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ONE TO BEAT THEM ALL: “RYU” – A UNIFYING FRAMEWORK

FOR THE CONSTRUCTION OF SAFE BALLS

THU-LE TRAN∗, CLÉMENT ELVIRA† , HONG-PHUONG DANG‡ , AND CÉDRIC HERZET§

Abstract. In this paper, we put forth a novel framework (named “RYU”) for the construction of
“safe” balls, i.e., regions that provably contain the dual solution of a target optimization problem. We
concentrate on the standard setup where the cost function is the sum of two terms: a closed, proper,
convex Lipschitz-smooth function and a closed, proper, convex function. The RYU framework is
shown to generalize or improve upon all the results proposed in the last decade for the considered
family of optimization problems.
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1. Introduction.

1.1. Context and state of the art. In this paper, we consider the following
family of optimization problems:

(P) find x⋆ ∈ argmin
x∈Rn

P (x) , f(Ax) + g(x)

where A ∈ Rm×n is some known matrix, f : Rm → R , g : Rn → R ∪ {+∞} are
proper, closed, convex functions and f is moreover “α−1-Lipschitz smooth over Rm”,
that is f is differentiable everywhere on Rm and its gradient obeys the following
regularity condition for some positive scalar α > 0:

∀z, z′ ∈ Rm : ‖∇f(z)−∇f(z′)‖2 ≤ α−1‖z− z′‖2.(1.1)

Under such hypotheses, problem (P) is well-posed in the sense that at least one min-
imizer x⋆ exists (see Section 3). Instances of problems satisfying these hypotheses
are common in the literature of machine learning, statistics or signal processing, and
include (among many others) least-squares sparse regression [4], logistic sparse regres-
sion [16] or the “Elastic Net” problem [26].

The focus of this paper is on the construction of “safe regions”, i.e., subsets of Rm

provably containing the unique solution of the dual problem of (P). More specifically,
our goal is to identify some subset S ⊆ Rm such that

u⋆ ∈ S(1.2)

where

(D) u⋆ = argmax
u∈Rm

D(u) , −f∗(−u)− g∗(ATu)

and f∗, g∗ denote the convex conjugates of f , g.
The construction of safe regions has become an active field of research during the

last decade (see e.g., [5, 11, 14, 15, 18, 20–25]) and has been triggered by the so-called
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“safe feature elimination” technique (also referred to as “safe screening”), a procedure
to accelerate the resolution of (P), first proposed in [7] and further extended in many
contributions, see e.g., [8, 9, 12, 19]. One central element in the effectiveness of these
acceleration methods is the identification (preferably at low computational cost) of
small safe regions with some specific geometry (e.g., ball, ellipsoid, dome, etc). In
this paper, we focus on safe regions having a “ball” geometry, that is

(1.3) S = B(c, r) , {u ∈ Rm | ‖u− c‖2 ≤ r}

for some c ∈ Rm and r > 0. In this respect, the state-of-the-art safe ball for the
general family of optimization problems considered in this paper is indubitably the
so-called “GAP ball” proposed in [11,18]. It is defined for any couple (x,u) ∈ dom(P )×
dom(−D) as

BGAP(x,u) , B(cGAP, rGAP)(1.4)

where

cGAP ,u(1.5a)

rGAP ,

√

2GAP(x,u)

α
(1.5b)

and GAP(x,u) , P (x)−D(u) is the so-called duality gap. The popularity of the GAP
ball is due to the two following assets:

1. The construction of the ball is valid for any problem satisfying our minimal
hypotheses, that is f , g are proper, closed, convex and f is α−1-Lipschitz
smooth over Rm.

2. A GAP ball can be constructed from any primal-dual feasible couple (x,u).
In particular, under strong duality assumption and continuity of the duality
gap over its domain, the radius of the ball can be made arbitrarily small by
choosing (x,u) sufficiently close to some optimal couple (x⋆,u⋆).

These features have led the GAP ball to be widely applied and to allow for substantial
acceleration performance in many setups, see e.g., [6, 8, 10, 12, 13].

Other constructions of safe balls, requiring either additional hypotheses on f and
g or the knowledge of some specific primal-dual couple (x,u), have also been proposed
in the literature. All the safe ball constructions (to the best of our knowledge) falling
into the optimization framework considered in this paper are gathered in Table 1 and
will be reviewed in greater details in Section 4. We note that, although requiring
additional assumptions, some of these works put to the forth that the construction
of safe balls smaller than the GAP ball is possible. For example in [15] the authors
proposed a safe ball (referred to as “FNE ball”) for the LASSO problem and proved
that it is a subset of the GAP ball. More recently, the authors of [25] introduced the
so-called “dynamic EDPP ball” and emphasized that the latter has a smaller radius
then the GAP ball constructed with the same primal-dual pair [25, Theorem 10].

In this paper, we provide a new mathematical framework gathering and extending
these results to the general family of optimization problems (P).

1.2. Contributions. The contribution of this paper is two-fold. We first in-
troduce a new safe-ball referred to as “RYU ball” and defined ∀(x,u) ∈ dom(P ) ×
dom(−D) as

(1.6) BRYU(x,u) , B(cRYU, rRYU)
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Safe region Relation Cstr. on (x,u) Hyp. on f and g

GAP [11,18,19] ⊇ BRYU(x,u) feasible (H1)-(H2)

x-GAP [14] ⊇ BRYU(x,u) feasible (H1)-(H2), g = λ‖ · ‖1

Dyn. EDPP [25] = BRYU(t
⋆x,u) feasible f = 1

2
‖y − ·‖22, g = gauge

FNE [15] = BRYU(x,u) ATu ∈ ∂g(x) f = 1

2
‖y − ·‖22, g = λ‖ · ‖1

SASVI [17] = BRYU(0n,u) u ∈ dom(−D) f = 1

2
‖y − ·‖22, g = λ‖ · ‖1

EDPP [23] = BRYU(x,u) (4.7)-(4.8) f = 1

2
‖y − ·‖22, g = λ‖ · ‖1

DPP [23] ⊇ BRYU(x,u) (4.7)-(4.8) f = 1

2
‖y − ·‖22, g = λ‖ · ‖1

SAFE [7] ⊇ BRYU(0n,u) u ∈ dom(−D) f = 1

2
‖y − ·‖22, g = λ‖ · ‖1

SLORES [24] ⊇ BRYU(x,u) (4.7)-(4.8) f = logistic, g = λ‖ · ‖1

SFER [20] = BRYU(x,u) (4.7)-(4.8) f = logistic, g = λ‖ · ‖1
Table 1

Summary of the main safe-ball constructions proposed in the literature during the last decade.

