]{il(l‘,é.ﬁ) =0,

(64)

where \
_ . ors i
— 7 7y o= T . v
Aj = Mrj = I

A N TSN
From now on, we will assume for instance that ¢ > m+ 1, so that A; > 0 and thus, from (Ib),

M < <A1 <1< hig1 < -+ < M. (65)
For every (z,€) € R x R, we denote by s — (;(s;z,£) the solution to

d _
ggj(s;x,f) =1;, VseR,
Gi(z;,8) = €.
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Let us now consider the more general condition

kj(w,x) = f;(x) (3 # 1),

where f; is a function defined on an interval of the form [a,)] with ¢ < 0 < b. Even if f;
is constant in , we will need to consider space-dependent data to deduce the existence of
smooth solutions by an inductive argument. We will describe the largest domain D C R? where
the system can then be solved along the characteristics. We first take care of the characteristics
for j # i. Recalling the ordering (63)), we introduce

Gi—1(zia,a) <& < G—1(x;0,b) }
Gir1(x;0,0) <& < Gia(wsa,a) [

(see Figure . Above, we use the usual conventions for i = 1 and i = n. We now take care of
the characteristic for j = i. We can check that the line {(z,0z) | a <z < b} intersects the
boundary of D¢ at exactly two points (¢, dc) and (d, dd), with ¢,d € (a,b) and e <0< dif § < 1
ord<0<cifd>1. Let then

D={(z,§) e D° | (lx;d,dd) <& < (i(w;¢,6¢)},

(see Figure [2| with § = —1) and define I = (¢, d). Here and in what follows, it will be convenient
to use the notation (¢, ) to denote the interval (min {«, 8}, max {a, 8}), whatever «, 5 € R are
(we use a similar notation for [a, f]).

Dt = {(:r,f) cR? ‘

Figure 1: Domain D¢ Figure 2: Domain D (in dark gray)

We will prove the following result.

Theorem B.1. Leta < 0 < b and s € N be fized. For any (f;);2 € C*([a,b])"~ ! and f; € C*(I),
there exists a unique solution k = (kj)1<j<n € C*(D)" to

ox

o) = fya) ae(@h) G2
ki(z,o0x) = fi(x), mEI,

%(a:s)m%f:cs Y Oy =0, (0 €
(66)
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sso  Moreover, we have the estimate

caapy il cs([)} ; (67)

Il oy < Cmae {1

sz for some C > 0 that does not depend on any f;.

583 For s = 0, by solution we mean “solution along the characteristics”, see below.

584 The first part of Theorem follows from the previous result and the following simple
sss  Observation:

YWCR%3Ja<0<b, VCD. (68)
587 On the other hand, using that the coefficients of the system are constant and arguing as in

sss  the proof of [CN19, Lemma 6.2], we can show that holds with C' = R® for some R > 0 that
sso does not depend on s. This establishes the estimate in Theorem [2.5

590 Let us now prove Theorem [B.I] We start with a description of the key properties satisfied
so1 Dy the point where the j-th characteristic intersects the corresponding data line.

s2 Lemma B.2. For every j € {1,...,n}, there exists o; € C°°(D) such that, for every (z,£) € D,
so3  we have:

594 ° Cj(Uj(x,f);lﬁg)i: O-j(iraf) with O-j(xvg) € [a’7b] fO?"j 7é i and CZ(JZ(x7£)7x7§) = (50’1(1',5)

595 with O’i(.’li,g) el.
596 o (s,¢i(s;2,€)) €D for every s € [o;(x,§), z].
597 e For every j # i, we have
598 |0]'(x’§) —.23‘ < C|l‘—§|, (69)
500 for some C > 0 that does not depend on j,x,&.
600 We point out that ¢; and o, are explicit. In particular, this is how we prove estimate (69).
601 Now, instead of writing along all the characteristics (as it is usually done), we first
s02 replace k; by formally solving the corresponding equation (recall that m;; = 0):
x
ki(x,€) = fi(oi(x,€)) — / o > k(0 G 2, €)) g dn. (70)
oi(x,§ r#i

Let us introduce the following notations to exclude the i-th components: k¢ = (k;);zi, f© =
(fi)jzir 0F = (07) 50> € = ((G)jis M = (Mrj)rjtis ¥ = (Mij)jzi and w = (My;);;. Then,
plugging the previous expression of k; in and integrating along the characteristics, we can
transform this system into the following system of integral equations for k°:

