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DERIVATION OF A TWO-PHASE FLOW MODEL ACCOUNTING

FOR SURFACE TENSION

H. MATHIS

Abstract. This paper presents the derivation of a two-phase flow model that

incorporates surface tension effects using Hamilton’s principle of stationary
action. The Lagrangian functional, which defines the action, consists of kinetic

energy—accounting for interface characteristics—and potential energy.

A key feature of the model is the assumption that the interface separating
the two phases possesses its own internal energy, which satisfies a Gibbs form

that includes both surface tension and interfacial area. Consequently, surface

tension is considered in both the kinetic and potential energy terms that define
the Lagrangian functional.

By applying the stationary action principle, a set of partial differential equa-

tions governing the dynamics of the two-phase flow is derived. This includes
evolution equations for the volume fraction and interfacial area, incorporat-

ing mechanical relaxation terms. The final model is proven to be well-posed,
demonstrating hyperbolicity and satisfying Lax entropy conditions.

Key-words. Two-phase compressible flows, interfacial area, thermodynamics,
Hamilton’s principle of stationary action, hyperbolicity
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1. Introduction

The modeling of compressible multiphase flows has been the subject of extensive
literature over the past decades, particularly for practical applications such as the
nuclear safety of pressurized water reactors. In the context of a loss-of-coolant
accident, for instance, the liquid water coolant is exposed to high pressure and
temperature conditions, so that a break in the coolant circuit could lead to the
formation of vapor, inducing shock and phase transition waves [1].

Thus, the challenge is not only to capture the wave structure but also to obtain
information about the various exchanges occurring at the liquid-vapor interface.

These transfers strongly depend on the interface area, even when focusing on
large-scale descriptions. Several approaches have been proposed to establish the
evolution of the interfacial area, mostly depending on the scale of description.

When focusing on polydisperse flows with many inclusions, bubbles, or droplets,
modeling bubble pulsation requires maintaining a small-scale description. For in-
stance in [38], The author proposes a transport equation based on heuristics from
particulate suspensions, assuming that both phases evolve with distinct velocities.
Then, focusing on the small scale, he introduces a second transport equation while
studying the fluctuations of a small interface element. Following this approach,
several models have been proposed in a series of works [8, 7, 6, 10, 39], considering
the one-velocity framework. The set of bubbles/droplets is described by a proba-
bility density function, which satisfies the so-called Williams-Boltzmann equation.
The distribution function then describes the probability of a bubble being present
at a certain time and position, evolving with a given velocity. It also accounts for
topological properties of the bubble or droplet, such as its volume or radius. In
recent contributions [39, 40], the authors propose to make the density distribution
dependent on the topological properties of the interface as well. In particular, they
consider the level set of the interface and its local mean curvature. By doing so, they
obtain information about the interfacial area and provide a complete partial dif-
ferential equation (PDE) model for the fluid-interface dynamics, using Hamilton’s
principle of stationary action.

When focusing on the mesoscopic scale, one enters the framework of diffuse inter-
face models. These equations involve van der Waals’ gradient energy, corresponding
to the capillary Korteweg tensor, and heat dissipative fluxes (see, for instance, [44]
and references therein). In this approach, the fluid-interface system is treated as
a single continuous medium, with the double-well potential acting as an equation
of state for both the fluid phases and the interface. In [22] the derivation of these
equations is obtained from Hamiltonian variational principles. More recently a re-
formulation of the barotropic Navier-Stokes-Korteweg system has been proposed in
[9]. The derivation is again based on variational Hamiltonian methods, using an
augmented Lagrangian that enables to recover nonlinear dispersive terms.

In the application we have in mind, a precise description of the interface topology
is not mandatory. Given the high heterogeneity of the flows, the strong temperature
and pressure conditions suggest to consider averaged models where the interface is
represented implicitly. However, the interface between the two phases is the locus
of all the thermodynamical exchanges, and the relaxation towards the thermody-
namical equilibrium depends strongly on its area, especially the relaxation time
scales. The objective is, then, to derive an evolution equation of the interfacial area
at the macroscopic scale.
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Such an averaged model is proposed in [3], where a convection equation for the
interfacial area is coupled to a barotropic three-phase flow model of Baer-Nunziato
type. The equation includes a source term that vanishes when the Weber number
(ratio of momentum to surface tension) exceeds a given threshold or when the
relative velocity between the two phases is zero. The interfacial area equation is
inspired by the modeling proposed in [41] for steam explosion simulations and is
based on heuristics.

