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In this paper, we put forth a novel framework (named "RYU") for the construction of "safe" balls, i.e., regions that provably contain the dual solution of a target optimization problem. We concentrate on the standard setup where the cost function is the sum of two terms: a closed, proper, convex Lipschitz-smooth function and a closed, proper, convex function. The RYU framework is shown to generalize or improve upon all the results proposed in the last decade for the considered family of optimization problems.

Introduction.

1.1. Context and state of the art. In this paper, we consider the following family of optimization problems: (P) find x ⋆ ∈ arg min

x∈R n P (x) f (Ax) + g(x)
where A ∈ R m×n is some known matrix, f : R m → R , g : R n → R ∪ {+∞} are proper, closed, convex functions and f is moreover "α -1 -Lipschitz smooth over R m ", that is f is differentiable everywhere on R m and its gradient obeys the following regularity condition for some positive scalar α > 0:

∀z, z ′ ∈ R m : ∇f (z) -∇f (z ′ ) 2 ≤ α -1 z -z ′ 2 . (1.1)
Under such hypotheses, problem (P) is well-posed in the sense that at least one minimizer x ⋆ exists (see Section 3). Instances of problems satisfying these hypotheses are common in the literature of machine learning, statistics or signal processing, and include (among many others) least-squares sparse regression [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], logistic sparse regression [START_REF] Koh | An interior-point method for large-scale l1-regularized logistic regression[END_REF] or the "Elastic Net" problem [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

The focus of this paper is on the construction of "safe regions", i.e., subsets of R m provably containing the unique solution of the dual problem of (P). More specifically, our goal is to identify some subset S ⊆ R m such that

u ⋆ ∈ S (1.2) where (D) u ⋆ = arg max u∈R m D(u) -f * (-u) -g * (A T u)
and f * , g * denote the convex conjugates of f , g. The construction of safe regions has become an active field of research during the last decade (see e.g., [START_REF] Dai | An ellipsoid based, two-stage screening test for BPDN[END_REF][START_REF] Fercoq | Mind the duality gap: safer rules for the Lasso[END_REF][START_REF] Herzet | Region-free safe screening tests for ℓ 1 -penalized convex problems[END_REF][START_REF] Herzet | Safe screening tests for Lasso based on firmly non-expansiveness[END_REF][START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF][START_REF] Pan | A safe feature elimination rule for l1-regularized logistic regression[END_REF][START_REF] Tran | Beyond gap screening for lasso by exploiting new dual cutting half-spaces[END_REF][START_REF] Wang | Sequential safe feature elimination rule for l1-regularized regression with kullback-leibler divergence[END_REF][START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF][START_REF] Wang | A safe screening rule for sparse logistic regression[END_REF][START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF]) and has been triggered by the so-called "safe feature elimination" technique (also referred to as "safe screening"), a procedure to accelerate the resolution of (P), first proposed in [START_REF] Ghaoui | Safe feature elimination for the Lasso and sparse supervised learning problems[END_REF] and further extended in many contributions, see e.g., [START_REF] Elvira | Safe squeezing for antisparse coding[END_REF][START_REF] Elvira | Short and squeezed: accelerating the computation of antisparse representations with safe squeezing[END_REF][START_REF] Guyard | Screen & relax: accelerating the resolution of Elastic-Net by safe identification of the solution support[END_REF][START_REF] Ndiaye | Screening Rules and its Complexity for Active Set Identification[END_REF]. One central element in the effectiveness of these acceleration methods is the identification (preferably at low computational cost) of small safe regions with some specific geometry (e.g., ball, ellipsoid, dome, etc). In this paper, we focus on safe regions having a "ball" geometry, that is

(1.3) S = B(c, r) {u ∈ R m | u -c 2 ≤ r}
for some c ∈ R m and r > 0. In this respect, the state-of-the-art safe ball for the general family of optimization problems considered in this paper is indubitably the so-called "GAP ball" proposed in [START_REF] Fercoq | Mind the duality gap: safer rules for the Lasso[END_REF][START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF]. It is defined for any couple (x, u) ∈ dom(P )× dom(-D) as

B GAP (x, u) B(c GAP , r GAP ) (1.4)
where

c GAP u (1.5a) r GAP 2GAP(x, u) α (1.5b)
and GAP(x, u) P (x) -D(u) is the so-called duality gap. The popularity of the GAP ball is due to the two following assets:

1. The construction of the ball is valid for any problem satisfying our minimal hypotheses, that is f , g are proper, closed, convex and f is α -1 -Lipschitz smooth over R m . 2. A GAP ball can be constructed from any primal-dual feasible couple (x, u).

In particular, under strong duality assumption and continuity of the duality gap over its domain, the radius of the ball can be made arbitrarily small by choosing (x, u) sufficiently close to some optimal couple (x ⋆ , u ⋆ ).

These features have led the GAP ball to be widely applied and to allow for substantial acceleration performance in many setups, see e.g., [START_REF] Dantas | Stable safe screening and structured dictionaries for faster ℓ 1 regularization[END_REF][START_REF] Elvira | Safe squeezing for antisparse coding[END_REF][START_REF] Elvira | Safe rules for the identification of zeros in the solutions of the slope problem[END_REF][START_REF] Guyard | Screen & relax: accelerating the resolution of Elastic-Net by safe identification of the solution support[END_REF][START_REF] Herzet | Gather and conquer: Region-based strategies to accelerate safe screening tests[END_REF].

