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In this work, we study the null controllability by one-sided boundary controls of onedimensional hyperbolic balance laws with constant coecients. Our rst result shows that, when the system has only one negative or positive speed, the minimal null control time of such systems depends on some orthogonality conditions for a particular sequence. This sequence is explicit in function of the coecients of the system but it is dened by a nonlinear recurrence relation. Our second result then completes the previous one by giving explicit bounds on the number of orthogonality conditions that have to be checked in two nontrivial situations. The proofs rely on a careful analysis of the so-called kernel equations associated with the system, including a new well-posedness result. Our results are also valid for the nite-time stabilization property.

1 Introduction and main results

Problem description

In this paper, we are interested in the null controllability properties of a class of one-dimensional (1D) hyperbolic system with constant coecients (see e.g. [BC16, Chap. 1] for applications).

The equations describing such phenomenons are ∂y ∂t (t, x) + Λ ∂y ∂x (t, x) = M y(t, x).

(1a) Above, t ∈ (0, T ) is the time variable, T > 0, x ∈ (0, 1) is the space variable and the state is y : (0, T ) × (0, 1) → R n (n ≥ 2). The matrix Λ ∈ R n×n will always be assumed diagonal Λ = diag (λ 1 , . . . , λ n ), with m ≥ 1 negative speeds and p ≥ 1 positive speeds (m + p = n):

λ 1 < • • • < λ m < 0 < λ m+1 < • • • < λ m+p . (1b) 
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The matrix M ∈ R n×n couples the equations of the system inside the domain and will be called the internal coupling matrix. We will consider an initial condition at time t = 0: y(0, x) = y 0 (x).

(1c)

Let us now discuss the boundary conditions. The structure of Λ induces a natural splitting of the state into components corresponding to negative and positive speeds, denoted respectively by y -and y + . For the above system to be well-posed in (0, T ) × (0, 1) with an initial condition at time t = 0, we then need to add boundary conditions at x = 1 for y -and at x = 0 for y + . We will consider the following type of boundary conditions, motivated by its numerous applications (see again [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]):

y -(t, 1) = u(t), y + (t, 0) = Qy -(t, 0).

(1d)

The function u is the so-called control, it will be at our disposal. It only acts on one part of the boundary and, on the other part of the boundary, the equations are coupled by the matrix Q ∈ R p×m . This matrix will be called the boundary coupling matrix. In what follows, (1a), (1c) and (1d) together will be referred to as system (1).

We recall that system (1) is well-posed in the following functional setting: for every T > 0, y 0 ∈ L 2 (0, 1) n and u ∈ L 2 (0, T ) m , there exists a unique solution y to system (1) with y ∈ C 0 ([0, T ]; L 2 (0, 1) n ) ∩ C 0 ([0, 1]; L 2 (0, T ) n ).

By solution we mean solution along the characteristics. We refer for instance to [START_REF] Coron | Boundary stabilization in nite time of onedimensional linear hyperbolic balance laws with coecients depending on time and space[END_REF] for a proof of this well-posedness result in such a setting (see also [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF] Appendix A] when u = 0).

The regularity C 0 ([0, T ]; L 2 (0, 1) n ) of the solution allows us to consider control problems in the space L 2 (0, 1) n : Denition 1.1. Let T > 0 be xed. We say that system (1) is null controllable in time T if, for every y 0 ∈ L 2 (0, 1) n , there exists u ∈ L 2 (0, T ) m such that the corresponding solution y to system (1) satises y(T, •) = 0.

Since controllability in time T 1 implies controllability in any time T 2 ≥ T 1 , it is natural to try to nd the smallest possible control time, the so-called minimal control time.

Denition 1.2. For any Λ, M and Q as above, we denote by T inf (Λ, M, Q) ∈ [0, +∞] the minimal null control time of system (1), that is

T inf (Λ, M, Q) = inf {T > 0 | System (1) is null controllable in time T } .
(2)

The time T inf (Λ, M, Q) is named minimal null control time according to the current literature, despite it is not always a minimal element of the set. We keep this naming here, but we use the notation with the inf to avoid eventual confusions. The goal of this article is to characterize T inf (Λ, M, Q) in some new situations.

In order to state our results and those of the literature, we need to introduce the following times:

T i = 1 -λ i if i ≤ m, T i = 1 λ i if i ≥ m + 1.
The time T i is the time needed for the controllability of a single equation (the transport equation)

with speed λ i . Note that the assumption (1b) implies in particular the following order relation:

T 1 ≤ • • • ≤ T m , T n ≤ • • • ≤ T m+1 .
(3)

Literature

Here, we briey describe the results of the literature about the null controllability of system (1).

All the results below are also valid for space-dependent versions of this system.

It was rst proved in the celebrated survey [START_REF] Russell | Controllability and stabilizability theory for linear partial dierential equations: recent progress and open questions[END_REF] that system (1) is null controllable in any time T ≥ T m+1 + T m . A strength of this result is that it is valid for any M and Q.

However, it was also observed in that paper that the minimal control time can be smaller than T m+1 + T m . Finding the minimal control time even in the simpler case M = 0 was then left as an open problem.

For M = 0, the minimal null control time was eventually found in [START_REF] Weck | A remark on controllability for symmetric hyperbolic systems in one space dimension[END_REF]. The author gave an explicit expression of this time in terms of some indices related to Q.

Finding the minimal null control time for arbitrary M and Q is still an open challenging problem. There has been a recent resurgence on the characterization of this time. A rst result in this direction was obtained in [START_REF] Coron | Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF] and then completed in [START_REF] Coron | Null-controllability of linear hyperbolic systems in one dimensional space[END_REF]. Therein, the authors introduced a class of boundary coupling matrices Q for which they showed that the minimal null control time is smaller than T m+1 + T m , whatever the internal coupling matrix M is.

For full row rank boundary coupling matrices (rank Q = p), the minimal null control time was found in [START_REF] Hu | Minimal time for the exact controllability of one-dimensional rst-order linear hyperbolic systems by one-sided boundary controls[END_REF]. In this case, it has been shown that this time is the same as for the system without internal coupling (M = 0).

For systems of n = 2 equations, the minimal null control time was found in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] and [START_REF] Hu | Null controllability and nite-time stabilization in minimal time of one-dimensional rst-order 2 × 2 linear hyperbolic systems[END_REF]. In particular, it has been shown in the second reference that this time depends on the internal coupling matrix M when the boundary coupling matrix is zero. This is a feature that was not observed nor highlighted in all the other works and that the results of the present paper will also share.

Finally, the smallest and largest values that the minimal null control time can take with respect to the internal coupling matrix M were found in [START_REF] Hu | Equivalent one-dimensional rst-order linear hyperbolic systems and range of the minimal null control time with respect to the internal coupling matrix[END_REF].

Other related works include for instance [Cor+21; CN21b; MA22] about time-dependent versions of system (1) and [Li10; LR10; Hu15; CN20; CN22] for quasilinear versions of this system (in a C 1 framework).

Notations and important denitions

To state the main results of this article we rst need to introduce some notations.

All along this article, we denote by A T the transpose of a matrix A. For any integer N ≥ 1, R N ×N 0 denotes the set of matrices of size N ×N with diagonal entries all equal to zero. The matrix Id N denotes the N × N identity matrix. A matrix (or matrix-valued function) of size N 1 × N 2 will simply be denoted using the corresponding lowercase letter when N 2 = 1 (e.g. Q ∈ R p×m will be denoted by q ∈ R p when m = 1). The inner product of two vectors v 1 , v 2 ∈ R n-1 will be denoted by v 1 , v 2 .

Let us now introduce a sequence that will play a key role throughout this paper. For any i ∈ {1, . . . , n}, we rst dene the following quantities.

For every r, j ∈ {1, . . . , n}, we denote by

α rj = m rj λ i -λ j if j = i, α ri = m ri λ i . A = (α rj ) r,j =i , D = diag λ i + λ j λ i -λ j j =i ,
and let ψ 0 , w ∈ R n-1 be the vectors dened by

ψ 0 = (α ij ) j =i , v = - 1 2 α ji j =i
.

Let (ψ r ) r∈N ⊂ R n-1 be the sequence dened by ψ 0 and

ψ 1 = A T ψ 0 , ψ r = A T ψ r-1 + D r-2 =0 v, ψ r-2-ψ , ∀r ≥ 2. (4) 
Finally, for q ∈ R n-1 , let b ∈ R n-1 be the nonzero vector dened by b = (β j ) j =i , β = -Λ 1 q .

(5)

All the above quantities depend on the index i but we omit it for clarity.

With the previous notations, we introduce the following sets. For any k ∈ {2, . . . , n + 1}, we denote by C k the set of (M, q) ∈ R n×n 0 × R n-1 such that, for every 2 ≤ i < k, we have q i-1 = 0 and b, ψ r = 0, ∀r ∈ N.

Here, we use the convention that C 2 = R n×n 0 × R n-1 . Additionally, we will denote by C n+2 = ∅.

Note that we then have

C 2 ⊃ C 3 ⊃ • • • ⊃ C n+1 ⊃ C n+2 .

Main results and comments

The rst result of this article is the following characterization of the minimal null control time in the case of one negative speed.