The first column provides the name and the references associated to the safe ball, the second describes

its connection with the proposed RYU ball, the third indicates the constraints on the primal-dual

couple (x,u) used in the construction. The last column specifies the setup considered by the authors

in their work.

where

cRYU ,
1

2
(u−∇f(Ax))(1.7a)

rRYU ,

√

GAP(x,u)

α
−

‖u+∇f(Ax)‖22
4

,(1.7b)

see Theorem 4.1. The name “RYU” stems from “Refined Fenchel-Young inequality”
and refers to the fact that the safeness of the ball is a consequence of the (double)
application of a refined version of the well-known Fenchel-Young inequality (see Ap-
pendix B). Our ball construction is valid under the same generic assumptions as the
GAP ball (see Section 3 for a detailed discussion about our working hypotheses).
In particular: 1. it can be applied to any problem (P) involving a proper, closed,
convex function f which is α−1-Lipschitz smooth over Rm, and a proper, closed, con-
vex function g; 2. primal-dual feasibility is the only assumption required for the pair
(x,u).

Second, we show that our safe ball construction generalizes or improves over all the
existing results of the literature. More specifically, we prove that all the existing safe
balls correspond to particular cases or supersets of the proposed ball. These results
are summarized in the second column of Table 1 and correspond to Propositions 4.4
to 4.9 of the paper. Interestingly, we note that the GAP ball is always included in
the RYU ball, that is:

(1.8) BRYU(x,u) ⊆ BGAP(x,u),

where the inclusion is shown to be strict as long as (x,u) is not a primal-dual optimal
couple, see Proposition 4.4. In fact, a rapid inspection of (1.5b) and (1.7b) shows
that the squared radius of the RYU ball is never greater than half the squared radius
of the GAP ball.

Since our construction is valid for any feasible1 couple (x,u) and holds under
minimal assumptions on f , g, the results in Table 1 therefore emphasize that the

1Strictly speaking, the proposed construction in fact applies to any couple (x,u) ∈ Rn×Rm but
(similarly to the GAP ball) leads to a ball with infinite radius when (x,u) /∈ dom(P ) × dom(−D).
This is the reason why we restrict our construction to dom(P )× dom(−D) in the paper.
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proposed framework unifies and generalizes all the methodologies previously proposed
in the literature.

1.3. Paper organization. The rest of the paper is organized as follows. In
Section 2, we detail the notational conventions used in the paper. In Section 3, we
describe the working hypotheses considered in our derivations and discuss some of
their implications. Section 4 is dedicated to the presentation of our new safe ball and
its connection with the previous results of the literature. Most of the technical details
are deferred to Appendices A to C.

2. Notations. Unless mentioned explicitly, we will use the following notational
conventions throughout the paper. Vectors are denoted by lowercase bold letters
(e.g., x, z) and matrices by uppercase bold letters (e.g., A). We use the symbol “T”
to denote the transpose of a vector or a matrix. The “all-zero” vector of dimension
n is written 0n. 〈z | z′〉 denotes the standard inner product between z and z′. We
use the notation xj to refer to the jth entry of a vector x. For matrices, we use aj to
denote the jth column of A. We let R = R ∪ {−∞,+∞} where R refers to the set
of real numbers. Given an extended real-valued function h : Rd → R , we let

(2.1) dom(h) ,
{

z ∈ Rd | h(z) < +∞
}

.

The subdifferential set of h : Rd → R is defined as

(2.2) ∂h(z) ,
{

g ∈ Rd | ∀z′ ∈ Rd : h(z′) ≥ h(z) + 〈g | z′ − z〉
}

and we refer to its elements as “subgradients”, see [2, Definition 3.2]. Finally,

(2.3)
h∗ : Rd → R

z∗ 7→ supz∈Rd 〈z∗, z〉 − h(z) ,

is the convex conjugate of h, see [2, Definition 4.1].

3. Optimization framework. In this paper, we consider problem (P) with the
following minimal assumptions:

f and g are proper, closed and convex functions.(H1)

f is α−1-Lipschitz smooth over Rm.(H2)

We note that (H1) and (H2) correspond to the general hypotheses needed for the
construction of the GAP ball, see [19]. In the rest of this section we elaborate on
some properties of problems (P)-(D) induced by these hypotheses.

First, since f (resp. g) is proper, closed and convex from (H1), its convex con-
jugate f∗ (resp. g∗) is proper, closed and convex, see [2, Theorems 4.13 and 4.5].
Moreover, the convexity and α−1-Lipschitz smoothness on Rm of f in (H2) implies
that f∗ is α-strongly convex, see [2, Theorem 5.26], that is:

(3.1) ∀z, z′ ∈ dom(f∗) and g ∈ ∂f∗(z) : f∗(z′) ≥ f∗(z) + 〈g | z′ − z〉+ α
2 ‖z

′ − z‖22.

Under the properness assumption in (H1), the duality gap, defined as

(3.2)
GAP : Rn ×Rm → R

(x,u) 7→ P (x)−D(u)
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is always a nonnegative quantity, see [1, Item (i) of Proposition 15.21]. Moreover,
GAP(x,u) < +∞ if and only if (x,u) ∈ dom(P ) × dom(−D). Hypotheses (H1)-(H2)
also imply that strong duality holds for some primal-dual couple as emphasized by
the following lemma:

Lemma 3.1. If (H1)-(H2) hold, then there exists (x⋆,u⋆) ∈ Rn ×Rm such that

(3.3) GAP(x⋆,u⋆) = 0.

Proof. If (H1) is verified, we have from [2, Theorem 4.15] that strong duality
holds and a primal-dual optimal couple exists provided that

(3.4) relint(dom(f̃)) ∩ relint(dom(g)) 6= ∅,

where f̃(·) , f(A·) and relint(·) denotes the relative interior of a set. Now, under
our α−1-Lipschitz smoothness assumption (H2), we have that dom(f̃) = Rm so that
condition (3.4) reduces to relint(dom(g)) 6= ∅. Since g is a proper convex function, its
domain dom(g) is non-empty (by definition) and convex [2, Section 2.3.1]. Therefore,
the relative interior of dom(g) is non-empty, see [2, Theorem 3.17].

We note that any couple verifying (3.3) must obviously be a primal-dual solution
of (P)-(D), so that at least one minimizer of (P) and one maximizer of (D) exist.
Moreover, the α-strong convexity of f∗ implies that the maximizer of (D) is unique,
see [2, Theorem 5.25]. Finally, since strong duality holds, the following conditions
must be satisfied by any primal-dual optimal couple (x⋆,u⋆), see [1, Theorem 19.1]:

u⋆ = −∇f(Ax⋆)(3.5)

ATu⋆ ∈ ∂g(x⋆).(3.6)

4. The RYU framework and its connection to the state of the art. The
main theoretical result of this paper is the following new safe ball:

Theorem 4.1 (RYU ball). Assume (H1)-(H2) hold true. Then, we have for any
(x,u) ∈ dom(P )× dom(−D):

(4.1) u⋆ ∈ BRYU(x,u) , B(cRYU, rRYU)

where

cRYU ,
1

2
(u−∇f(Ax))(4.2a)

rRYU ,

√

GAP(x,u)

α
−

‖u+∇f(Ax)‖22
4

.(4.2b)

The name “RYU” stands for “Refined Fenchel-Young inequality”, a central element
appearing in the proof of the safeness of the proposed region, see Appendix B.1.