Other constructions of safe balls, requiring either additional hypotheses on f and g or the knowledge of some specific primal-dual couple (x, u), have also been proposed in the literature. All the safe ball constructions (to the best of our knowledge) falling into the optimization framework considered in this paper are gathered in Table 1 and will be reviewed in greater details in Section 4. We note that, although requiring additional assumptions, some of these works put to the forth that the construction of safe balls smaller than the GAP ball is possible. For example in [START_REF] Herzet | Safe screening tests for Lasso based on firmly non-expansiveness[END_REF] the authors proposed a safe ball (referred to as "FNE ball") for the LASSO problem and proved that it is a subset of the GAP ball. More recently, the authors of [START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF] introduced the so-called "dynamic EDPP ball" and emphasized that the latter has a smaller radius then the GAP ball constructed with the same primal-dual pair [START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF]Theorem 10].

In this paper, we provide a new mathematical framework gathering and extending these results to the general family of optimization problems (P).

1.2. Contributions. The contribution of this paper is two-fold. We first introduce a new safe-ball referred to as "RYU ball" and defined ∀(x, u) ∈ dom(P ) × dom(-D) as

(1.6) B RYU (x, u) B(c RYU , r RYU )
Safe region Relation Cstr. on (x, u) Hyp. on f and g GAP [START_REF] Fercoq | Mind the duality gap: safer rules for the Lasso[END_REF][START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF][START_REF] Ndiaye | Screening Rules and its Complexity for Active Set Identification[END_REF] ⊇ BRYU(x, u) feasible (H1)-(H2) x-GAP [START_REF] Herzet | Region-free safe screening tests for ℓ 1 -penalized convex problems[END_REF] ⊇ BRYU(x, u) feasible (H1)-(H2), g = λ • 1 Dyn. EDPP [START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF] The first column provides the name and the references associated to the safe ball, the second describes its connection with the proposed RYU ball, the third indicates the constraints on the primal-dual couple (x, u) used in the construction. The last column specifies the setup considered by the authors in their work.

= BRYU(t ⋆ x, u) feasible f = 1 2 y -• 2 2 , g = gauge FNE [15] = BRYU(x, u) A T u ∈ ∂g(x) f = 1 2 y -• 2 2 , g = λ • 1 SASVI [17] = BRYU(0n, u) u ∈ dom(-D) f = 1 2 y -• 2 2 , g = λ • 1 EDPP [23] = BRYU(x, u) (4.7)-(4.8) f = 1 2 y -• 2 2 , g = λ • 1 DPP [23] ⊇ BRYU(x, u) (4.7)-(4.8) f = 1 2 y -• 2 2 , g = λ • 1 SAFE [7] ⊇ BRYU(0n, u) u ∈ dom(-D) f = 1 2 y -• 2 2 , g = λ • 1 SLORES [24] ⊇ BRYU(x, u) (4.7)-(4.8) f = logistic, g = λ • 1 SFER [20] = BRYU(x, u) (4.7)-(4.8) f = logistic, g = λ • 1
where

c RYU 1 2 (u -∇f (Ax)) (1.7a) r RYU GAP(x, u) α - u + ∇f (Ax) 2 2 4 , (1.7b) 
see Theorem 4.1. The name "RYU" stems from "Refined Fenchel-Young inequality" and refers to the fact that the safeness of the ball is a consequence of the (double) application of a refined version of the well-known Fenchel-Young inequality (see Appendix B). Our ball construction is valid under the same generic assumptions as the GAP ball (see Section 3 for a detailed discussion about our working hypotheses). In particular: 1. it can be applied to any problem (P) involving a proper, closed, convex function f which is α -1 -Lipschitz smooth over R m , and a proper, closed, convex function g; 2. primal-dual feasibility is the only assumption required for the pair (x, u).

Second, we show that our safe ball construction generalizes or improves over all the existing results of the literature. More specifically, we prove that all the existing safe balls correspond to particular cases or supersets of the proposed ball. These results are summarized in the second column of Table 1 and correspond to Propositions 4.4 to 4.9 of the paper. Interestingly, we note that the GAP ball is always included in the RYU ball, that is:

(1.8) B RYU (x, u) ⊆ B GAP (x, u),
where the inclusion is shown to be strict as long as (x, u) is not a primal-dual optimal couple, see Proposition 4.4. In fact, a rapid inspection of (1.5b) and (1.7b) shows that the squared radius of the RYU ball is never greater than half the squared radius of the GAP ball. Since our construction is valid for any feasible 1 couple (x, u) and holds under minimal assumptions on f , g, the results in Table 1 therefore emphasize that the 1 Strictly speaking, the proposed construction in fact applies to any couple (x, u) ∈ R n × R m but (similarly to the GAP ball) leads to a ball with infinite radius when (x, u) / ∈ dom(P ) × dom(-D). This is the reason why we restrict our construction to dom(P ) × dom(-D) in the paper.

proposed framework unifies and generalizes all the methodologies previously proposed in the literature.

1.3. Paper organization. The rest of the paper is organized as follows. In Section 2, we detail the notational conventions used in the paper. In Section 3, we describe the working hypotheses considered in our derivations and discuss some of their implications. Section 4 is dedicated to the presentation of our new safe ball and its connection with the previous results of the literature. Most of the technical details are deferred to Appendices A to C.

Notations.