Theorem 1.3. Assume that m = 1. Let us denote by

τ i = max {T 1 + T i , T 2 } if 2 ≤ i ≤ n, τ n+1 = max {T 1 , T 2 } , (7) 
(we have

τ 2 ≥ τ 3 ≥ • • • ≥ τ n+1 from (3)).
Then, for any M ∈ R n×n 0 and q ∈ R n-1 , we have:

1. T inf (Λ, M, q) ∈ {τ 2 , . . . , τ n+1 }.
Moreover, the inmum is always reached (in (2)).

2. For any k ∈ {2, . . . , n + 1}, we have

T inf (Λ, M, q) = τ k ⇐⇒ (M, q) ∈ C k \ C k+1 .
We recall that the set C k is dened at the end of Section 1.3. Remark 1.5. Theorem 1.3 remains valid if we replace everywhere in this article the null controllability property by the nite-time stabilization property by L 2 bounded feedbacks (that is when the control u is looked under the more particular form u(t) = 1 0 r(ξ) T y(t, ξ) dξ with r ∈ L 2 (0, 1) n ). This easily follows from the proof below.

Even though the set C k is explicit in function of the parameters of the system, the orthogonality conditions (6) that dene this set can be dicult to study in general because the sequence (ψ r ) r∈N is dened by a nonlinear recurrence relation. Note however that there always exists an integer N ≥ 1 such that

ψ r ∈ span {ψ s | s ≤ N -1} , ∀r ≥ N, so that b, ψ r = 0, ∀r ∈ N ⇐⇒ b, ψ r = 0, ∀r ∈ {0, . . . , N -1} . (8) 
This means that (6) only needs to be checked for the rst N values of r. However, such a N depends on the sequence and it is a priori unknown, so that, in practice, we do not know when we have to stop checking the orthogonality conditions. Our second result provides information on this issue in two particular cases:

Theorem 1.6. Let i ∈ {1, . . . , n} be xed. Dene

N ψ = min {N ≥ 1 | (8) holds} .
We have N ψ ≤ 3 for n = 3 and N ψ ≤ 6 for n = 4.

Remark 1.7. It would be interesting to nd a bound of N ψ with respect to n for arbitrary n.

Our main results can for instance be combined to deduce a very explicit characterization of the minimal null control time in the following particular case:

Corollary 1.8. Assume that m = 1 and p = 2. Then, for any M ∈ R 3×3 0 and q ∈ R 2 , we have:

1. T inf (Λ, M, q) = max {T 1 , T 2 } if, and only if, (M, q) satises q = 0, m 21 = m 31 = 0.

2. T inf (Λ, M, q) = max {T 1 + T 3 , T 2 } if, and only if, (M, q) satises q = 0, m 21 = m 23 = 0, m 31 = 0, or q 1 = 0, q 2 = 0 and

  m21 = m 23 = 0 or      m 21 = rsm 23 , m 31 = r 2 sm 13 , m 32 = -rm 12 ,    ,
where r = -λ3q2 λ1 and s = λ2-λ1 λ2-λ3 .

3. In all the other situations, T inf (Λ, M, q) = T 1 + T 2 .

For p = 3, there is no simple presentation as for p = 2, even though the orthogonality conditions are explicit (see also Remark 1.10 below) and we know that we only have to check the rst six conditions. Therefore, we only give a nontrivial example:

Example 1.9. Let σ ∈ R \ {0} be arbitrary and consider system (1) with

Λ = diag (-1, 1, 2, 3), M =     0 -3 1/(2σ) 0 2 0 0 -2 3σ 0 0 -σ 0 2 1/(2σ) 0     , q =   0 0 1/3   .
For i = 2, we have b = 1 0 -1 T and

ψ 0 =   1 0 1   , ψ 1 = - 1 σ   0 1 0   , ψ 2 = - 3 2 ψ 0 , ψ 3 = -3ψ 1 , ψ 4 = 9 2 ψ 0 , ψ 5 = 45 4 ψ 1 .
For i = 3, we have the same b and

ψ 0 = σ   1 0 1   , ψ 1 = -σ   0 1 0   , ψ 2 = - 3 4 ψ 0 , ψ 3 = - 3 2 ψ 1 , ψ 4 = 9 8 ψ 0 , ψ 5 = 45 16 ψ 1 .
From Theorems 1.3 and 1.6, we deduce that T inf (Λ, M, q) = τ 4 = 4/3.

Remark 1.10. For arbitrary n, we will see that the orthogonality conditions (6) are satised if one of the following three conditions holds:

(C1) Kal (A, v) T ψ 0 = Kal (A, b) T ψ 0 = 0, where Kal (A, h) = (h|Ah| • • • |A n-2 h) ∈ R (n-1)×(n-1)
denotes the Kalman matrix of (A, h), for any h ∈ R n-1 .

(C2) There exists ∅ = J {1, . . . , n -1} such that ψ 0 j = a rj = b r = 0 for every j ∈ J and r ∈ J.

(C3) b, ψ 0 = 0 and there exists j 0 ∈ {1, . . . , n -1} such that b j0 = 0 and rank ∆ j0 = 1, where

∆ j0 = (D -d j0 )ψ 0 A T e j0 A T ψ 0 v j0 ψ 0 -v, ψ 0 e j0 ∈ R 2(n-1)×2 ,
where d j0 is the j 0 -th diagonal entry of D and e j0 is the j 0 -th canonical vector of R n-1 .

We will also see that, for n = 3 (resp. n = 4), it is necessary that one of the conditions (C1), (C2) (resp. (C1), (C2), (C3)) holds (it is however preferable to use Theorem 1.6 in these cases).

The rest of this article is organized as follows. In Section 2, we use the equivalence between the controllability of system (1) and that of a simpler system to obtain a characterization of this property in terms of some orthogonality conditions for the derivatives at the origin of any solution to the so-called kernel equations. In Section 3, we compute these derivatives for a particular solution and we obtain a general formula for this solution. In Section 4, we study the orthogonality conditions associated with the previous solution and we deduce our main results. In Section 5, we supplement ours results by studying the structure of the solution associated with the orthogonality conditions. Finally, in Appendix A, we give a simple proof of the characterization of the controllability properties for the equivalent system and, in Appendix B, we prove the existence of a solution to the kernel equations by a new approach.

2 An equivalent system and the kernel equations

The rst step in the proof of our results is to consider a system which is equivalent to our initial system from a control point of view.

Lemma 2.1. For any T > 0, system (1) is null controllable in time T if, and only if, so is the system

       ∂ ỹ ∂t (t, x) + Λ ∂ ỹ ∂x (t, x) = F (x)ỹ -(t, 0), ỹ-(t, 1) = ũ(t), ỹ+ (t, 0) = Qỹ -(t, 0), ỹ(0, x) = ỹ0 (x), (9) 
where F ∈ C 0 ([0, 1]) n×m is dened by

F (x) = -K(x, 0)Λ Id m Q , (10) 
and K ∈ C 0 (T ) n×n is any solution to

   Λ ∂K ∂x (x, ξ) + ∂K ∂ξ (x, ξ)Λ + K(x, ξ)M = 0, ΛK(x, x) -K(x, x)Λ = M, (11) 
in the closure of the triangle

T = (x, ξ) ∈ R 2 0 < ξ < x < 1 .
By solution to (11) we mean solution along the characteristics. This result is by now wellknown: it consists in using the invertible spatial transformation ỹ(t, x) = y(t, x) -

x 0 K(x, ξ)y(t, ξ) dξ,
in order to transform a solution of system (1) into a solution of system (9) (see e.g. [Hu+19, Section 2.2]). This idea is the starting point of the so-called backstepping method for partial dierential equations and introduced more specically for hyperbolic systems of two equations in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. Equations (11) are thus called the kernel equations. The dicult point is not so much the result of the previous lemma but rather to prove that (11) actually has at least a solution.

It follows from the results of [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] that there are many solutions to the kernel equations (11) in T .

Remark 2.2. The choice of solution to the kernel equations (11) does not aect the controllability properties of system (1) because all the corresponding systems (9)-( 10) are equivalent from a control point of view. Now, two problems naturally arise:

1. Can we characterize the null controllability of the equivalent system (9) in function of Λ, Q and F ? 2. If so, can this characterization be presented explicitly in terms of Λ, Q and M ?

These problems are still open in general. One particular case where the rst problem has been completely solved is the case m = 1 (one negative speed). This was done in [HO21b, Section 5].

Theorem 2.3. Assume that m = 1. Then, system (9) is null controllable in time T if, and only if,

T ≥ max 2≤i≤n {T 1 + T * i , T 2 } ,
where

T * i = T i if q i-1 = 0, T i (1 -(f i )) if q i-1 = 0,
where

(f i ) = sup I(f i ) with I(f i ) = { ∈ (0, 1) | f i = 0 in (0, )}, if I(f i ) = ∅, and (f i ) = 0 otherwise.
The second problem could not be solved though because, even if the conditions for f are explicit, the map M -→ f (dened by ( 11)-( 10), with m = 1) is quite complicated. It was left as an open problem in the same paper. This is precisely where our main results step in.

From the above result of [START_REF] Hu | Null controllability and nite-time stabilization in minimal time of one-dimensional rst-order 2 × 2 linear hyperbolic systems[END_REF] we see that the values at x = 0 of f and its derivatives (assuming it is smooth) can aect the minimal null control time T inf (Λ, -, q, f ) of the system

(T * i = T i if f (N ) i
(0) = 0 for some N ≥ 0). Our idea is to show that these values in fact completely characterize T inf (Λ, -, q, f ) because M is constant and that we can explicitly relate them to M thanks to the kernel equations.