A close inspection of the hypotheses of Theorem 4.1 reveals that the construction
of the RYU ball is applicable under exactly the same assumptions as the GAP ball,
that is: i) it holds for any problem satisfying minimal hypotheses (H1)-(H2) on f and
g; ii) it is valid for any primal-dual feasible couple (x,u). Despite of its generality,
a careful examination of the definition of the radius of the GAP and RYU balls
in (1.5b) and (1.7b) indicates that —given a feasible primal-dual pair (x,u)— the
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squared radius of the RYU ball is always at least twice as small as the squared radius
of the GAP ball. In fact, as emphasized in Subsection 4.1 below, the GAP ball is
a strict subset of the proposed RYU ball for any feasible primal-dual (x,u) different
from (x⋆,u⋆).

In the rest of this section, we explain how the safe balls previously-proposed in the
literature relate to the RYU ball. More specifically, we emphasize that the previous
results of the state of the art can be seen as either particular cases or supersets of the
proposed ball. Our results are contained in Propositions 4.4 to 4.9 and summarized in
the second column of Table 1. In particular, the safe balls of the literature presented
hereafter rely on different assumptions on: i) the functions f and g defining (P); ii)
the primal-dual couple (x,u) used in the construction. In the sequel, the working
hypotheses made for the construction of each safe ball are recalled before stating its
connection with the proposed RYU ball. These hypotheses are summarized in the
third and fourth columns of Table 1 for each region.

Before proceedings to the connection between the RYU ball and the existing
results of the literature, we make two important remarks regarding the choice the
couple (x,u) involved in the construction of the safe ball.

First, an approach which have been considered (often implicitly) in many contri-
butions of the literature consists in choosing a feasible pair (x,u) such that

(4.3) ATu ∈ ∂g(x).

Interestingly, when (4.3) is satisfied the function GAP can be related to two other well-
known quantities, namely the Fenchel divergence of f (see [3, Definition 2]) and the
Bregman divergence of f∗(−·) (see [2, Definition 9.2]). In particular, the following
lemma holds:

Lemma 4.2. Assume (H1)-(H2) hold and let2

Fen(x,u) , f(Ax) + f∗(−u) + 〈u | Ax〉(4.4)

Breg(x,u) , f∗(−u)− f∗(∇f(Ax)) + 〈Ax | u+∇f(Ax)〉.(4.5)

If (4.3) is verified, then ∀(x,u) ∈ dom(P )× dom(−D):

(4.6) GAP(x,u) = Fen(x,u) = Breg(x,u).

We refer the reader to Appendix C.1 for a proof of this result. The connection between
the duality gap and the Fenchel/Bregman divergences is of interest in two respects.
On the one hand, these divergences are sometimes more straightforward to express
than the duality gap and thus give an alternative formulation to the proposed RYU
ball under the particular assumption (4.3). On the other hand, some contributions of
the literature (see Subsection 4.5) have directly expressed their safe ball as a function
of Breg(x,u). The connection established in Lemma 4.2 will thus allow us to make a
direct link between these works and the RYU framework proposed in this paper.

Second, we mention that the following definition of primal-dual couple (x,u) has
been considered in many contributions of the literature (see e.g., [17, 20, 23, 24]):

(x,u) ,
(

x⋆
γ ,−γ−1∇f(Ax⋆

γ)
)

(4.7)

2Fen(x,u) corresponds to the Fenchel divergence of f evaluated at (Ax,−u); Breg(x,u) is the
Bregman divergence of f∗(−·) evaluated at (u,−∇f(Ax)).
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where γ > 0 and

x⋆
γ ∈ argmin

x∈Rn

f(Ax) + γg(x).(4.8)

This type of construction appears for example in “sequential” settings where one wants
to solve (P) for g(·) = λ‖ · ‖ and the solution of a similar problem with g(·) = λ0‖ · ‖
has already been computed previously. The solution of the latter problem can then
be expressed as in (4.8) with γ = λ0

λ
and g(·) = λ‖ · ‖.

The next lemma emphasizes that (4.7)-(4.8) correspond in fact to a particular
strategy to build primal-dual couples obeying (4.3):

Lemma 4.3. If (x,u) is defined as in (4.7)-(4.8), it verifies (4.3).

Proof. Using the optimality condition (3.5) and the definition of u in (4.7), we
see that γu corresponds to the optimal solution of the dual problem of (4.8). Using
optimality condition (3.6), we then have that

γATu ∈ ∂γg(x⋆
γ) = γ∂g(x)(4.9)

where we used the homogeneity of subdifferentials (see [2, Theorem 3.35]) and the
definition of x in (4.7). We finally obtain the result by simplifying both sides by γ.

Since many safe balls proposed in the literature rely on the particular construc-
tion (4.7)-(4.8), the result in Lemma 4.3 emphasizes that these constructions in fact
consider a primal-dual feasible pair (x,u) verifying (4.3) and that (from Lemma 4.2)
the connection (4.6) between the duality gap and the Fenchel/Bregman divergences
is thus in force.

4.1. GAP balls. The GAP ball first proposed in [11] and later generalized in
[18, 19] is defined in (1.5a)-(1.5b). Its construction is valid under assumptions (H1)-
(H2) and can take any primal-dual (x,u) as input. The next result shows that the
RYU ball is always a subset of the GAP ball:

Proposition 4.4 (The GAP ball contains the RYU ball). Assume (H1)-(H2)
hold. Then, for any primal-dual pair (x,u) ∈ dom(P )× dom(−D):

(4.10) BRYU(x,u) ⊆ B(cGAP, rGAP).

Moreover, the inclusion is strict as soon as the primal-dual pair (x,u) is not optimal.

In [14, Section IV.B] a variant of the GAP ball for the specific case where g = λ‖ · ‖1
was proposed. Although the construction of the ball presented in [14] holds in a
slightly more general setup,3 we focus hereafter on the case where f is proper, closed,
convex and satisfies (H2). The center and radius of this ball (referred to as x-GAP
since its center depends on x instead of u as in the standard GAP ball) reads as
follows:

cx-GAP , −∇f(Ax)(4.11a)

rx-GAP ,

√

2GAP(x,u)

α
(4.11b)

where (x,u) can be any primal-dual feasible couple. Similarly to Proposition 4.4, the
next result shows that the x-GAP ball is also a superset of the proposed RYU region:

3In particular, a weaker version of (H2) is considered and up to a modification of (4.11b).
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Proposition 4.5 (The x-GAP ball contains the RYU ball). Assume (H1)-(H2)
hold. Then, for any primal-dual pair (x,u) ∈ dom(P )× dom(−D):

(4.12) BRYU(x,u) ⊆ B(cx-GAP, rx-GAP).

Moreover, the inclusion is strict as soon as the primal-dual pair (x,u) is not optimal.