Unless mentioned explicitly, we will use the following notational conventions throughout the paper. Vectors are denoted by lowercase bold letters (e.g., x, z) and matrices by uppercase bold letters (e.g., A). We use the symbol " T " to denote the transpose of a vector or a matrix. The "all-zero" vector of dimension n is written 0 n . z | z ′ denotes the standard inner product between z and z ′ . We use the notation x j to refer to the jth entry of a vector x. For matrices, we use a j to denote the jth column of A. We let R = R ∪ {-∞, +∞} where R refers to the set of real numbers. Given an extended real-valued function h : R d → R , we let

(2.1) dom(h) z ∈ R d | h(z) < +∞ .
The subdifferential set of h : R d → R is defined as

(2.2) ∂h(z) g ∈ R d | ∀z ′ ∈ R d : h(z ′ ) ≥ h(z) + g | z ′ -z
and we refer to its elements as "subgradients", see [2, Definition 3.2]. Finally, (2.3)

h * : R d → R z * → sup z∈R d z * , z -h(z) ,
is the convex conjugate of h, see [2, Definition 4.1].

3. Optimization framework. In this paper, we consider problem (P) with the following minimal assumptions: f and g are proper, closed and convex functions. (H1)

f is α -1 -Lipschitz smooth over R m . (H2)
We note that (H1) and (H2) correspond to the general hypotheses needed for the construction of the GAP ball, see [START_REF] Ndiaye | Screening Rules and its Complexity for Active Set Identification[END_REF]. In the rest of this section we elaborate on some properties of problems (P)-(D) induced by these hypotheses.

First, since f (resp. g) is proper, closed and convex from (H1), its convex conjugate f * (resp. g * ) is proper, closed and convex, see [2, Theorems 4.13 and 4.5]. Moreover, the convexity and α -1 -Lipschitz smoothness on R m of f in (H2) implies that f * is α-strongly convex, see [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 5.26], that is:

(3.1) ∀z, z ′ ∈ dom(f * ) and g ∈ ∂f * (z) : f * (z ′ ) ≥ f * (z) + g | z ′ -z + α 2 z ′ -z 2 2 .
Under the properness assumption in (H1), the duality gap, defined as

(3.2) GAP : R n × R m → R (x, u) → P (x) -D(u)
is always a nonnegative quantity, see [1, Item (i) of Proposition 15.21]. Moreover, GAP(x, u) < +∞ if and only if (x, u) ∈ dom(P ) × dom(-D). Hypotheses (H1)-(H2) also imply that strong duality holds for some primal-dual couple as emphasized by the following lemma:

Lemma 3.1. If (H1)-(H2) hold, then there exists (x ⋆ , u ⋆ ) ∈ R n × R m such that (3.3) GAP(x ⋆ , u ⋆ ) = 0.
Proof. If (H1) is verified, we have from [2, Theorem 4.15] that strong duality holds and a primal-dual optimal couple exists provided that

(3.4) relint(dom( f )) ∩ relint(dom(g)) = ∅,
where f (•) f (A•) and relint(•) denotes the relative interior of a set. Now, under our α -1 -Lipschitz smoothness assumption (H2), we have that dom( f ) = R m so that condition (3.4) reduces to relint(dom(g)) = ∅. Since g is a proper convex function, its domain dom(g) is non-empty (by definition) and convex [2, Section 2.3.1]. Therefore, the relative interior of dom(g) is non-empty, see [2, Theorem 3.17].

We note that any couple verifying (3.3) must obviously be a primal-dual solution of (P)-(D), so that at least one minimizer of (P) and one maximizer of (D) exist. Moreover, the α-strong convexity of f * implies that the maximizer of (D) is unique, see [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 5.25]. Finally, since strong duality holds, the following conditions must be satisfied by any primal-dual optimal couple (x ⋆ , u ⋆ ), see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Theorem 19.1]:

u ⋆ = -∇f (Ax ⋆ ) (3.5) A T u ⋆ ∈ ∂g(x ⋆ ). (3.6)
4. The RYU framework and its connection to the state of the art. The main theoretical result of this paper is the following new safe ball: Theorem 4.1 (RYU ball). Assume (H1)-(H2) hold true. Then, we have for any (x, u) ∈ dom(P ) × dom(-D):

(4.1) u ⋆ ∈ B RYU (x, u) B(c RYU , r RYU )
where

c RYU 1 2 (u -∇f (Ax)) (4.2a) r RYU GAP(x, u) α - u + ∇f (Ax) 2 2 4 . (4.2b)
The name "RYU" stands for "Refined Fenchel-Young inequality", a central element appearing in the proof of the safeness of the proposed region, see Appendix B.1.

A close inspection of the hypotheses of Theorem 4.1 reveals that the construction of the RYU ball is applicable under exactly the same assumptions as the GAP ball, that is: i) it holds for any problem satisfying minimal hypotheses (H1)-(H2) on f and g; ii) it is valid for any primal-dual feasible couple (x, u). Despite of its generality, a careful examination of the definition of the radius of the GAP and RYU balls in (1.5b) and (1.7b) indicates that -given a feasible primal-dual pair (x, u)-the squared radius of the RYU ball is always at least twice as small as the squared radius of the GAP ball. In fact, as emphasized in Subsection 4.1 below, the GAP ball is a strict subset of the proposed RYU ball for any feasible primal-dual (x, u) different from (x ⋆ , u ⋆ ).