It is clear that T inf (Λ, -, q, f ) is solely characterized by f (0), f (0), f (0), etc. if we have f is analytic in a neighborhood of [0, 1). ( 12 
)
Under such an assumption, Theorem 2.3 takes a simpler form:

Corollary 2.4. Assume that m = 1, let q ∈ R n-1 be given and assume (12). Then, we have:

1. T inf (Λ, -, q, f ) ∈ {τ 2 , . . . , τ n+1 } (recall (7)).
Moreover, the inmum is always reached.

2. For any k ∈ {2, . . . , n + 1}, we have

T inf (Λ, -, q, f ) = τ k ⇐⇒ (q, f ) ∈ S k \ S k+1 ,
where, for every k ∈ {2, . . . , n + 1}, S k is the set of (q, f ) ∈ R n-1 × C 0 ([0, 1]) n such that

q i-1 = f i = 0 for every 2 ≤ i < k (we use the convention that S 2 = R n-1 × C 0 ([0, 1]) n ),
and

S n+2 = ∅.
This result is immediate from the previous theorem but we give a simple and direct proof in Appendix A. Note that it is the complete analogue of Theorem 1.3 for system (9). By Lemma 2.1, the minimal null control time for the initial system (1) is thus also completely determined by the sets S k . However, apart from S n+1 , these sets are not explicit in terms of M , which is unsatisfactory.

Assumption ( 12) is indeed satised in our framework because we can always nd an analytic solution to the kernel equations since M is constant. More precisely, we have the following result:

Theorem 2.5. Let m, p ≥ 1 be arbitrary. Assume that

M ∈ R n×n 0 . For any δ ∈ R with δ = 1, there exists a unique K ∈ C ∞ (R 2 ) n×n that satises (11) for every (x, ξ) ∈ R 2 and the condition diag K(x, δx) = 0, ∀x ∈ R. (13) 
Moreover, it satises the estimate

∀ bounded V ⊂ R 2 , ∃C > 0, K C s (V ) n×n ≤ C s , ∀s ∈ N. (14) 
The kernel equations (11) have been extensively studied in the literature (see e.g. [Cor+13;

DVK13; HD15; Hu+16; Hu+19; CN19]) but Theorem 2.5 does not follow from the results contained therein. The most important dierence is that, in Theorem 2.5, the kernel exists on a larger set than the triangle T . This is crucial since we want x -→ f (x) = -K(x, 0)Λ 1 q T to be analytic in an interval of the form (-ε, 1), ε > 0, which does not lie entirely in T . This yields nontrivial issues in the standard xed point approach, notably because we now have to consider points that are on the other side of the diagonal (x, x), that is the condition imposed in the kernel equations at (x, x) cannot be consider as a boundary condition anymore. We have developed in Appendix B a new approach to solve the kernel equations that encompasses in particular the proof of Theorem 2.5.

Remark 2.6. Estimate ( 14) and Taylor's theorem show that the solution K to (11)-( 13) is in fact a power series.

As a consequence of Theorem 2.5, we see that, if

q i-1 = 0, then f = -K(•, 0)Λ 1 q T satises f i = 0 in (0, 1) if, and only if, b, ∂ r k c ∂x r (0, 0) = 0, ∀r ∈ N, (15) 
where b ∈ R n-1 is dened in (5) and k c = (k ij ) j =i . It remains to relate the derivatives of the kernel at the origin with M . This is the purpose of the next section. This will be done only for a very well chosen particular solution to the kernel equations (i.e. for one δ = 1) but this will be enough for our purposes as already underlined in Remark 2.2.

Remark 2.7. We emphasize that, in all the sections below and unless specically mentioned, the number of negative speeds m is arbitrary (the orthogonality conditions (15) are studied for

any nonzero b ∈ R n-1 ).
3 The derivatives of the kernel at the origin

Normalization of the equations

Let us rst observe that a feature of the kernel equations (11)-( 13) is that it does not couple dierent rows of K:

     λ i ∂k ij ∂x (x, ξ) + ∂k ij ∂ξ (x, ξ)λ j + n r=1 k ir (x, ξ)m rj = 0, λ i k ij (x, x) -k ij (x, x)λ j = m ij (j = i), k ii (x, δx) = 0. (16) 
Therefore, all along Section 3, i ∈ {1, . . . , n} is xed and we will drop the dependence on i for clarity.

Let us now introduce some important notations. Some of them have already been introduced in Section 1.3 but they are recalled here for the sake of the presentation.

It is convenient to normalize the kernel equations by λ i -λ j for j = i and by λ i otherwise.

The kernel equations (16) become

     µ j ∂k j ∂x (x, ξ) + ∂k j ∂ξ (x, ξ)ν j + n r=1 k r (x, ξ)α rj = 0, k j (x, x) = α ij (j = i), k i (x, δx) = 0, (17) 
where

k = k i1 • • • k in T and µ j = λ i λ i -λ j , ν j = λ j λ i -λ j , (j = i), µ i = ν i = 1, α rj = m rj λ i -λ j , (j = i), α ri = m ri λ i .
Note that, with this normalization, we have in particular µ j -ν j = 1 for j = i.

Since the component k i plays a dierent role than all the other components k j with j = i, we rewrite (17) in a matrix form separating both quantities. Let us denote by n c = n -1 and introduce k c = (k j ) j =i . Then, system (17) can be written as

             D µ ∂k c ∂x (x, ξ) + D ν ∂k c ∂ξ (x, ξ) + A T k c (x, ξ) + k i (x, ξ)ψ 0 = 0, ∂k i ∂x (x, ξ) + ∂k i ∂ξ (x, ξ) + w, k c (x, ξ) = 0, k c (x, x) = ψ 0 , k i (x, δx) = 0, (18) 
where

D µ , D ν , A ∈ R n c ×n c
are the matrices dened by

D µ = diag (µ j ) j =i , D ν = diag (ν j ) j =i , A = (α rj ) r,j =i , and ψ 0 , w ∈ R n c
are the vectors dened by

ψ 0 = (α ij ) j =i , w = (α ji ) j =i .
Note that we used that α ii = 0 (since M ∈ R n×n 0

). Finally, it will also be convenient to use the matrix D ∈ R n c ×n c and the vector v ∈ R n c dened by

D = D µ + D ν , v = - 1 2 w. (19) 

Computation of the derivatives

The main result of this section is the following.

Theorem 3.1. For the solution to (18) with δ = -1, we have

∂ γ+σ k c ∂x γ ∂ξ σ (0, 0) = γ r=0 σ s=0 (-1) r γ r σ s ψ γ+σ-(r+s),r+s , ∀γ, σ ∈ N, (20) 
where (ψ r,s ) r,s∈N is the sequence dened by

ψ r,0 = ψ r , ψ r,s = 0 if r < s, ψ r,s = r-s =0 v, ψ r-1-,s-1 ψ ,0 if r ≥ s ≥ 1, (21) 
where (ψ r ) r∈N is the sequence dened in (4).

Combining this result with the estimates (14) and Taylor's theorem, we obtain an explicit formula for the solution to (18) when δ = -1:

Corollary 3.2. For δ = -1, the solution to (18) is given by

k c (x, ξ) = +∞ r=0 +∞ s=0 (-1) r r!s! ψ r,s (x -ξ) r (x + ξ) s , k i (x, ξ) = - x x-ξ 2 w, k c (σ, σ -x + ξ) dσ,
for every (x, ξ) ∈ R 2 , where (ψ r,s ) r,s∈N is the sequence dened by ( 21) and the series is normally convergent on any compact set of R 2 .

Remark 3.3. Explicit solutions to the kernel equations were also obtained in [VK14, Section 3.4] for systems of n = 2 equations.

Proof of Theorem 3.1.

1. To explain the special role played by δ = -1, we start the computations with an arbitrary δ = 1. The rst idea is to form a system involving only k c by expressing k i as a function of k c :

k i (x, ξ) = - x x-ξ 1-δ w, k c (σ, σ -x + ξ) dσ. As a result, k c solves      D µ ∂k c ∂x (x, ξ) + D ν ∂k c ∂ξ (x, ξ) + A T k c (x, ξ) - x x-ξ 1-δ w, k c (σ, σ -x + ξ) dσ ψ 0 = 0, k c (x, x) = ψ 0 .
We now transform this system into a Cauchy problem by introducing the transformation

h(t, θ) = k c -t + θ 2 , t + θ 2 .
Using that D µ -D ν = Id n c , we can check that h satises the system

     ∂h ∂t (t, θ) = D ∂h ∂θ (t, θ) + A T h(t, θ) + θ -1+δ 1-δ t v, h(t, η) dη ψ 0 , h(0, θ) = ψ 0 , (22) 
where we recall that D and v are dened in (19). Note as well that

∂ γ+σ k c ∂x γ ∂ξ σ (x, ξ) = γ r=0 σ s=0 (-1) r γ r σ s ∂ γ+σ h ∂t γ+σ-(r+s) ∂θ r+s (-x + ξ, x + ξ), ∀γ, σ ∈ N,
so that the derivatives of k c at (0, 0) can be deduced from those of h. They will be computed from ( 22) and we see that the computations considerably simplify if the lower bound of the integral vanishes, that is if we choose δ = -1. For this choice, we dene ψ r,s = ∂ r+s h ∂t r ∂θ s (0, 0).