The proof of Propositions 4.4 and 4.5 is given in Appendix C.2.

4.2. Dynamic EDDP ball. In [25], the authors focused on the particular family
of problems where

f = 1
2‖y − ·‖22(4.13)

g = λ‖ · ‖(4.14)

for some vector y ∈ Rm, scalar λ > 0 and norm ‖ · ‖.4 They introduced a new safe
ball (see [25, Theorem 9]), dubbed “dynamic EDPP ball” and valid for any primal-
dual feasible couple (x,u). The center and radius of the dynamic EDPP ball reads as
follows:

cdyn.EDPP =
1

2
(y + u− t⋆Ax)(4.15a)

rdyn.EDPP =
1

2

√

‖y − u‖22 − ‖t⋆Ax‖22(4.15b)

where t⋆ is defined as (with the conventions 0/0 = 0 and 1/0 = +∞):

(4.16) t⋆ = max

(

0,
〈Ax | y + u〉 − 2λ‖x‖

‖Ax‖22

)

.

The connection between the RYU and dynamic EDPP balls is established in the
following proposition:

Proposition 4.6 (Dynamic EDPP ball is a special case of the RYU ball). As-
sume (4.13)-(4.14) holds. Then, for any (x,u) ∈ dom(P )× dom(−D):

i) The quantity t⋆ defined in (4.16) verifies

t⋆ ∈ argmin
t≥0

√

GAP(tx,u)−
1

4
‖u+∇f(tAx)‖22.

ii) We have

B(cdyn.EDPP, rdyn.EDPP) = BRYU(t
⋆x,u).

A proof of this result is available in Appendix C.3. In particular, the dynamic EDPP
ball was shown to exhibit a smaller radius as compared to the GAP ball constructed

4More precisely, the authors of [25] considered gauge functions instead of norms for the definition
of g. Although the results presented in this section results still hold in this more general setup, we
stick to norms to simplify the exposition.
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with the (feasible) primal-dual pair (x,u), see [25, Theorem 10]. Item ii) of Proposi-
tion 4.6 (combined with Proposition 4.4) elucidates this connection by showing that
the dynamic EDPP ball is in fact a subset of the GAP ball BGAP(t

⋆x,u). Finally,
item i) of Proposition 4.6 provides a novel interpretation of the definition of t⋆, that
is t⋆ corresponds to a nonnegative rescaling of the primal vector x minimizing the
radius of the RYU ball.

4.3. FNE, EDDP, DPP and SASVI balls. FNE [15], (E)DDP [23] and
SASVI [17] balls are safe regions designed for the same problem where

f = 1
2‖y − ·‖22(4.17)

g = λ‖ · ‖1.(4.18)

They all assume (explicitly or implicitly) that the primal-dual couple (x,u) used in
the construction verifies (4.3). We start with the description of the FNE ball which
corresponds to the most general construction. We address the EDDP, DPP and SASVI
balls at the end of the section as particular cases or relaxation of the FNE region.

The FNE ball is defined by the following center and radius:

cFNE =u+
1

2
(y −Ax− u)(4.19a)

rFNE =
1

2
‖y−Ax − u‖2.(4.19b)

In [15, Theorem 1], the authors showed that the FNE ball is safe for any primal-dual
feasible pair (x,u) satisfying

(4.20) 〈u | Ax〉 = λ‖x‖1.

The following result shows that the FNE ball in fact corresponds to a particular case
of the RYU ball when (4.17)-(4.18) and (4.20) hold:

Proposition 4.7 (FNE ball is a special case of the RYU ball). Assume (4.17)-
(4.18) holds. Then, for any (x,u) ∈ dom(P )× dom(−D) satisfying (4.20):

(4.21) B(cFNE, rFNE) = BRYU(x,u).

A proof of this result is available in Appendix C.4. We note that the authors also
showed in [15, Lemma 1] that the FNE ball is a strict subset of the GAP ball as long
as (x,u) 6= (x⋆,u⋆). Interestingly, in view of Proposition 4.7, this result turns out
to be a particular case of Proposition 4.4 in the more general framework of the RYU
ball.

The EDPP and SASVI balls represent specific instances of the FNE ball, resulting
from particular choices of the pair (x,u). On the one hand, the SASVI ball (see
[17, Section 2.2]) corresponds to the case where (x,u) = (0n,u) for some dual feasible
point u, i.e.,

cSASVI =
1

2
(y + u)(4.22a)

rSASVI =
1

2
‖y− u‖2.(4.22b)
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It is easy to see this couple trivially verifies (4.20). Using Proposition 4.7 with (x,u) =
(0n,u), u ∈ dom(−D), then directly leads to

B(cSASVI, rSASVI) = BRYU(0n,u).

On the other hand, the center and radius of the EDDP ball (see [23, Theorem 13])
obeys the same definition (4.19a)-(4.19b) as those of the FNE ball but for (x,u)
defined as in (4.7)-(4.8) for some γ > 0. Taking into account that

∂‖x‖1 = {z ∈ Rn | 〈z | x〉 = ‖x‖1, ‖z‖∞ ≤ 1},(4.23)

it is easy to see that (4.20) together with feasibility of (x,u) is in fact an equivalent
rewriting of (4.3) for g = λ‖ · ‖1. Hence, in view of Lemma 4.3, the couple (x,u)
considered in the EDDP construction verifies (4.20) and this ball is nothing but a
particular instance of FNE ball. Proposition 4.7 thus applies for the EDDP ball as
well.

Finally, it was shown in [23, Theorem 13] that the DPP ball is always a superset
of the EDPP ball. This directly leads to the inclusion reported in Table 1.

4.4. SAFE ball. The SAFE ball is the first safe region proposed in the seminal
paper [7]. It applies in the case where

f = 1
2‖y − ·‖22(4.24)

g = λ‖ · ‖1.(4.25)

Its center and radius are defined ∀u ∈ dom(−D) as

cSAFE = y(4.26)

rSAFE = ‖y − u‖2.(4.27)

In Appendix C.5, we show that the SAFE ball is a relaxation of the proposed RYU
ball for (x,u) = (0n,u) with u ∈ dom(−D). More specifically, we prove that the
following result holds:

Proposition 4.8. Assume (4.24)-(4.25) holds. Then, for any u ∈ dom(−D):

(4.28) B(cSAFE, rSAFE) ⊇ BRYU(0n,u).