In the rest of this section, we explain how the safe balls previously-proposed in the literature relate to the RYU ball. More specifically, we emphasize that the previous results of the state of the art can be seen as either particular cases or supersets of the proposed ball. Our results are contained in Propositions 4.4 to 4.9 and summarized in the second column of Table 1. In particular, the safe balls of the literature presented hereafter rely on different assumptions on: i) the functions f and g defining (P); ii) the primal-dual couple (x, u) used in the construction. In the sequel, the working hypotheses made for the construction of each safe ball are recalled before stating its connection with the proposed RYU ball. These hypotheses are summarized in the third and fourth columns of Table 1 for each region.

Before proceedings to the connection between the RYU ball and the existing results of the literature, we make two important remarks regarding the choice the couple (x, u) involved in the construction of the safe ball.

First, an approach which have been considered (often implicitly) in many contributions of the literature consists in choosing a feasible pair (x, u) such that

(4.3) A T u ∈ ∂g(x).
Interestingly, when (4. 

If (4.3) is verified, then ∀(x, u) ∈ dom(P ) × dom(-D): (4.6) GAP(x, u) = Fen(x, u) = Breg(x, u).
We refer the reader to Appendix C.1 for a proof of this result. The connection between the duality gap and the Fenchel/Bregman divergences is of interest in two respects.

On the one hand, these divergences are sometimes more straightforward to express than the duality gap and thus give an alternative formulation to the proposed RYU ball under the particular assumption (4.3). On the other hand, some contributions of the literature (see Subsection 4.5) have directly expressed their safe ball as a function of Breg(x, u). The connection established in Lemma 4.2 will thus allow us to make a direct link between these works and the RYU framework proposed in this paper. Second, we mention that the following definition of primal-dual couple (x, u) has been considered in many contributions of the literature (see e.g., [START_REF] Liu | Safe screening with variational inequalities and its application to lasso[END_REF][START_REF] Pan | A safe feature elimination rule for l1-regularized logistic regression[END_REF][START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF][START_REF] Wang | A safe screening rule for sparse logistic regression[END_REF]):

(x, u) x ⋆ γ , -γ -1 ∇f (Ax ⋆ γ ) (4.7)
where γ > 0 and

x ⋆ γ ∈ arg min x∈R n f (Ax) + γg(x). (4.8)
This type of construction appears for example in "sequential" settings where one wants to solve (P) for g(•) = λ • and the solution of a similar problem with g(•) = λ 0 • has already been computed previously. The solution of the latter problem can then be expressed as in Proof. Using the optimality condition (3.5) and the definition of u in (4.7), we see that γu corresponds to the optimal solution of the dual problem of (4.8). Using optimality condition (3.6), we then have that

γA T u ∈ ∂γg(x ⋆ γ ) = γ∂g(x) (4.9)
where we used the homogeneity of subdifferentials (see [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 3.35]) and the definition of x in (4.7). We finally obtain the result by simplifying both sides by γ.

Since many safe balls proposed in the literature rely on the particular construction (4.7)-(4.8), the result in Lemma 4.3 emphasizes that these constructions in fact consider a primal-dual feasible pair (x, u) verifying (4.3) and that (from Lemma 4.2) the connection (4.6) between the duality gap and the Fenchel/Bregman divergences is thus in force.

GAP balls.

The GAP ball first proposed in [START_REF] Fercoq | Mind the duality gap: safer rules for the Lasso[END_REF] and later generalized in [START_REF] Ndiaye | Gap safe screening rules for sparsity enforcing penalties[END_REF][START_REF] Ndiaye | Screening Rules and its Complexity for Active Set Identification[END_REF] is defined in (1.5a)-(1.5b). Its construction is valid under assumptions (H1)-(H2) and can take any primal-dual (x, u) as input. The next result shows that the RYU ball is always a subset of the GAP ball: Proposition 4.4 (The GAP ball contains the RYU ball). Assume (H1)-(H2) hold. Then, for any primal-dual pair (x, u) ∈ dom(P ) × dom(-D):

(4.10) B RYU (x, u) ⊆ B(c GAP , r GAP ).
Moreover, the inclusion is strict as soon as the primal-dual pair (x, u) is not optimal.

In [14, Section IV.B] a variant of the GAP ball for the specific case where g = λ • 1 was proposed. Although the construction of the ball presented in [START_REF] Herzet | Region-free safe screening tests for ℓ 1 -penalized convex problems[END_REF] holds in a slightly more general setup, 3 we focus hereafter on the case where f is proper, closed, convex and satisfies (H2). The center and radius of this ball (referred to as x-GAP since its center depends on x instead of u as in the standard GAP ball) reads as follows:

c x-GAP -∇f (Ax) (4.11a) r x-GAP 2GAP(x, u) α (4.11b)
where (x, u) can be any primal-dual feasible couple. Similarly to Proposition 4.4, the next result shows that the x-GAP ball is also a superset of the proposed RYU region: Proposition 4.5 (The x-GAP ball contains the RYU ball). Assume (H1)-(H2) hold. Then, for any primal-dual pair (x, u) ∈ dom(P ) × dom(-D):

(4.12) B RYU (x, u) ⊆ B(c x-GAP , r x-GAP ).
Moreover, the inclusion is strict as soon as the primal-dual pair (x, u) is not optimal.

The proof of Propositions 4.4 and 4.5 is given in Appendix C.2.