We are going to show that it satises (21).

2. All along the rest of the proof, we will use the notation c r,s = v, ψ r,s . First observe that system (22) (with δ = -1) yields the following identities:

     ψ r+1,0 = Dψ r,1 + A T ψ r,0 , ψ r+1,s = Dψ r,s+1 + A T ψ r,s + c r,s-1 ψ 0,0 , ψ 0,s = 0, (23) 
for every r ≥ 0 and s ≥ 1. The second property in ( 21) is easily proved by induction on r ≥ 1. To establish the two other identities, it is sucient to prove the following statement for any N ≥ 1:

             ψ s+q,s = q =0 c s-1+q-,s-1 ψ ,0 , ∀s ≥ 1, ∀0 ≤ q ≤ N, ψ r,0 = A T ψ r-1,0 + D r-2 =0 c r-2-,0 ψ ,0 , ∀2 ≤ r ≤ N + 1. ( 24 
)
We prove it by induction. For N = 1, this is clear. Indeed, for any s ≥ 1, we have Assume now that (24) holds for N ≥ 1 and let us prove it for N + 1. We rst show that

ψ s,s = Dψ s-1,s+1 + A T ψ s-1,s + c s-1,s-1 ψ 0,0 ( 
ψ s+N +1,s = N +1 =0 c s+N -,s-1 ψ ,0 , ∀s ≥ 1. (26) 
For any s ≥ 1, we have

ψ s+N +1,s = Dψ s+N,s+1 + A T ψ s+N,s + c s+N,s-1 ψ 0,0 (by (23)), = D N -1 =0 c s+N -1-,s ψ ,0 + A T N =0 c s-1+N -,s-1 ψ ,0
+ c s+N,s-1 ψ 0,0 (by assumption (24)),

= D N -1 =0 c s+N -1-,s ψ ,0 + N +1 r=2 c s+N -r,s-1 A T ψ r-1,0 + c s-1+N,s-1 ψ 1,0 + c s+N,s-1 ψ 0,0 .
Therefore, if we show the identity

N -1 =0 c s+N -1-,s ψ ,0 = N +1 r=2 c s+N -r,s-1 r-2 =0 c r-2-,0 ψ ,0 , (27) 
then we can use the second condition in (24) to obtain the desired identity (26). To establish (27), we use the rst condition in (24) to deduce that, for every 0

≤ ≤ N -1, v, ψ s+N -1-,s = N -1- j=0 c s-1+N -1--j,s-1 c j,0 = N +1 r= +2 c s+N -r,s-1 c r-2-,0 .
Finally, a simple change of order of summation leads to (27). It remains to show the second identity in (24) for r = N + 2, namely

ψ N +2,0 = A T ψ N +1,0 + D N =0 c N -,0 ψ ,0 .
We have

ψ N +2,0 = Dψ N +1,1 + A T ψ N +1,0 (by (23)), = D N =0 c N -,0 ψ ,0 + A T ψ N +1,0 (by (24)).
Remark 3.4. Theoretically, we can also compute all the derivatives at (0, 0) of the solution to (18) for arbitrary δ = 1. This can be done by taking derivatives and inverting some matrix.

However, the size of this matrix grows with the order of derivatives and computations rapidly become more and more complicated. It seems dicult with such a strategy to obtain a suitable formula for arbitrary δ. At the same time, we see from (22) that a dierent choice of δ means more derivatives to be computed, as for instance with δ = 0 which leads to an integral of the form θ -t

. In addition to that, we recall that one choice of δ is actually sucient for the purposes of this paper (Remark 2.2).

Study of the orthogonality conditions

In this section, we use the computations obtained in the previous section to study the orthogonality conditions (15). We start with the conclusion of the proof of our rst main result.

Proof of Theorem 1.3. We recall that, from the results of the previous sections, we only have to show the equivalence between the orthogonality conditions (15) and (6). First observe that, from the denition (21) of the sequence (ψ r,s ) r,s∈N , it is clear that (6) is equivalent to b, ψ r,s = 0, ∀r, s ∈ N.

We can check that this condition is equivalent to (15) using ( 20) and (21).

Remark 4.1. The proof above and the analyticity of k c in R 2 shows that the following four properties are in fact equivalent:

1. b, k c (x, ξ) = 0 for every (x, ξ) ∈ R 2 .

2. b, k c (x, 0) = 0 for every x ∈ R.

3. b, ψ r,0 = 0 for every r ∈ N.

4. b, ψ r,s = 0 for every r, s ∈ N.

We are now going to study the orthogonality conditions (6) for the sequence (ψ r ) r∈N and prove our second main result. For the rest of Section 4, the matrices A, D ∈ R n c ×n c and the vectors ψ 0 , v, b ∈ R n c can in fact be arbitrary. We emphasize that n is also arbitrary, it is only during the proof of Theorem 1.6 that we will assume that n = 3 or n = 4.

Some invariant subspaces of the sequence

We start the general study of the orthogonality conditions (6) with the description of two simple invariant subspaces of the sequence (ψ r ) r∈N .

Proposition 4.2. Assume that ψ 0 ∈ E for some E ⊂ R n c satisfying one of the following two conditions:

A T (E) ⊂ E, E ⊂ ker v T . ( 28 
) A T (E) ⊂ E, D(E) ⊂ E. (29) 
Then, ψ r ∈ E for every r ∈ N.

Proof. We prove the result by induction on r. For r = 0 this is trivial and for r = 1 this follows from the denition ψ 1 = A T ψ 0 and the property A T (E) ⊂ E. Assume then that ψ ∈ E for every 0 ≤ ≤ r for some r ≥ 1 and let us show that ψ r+1 ∈ E. Since r + 1 ≥ 2, we have

ψ r+1 = A T ψ r + r-1 =0 v, ψ r-1-Dψ .
Clearly, the rst part A T ψ r belongs to E since ψ r ∈ E and A T (E) ⊂ E. The remaining part also belongs to E since either v, ψ = 0 for every 0 ≤ ≤ r

(if E ⊂ ker v T ) or Dψ ∈ E for every 0 ≤ ≤ r (if D(E) ⊂ E).
If we can nd a subspace E such as in the previous proposition and which is in addition included in ker b T , then we see that the whole sequence will be guaranteed to stay in ker b T .

Characterization of rank one sequences

In this section, we characterize when the rank of (ψ r ) r∈N is equal to one, and we use it to prove Theorem 1.6 in the case n = 3. We recall that, by denition, rank (ψ r ) r∈S = dim span {ψ r | r ∈ S} for any S ⊂ N.

From now on, it will be convenient to use the following notation:

E s = span {ψ r | r ≤ s} , ∀s ∈ N.
First of all, it is clear that rank (ψ r ) r∈N = 1 ⇐⇒ ψ 0 = 0, ψ r ∈ E 0 , ∀r ≥ 1 .

We have the following characterization:

Proposition 4.3. The following three conditions are equivalent:

1. ψ r ∈ E 0 for every r ≥ 1.

2. ψ r ∈ E 0 for every r ∈ {1, 2}.

3. E 0 satises (28) or (29).

Proof. The implication 1 =⇒ 2 is trivial. The implication 3 =⇒ 1 follows from Proposition 4.2.

Let us show that 2 =⇒ 3. We write

ψ r = α r ψ 0 , r = 1, 2, for some α r ∈ R. The condition for r = 1 gives A T ψ 0 = α 1 ψ 0 , which is equivalent to A T (E 0 ) ⊂ E 0 . The condition for r = 2 gives A T ψ 1 + v, ψ 0 Dψ 0 = α 2 ψ 0 , which implies v, ψ 0 Dψ 0 ∈ E 0 , that is either E 0 ⊂ ker v T or D(E 0 ) ⊂ E 0 .
This establishes the desired equivalences.

Proof of Theorem 1.6 (case n = 3). Assume that b, ψ r = 0, ∀r ∈ {0, 1, 2} .

Since n c = 2, we have dim ker b T = 1 and thus rank (ψ r ) r∈{0,1,2} ≤ 1.

As a result, ψ r ∈ E 0 for r ∈ {1, 2} and it follows that ψ r ∈ E 0 for every r ≥ 1 by Proposition 4.3.

Characterization of rank two sequences

In this section, we characterize when the rank of (ψ r ) r∈N is equal to two, and we use it to prove Theorem 1.6 in the case n = 4. The study of rank two sequences is considerably more dicult than for rank one.

We start with the following simple observation.

Proposition 4.4. Let {0, 1, 2} ⊂ S ⊂ N. We have rank (ψ r ) r∈S = 2 if, and only if, we have one of the following two conditions:

1. rank (ψ 0 |ψ 1 ) = 1, rank (ψ 0 |ψ 2 ) = 2 and ψ r ∈ E 2 for every r ∈ S \ {0, 1, 2}.

2. rank (ψ 0 |ψ 1 ) = 2 and ψ r ∈ E 1 for every r ∈ S \ {0, 1}.

Proof. We only need to observe that the situation rank (ψ 0 |ψ 1 ) = rank (ψ 0 |ψ 2 ) = 1 does not happen. Indeed, in that situation we have ψ 1 , ψ 2 ∈ E 0 and thus ψ r ∈ E 0 for every r ≥ 1 by Proposition 4.3, which shows that the sequence cannot be of rank two.

We now characterize both conditions of Proposition 4.4.