4.5. SLORE and SFER balls. We end up this section by considering the
SLORES and SFER balls respectively proposed in [24, Theorem 2] and [20, Corol-
lary 1]. The focus of these papers is on problem (P) with the following definitions for
f and g:

f(z) =

m
∑

i=1

log(1 + e−zi),(4.29)

g(z) = λ‖z‖1.(4.30)

The construction of these balls is moreover based on the knowledge of a primal-dual
couple (x,u) verifying (4.7)-(4.8) for some γ > 0.
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The expression of the center and radius of the SLORE and SFER balls respectively
read as

cSLORES = γu(4.31a)

rSLORES =

√

1

2
Breg(x,u).(4.31b)

and

cSFER =
1

2
(1 + γ)u(4.32a)

rSFER =

√

1

4
Breg(x,u) −

1

4
‖(1− γ)u‖22.(4.32b)

In Appendix C.6, we show that SFER is in fact a particular instance of the RYU ball
whereas the SLORE ball corresponds to a superset of the latter. More specifically, we
prove that the following result holds:

Proposition 4.9. Assume (4.29)-(4.30) hold and (x,u) is defined as (4.7)-(4.8)
for some γ > 0. Then, we have

(4.33) B(cSFER, rSFER) = BRYU(x,u) ⊆ B(cSLORES, rSLORES).

5. Conclusion. In this paper we introduced a new framework to devise safe
balls. Our construction applies to any instance of a general family of optimization
problems where the cost function is the sum of a closed, proper, convex, Lipschitz-
smooth function and a closed, proper, convex function, and leverages solely the knowl-
edge of a primal-dual feasible pair. Our new safe ball is shown to encompass as par-
ticular cases or outperform all the previous constructions proposed in the literature
during the last decade, thus acting as a unifying framework for the construction of
safe balls for the general family of problems considered in the paper.

Appendix A. Convex analysis. This appendix reminds two standard results
from convex analysis. The first result relates the subdifferential of a function to the
subdifferential of its convex conjugate:

Lemma A.1 (Subdifferential inversion). Let h : Rd → R be a proper, closed and

convex function. Then, for all z, z∗ ∈ Rd:

(A.1) z∗ ∈ ∂h(z) ⇐⇒ z ∈ ∂h∗(z∗).

A proof of this lemma can be found in [2, Theorem 4.20].
The second result recalls two Fenchel-Young inequalities:

Lemma A.2 (Fenchel-Young inequalities). Let h : Rd → R be a proper and con-

vex function. Then, for all z, z∗ ∈ Rd:

(A.2) h(z) + h∗(z∗) ≥ 〈z∗ | z〉

with equality if and only if z∗ ∈ ∂h(z).
If h is moreover closed and α-strongly convex, then for all z, z∗ ∈ Rd:

(A.3) h(z) + h∗(z∗) ≥ 〈z∗ | z〉+
α

2
‖z−∇h∗(z∗)‖22.
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We note that (A.2) corresponds to the standard formulation of the well-known
Fenchel-Young inequality. A proof of this result follows from [2, Theorem 4.6] and
[2, Theorem 4.20]. (A.3) is a refined version of the Fenchel-Young inequality which
applies to closed and strongly convex functions. Since the latter is less common in
the literature, a proof is provided hereafter.

Proof of (A.3). Assume that h is α-strongly convex and let z, z∗ ∈ Rd. First
note that since h is proper, closed and α-strongly convex, we have from [2, Item (b) of
Theorem 5.26] that h∗ is α−1-Lipschitz smooth over Rm. In particular, dom(h∗) = Rd

and h∗ is differentiable at any z∗ ∈ Rd, that is

(A.4) ∂h∗(z∗) = {∇h∗(z∗)}.

Second, if z /∈ dom(h), then the left-hand side of (A.3) is infinite and the inequality
trivially holds true since the right-hand side is finite. We conclude the proof by
showing that (A.3) is also valid for z ∈ dom(h). Using the fact that h is proper,
closed and convex, we obtain from Lemma A.1 with z = ∇h∗(z∗) that

(A.5) ∇h∗(z∗) ∈ dom(h)

and

(A.6) z∗ ∈ ∂h(∇h∗(z∗)).

Invoking the first-order characterization of α-strong convexity of h at ∇h∗(z∗) ∈
dom(h) (see [2, Theorem 5.24]) then leads to

(A.7) h(z) ≥ h(∇h∗(z∗)) + 〈z∗ | z−∇h∗(z∗)〉+ α
2 ‖z−∇h∗(z∗)‖2.

Finally, considering the standard Fenchel-Young inequality (A.2) with z = ∇h∗(z∗)
and using (A.4), we have that the following equality holds:

(A.8) h(∇h∗(z∗)) + h∗(z∗) = 〈z∗ | ∇h∗(z∗)〉.

We obtain the desired result (A.3) by re-injecting (A.8) into (A.7).

Appendix B. Proofs related to construction of the RYU framework.

B.1. Proof of Theorem 4.1. We first notice that our result in Theorem 4.1 is
an equivalent rewriting of the following proposition:

Proposition B.1. If hypotheses (H1)-(H2) hold true then the following inequality
is satisfied for any (x,u) ∈ Rn ×Rm:

(B.1) ‖u⋆ − u‖22 + ‖u⋆ +∇f(Ax)‖22 ≤
2GAP(x,u)

α
.

In the rest of this section, we thus concentrate on the proof of Proposition B.1. Our
arguments leverage the following lemma whose proof is postponed to Appendix B.2:

Lemma B.2. If hypotheses (H1)-(H2) hold true, then the following inequality is
satisfied for any (x,u) ∈ Rn ×Rm:

(B.2) ‖u+∇f(Ax)‖22 ≤
2GAP(x,u)

α
.
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Proposition B.1 can be proved by applying Lemma B.2 for two different choices of
couple (x,u). We remind the reader that, from Lemma 3.1, at least one primal-dual
couple (x⋆,u⋆) exists. A first application of Lemma B.2 with (x⋆,u) then leads to

(B.3) ‖u+∇f(Ax⋆)‖22 ≤
2(P (x⋆)−D(u))

α
.

Since Lemma 3.1 also ensures that strong duality holds, we have P (x⋆) = D(u⋆) and
u⋆ = −∇f(Ax⋆). Therefore, the previous inequality can also be rewritten as

(B.4) ‖u− u⋆‖22 ≤
2(D(u⋆)−D(u))

α
.

A second application of Lemma B.2 with the pair (x,u⋆) yields

(B.5) ‖u⋆ +∇f(Ax)‖22 ≤
2(P (x)−D(u⋆))

α
.

Summing up (B.4) and (B.5) leads to the desired result (B.1).

B.2. Proof of Lemma B.2. If (x,u) /∈ dom(P ) × dom(−D), then (B.1) is
trivially satisfied since the left-hand side is finite whereas the right-hand side is equal
to +∞. In the rest of the proof, we thus assume that (x,u) ∈ dom(P )× dom(−D).

As discussed in Section 3, hypotheses (H1)-(H2) imply that f∗ is proper, closed
and α-strongly convex. Applying the refined Fenchel-Young inequality (A.3) with
h = f∗, z = −u and z∗ = Ax then leads to

(B.6) f∗(−u) + f∗∗(Ax) ≥ 〈−u | Ax〉+
α

2
‖u+∇f∗∗(Ax)‖22.