4.2. Dynamic EDDP ball. In [START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF], the authors focused on the particular family of problems where

f = 1 2 y -• 2 2 (4.13) g = λ • (4.14)
for some vector y ∈ R m , scalar λ > 0 and norm • . 4 They introduced a new safe ball (see [START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF]Theorem 9]), dubbed "dynamic EDPP ball" and valid for any primaldual feasible couple (x, u). The center and radius of the dynamic EDPP ball reads as follows:

c dyn.EDPP = 1 2 (y + u -t ⋆ Ax) (4.15a) r dyn.EDPP = 1 2 y -u 2 2 -t ⋆ Ax 2 2 (4.15b)
where t ⋆ is defined as (with the conventions 0/0 = 0 and 1/0 = +∞):

(4.16) t ⋆ = max 0, Ax | y + u -2λ x Ax 2 2 .
The connection between the RYU and dynamic EDPP balls is established in the following proposition:

Proposition 4.6 (Dynamic EDPP ball is a special case of the RYU ball). Assume (4.13)-(4.14) holds. Then, for any (x, u) ∈ dom(P ) × dom(-D):

i) The quantity t ⋆ defined in (4.16) verifies

t ⋆ ∈ arg min t≥0 GAP(tx, u) - 1 4 u + ∇f (tAx) 2 2 .
ii) We have

B(c dyn.EDPP , r dyn.EDPP ) = B RYU (t ⋆ x, u).
A proof of this result is available in Appendix C.3. In particular, the dynamic EDPP ball was shown to exhibit a smaller radius as compared to the GAP ball constructed with the (feasible) primal-dual pair (x, u), see [START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF]Theorem 10]. Item ii) of Proposition 4.6 (combined with Proposition 4.4) elucidates this connection by showing that the dynamic EDPP ball is in fact a subset of the GAP ball B GAP (t ⋆ x, u). Finally, item i) of Proposition 4.6 provides a novel interpretation of the definition of t ⋆ , that is t ⋆ corresponds to a nonnegative rescaling of the primal vector x minimizing the radius of the RYU ball.

4.3. FNE, EDDP, DPP and SASVI balls. FNE [START_REF] Herzet | Safe screening tests for Lasso based on firmly non-expansiveness[END_REF], (E)DDP [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF] and SASVI [START_REF] Liu | Safe screening with variational inequalities and its application to lasso[END_REF] balls are safe regions designed for the same problem where

f = 1 2 y -• 2 2
(4.17)

g = λ • 1 . (4.18)
They all assume (explicitly or implicitly) that the primal-dual couple (x, u) used in the construction verifies (4.3). We start with the description of the FNE ball which corresponds to the most general construction. We address the EDDP, DPP and SASVI balls at the end of the section as particular cases or relaxation of the FNE region.

The FNE ball is defined by the following center and radius:

c FNE = u + 1 2 (y -Ax -u) (4.19a) r FNE = 1 2 y -Ax -u 2 . (4.19b)
In [15, Theorem 1], the authors showed that the FNE ball is safe for any primal-dual feasible pair (x, u) satisfying

(4.20) u | Ax = λ x 1 .
The following result shows that the FNE ball in fact corresponds to a particular case of the RYU ball when (4.17 A proof of this result is available in Appendix C.4. We note that the authors also showed in [15, Lemma 1] that the FNE ball is a strict subset of the GAP ball as long as (x, u) = (x ⋆ , u ⋆ ). Interestingly, in view of Proposition 4.7, this result turns out to be a particular case of Proposition 4.4 in the more general framework of the RYU ball.

The EDPP and SASVI balls represent specific instances of the FNE ball, resulting from particular choices of the pair (x, u). On the one hand, the SASVI ball (see [START_REF] Liu | Safe screening with variational inequalities and its application to lasso[END_REF]Section 2.2]) corresponds to the case where (x, u) = (0 n , u) for some dual feasible point u, i.e.,

c SASVI = 1 2 (y + u) (4.22a) r SASVI = 1 2 y -u 2 . (4.22b)
It is easy to see this couple trivially verifies (4.20). Using Proposition 4.7 with (x, u) = (0 n , u), u ∈ dom(-D), then directly leads to

B(c SASVI , r SASVI ) = B RYU (0 n , u).
On the other hand, the center and radius of the EDDP ball (see [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF]Theorem 13]) obeys the same definition (4.19a)-(4.19b) as those of the FNE ball but for (x, u) defined as in (4.7)-(4.8) for some γ > 0. Taking into account that

∂ x 1 = {z ∈ R n | z | x = x 1 , z ∞ ≤ 1}, (4.23)
it is easy to see that (4.20) together with feasibility of (x, u) is in fact an equivalent rewriting of (4.3) for g = λ • 1 . Hence, in view of Lemma 4.3, the couple (x, u) considered in the EDDP construction verifies (4.20) and this ball is nothing but a particular instance of FNE ball. Proposition 4.7 thus applies for the EDDP ball as well.

Finally, it was shown in [START_REF] Wang | Lasso screening rules via dual polytope projection[END_REF]Theorem 13] that the DPP ball is always a superset of the EDPP ball. This directly leads to the inclusion reported in Table 1.

SAFE ball.