Proposition 4.5. Assume that rank (ψ 0 |ψ 1 ) = 1 and rank (ψ 0 |ψ 2 ) = 2. Then, the following three conditions are equivalent:

1. ψ r ∈ E 2 for every r ≥ 3.

2. ψ r ∈ E 2 for every r ∈ {3, 4}.

3. E 2 satises (29).

Proof. The implication 1 =⇒ 2 is trivial. The implication 3 =⇒ 1 follows from Proposition 4.2. Let us show that 2 =⇒ 3. From the denition of ψ 2 and the rank assumptions, we have v, ψ 0 = 0 and Dψ 0 ∈ span ψ 0 , ψ 2 . Using these facts, we can rst check that the condition

ψ 3 ∈ E 2 gives A T (E 2 ) ⊂ E 2 and then that the condition ψ 4 ∈ E 2 yields D(E 2 ) ⊂ E 2 .
The second condition in Proposition 4.4 is more dicult to characterize.

Proposition 4.6. Assume that rank (ψ 0 |ψ 1 ) = 2. Then, the following two conditions are equivalent:

1. ψ r ∈ E 1 for every r ≥ 2.

2. ψ r ∈ E 1 for every r ∈ {2, . . . , 5}.

Before proving Proposition 4.6, we prove our second main result.

Proof of Theorem 1.6 (case n = 4). Assume that b, ψ r = 0, ∀r ∈ {0, . . . , 5} .

Since n c = 3, we have dim ker b T = 2 and thus rank (ψ r ) r∈{0,...,5} ≤ 2.

If the rank is in fact less than or equal to 1, then we conclude as in the proof of Theorem 1.6 in the case n = 3. If the rank is exactly equal to 2, then the conclusion follows from Propositions 4.4, 4.5 and 4.6.

We now turn to the proof of the key proposition.

Proof of Proposition 4.6. If E 1 satises (28) or (29), then the result follows from Proposition 4.2.

Therefore, from now on, we assume that E 1 does not meet any of these conditions.

1. Let N ≥ 4 be arbitrary and consider the property: for every r ∈ {2, . . . , N }, there exist α r , β r ∈ R such that

ψ r = α r ψ 0 + β r ψ 1 . (30) 
Let us also set

α 0 = 1, β 0 = 0, α 1 = 0, β 1 = 1, (31) 
so that the previous identity is always true for r = 0, 1. Using the denition (4) of the sequence we see that, for r ≥ 2, identity (30) is equivalent to

α r ψ 0 + β r ψ 1 =α r-1 A T ψ 0 + β r-1 A T ψ 1 + r-2 =0 c r-2-α Dψ 0 + r-2 =0 c r-2-β Dψ 1 ,
where we introduced, for every s ∈ {0, . . . , N },

c s = α s v, ψ 0 + β s v, ψ 1 .
Let us eliminate the terms A T ψ 0 , A T ψ 1 . By denition of the sequence, we have A T ψ 0 = ψ 1 .

On the other hand, condition (30) for r = 2 yields

A T ψ 1 = α 2 ψ 0 + β 2 ψ 1 -c 0 Dψ 0 . ( 32 
)
As a result, for r ≥ 3, identity (30) is equivalent to

(ψ 0 |ψ 1 )u r = (Dψ 0 |Dψ 1 )f r-1 , (33) 
where u r , f r-1 ∈ R 2 are the vectors dened by

u r = α r -β r-1 α 2 β r -(α r-1 + β r-1 β 2 ) , f r-1 = β r-1 (-c 0 ) + r-2 =0 c r-2-α r-2 =0 c r-2-β . ( 34 
)
Let us make some observations.

For any r 1 , r 2 , if λf r1-1 + µf r2-1 = 0 for some λ, µ ∈ R, then λu r1 + µu r2 = 0. Indeed, denoting by u = λu r1 + µu r2 , we have (ψ 0 |ψ 1 )u = 0 and thus u = 0 since we assumed that ψ 0 , ψ 1 are linearly independent.

f r1-1 and f r2-1 are linearly dependent for any r 1 , r 2 . Indeed, otherwise we obtain (ψ 0 |ψ 1 )U = (Dψ 0 |Dψ 1 ) for some matrix U ∈ R 2×2 . This means that D(E 1 ) ⊂ E 1 .

It then follows from (32) that A T (E 1 ) ⊂ E 1 as well. Therefore, E 1 satises (29), but this situation has been excluded from the beginning of the proof.

f 2 and f 3 are linearly dependent only if c 0 = 0. Indeed, if c 0 = 0, then A T ψ 1 ∈ E 1 by (32), so that A T (E 1 ) ⊂ E 1 . If c 0 = 0, we also have det(f 2 |f 3 ) = c 2
1 , which cannot be zero since otherwise c 0 = c 1 = 0, that is E 1 ⊂ ker v T , and thus E 1 satises (28) (excluded).

The necessary condition det(f 2 |f r-1 ) = 0 is equivalent to the identity

r-2 =0 c r-2-β f 2 -c 0 f r-1 = 0,
which, by the rst observation above, in turn implies that

r-2 =0 c r-2-β u 3 -c 0 u r = 0.
Since c 0 = 0, this gives the following formulas:

             f r-1 = r-2 =0 cr-2-β f 2 , u r = r-2 =0 cr-2-β u 3 , (35) 
where we introduced cs = cs c0 . Conversely, it is clear that if we have (35), then (33) will also hold for r ≥ 3, provided that it holds for r = 3.

Finally, observe that the second formula in (35), combined with the denition (34) of u r , uniquely determines all the α r , β r for r ≥ 4 as a function of α 2 , β 2 and α 3 , β 3 :

             α r = β r-1 α 2 + r-2 =0 cr-2-β (α 3 -β 2 α 2 ) , β r = α r-1 + β r-1 β 2 + r-2 =0 cr-2-β β 3 -(α 2 + β 2 2 ) , (36) 
and that the rst formula in ( 35) is equivalent to

β r-1 = r-2 =0 cr-2-(α + (β 2 -c1 )β ) . ( 37 
)
In summary, we have shown that the property considered is equivalent to: c 0 = 0 and there exist α 2 , β 2 and α 3 , β 3 such that (30) holds for r = 2, 3 and such that the sequence dened by (36) (with (31)) satises (37) for every r ∈ {4, . . . , N }.

2. Let us now study the sequence (36). The proof of the result will be complete after we show that the following three conditions are equivalent:

(a) Condition (37) holds for every r ≥ 4.

(b) Condition (37) holds for r = 4, 5.

(c) α 3 and β 3 are given by

β 3 = (α 2 + β 2 2 ) -(β 2 -c1 ) 2 + α 2 + (β 2 -c1 )β 2 , α 3 = β 2 α 2 -(β 2 -c1 )(β 3 -(α 2 + β 2 2 )). (38) 
We start with the implication 2b =⇒ 2c. Condition (37) for r = 4 immediately gives β 3 as a function of α 2 , β 2 :

β 3 = 2 =0 c2-(α + (β 2 -c1 )β ) .
On the other hand, condition (37) for r = 5 gives

β 4 = 2 =1 c3-(α + (β 2 -c1 )β ) + c0 (α 3 + (β 2 -c1 )β 3 ) + c3 (α 0 + (β 2 -c1 )β 0 ) = 2α 3 + β 2 β 3 + 2 =1 c3-(α + (β 2 -c1 )β ) ,
whereas, by denition (36),

β 4 = α 3 + β 3 β 2 + 2 =0 c2-β β 3 -(α 2 + β 2 2 ) .
Identifying both expressions gives α 3 as a function of α 2 , β 2 :

α 3 = - 2 =1 c3-(α + (β 2 -c1 )β ) + 2 =0 c2-β β 3 -(α 2 + β 2 2 ) .
We can check that the previous formulas are equivalent to (38) (we prefer the expressions in (38) because they make appear some coecients involved in (36)).

Let us now prove the implication 2c =⇒ 2a. We prove it by induction on r. For r = 4, this holds by very denition of β 3 as we have seen above. Assume now that (37) holds for some arbitrary r ≥ 4, and let us prove it for r + 1, that is to prove that we have

β r = r-1 =0 cr-1-(α + (β 2 -c1 )β ) . ( 39 
)
By denition (36) of β r , we have

β r =α r-1 + β r-1 c1 + (β 2 -c1 ) β r-1 -(β 2 -c1 ) r-2 =0 cr-2-β + β 3 -(α 2 + β 2 2 ) + (β 2 -c1 ) 2 r-2 =0 cr-2-β .
Using the induction hypothesis (37) and the denition (38) of β 3 , we obtain

β r = cr-1 + r-2 =0 cr-2-((β 2 -c1 )α + (α 2 + (β 2 -c1 )β 2 )β ) .
Now observe that, using the denition of α 3 , we have

α +1 + (β 2 -c1 )β +1 = β α 2 + (β 2 -c1 )(α + β β 2 ) = (β 2 -c1 )α + (α 2 + (β 2 -c1 )β 2 )β .
Formula (39) easily follows this identity and the previous one.

Kernel associated with the orthogonality conditions

In this section, we supplement our results by giving a more explicit characterization of the conditions found in the previous section and that guaranteed the orthogonality conditions. Then, we discuss the structure of the associated kernel.