Using [2, Theorem 4.8], we have that f∗∗ = f since f is proper, closed and convex by
(H1). Therefore, (B.6) can be equivalently rewritten as:

(B.7) f(Ax) + f∗(−u) ≥ 〈−u | Ax〉+
α

2
‖u+∇f(Ax)‖22.

In order to conclude the proof, we need to add g(x) + g∗(ATu) to both sides of
this inequality. Prior to this operation, we have nevertheless to ensure that g(x) +
g∗(ATu) < +∞. To that end, we notice that f(x) > −∞ and f∗(−u) > −∞ since f
and f∗ are proper. Hence,

P (x) < +∞ =⇒ g(x) < +∞(B.8)

−D(u) < +∞ =⇒ g∗(ATu) < +∞.(B.9)

Since we assume that (x,u) ∈ dom(P ) × dom(−D), the left-hand sides of these im-
plications are satisfied, so that g(x) + g∗(ATu) < +∞.

Adding g(x) + g∗(ATu) to both sides of (B.7) then leads to

(B.10) P (x)−D(u) ≥ g(x) + g∗(ATu)− 〈u | Ax〉+
α

2
‖u+∇f(Ax)‖22.

Finally, since g is proper, closed and convex from (H1), we can apply the Fenchel-
Young inequality (A.2) with h = g, z = x and z∗ = ATu to obtain (B.2).

Appendix C. Proofs of the connections with existing results. This
appendix gathers all proofs related to the comparison of the proposed RYU ball with
state-of-the-art safe regions presented in Subsection 4.1 to Subsection 4.5.
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C.1. Proof of Lemma 4.2. Let (x,u) ∈ dom(P ) × dom(−D). Using the defi-
nition of the primal and dual cost functions, we obtain:

GAP(x,u) = f(Ax) + g(x) + f∗(−u) + g∗(ATu)

= f(Ax) + f∗(−u) + 〈Ax | u〉+ g(x) + g∗(ATu)− 〈Ax | u〉

= Fen(x,u) + g(x) + g∗(ATu)− 〈Ax | u〉.

If (4.3) holds, we then have from Lemma A.2 that

g(x) + g∗(ATu)− 〈Ax | u〉 = 0.

This shows the first equality in (4.6).
The second inequality can be obtained by noticing that (from Lemma A.2)

f(Ax) + f∗(∇f(Ax)) = 〈∇f(Ax) | Ax〉

since f is convex, proper and differentiable and ∂f(Ax) = {∇f(Ax)}. Hence,

Fen(x,u) = f(Ax) + f∗(−u) + 〈Ax | u〉

= f∗(−u)− f∗(∇f(Ax)) + 〈Ax | u+∇f(Ax)〉

= Breg(x,u).

C.2. Comparison with GAP ball: Proof of Proposition 4.4. Using Propo-
sition B.1, we have

B(cRYU, rRYU) =

{

u′ ∈ Rm | ‖u′ − u‖22 + ‖u′ +∇f(Ax)‖22 ≤
2GAP(x,u)

α

}

,(C.1)

whereas the definitions of the GAP and x−GAP balls lead to:

B(cGAP, rGAP) =

{

u′ ∈ Rm | ‖u′ − u‖22 ≤
2GAP(x,u)

α

}

(C.2)

B(cx-GAP, rx-GAP) =

{

u′ ∈ Rm | ‖u′ +∇f(Ax)‖22 ≤
2GAP(x,u)

α

}

.(C.3)

Since the membership conditions in (C.2) and (C.3) are relaxations of the inequality
defining the RYU ball in (C.1), inclusions (4.10) and (4.12) necessarily hold.

Finally, to prove strict inclusion it is then sufficient to note that

rRYU ≤
GAP(x,u)

α
< rGAP

rRYU ≤
GAP(x,u)

α
< rx-GAP

whenever GAP(x,u) 6= 0.

C.3. Comparison with dynamic EDDP ball: Proof of Proposition 4.6.

We first note that the RYU ball in Theorem 4.1 is well-defined. Indeed, functions f
and g in (4.17)-(4.18) are closed, proper and convex, so that (H1) holds. Moreover,
(H2) is verified with α = 1. For any feasible (tx,u) with t ≥ 0, we thus have by
definition:

cRYU(t) =
1
2 (u− y + tAx)(C.4)

r2RYU(t) = GAP(tx,u)− 1
4‖u− y + tAx‖22.(C.5)
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Using the definitions of f and g in (4.13)-(4.14), we note that the duality gap can be
expressed as

GAP(x,u) = 1
2‖y −Ax‖22 + λ‖x‖ − 1

2‖y‖
2
2 +

1
2‖y − u‖22

=λ‖x‖+ 1
2‖y −Ax‖22 − 〈y | u〉+ 1

2‖u‖
2
2

=λ‖x‖+ 1
2‖u− y +Ax‖22 − 〈Ax | u〉

so that

r2RYU(t) = λt‖x‖ − t〈Ax | u〉+ 1
4‖u− y + tAx‖22.(C.6)

Proving item i) of Proposition 4.6 is equivalent to showing that the variable t⋆ defined
in (4.16) verifies

(C.7) t⋆ ∈ argmin
t≥0

r2RYU(t).

Since r2RYU(t) is a convex function, it is sufficient to show that t⋆ satisfies the problem’s
first-order optimality condition, i.e.,

(C.8) ∀t ≥ 0 : (r2RYU(t
⋆))′(t− t⋆) ≥ 0,

where

(C.9) (r2RYU(t))
′ = λ‖x‖ − 1

2 〈Ax | u+ y〉 + t
2‖Ax‖22.

We distinguish between three cases. First, if Ax = 0n, then (r2RYU(t))
′ = λ‖x‖ ≥ 0 so

that

(C.10) 0 ∈ argmin
t≥0

r2RYU(t).

In this case, the definition of t⋆ in (4.16) also leads to t⋆ = 0 (by using the conventions
0/0 = 0 and 1/0 = +∞). Second, if Ax 6= 0n and

(C.11) t̃ ,
〈Ax | y + u〉 − 2λ‖x‖

‖Ax‖22
≥ 0,

we easily have that

(C.12) t̃ ∈ argmin
t≥0

r2RYU(t)

since (r2RYU(t̃))
′ = 0. In this case, one deduces t⋆ = 〈Ax|y+u〉−2λ‖x‖

‖Ax‖2

2

. Finally, if

Ax 6= 0n and t̃ < 0, we then have that (r2RYU(0))
′ ≥ 0 since (r2RYU(0))

′ = − ‖Ax‖2

2

2 t̃ and
t̃ < 0. In this case, 0 is a minimizer since it verifies (C.8) and this corresponds again
to the definition of t⋆ in (4.16).

Showing item ii) of Proposition 4.6 is tantamount to showing that

cRYU(t
⋆) = cdyn.EDPP(C.13)

rRYU(t
⋆) = rdyn.EDPP.(C.14)
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On the one hand, since item i) of Proposition 4.6 is true, we directly have from the
expression of cRYU(t) in (C.4) that (C.13) holds. On the other hand, (C.14) can be
shown by examining the following two cases.