The SAFE ball is the first safe region proposed in the seminal paper [START_REF] Ghaoui | Safe feature elimination for the Lasso and sparse supervised learning problems[END_REF]. It applies in the case where 

f = 1 2 y -• 2 2 (4.24) g = λ • 1 . (4.
r SFER = 1 4 Breg(x, u) - 1 4 (1 -γ)u 2 2 . (4.32b)
In Appendix C.6, we show that SFER is in fact a particular instance of the RYU ball whereas the SLORE ball corresponds to a superset of the latter. More specifically, we prove that the following result holds: Proposition 4.9. Assume (4.29)-(4.30) hold and (x, u) is defined as (4.7)-(4.8) for some γ > 0. Then, we have

(4.33) B(c SFER , r SFER ) = B RYU (x, u) ⊆ B(c SLORES , r SLORES ).

Conclusion.

In this paper we introduced a new framework to devise safe balls. Our construction applies to any instance of a general family of optimization problems where the cost function is the sum of a closed, proper, convex, Lipschitzsmooth function and a closed, proper, convex function, and leverages solely the knowledge of a primal-dual feasible pair. Our new safe ball is shown to encompass as particular cases or outperform all the previous constructions proposed in the literature during the last decade, thus acting as a unifying framework for the construction of safe balls for the general family of problems considered in the paper. Proposition B.1 can be proved by applying Lemma B.2 for two different choices of couple (x, u). We remind the reader that, from Lemma 3.1, at least one primal-dual couple (x ⋆ , u ⋆ ) exists. A first application of Lemma B.2 with (x ⋆ , u) then leads to

(B.3) u + ∇f (Ax ⋆ ) 2 2 ≤ 2(P (x ⋆ ) -D(u)) α .
Since Lemma 3.1 also ensures that strong duality holds, we have P (x ⋆ ) = D(u ⋆ ) and u ⋆ = -∇f (Ax ⋆ ). Therefore, the previous inequality can also be rewritten as

(B.4) u -u ⋆ 2 2 ≤ 2(D(u ⋆ ) -D(u)) α .
A second application of Lemma B.2 with the pair (x, u ⋆ ) yields

(B.5) u ⋆ + ∇f (Ax) 2 2 ≤ 2(P (x) -D(u ⋆ )) α .
Summing up (B.4) and (B.5) leads to the desired result (B.1).

B.2. Proof of Lemma B.2. If (x, u) / ∈ dom(P ) × dom(-D), then (B.1) is trivially satisfied since the left-hand side is finite whereas the right-hand side is equal to +∞. In the rest of the proof, we thus assume that (x, u) ∈ dom(P ) × dom(-D).

As discussed in Section 3, hypotheses (H1)-(H2) imply that f * is proper, closed and α-strongly convex. Applying the refined Fenchel-Young inequality (A.3) with h = f * , z = -u and z * = Ax then leads to

(B.6) f * (-u) + f * * (Ax) ≥ -u | Ax + α 2 u + ∇f * * (Ax) 2 2 .
Using [2, Theorem 4.8], we have that f * * = f since f is proper, closed and convex by (H1). Therefore, (B.6) can be equivalently rewritten as:

(B.7) f (Ax) + f * (-u) ≥ -u | Ax + α 2 u + ∇f (Ax) 2 2 .
In order to conclude the proof, we need to add g(x) + g * (A T u) to both sides of this inequality. Prior to this operation, we have nevertheless to ensure that g(x) + g * (A T u) < +∞. To that end, we notice that f (x) > -∞ and f * (-u) > -∞ since f and f * are proper. Hence,

P (x) < +∞ =⇒ g(x) < +∞ (B.8) -D(u) < +∞ =⇒ g * (A T u) < +∞. (B.9)
Since we assume that (x, u) ∈ dom(P ) × dom(-D), the left-hand sides of these implications are satisfied, so that g(x) + g * (A T u) < +∞.

Adding g(x) + g * (A T u) to both sides of (B.7) then leads to (B.10)

P (x) -D(u) ≥ g(x) + g * (A T u) -u | Ax + α 2 u + ∇f (Ax) 2 2 .
Finally, since g is proper, closed and convex from (H1), we can apply the Fenchel-Young inequality (A.2) with h = g, z = x and z * = A T u to obtain (B.2).

Appendix C. Proofs of the connections with existing results. This appendix gathers all proofs related to the comparison of the proposed RYU ball with state-of-the-art safe regions presented in Subsection 4.1 to Subsection 4.5.

C.1. Proof of Lemma 4.2. Let (x, u) ∈ dom(P ) × dom(-D). Using the definition of the primal and dual cost functions, we obtain:

GAP(x, u) = f (Ax) + g(x) + f * (-u) + g * (A T u) = f (Ax) + f * (-u) + Ax | u + g(x) + g * (A T u) -Ax | u = Fen(x, u) + g(x) + g * (A T u) -Ax | u . If (4.
3) holds, we then have from Lemma A.2 that

g(x) + g * (A T u) -Ax | u = 0.
This shows the first equality in (4.6).

The second inequality can be obtained by noticing that (from Lemma A.2)

f (Ax) + f * (∇f (Ax)) = ∇f (Ax) | Ax
since f is convex, proper and differentiable and ∂f (Ax) = {∇f (Ax)}. Hence, 

Fen(x, u) = f (Ax) + f * (-u) + Ax | u = f * (-u) -f * (∇f (Ax)) + Ax | u + ∇f (Ax) = Breg(x, u).
B(c RYU , r RYU ) = u ′ ∈ R m | u ′ -u 2 2 + u ′ + ∇f (Ax) 2 2 ≤ 2GAP(x, u) α , (C.1)
whereas the definitions of the GAP and x-GAP balls lead to: Finally, to prove strict inclusion it is then sufficient to note that r RYU ≤ GAP(x,u) α < r GAP r RYU ≤ GAP(x,u) α < r x-GAP whenever GAP(x, u) = 0.