Kernel associated with the invariant subspaces

Here we discuss properties related to the invariant subspaces of Section 4.1. We recall that, for any vector h ∈ R n c , we denote the Kalman matrix of (A, h) by

Kal (A, h) = (h|Ah|A 2 h| • • • |A n c -1 h) ∈ R n c ×n c .
Proposition 5.1. 1. There exists E satisfying (28), ψ 0 ∈ E and E ⊂ ker b T , if, and only if,

Kal (A, v) T ψ 0 = Kal (A, b) T ψ 0 = 0. ( 40 
)
2. Assume that Kal (A, v) T ψ 0 = 0. Then, for any δ = 1, the solution to the kernel equations ( 18) is

k i (x, ξ) = 0, k c (x, ξ) = e -A T (x-ξ) ψ 0 , ∀(x, ξ) ∈ R 2 .
If, moreover, Kal (A, b) T ψ 0 = 0, then the orthogonality conditions (15) are satised.

Proof.

1. Assume that (40) holds. Let us dene

E = ker Kal (A, v) T ∩ ker Kal (A, b) T .
By assumption, ψ 0 ∈ E and it is clear that E ⊂ ker v T and E ⊂ ker b T . Finally, E is stable by A T thanks to Cayley-Hamilton theorem. Conversely, assume that (28) holds for some

E ⊂ ker b T with ψ 0 ∈ E. Since ψ 0 ∈ E and E is stable by A T , we have (A T ) k ψ 0 ∈ E for every k ∈ N. Since E ⊂ ker v T and E ⊂ ker b T , we obtain (40).
2. We see from the kernel equations (18) that k i = 0 if, and only if, we have Let us now address the second type of invariant subspaces introduced in Section 4.1.

         D µ ∂k c ∂x (x, ξ) + D ν ∂k c ∂ξ (x, ξ) + A T k c (x, ξ) = 0, v, k c (x, ξ) = 0, k c (x, x) = ψ 0 . Using that D µ -D ν = Id n c , it is clear that k c (x, ξ) = e -A T (x-ξ) ψ 0 satises
Proposition 5.2. Assume that ψ 0 , b = 0.

1. There exists E satisfying (29), ψ 0 ∈ E and E ⊂ ker b T if, and only if, there exists a nonempty J {1, . . . , n c } such that

ψ 0 j = a rj = b r = 0, ∀j ∈ J, ∀r ∈ J.
2. Assume that there exists a nonempty J {1, . . . , n c } such that ψ 0 j = a rj = 0 for every j ∈ J and r ∈ J. Then, for any δ = 1, the solution to the kernel equations (18) satises

k c j = 0, ∀j ∈ J. (41) 
If, moreover, b r = 0 for every r ∈ J, then the orthogonality conditions (15) are satised.

Proof.

1. Since D is a diagonal matrix with distinct entries, its invariant subspaces are of the form

E = span {e r | r ∈ J} ,
for some J ⊂ {1, . . . , n c }, where e 1 , . . . , e n c are the canonical vectors of R n c . Since ψ 0 = 0 (resp. b = 0), we have J = ∅ (resp. J = {1, . . . , n c }). Then, we easily check that such a subspace is invariant by A T if, and only if, a rj = 0 for every r ∈ J and j ∈ J and that it is included in ker b T if, and only if, b r = 0 for every j ∈ J.

2. Property (41) is a consequence of the uniqueness of the solution to the kernel equations.

The orthogonality conditions are clearly satised under the additional assumption that b r = 0 for every r ∈ J.

Remark 5.3. The rst item in the above propositions gives explicit conditions that guarantee that the orthogonality conditions (15) hold (when combined with the results of the previous sections). We found these conditions with an algebraic approach. On the other hand, once these conditions are known, the second item of the above propositions show how to use them to obtain an analytic proof of the orthogonality conditions. Observe in addition that these dierent proofs are valid for arbitrary δ = 1.

Kernel associated with nontrivial rank two sequences

In the same spirit as in the previous section, we now we discuss the following property, related to Proposition 4.6:

E 1 ⊂ ker b T , ψ r ∈ E 1 , ∀r ∈ {2, . . . , 5} . (42) 
Below, we denote by c 0 = v, ψ 0 .

Proposition 5.4. 1. Assume that rank (ψ 0 |ψ 1 ) = 2, E 1 satises neither (28) nor (29), c 0 = 0 and b, ψ 0 = 0. Then, condition (42) holds if, and only if, there exists j 0 ∈ {1, . . . , n c } such that

b j0 = 0, rank ∆ j0 = 1,
where ∆ j0 ∈ R 2n c ×2 is given by

∆ j0 = (D -d j0 )ψ 0 A T e j0 A T ψ 0 v j0 ψ 0 -c 0 e j0 ,
where d j0 is the j 0 -th diagonal entry of D and e j0 is the j 0 -th canonical vector of R n c .

Assume that

n = 4, i = 2, b =   1 0 -ρ   , ρ = 0,
c 0 = 0, α 24 = 0, b, ψ 0 = 0 and rank ∆ 2 = 1. Then, the solution to the kernel equations (18) with δ = -1 is given, for some σ ∈ R \ {0}, by

             k 21 = k 24 ρ, k 22 = 1 -σα 24 σµ 3 ∂k 24 ∂x + σν 3 ∂k 24 ∂ξ -α 32 k 24 , k 23 = 1 -σα 24 ∂k 24 ∂x + ∂k 24 ∂ξ -σα 23 k 24 , (43) 
where

k 24 ∈ C ∞ (R 2 ) is the solution to              µ 3 ∂ 2 k 24 ∂x 2 (x, ξ) + (µ 3 + ν 3 ) ∂ 2 k 24 ∂x∂ξ (x, ξ) + ν 3 ∂ 2 k 24 ∂ξ 2 (x, ξ) = -2c 0 k 24 (x, ξ), µ 3 ∂k 24 ∂x (x, -x) + ν 3 ∂k 24 ∂ξ (x, -x) = α 32 σ k 24 (x, -x), k 24 (x, x) = α 24 . (44) 
To see that (44) indeed has a solution, we can introduce h = µ 3 ∂k24 ∂x +ν 3 ∂k24 ∂ξ and observe that (k 24 , h) satises a rst-order hyperbolic system similar to the kernel equations ( 16) and whose well-posedness can be established as in the proof of Theorem 2.5.

Proof of Proposition 5.4.

1. Under the assumptions of the proposition and from the proof of Proposition 4.6, we have ψ r ∈ E 1 for every r ∈ {2, . . . , 5} if, and only if, there exist

α 2 , β 2 ∈ R such that ψ 2 = α 2 ψ 0 + β 2 ψ 1 , ψ 3 = α 3 ψ 0 + β 3 ψ 1 ,
where α 3 , β 3 are given by (38). We can check that this is equivalent to the existence of ρ, θ ∈ R such that

(A T -ρ)ψ 1 = -c 0 (D -θ)ψ 0 + c1 (ψ 1 -ρψ 0 ), (D -θ)(ψ 1 -ρψ 0 ) = 0, (45) 
where we recall that c1 = v,ψ 1 c0 . Since D is diagonal with distinct entries and ψ 0 , ψ 1 are linearly independent, the second condition in (45) is equivalent to the existence of some

j 0 ∈ {1, . . . , n c } and r ∈ R \ {0} such that θ = d j0 , ψ 1 = ρψ 0 + re j0 . (46) 
Plugging the second identity in the rst condition in (45) and recalling that ψ 1 = A T ψ 0 , we see that this condition simply becomes

rA T e j0 = -c 0 (D -d j0 )ψ 0 + rc 1 e j0 .
Comparing the j 0 -th components of both quantities, using that the diagonal of A is zero and r = 0, we see that c1 = 0. Recalling (46), the condition c1 = 0 is equivalent to ρ = -rv j0 with r = r c0 . In summary, there exist ρ, θ ∈ R such that (45) holds if, and only if, there exist j 0 ∈ {1, . . . , n c } such that ∃r ∈ R \ {0} , (D -d j0 )ψ 0 + rA T e j0 = 0,

ψ 1 + r(v j0 ψ 0 -c 0 e j0 ) = 0. (47) 
We can check that this condition is equivalent to rank ∆ j0 = 1. Finally, it is clear that E 1 ⊂ ker b T , i.e. b, ψ 1 = 0, if, and only if, b j0 = 0.

2. Since i = 2, we have (for the notations, see Section 3.1)

A T =   0 α 31 α 41 α 13 0 α 43 α 14 α 34 0   , D = 2diag (µ 1 , µ 3 , µ 4 )-Id 3 , ψ 0 =   α 21 α 23 α 24   , v = - 1 2   α 12 α 32 α 42   .
Clearly, b, ψ 0 = 0 is equivalent to

α 21 = α 24 ρ. (48) 
On the other hand, using the characterization (47), we see that rank ∆ 2 = 1 if, and only if,

α 31 = σ(µ 1 -µ 3 )ρα 24 , (49) 
α 34 = σ(µ 4 -µ 3 )α 24 , (50) 
α 41 = - ρ σ α 32 + σ 2 (µ 1 -µ 3 )α 23 , (51) 
α 42 + α 12 ρ = σ(α 43 + α 13 ρ),

α 14 = - 1 ρσ α 32 + σ 2 (µ 4 -µ 3 )α 23 , (52) 
where σ = -2 r . Using these conditions we easily check that ((

k c ) T , k 2 ) = (k 21 , k 23 , k 24 , k 22 )
dened by ( 43)-( 44) satises the kernel equations ( 18) with δ = -1.