If t⋆ = 0, the equality in (C.14) follows directly from the definition (C.6). If
t⋆ > 0, we have (r2RYU(t

⋆))′ = 0, i.e.,

λ‖x‖ = 1
2 〈Ax | u+ y〉 − t⋆

2 ‖Ax‖22.(C.15)

Plugging this equality into (C.6) then leads to

r2RYU(t
⋆) = 1

2 〈t
⋆Ax | y − u〉 − 1

2‖t
⋆Ax‖22 +

1
4‖t

⋆Ax− y + u‖22

= 1
4‖y − u‖22 −

1
4‖t

⋆Ax‖22
= rdyn.EDPP.

C.4. Proof of Proposition 4.7. It is straightforward from the definition of f
and g in (4.17)-(4.18) that (H1)-(H2) are satisfied with α = 1. The RYU ball in
Theorem 4.1 is therefore well-defined. We next show that the center and radius of the
RYU and FNE balls coincide.

First, using the definition of f in (4.17), we have

∇f(Ax) = −(y −Ax).(C.16)

Hence,

cRYU =
1
2 (u−∇f(Ax)) = u+ 1

2 (y −Ax− u) = cFNE.

Second, using the definition of g in (4.18) and (4.23), it can be seen that condition
“〈u | Ax〉 = λ‖x‖1” in (4.20) together with feasibility of (x,u) is equivalent to
“ATu = ∂g(x)” in (4.3) so that Lemma 4.2 applies. In particular, we have:

GAP(x,u) = Fen(x,u) = f(Ax) + f∗(−u) + 〈u | Ax〉.

Since

f∗(u) = 1
2‖u‖

2
2 + 〈u | y〉,

the duality gap can thus also be written as

GAP(x,u) = 1
2‖y −Ax‖22 +

1
2‖u‖

2
2 − 〈u | y〉+ 〈u | Ax〉

= 1
2‖y −Ax− u‖22.(C.17)

Going back to the definition of the radius of the RYU ball (with α = 1), we finally
obtain:

r2RYU = GAP(x,u) − 1
4‖u+∇f(Ax)‖22

= 1
2‖y−Ax− u‖22 −

1
4‖y−Ax− u‖22

= r2FNE.

where we have used (C.16) and (C.17) in the second equality.
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C.5. Proof of Proposition 4.8. It is easy to see that definition of f and g in
(4.17)-(4.18) verifies (H1)-(H2) with α = 1, so that the RYU ball in Theorem 4.1 is
well-defined.

On the one hand, using the definition of f in (4.17) with x = 0n, we have

∇f(Ax) = −y.(C.18)

On the other hand, noticing that the couple (0n,u) verifies (4.3) and using the same
reasoning as in the proof of Proposition 4.7, we obtain from (C.17):

GAP(x,u) = 1
2‖y − u‖22.(C.19)

Finally, using Proposition B.1, we have

BRYU(0n,u) =
{

u′ ∈ Rm | ‖u′ − u‖22 + ‖u′ − y‖22 ≤ ‖y − u‖22
}

,(C.20)

whereas the SAFE ball is defined as

B(cSAFE, rSAFE) =
{

u′ ∈ Rm | ‖u′ − y‖22 ≤ ‖y − u‖22
}

.(C.21)

Since the membership condition in (C.21) is a relaxation of the inequality in (C.20),
inclusion (4.28) holds.

C.6. Proof of Proposition 4.9. It is easy to see from the definition of f and
g in (4.29)-(4.30) that (H1)-(H2) hold with α = 4. The RYU ball in Theorem 4.1 is
therefore well-defined.

We first show that the center and the radius of the RYU and SFER balls coincide.
Since (x,u) is defined as in (4.7)-(4.8), we have from Lemma 4.3 that this couple
satisfies (4.3). Using Lemma 4.2 then leads to

GAP(x,u) = Breg(x,u).(C.22)

Moreover, we also have from (4.7)-(4.8):

∇f(Ax) = −γu.(C.23)

Using (C.22)-(C.23), we then easily find that

cRYU =
1
2 (u−∇f(Ax)) = 1

2 (1 + γ)u = cSFER

r2RYU =
1
4GAP(x,u)−

1
4‖u+∇f(Ax)‖22

= 1
4 Breg(x,u) −

1
4‖(1− γ)u‖22

= r2SFER.

This shows the equality in (4.33).
The inclusion in (4.33) can be shown as follows. On the one hand, particularizing

the result in Proposition B.1 with (C.22)-(C.23), we have:

B(cRYU, rRYU) =
{

u′ ∈ Rm | ‖u′ − u‖22 + ‖u′ − γu‖22 ≤
1
2 Breg(x,u)

}

(C.24)

On the other hand, the SLORES ball defined in (4.31a)-(4.31b) can be written as

B(cSLORES, rSLORES) =
{

u′ ∈ Rm | ‖u′ − γu‖22 ≤ 1
2 Breg(x,u)

}

(C.25)

Since the membership inequality in (C.25) is a relaxation of the one in (C.24), the
inclusion between the SLORES and RYU balls stated in (4.33) holds.



18

REFERENCES

[1] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator The-

ory in Hilbert Spaces, Springer International Publishing, 2017, https://doi.org/10.1007/
978-3-319-48311-5.

[2] A. Beck, First-Order Methods in Optimization, Society for Industrial and Applied Mathemat-
ics, 2017, https://doi.org/10.1137/1.9781611974997.

[3] M. Blondel, A. F. T. Martins, and V. Niculae, Learning with fenchel-young losses,
Journal of Machine Learning Research, 21 (2020), pp. 1–69, http://jmlr.org/papers/v21/
19-021.html.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM Journal on Scientific Computing, 20 (1998), pp. 33–61, https://doi.org/10.1137/
s1064827596304010.

[5] L. Dai and K. Pelckmans, An ellipsoid based, two-stage screening test for BPDN, in Proceed-
ings of the European Signal Processing Conference (EUSIPCO), IEEE, 2012, pp. 654–658,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6334263.

[6] C. F. Dantas and R. Gribonval, Stable safe screening and structured dictionaries for

faster ℓ1 regularization, IEEE Transaction on Signal Processing, 67 (2019), pp. 3756–3769,
https://doi.org/10.1109/TSP.2019.2919404.

[7] L. El Ghaoui, V. Viallon, and T. Rabbani, Safe feature elimination for the Lasso and

sparse supervised learning problems, Pacific Journal of Optimization, 8 (2012), pp. 667—
698.

[8] C. Elvira and C. Herzet, Safe squeezing for antisparse coding, IEEE Transaction on Signal
Processing, 68 (2020), pp. 3252–3265, https://doi.org/10.1109/TSP.2020.2995192.

[9] C. Elvira and C. Herzet, Short and squeezed: accelerating the computation of antisparse

representations with safe squeezing, in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 2020, pp. 5615–5619, https://doi.
org/10.1109/ICASSP40776.2020.9053156.