B(c GAP , r GAP ) = u ′ ∈ R m | u ′ -u 2 2 ≤ 2GAP(x, u) α (C.2) B(c x-GAP , r x-GAP ) = u ′ ∈ R m | u ′ + ∇f (Ax)
C.3. Comparison with dynamic EDDP ball: Proof of Proposition 4.6. We first note that the RYU ball in Theorem 4.1 is well-defined. Indeed, functions f and g in (4.17)-(4.18) are closed, proper and convex, so that (H1) holds. Moreover, (H2) is verified with α = 1. For any feasible (tx, u) with t ≥ 0, we thus have by definition: It is straightforward from the definition of f and g in (4.17)-(4.18) that (H1)-(H2) are satisfied with α = 1. The RYU ball in Theorem 4.1 is therefore well-defined. We next show that the center and radius of the RYU and FNE balls coincide.

c RYU (t) =
First, using the definition of f in (4.17 Second, using the definition of g in (4.18) and (4.23), it can be seen that condition " u | Ax = λ x 1 " in (4.20) together with feasibility of (x, u) is equivalent to "A T u = ∂g(x)" in (4.3) so that Lemma 4.2 applies. In particular, we have:

GAP(x, u) = Fen(x, u) = f (Ax) + f * (-u) + u | Ax . Since f * (u) = 1 2 u 2 2 + u | y ,
the duality gap can thus also be written as

GAP(x, u) = 1 2 y -Ax 2 2 + 1 2 u 2 2 -u | y + u | Ax = 1 2 y -Ax -u 2 2 . (C.17)
Going back to the definition of the radius of the RYU ball (with α = 1), we finally obtain:

r 2 RYU = GAP(x, u) -1 4 u + ∇f (Ax) 2 2 = 1 2 y -Ax -u 2 2 -1 4 y -Ax -u 2 2 = r 2 FNE .
where we have used (C. [START_REF] Koh | An interior-point method for large-scale l1-regularized logistic regression[END_REF]) and (C.17) in the second equality.

3 )Lemma 4 . 2 .

 342 is satisfied the function GAP can be related to two other wellknown quantities, namely the Fenchel divergence of f (see [3, Definition 2]) and the Bregman divergence of f * (-•) (see [2, Definition 9.2]). In particular, the following lemma holds: Assume (H1)-(H2) hold and let 2 Fen(x, u) f (Ax) + f * (-u) + u | Ax (4.4) Breg(x, u) f * (-u)f * (∇f (Ax)) + Ax | u + ∇f (Ax) .(4.5)

  (4.8) with γ = λ0 λ and g(•) = λ • . The next lemma emphasizes that (4.7)-(4.8) correspond in fact to a particular strategy to build primal-dual couples obeying (4.3): Lemma 4.3. If (x, u) is defined as in (4.7)-(4.8), it verifies (4.3).

  )-(4.18) and (4.20) hold: Proposition 4.7 (FNE ball is a special case of the RYU ball). Assume (4.17)-(4.18) holds. Then, for any (x, u) ∈ dom(P ) × dom(-D) satisfying (4.20): (4.21) B(c FNE , r FNE ) = B RYU (x, u).

25 )

 25 Its center and radius are defined ∀u ∈ dom(-D) as c SAFE = y (4.26) r SAFE = yu 2 . (4.27) In Appendix C.5, we show that the SAFE ball is a relaxation of the proposed RYU ball for (x, u) = (0 n , u) with u ∈ dom(-D). More specifically, we prove that the following result holds: Proposition 4.8. Assume (4.24)-(4.25) holds. Then, for any u ∈ dom(-D):(4.28) B(c SAFE , r SAFE ) ⊇ B RYU (0 n , u).4.5. SLORE and SFER balls. We end up this section by considering the SLORES and SFER balls respectively proposed in [24, Theorem 2] and [20, Corollary 1]. The focus of these papers is on problem (P) with the following definitions for f and g:f (z) = m i=1 log(1 + e -zi ), (4.29) g(z) = λ z 1 . (4.30)The construction of these balls is moreover based on the knowledge of a primal-dual couple (x, u) verifying (4.7)-(4.8) for some γ > 0.The expression of the center and radius of the SLORE and SFER balls respectively read as c SLORES = γu (4.31a)

C. 2 .

 2 Comparison with GAP ball: Proof of Proposition 4.4. Using Proposition B.1, we have

3 )

 3 Since the membership conditions in (C.2) and (C.3) are relaxations of the inequality defining the RYU ball in (C.1), inclusions (4.10) and (4.12) necessarily hold.

  ), we have∇f (Ax) = -(y -Ax). (C.16) Hence, c RYU = 1 2 (u -∇f (Ax)) = u + 1 2 (y -Axu) = c FNE .