To conclude this section we will present a method which shows how conditions ( 48)-(53) can also be found from an analytic point of view.

Another proof of Proposition 5.4, item 2.

1. For every j, let us denote by P j the rst-order linear partial dierential operator

P j = µ j ∂ ∂x + ∂ ∂ξ ν j .
Since we want the orthogonality condition b, k c (•, 0) = 0, we look for a solution satisfying Assume that ω = 0 (this will follow a posteriori from (49), (50), using also that σ, ρ, α 24 = 0). (55)

Plugging these relations in the second and third equations in (54) give the following two second-order partial dierential equations for k 24 :

Qk 24 = 0, Qk 24 = 0,

where Q = Q (2) + Q (1) + Q (0) , with Q (2) = P 2 (-α 34 ρP 1 + α 31 P 4 ) , Q (1) 
= (-α 34 α 41 + α 31 α 14 ρ)P 2 + (α 24 ρP 1 -α 21 P 4 ) α 32 , Q (0) = (α 24 α 41 -α 21 α 14 ρ)α 32 + ω(α 42 + α 12 ρ),

and Q = Q(2) + Q(1) + Q(0) , with Q(2) = P 3 (α 24 ρP 1 -α 21 P 4 ) , Q(1) = (α 24 α 41 -α 21 α 14 ρ)P 3 + (-α 34 ρP 1 + α 31 P 4 ) α 23 , Q(0) = (-α 34 α 41 + α 31 α 14 ρ)α 23 + ω(α 43 + α 13 ρ).

2. We are going to nd conditions to guarantee that these two equations are compatible. To this end, it is for instance sucient to have

Q (r) = σ Q(r) , r = 0, 1, 2, (56) 
for some σ ∈ R. We rst look at the operators of highest order. Using the identities

α 21 = α 24 ρ, µ j -ν j = 1 (j = 2), µ 2 = ν 2 = 1, (57) 
we have α 24 ρP 1 -α 21 P 4 = α 24 ρ (P 1 -P 4 ) = α 24 ρ(µ 1 -µ 4 )P 2 .

(

) 58 
It follows that

Q(2) = α 24 ρ(µ 1 -µ 4 )P 3 P 2 . (59) 
Consequently, we see that (56) holds for r = 2 if we have -α 34 ρP 1 + α 31 P 4 = σα 24 ρ(µ 1 -µ 4 )P 3 .

(

) 60 
This identity holds if (α 34 , α 31 ) satises -ρµ 1 µ 4 -ρν 1 ν 4 α 34 α 31 = σα 24 ρ(µ 1 -µ 4 ) µ 3 ν 3 , which is equivalent to (50)-(49) (using ρ = 0 and (57)).

3. Let us now compute the rst-order dierential operators. We have Q (1) = (-α 34 α 41 + α 31 α 14 ρ + α 24 ρ(µ 1 -µ 4 )α 32 ) P 2 (by (58)), Q(1) = (α 24 α 41 -α 21 α 14 ρ + σα 24 ρ(µ 1 -µ 4 )α 23 ) P 3 (by ( 60)).

As a result, we have (56

) for r = 1, if Q (1) = Q(1) = 0, that is, if -α 34 α 41 + α 31 α 14 ρ = -α 24 ρ(µ 1 -µ 4 )α 32 ,
α 24 α 41 -α 21 α 14 ρ = -σα 24 ρ(µ 1 -µ 4 )α 23 .

(

) 61 
This holds if (α 41 , α 14 ) satises -α 34 α 31 ρ α 24 -α 21 ρ α 41 α 14 = -α 24 ρ(µ 1 -µ 4 ) α 32 σα 23 , which is equivalent to (51) and (53) (using (48), (49), (50) and α 24 , ρ = 0).

4. Let us now compute the zero order terms. Using (61), we immediately see that Q(0) = -α 24 ρ(µ 1 -µ 4 )α 32 α 23 + ω(α 43 + α 13 ρ),

Q (0) = -σα 24 ρ(µ 1 -µ 4 )α 23 α 32 + ω(α 42 + α 12 ρ).
As a result, we see that (56) holds for r = 0 if we have condition (52). Moreover, using (48), ( 49) and (50), we have

ω = -σα 2 24 ρ(µ 1 -µ 4 ), (62) 
so that, using again (48) and the denition of c 0 , we obtain

Q (0) = σα 24 ρ(µ 1 -µ 4 )(2c 0 ).
It follows that k 24 indeed satises the rst equation in (44) (recall that Q (2) = σ Q(2) with (59) and Q (1) = 0).

5. Using (60), ( 61), ( 58) and (62), we can simplify the expressions in (55) to obtain

       k 22 = 1 -σα 24 (σP 3 -α 32 ) k 24 , k 23 = 1 -σα 24 (P 2 -σα 23 ) k 24 .
In addition, it follows from these formula that the remaining conditions are satised. Indeed, the condition k 22 (x, -x) = 0 is exactly the condition that we require for k 24 at (x, -x) in (44) and the condition k 23 (x, x) = α 23 follows from the above expression since k 24 (x, x) = α 24 and (P 2 k 24 )(x, x) = d dx k 24 (x, x) = 0.

Remark 5.5. In [VK14, Section 3.3], the authors showed that we can solve a kernel system of two equations of the form

             ∂k 21 ∂x - ∂k 21 ∂ξ + k 22 α 21 = 0, ∂k 22 ∂x + ∂k 22 ∂ξ + k 21 α 12 = 0, k 21 (x, x) = α 21 , k 22 (x, 0) = 0,
with α 21 = 0 by rst expressing k 22 from the rst equation and then showing that the resulting second order equation for k 21 indeed has a solution. The method we introduced in the second proof of Proposition 5.4, item 2, can be seen as an extension of the method of [START_REF] Vazquez | Marcum Q-functions and explicit kernels for stabilization of 2×2 linear hyperbolic systems with constant coecients[END_REF] where, instead of dividing by a scalar (namely, α 21 ), we invert a matrix.

A Controllability of the equivalent system

In this appendix, we give a simple and direct proof of Corollary 2.4. We recall that it can be deduced from Theorem 2.3 but this result is based on the Titchmarsh convolution theorem (see [START_REF] Hu | Null controllability and nite-time stabilization in minimal time of one-dimensional rst-order 2 × 2 linear hyperbolic systems[END_REF]) and we show here how to directly prove the corollary without resorting to this dicult result.

Proof of Corollary 2.4. It is enough to show that, if (q, f ) ∈ S k \S k+1 for some k ∈ {2, . . . , n + 1}, then system (9) (with m = 1) is null controllable in time T if, and only if, T ≥ τ k .

1. We rst observe that system (9) is equivalent to the same system with f 1 = 0. This follows from the invertible spatial transformation

ŷ1 (t, x) = ỹ1 (t, x) - x 0 h(x -ξ)ỹ 1 (t, ξ) dξ,
where the kernel h is the solution to

h(x)λ 1 + x 0 h(x -ξ)f 1 (ξ) dξ = f 1 (x), 0 < x < 1.
Therefore, for the rest of the proof, we assume that f 1 = 0.

2. Assume now that (q, f ) ∈ S k \ S k+1 for some k ∈ {2, . . . , n} (the result for k = n + 1 is trivial). It will be convenient to use the notation qi = q i-1 for 2 ≤ i ≤ n. Let us write system (9) (with f 1 = 0) component-wise: 

       ∂ ỹ1 ∂t (t, x) + λ 1 ∂ ỹ1 ∂x (t, x) = 0, ỹ1 (t, 1) = ũ(t), ỹ1 (0, x) = ỹ0 1 (x),        ∂ ỹi ∂t (t, x) + λ i ∂ ỹi ∂x (t, x) = f i (x)v(t), ỹi (t, 0) = qi v(t), ỹi (0, x) = ỹ0 i ( 
ỹk (T, x) = 0 is equivalent to qk α(τ ) + τ 0 β(τ -σ)α(σ) dσ = 0, 0 < τ < T k , (63) 
where α

(θ) = v(-θ + T ) and β(θ) = f k (λ k θ) for 0 < θ < T k .
4. We now have two possibilities for (63).

(a) Case qk = 0. Then, by uniqueness of the solution to the Volterra equation of the second kind (63), we obtain α = 0 in (0, T k ). This means that v = 0 in (T -T k , T ).

Since this is true for any ỹ1 0 , it is possible only if T 1 ≤ T -T k , which is the desired condition.

(b) Case qk = 0. Since (q, f ) ∈ S k \ S k+1 , we necessarily have f k = 0. Since f k is analytic in a neighborhood of [0, 1), this implies in particular that there exists N ≥ 1 such that

f (N -1) k (0) = 0, f ( ) k (0) = 0, ∀ < N -1.
Then, taking N times the derivative with respect to τ in (63) (with qk = 0), we obtain the new Volterra equation

cα(τ ) + τ 0 β (N ) (τ -σ)α(σ) dσ = 0, 0 < τ < T k , where c = β (N -1) (0) = f (N -1) k (0)λ N -1 k
. Therefore, c = 0 and the situation is now identical to the previous case.