[10] C. Elvira and C. Herzet, Safe rules for the identification of zeros in the solutions of the

slope problem, SIAM Journal on Mathematics of Data Science, 5 (2023), pp. 147–173,
https://doi.org/10.1137/21M1457631.

[11] O. Fercoq, A. Gramfort, and J. Salmon, Mind the duality gap: safer rules for the Lasso, in
Proceedings of the International Conference on Machine Learning (ICML), 2015, pp. 333–
342.

[12] T. Guyard, C. Herzet, and C. Elvira, Screen & relax: accelerating the resolution of

Elastic-Net by safe identification of the solution support, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022,
pp. 5443–5447, https://doi.org/10.1109/ICASSP43922.2022.9747412.

[13] C. Herzet, C. Dorffer, and A. Drémeau, Gather and conquer: Region-based strategies to

accelerate safe screening tests, IEEE Transaction on Signal Processing, 67 (2019), pp. 3300–
3315, https://doi.org/10.1109/TSP.2019.2914885.

[14] C. Herzet, C. Elvira, and H.-P. Dang, Region-free safe screening tests for ℓ1-penalized

convex problems, in Proceedings of the European Signal Processing Conference (EU-
SIPCO), 2022, pp. 2061–2065, https://doi.org/10.23919/EUSIPCO55093.2022.9909532.

[15] C. Herzet and A. Malti, Safe screening tests for Lasso based on firmly non-expansiveness,
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2016, pp. 4732–4736, https://doi.org/10.1109/ICASSP.2016.7472575.

[16] K. Koh, S.-J. Kim, and S. P. Boyd, An interior-point method for large-scale l1-regularized

logistic regression, Journal of Machine Learning Research, 8 (2007), pp. 1519–1555.
[17] J. Liu, Z. Zhao, J. Wang, and J. Ye, Safe screening with variational inequalities and its

application to lasso, in Proceedings of the International Conference on Machine Learning
(ICML), vol. 32, June 2014, pp. 289–297, https://proceedings.mlr.press/v32/liuc14.html.

[18] E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon, Gap safe screening rules for sparsity

enforcing penalties, Journal of Machine Learning Research, 18 (2017), pp. 4671–4703.
[19] E. Ndiaye, O. Fercoq, and J. Salmon, Screening Rules and its Complexity for Active

Set Identification, Journal of Convex Analysis, 28 (2021), pp. 1053–1072, https://www.
heldermann.de/JCA/JCA28/JCA284/jca28061.htm.

[20] X. Pan and Y. Xu, A safe feature elimination rule for l1-regularized logistic regression, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44 (2022), pp. 4544–4554,
https://doi.org/10.1109/TPAMI.2021.3071138.

[21] T.-L. Tran, C. Elvira, H.-P. Dang, and C. Herzet, Beyond gap screening for lasso by

exploiting new dual cutting half-spaces, in Proceedings of the European Signal Processing

https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1137/1.9781611974997
http://jmlr.org/papers/v21/19-021.html
http://jmlr.org/papers/v21/19-021.html
https://doi.org/10.1137/s1064827596304010
https://doi.org/10.1137/s1064827596304010
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6334263
https://doi.org/10.1109/TSP.2019.2919404
https://doi.org/10.1109/TSP.2020.2995192
https://doi.org/10.1109/ICASSP40776.2020.9053156
https://doi.org/10.1109/ICASSP40776.2020.9053156
https://doi.org/10.1137/21M1457631
https://doi.org/10.1109/ICASSP43922.2022.9747412
https://doi.org/10.1109/TSP.2019.2914885
https://doi.org/10.23919/EUSIPCO55093.2022.9909532
https://doi.org/10.1109/ICASSP.2016.7472575
https://proceedings.mlr.press/v32/liuc14.html
https://www.heldermann.de/JCA/JCA28/JCA284/jca28061.htm
https://www.heldermann.de/JCA/JCA28/JCA284/jca28061.htm
https://doi.org/10.1109/TPAMI.2021.3071138


UNIFYING SAFE BALL REGIONS FOR SAFE SCREENING 19

Conference (EUSIPCO), 2022, pp. 2056–2060, https://doi.org/10.23919/EUSIPCO55093.
2022.9909943.

[22] H. Wang, K. Jiang, and Y. Xu, Sequential safe feature elimination rule for l1-regularized

regression with kullback–leibler divergence, Neural Networks, 155 (2022), pp. 523–535,
https://doi.org/10.1016/j.neunet.2022.09.008.

[23] J. Wang, P. Wonka, and J. Ye, Lasso screening rules via dual polytope projection, Journal
of Machine Learning Research, 16 (2015), pp. 1063–1101, http://jmlr.org/papers/v16/
wang15a.html.

[24] J. Wang, J. Zhou, J. Liu, P. Wonka, and J. Ye, A safe screening rule for

sparse logistic regression, in Proceedings of Advances in neural information process-
ing systems, vol. 27, 2014, https://proceedings.neurips.cc/paper_files/paper/2014/file/
185c29dc24325934ee377cfda20e414c-Paper.pdf.

[25] H. Yamada and M. Yamada, Dynamic Sasvi: Strong safe screening for norm-regularized

least squares, in Proceedings of Advances in neural information processing systems,
vol. 34, 2021, pp. 14645–14655, https://proceedings.neurips.cc/paper_files/paper/2021/
file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf.

[26] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of
the Royal Statistical Society: Series B (Methodological), 67 (2005), pp. 301–320, https://
www.jstor.org/stable/3647580.

https://doi.org/10.23919/EUSIPCO55093.2022.9909943
https://doi.org/10.23919/EUSIPCO55093.2022.9909943
https://doi.org/10.1016/j.neunet.2022.09.008
http://jmlr.org/papers/v16/wang15a.html
http://jmlr.org/papers/v16/wang15a.html
https://proceedings.neurips.cc/paper_files/paper/2014/file/185c29dc24325934ee377cfda20e414c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/185c29dc24325934ee377cfda20e414c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://www.jstor.org/stable/3647580
https://www.jstor.org/stable/3647580

	Introduction
	Context and state of the art
	Contributions
	Paper organization

	Notations
	Optimization framework
	The RYU framework and its connection to the state of the art
	GAP balls
	Dynamic EDDP ball
	FNE, EDDP, DPP and SASVI balls
	SAFE ball
	SLORE and SFER balls

	Conclusion
	Appendix A. Convex analysis
	Appendix B. Proofs related to construction of the RYU framework
	Proof of Section B.1
	Proof of Lemma B.2

	Appendix C. Proofs of the connections with existing results
	Proof of Lemma 4.2
	Comparison with GAP ball: Proof of Proposition 4.4
	Comparison with dynamic EDDP ball: Proof of Proposition 4.6
	Proof of Proposition 4.7
	Proof of Proposition 4.8
	Proof of Proposition 4.9

	References