Table 1

 1 Summary of the main safe-ball constructions proposed in the literature during the last decade.

  On the one hand, since item i) of Proposition 4.6 is true, we directly have from the expression of c RYU (t) in (C.4) that (C.13) holds. On the other hand, (C.14) can be shown by examining the following two cases.If t ⋆ = 0, the equality in (C.14) follows directly from the definition (C.6). Ift ⋆ > 0, we have (r 2 RYU (t ⋆ )) ′ = 0, i.e., RYU (t ⋆ ) = 1 2 t ⋆ Ax | yu -1 2 t ⋆ Ax 2 2 + 1 4 t ⋆ Axy + u 2

	(C.15)	λ x = 1 2 Ax | u + y -t ⋆ 2 Ax 2 2 .
	Plugging this equality into (C.6) then leads to
	r 2	2
		= 1 4 y -u 2 2 -1 4 t ⋆ Ax 2 2
		= r dyn.EDPP .

1 2 (uy + tAx) (C.4) r 2 RYU (t) = GAP(tx, u) -1 4 uy + tAx 2 2 . (C.

5) C.4. Proof of Proposition 4.7.

Fen(x, u) corresponds to the Fenchel divergence of f evaluated at (Ax, -u); Breg(x, u) is the Bregman divergence of f * (-•) evaluated at (u, -∇f (Ax)).

In particular, a weaker version of (H2) is considered and up to a modification of (4.11b).

More precisely, the authors of[START_REF] Yamada | Dynamic Sasvi: Strong safe screening for norm-regularized least squares[END_REF] considered gauge functions instead of norms for the definition of g. Although the results presented in this section results still hold in this more general setup, we stick to norms to simplify the exposition.

Appendix A. Convex analysis. This appendix reminds two standard results from convex analysis. The first result relates the subdifferential of a function to the subdifferential of its convex conjugate: Lemma A.1 (Subdifferential inversion). Let h : R d → R be a proper, closed and convex function. Then, for all z, z * ∈ R d :

A proof of this lemma can be found in [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 4.20].

The second result recalls two Fenchel-Young inequalities:

Lemma A.2 (Fenchel-Young inequalities). Let h : R d → R be a proper and convex function. Then, for all z, z * ∈ R d :

with equality if and only if z * ∈ ∂h(z).

If h is moreover closed and α-strongly convex, then for all z, z * ∈ R d :

We note that (A.2) corresponds to the standard formulation of the well-known Fenchel-Young inequality. A proof of this result follows from [2, Theorem 4.6] and [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 4.20]. (A.3) is a refined version of the Fenchel-Young inequality which applies to closed and strongly convex functions. Since the latter is less common in the literature, a proof is provided hereafter.

Proof of (A.3). Assume that h is α-strongly convex and let z, z * ∈ R d . First note that since h is proper, closed and α-strongly convex, we have from [2, Item (b) of Theorem 5.26] that h * is α -1 -Lipschitz smooth over R m . In particular, dom(h

Second, if z / ∈ dom(h), then the left-hand side of (A.3) is infinite and the inequality trivially holds true since the right-hand side is finite. We conclude the proof by showing that (A.3) is also valid for z ∈ dom(h). Using the fact that h is proper, closed and convex, we obtain from Lemma A.1 with z = ∇h * (z * ) that

Invoking the first-order characterization of α-strong convexity of h at ∇h * (z * ) ∈ dom(h) (see [START_REF] Beck | First-Order Methods in Optimization[END_REF]Theorem 5.24]) then leads to

Finally, considering the standard Fenchel-Young inequality (A.2) with z = ∇h * (z * ) and using (A.4), we have that the following equality holds:

We obtain the desired result (A.3) by re-injecting (A.8) into (A.7). 

In the rest of this section, we thus concentrate on the proof of Proposition B.1. Our arguments leverage the following lemma whose proof is postponed to Appendix B.2:

Lemma B.2. If hypotheses (H1)-(H2) hold true, then the following inequality is satisfied for any

Using the definitions of f and g in (4.13)-(4.14), we note that the duality gap can be expressed as 

We distinguish between three cases. First, if Ax = 0 n , then (r 2 RYU (t)) ′ = λ x ≥ 0 so that (C.10) 0 ∈ arg min t≥0 r 2 RYU (t).

In this case, the definition of t ⋆ in (4.16) also leads to t ⋆ = 0 (by using the conventions 0/0 = 0 and 1/0 = +∞). Second, if Ax = 0 n and

we easily have that

. Finally, if Ax = 0 n and t < 0, we then have that (r 2 RYU (0)

t and t < 0. In this case, 0 is a minimizer since it verifies (C.8) and this corresponds again to the definition of t ⋆ in (4.16). It is easy to see that definition of f and g in (4.17)-(4.18) verifies (H1)-(H2) with α = 1, so that the RYU ball in Theorem 4.1 is well-defined.

Showing item ii) of Proposition

On the one hand, using the definition of f in (4.17) with x = 0 n , we have

On the other hand, noticing that the couple (0 n , u) verifies (4.3) and using the same reasoning as in the proof of Proposition 4.7, we obtain from (C.17):

Finally, using Proposition B.1, we have

whereas the SAFE ball is defined as 

. This shows the equality in (4.33).

The inclusion in (4.33) can be shown as follows. On the one hand, particularizing the result in Proposition B.1 with (C.22)-(C.23), we have:

On the other hand, the SLORES ball defined in (4.31a)-(4.31b) can be written as

Since the membership inequality in (C.25) is a relaxation of the one in (C.24), the inclusion between the SLORES and RYU balls stated in (4.33) holds.