T n—1
59 =Fioi(e) = [ STk Glore s ds
o, (x,8) =1

[ B Gl s

z s n—1
+/ o (/ Zkf-(n,@(n;s,c;(s;x,g)))wrdn> e ds, (71)

¢ $(8,¢5 (s32,8)) =1

s0a for every £ € {1,...,n — 1} and (,&) € D.
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All the quantities in and are well defined thanks to Lemma[B.2] It remains to prove
the existence and uniqueness of a C'® solution k¢ to this system of integral equations. We start
with s = 0. As usual, we use the Banach fixed point theorem and suitable estimates. A solution
to this system is a fixed point of the map F(k¢) = u® + ®k°, where

8 = Fioi@ O = | il Glosm s

and @ is the linear map ® = &, + ®, with

(B2, /wrl 5, G5 (53, €))mS, ds,

and

@k o= [ ( L Zk (Gl G 552, €)) dn> o ds,

for every £ € {1,...,n — 1} and (z,&) € D. B
Let us now precisely set the functional framework. Let B = C°(D)"~! and consider the
standard norm [|k|| 5 = maxi<i<n—1max, o5 [kj(z,§)[. Clearly, B is a Banach space and

F(B) C B. Let us now prove that F'V is a contraction for N € N* large enough. This is
equivalent to show that ®” is a contraction. To this end, it is sufficient to prove the following
key estimate:

Lemma B.3. There exists C' > 0 such that, for every N € N*, we have

. CN |z
@ k(a0 < T ey

for every k* € B, £ € {1,...,n — 1} and (x,€&) € D.
Proof. We prove the property by induction on N. Let us first consider NV = 1. We have
[(@1E5) (2, ) < Cr | — o (@, )| [kl 5.,
with C; = max, ), |m!,| > 0. Similarly,
[(@2k%);(, )| < Ca | — oy (2, O] K] 5 »
with Coy = maxy (5 ¢) s [s — 0§ (5, (S (552,8)) D, [wy| [te] > 0. Finally, we have
[z —op(x, )| < Csle = ¢, (72)

for some C5 > 0 that does not depend on ¢, z, ¢ (see ) This proves the property for N = 1.
Let us now assume that the property holds for N and let us prove it for N + 1. We have

(@1 0V k), (2, €)| < / S @7H), (5, CE (5522 €)) Jmy| ds,

[Ue(x7€ x] r=1

Using the induction assumption, we get

CN
(@@ k)& <O Ikl [ s Gl ds
: [of (x,8),2]
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Similarly, noting that n — (;(n;s, (S (s;2,6)) = s — ¢ (s; 2, ), we get
Ny.c cN c c N
(@@ O] < oy s [ oGl )Y as.
oi(z,8),x

Now observe that |s — (j(s;x,&)| < Cu|s — of(z,§)| for some Cy > 0 that does not depend on
£,s,x,&. It follows that

N N |z — of(z, €)M
/ ls — (s, €) ds§C4/ |s — of(z, &) ds = Cy ANl
(0§ (2.,6).2] (0§ (2.6).2] N+1
We conclude thanks to the estimate (|72)).
O

Finally, the estimate can be deduced from the identities k¢ = FN (k¢)— FN (0)+FN(0) =
SN (k) — dN(0) + Zfio @7y, combined with the fact that ® is a contraction and that u° can
be estimated by the right-hand side of (with s = 0). This concludes the proof of Theorem
Bilfor s =0.

To prove the result for s > 1 we can argue as in the proof of [Bre00, Theorem 3.6] and then
use an induction argument.

Remark B.4. The proof above can be adapted to deal with space-dependent systems, i.e. when
A; and m,; depend on z. The additional condition for k; has to be modified though, but we
can for instance consider k;(z,0) = fi(z). Note that we still have explicit formulas for the
corresponding (; and o;.

Remark B.5. Our approach can be used to recover existence results in the triangle 7. To this
end, we simply extend the parameters A; and m,; to [a,b] D [0,1] in a smooth way. Then, for
a, b large enough, the domain D will contain the triangle 7 (recall (68)) and we apply Theorem
B in this D. This approach is different from all the previous ones in the literature, which
consisted in adding “artificial boundary conditions” at some parts of the boundary of 7. Note in
addition that extending A; and m,; outside [0, 1] in a smooth way is easier than building artificial
boundary conditions that satisfy compatibility conditions associated with the kernel equations.
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