B Solution to the kernel equations

In this appendix, we present a new approach to solve the kernel equations that encompasses in particular the proof of Theorem 2.5. We recall that, when considering the kernel equations in the triangle T = (x, ξ) ∈ R 2 0 < ξ < x < 1 , the approach used in all current results in the literature ([Cor+13; DVK13; HD15; Hu+16; Hu+19; CN19], etc.) consists in adding articial boundary conditions to close the system of kernel equations. In our approach, we will not consider the condition at (x, x) as a boundary condition but rather as an initial condition.

We will simply let propagate this condition along the characteristics and nd the corresponding so-called domain of determinacy, much in the spirit of the reference books [LY85; Bre00]. Then, another idea of our method is also to solve the equation for j = i and plug it into the other equations of the system to obtain a new system with initial conditions at (x, x) only (as in the proof of Theorem 3.1). Moreover, this gives a natural bound in |x -ξ| for the estimates needed to prove the contraction of the mapping dening the integral equations corresponding to the new system (rather than |x -(1 -ε)ξ| as in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Hu | Boundary exponential stabilization of 1-dimensional inhomogeneous quasi-linear hyperbolic systems[END_REF]).

All along this appendix, i ∈ {1, . . . , n} is xed and we continue using the notation k = (k ij ) 1≤j≤n to denote the transpose of the i-th row of K. We also emphasize that m ≥ 1 is arbitrary.

First of all, it will be more convenient to work with the kernel equations normalized by λ i :      ∂k j ∂x (x, ξ) + λj ∂k j ∂ξ (x, ξ) + n r=1 k r (x, ξ) mrj = 0, k j (x, x) = f j (j = i), k i (x, δx) = 0,

where λj = λ j λ i , mrj = m rj λ i , f j = m ij λ i -λ j .

From now on, we will assume for instance that i ≥ m + 1, so that λ i > 0 and thus, from (1b), Let us now consider the more general condition k j (x, x) = f j (x) (j = i),

λ1 < • • • < λi-1 < 1 < λi+1 < • • • < λn .
where f j is a function dened on an interval of the form [a, b] with a < 0 < b. Even if f j is constant in (64), we will need to consider space-dependent data to deduce the existence of smooth solutions by an inductive argument. We will describe the largest domain D ⊂ R 2 where the system can then be solved along the characteristics. We rst take care of the characteristics for j = i. Recalling the ordering (65), we introduce (see Figure 1). Above, we use the usual conventions for i = 1 and i = n. We now take care of the characteristic for j = i. 

D c = (x, ξ) ∈ R 2 ζ i-1 (x;
for some C > 0 that does not depend on any f j .

For s = 0, by solution we mean solution along the characteristics, see below.

The rst part of Theorem 2.5 follows from the previous result and the following simple observation:

∀V ⊂ R 2 , ∃a < 0 < b, V ⊂ D.

(68)

On the other hand, using that the coecients of the system are constant and arguing as in the proof of [CN19, Lemma 6.2], we can show that (67) holds with C = R s for some R > 0 that does not depend on s. This establishes the estimate in Theorem 2.5.

Let us now prove Theorem B.1. We start with a description of the key properties satised by the point where the j-th characteristic intersects the corresponding data line.

Lemma B.2. For every j ∈ {1, . . . , n}, there exists σ j ∈ C ∞ (D) such that, for every (x, ξ) ∈ D,

we have: For every j = i, we have

|σ j (x, ξ) -x| ≤ C |x -ξ| , (69) 
for some C > 0 that does not depend on j, x, ξ.

We point out that ζ j and σ j are explicit. In particular, this is how we prove estimate (69). Now, instead of writing (66) along all the characteristics (as it is usually done), we rst replace k i by formally solving the corresponding equation (recall that mii = 0): (70)

k i (x, ξ) = f i (σ i (x, ξ)) -
Let us introduce the following notations to exclude the i-th components: k c = (k j ) j =i , f c = (f j ) j =i , σ c = (σ j ) j =i , ζ c = (ζ j ) j =i , M c = ( mrj ) r,j =i , ψ = ( mij ) j =i and w = ( mji ) j =i . Then, plugging the previous expression of k i in (66) and integrating along the characteristics, we can transform this system into the following system of integral equations for k c : k c (x, ξ) =f c (σ c (x, ξ)) - 

Remark 1. 4 .

 4 Theorem 1.3 solves the open problem raised at the end of [HO21b, Section 5] for systems with constant coecients.

  by (23)), = c s-1,s-1 ψ 0,0 (by the second property in (21)), (25) ψ s+1,s = Dψ s,s+1 + A T ψ s,s + c s,s-1 ψ 0,0 (by (23)), = A T ψ s,s + c s,s-1 ψ 0,0 (by the second property in (21)), = c s-1,s-1 ψ 1,0 + c s,s-1 ψ 0,0 (by (25)), and ψ 2,0 = Dψ 1,1 + A T ψ 1,0 (by (23)), = c 0,0 Dψ 0,0 + A T ψ 1,0 (by (25)).

  the rst equation. The second condition follows from the assumption Kal (A, v) T ψ 0 = 0 and Cayley-Hamilton theorem. The third condition is trivial. Finally, the orthogonality conditions are clearly satised under the additional assumption Kal (A, b) T ψ 0 = 0.

kk

  21 = k 24 ρ, (recall also Remark 4.1). In particular, we assume (48). Then, the problem is to nd a 22 α 21 + k 23 α 31 = (-ρP 1 -α 41 )k 24 , P 2 k 22 + k 23 α 32 + k 24 (α 42 + α 12 ρ) = 0, P 3 k 23 + k 22 α 23 + k 24 (α 43 + α 13 ρ) = 0, k 22 α 24 + k 23 α 34 = (-P 4 -α 14 ρ)k 24 . (54) Let us denote by ω = det α 21 α 31 α 24 α 34 .

  every (x, ξ) ∈ R × R, we denote by s -→ ζ j (s; x, ξ) the solution to s; x, ξ) = λj , ∀s ∈ R, ζ j (x; x, ξ) = ξ.

  a, a) < ξ < ζ i-1 (x; b, b) ζ i+1 (x; b, b) < ξ < ζ i+1 (x; a, a),

Figure 2 :

 2 Figure 1: Domain D c

  ζ j (σ j (x, ξ); x, ξ) = σ j (x, ξ) with σ j (x, ξ) ∈ [a, b] for j = i and ζ i (σ i (x, ξ); x, ξ) = δσ i (x, ξ) with σ i (x, ξ) ∈ I. (s, ζ j (s; x, ξ)) ∈ D for every s ∈ [σ j (x, ξ), x].

  x σi(x,ξ) r =i k r (η, ζ i (η; x, ξ)) mri dη.

  , ζ c (s; x, ξ))m c r ds x σ c (x,ξ) f i (σ c i (s, ζ c (s; x, ξ)))ψ ds ζ i (η; s, ζ c (s; x, ξ)))w r dη ψ ds, . . . , n -1} and (x, ξ) ∈ D.

  Then, the rst and fourth equations in (54) give 34 ρP 1 + α 31 P 4 -α 34 α 41 + α 31 α 14 ρ) k 24 , 24 ρP 1 -α 21 P 4 + α 24 α 41 -α 21 α 14 ρ) k 24 .

	    	k 22 = (-α k 23 = 1 ω 1 ω (α
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All the quantities in (70) and (71) are well dened thanks to Lemma B.2. It remains to prove the existence and uniqueness of a C s solution k c to this system of integral equations. We start with s = 0. As usual, we use the Banach xed point theorem and suitable estimates. A solution to this system is a xed point of the map F (k c ) = u 0 + Φk c , where

and Φ is the linear map Φ = Φ 1 + Φ 2 with

and Lemma B.3. There exists C > 0 such that, for every N ∈ N * , we have

for every k c ∈ B, ∈ {1, . . . , n -1} and (x, ξ) ∈ D.

Proof. We prove the property by induction on N . Let us rst consider N = 1. We have

for some C 3 > 0 that does not depend on , x, ξ (see ( 69)). This proves the property for N = 1.

Let us now assume that the property holds for N and let us prove it for N + 1. We have

Using the induction assumption, we get

Similarly, noting that η -ζ i (η; s, ζ c (s; x, ξ)) = s -ζ c (s; x, ξ), we get

N + 1 .

We conclude thanks to the estimate (72).

Finally, the estimate (67) can be deduced from the identities

Φ r u 0 , combined with the fact that Φ N is a contraction and that u 0 can be estimated by the right-hand side of (67) (with s = 0). This concludes the proof of Theorem B.1 for s = 0.

To prove the result for s ≥ 1 we can argue as in the proof of [Bre00, Theorem 3.6] and then use an induction argument.

Remark B.4. The proof above can be adapted to deal with space-dependent systems, i.e. when λ j and m rj depend on x. The additional condition for k i has to be modied though, but we can for instance consider k i (x, 0) = f i (x). Note that we still have explicit formulas for the corresponding ζ j and σ j .

Remark B.5. Our approach can be used to recover existence results in the triangle T . To this end, we simply extend the parameters λ j and m rj to [a, b] ⊃ [0, 1] in a smooth way. Then, for a, b large enough, the domain D will contain the triangle T (recall (68)) and we apply Theorem B.1 in this D. This approach is dierent from all the previous ones in the literature, which consisted in adding articial boundary conditions at some parts of the boundary of T . Note in addition that extending λ j and m rj outside [0, 1] in a smooth way is easier than building articial boundary conditions that satisfy compatibility conditions associated with the kernel equations.