In the aforementioned references, the surface tension is perceived as a geometrical
feature that only plays a role in defining kinetic energy of the bulk and the interface.
In all proposed derivations, the thermodynamic behaviour of the interface is not
considered; in particular, surface tension does not impact the potential energy of
the system. It is precisely this perspective that we develop here.

The derivation of the averaged fluid-interface model is achieved by adapting the
Stationary Action Principle as detailled in [4]. The core of our model lies in the
rigorous derivation of the potential energy within the Lagrangian functional, while
the kinetic energy accounts for smale scales, in the spirit of [8]. See also [45, 43]
for the derivation of compressible two-phase models with surface tension, which
enter the so-called class of Symmetric Hyperbolic Thermodynamically Compatible
Systems.

The originality of our approach is to consider the surface tension not only as
a dynamical feature but also as a thermodynamics one. To this end, we return
to classical extensive thermodynamics in the sense of Gibbs [5, 35] to describe, as
rigorously as possible, the thermodynamic behaviour of the fluid-interface system.
In the context of two-phase flows, this methodology has been used, for instance,
in [29, 28, 14, 15] and the references cited therein, resulting in thermodynamically
consistent multiphase flow models for immiscible and miscible two-phase systems.
The novelty here is that the interface is assumed to be described by an extensive
internal energy function, under the assumption that the interface has no mass,
occupies no volume, but is characterized by its temperature and interfacial area.
Thus, the interface is fully described by its internal energy, which satisfies a Gibbs
form involving not only temperature and entropy but also surface tension and
interfacial area variations. This approach of the thermodynamics of fluid-interface
systems originates from [36, 35, 27] and was further developed in [47] to model
(multiphase) flows in porous media. Regarding Hamiltonian variational methods,
there is an vast literature on the derivation of porous media and fluid-interface
models. For instance, see [12] for immiscible mixtures in porous media without
surface tension and the extension to two-temperature models in [26]. Additionally,
[46] addresses two-phase poroelasticity models, and [16] discusses the dynamics of
a porous medium filled with incompressible fluid.

The paper is organized as follows. Section 2 is dedicated to the thermodynamic
modeling of the fluid-interface system, relying on the thermodynamics of irreversible
processes based on local equilibrium assumptions. By focusing on the extensive and
intensive descriptions of the two phases and the interface, we define the internal
energy of the fluid-interface system as well as its temperature, pressure and chem-
ical potential. This initial framework ensures that the interfacial area and surface
tension naturally contribute in the pressure. When analyzing thermodynamic equi-
librium, several interesting properties arise, notably that mechanical equilibrium is
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described by a differential form involving the volume fraction and the interfacial
area.

The thermodynamic modeling of the fluid-interface system is then used to con-
struct an averaged two-fluid model, capturing the evolution of macroscopic quanti-
ties in space and time, with the interface implicitly represented. In Section 3 we use
the fluid-interface internal energy to define the potential energy of the Lagrangian
functional that defines the Action. A brief review of the so-called small-scale ki-
netic energy models available in the literature is presented to motivate our choice
of kinetic energy.

Applying the Hamilton’s principle on least action, we derive a set of PDEs de-
scribing the dynamics of the fluid-interface system. Since the stationary action
principle qualifies reversible processes, it ensures conservation of momentum and
total energy, as well as the model’s hyperbolicity and a symmetrization property.
These properties are discussed in Section 4.

2. Thermodynamical modeling

The purpose of this section is to provide an accurate description of the ther-
modynamic behavior the system occupying an elementary domain, composed of
two immiscible fluid phases separated by an interface. The modeling of the fluid-
interface system is based on the thermodynamics of irreversible processes and relies
on local equilibrium assumptions.

Assumptions 1 (Fluid-interface thermodynamics system). The fluid-interface ther-
modynamics system is characterized by the following assumptions.

(1) It occupies a volume V ≥ 0, has a mass M ≥ 0 and an internal entropy
S ≥ 0.

(2) It is composed of the two immiscible fluids or phases k = 1, 2 with indices
k = 1, 2, described by their volume 0 ≤ Vk ≤ V , mass 0 ≤ Mk ≤ M and
entropy 0 ≤ Sk ≤ S.

(3) The two phases are immiscible and separated by an interface, with index i,
of area Ai ≥ 0 and internal entropy Si.

(4) At each point of this system, local equilibrium is reached so that each part
of the system is depicted by its own Equation of State (EoS).

Paragraph 2.1 specifies the thermodynamic properties of the fluid phases, in both
extensive and intensive variables. The thermodynamics of the interface is detailed
in Paragraph 2.2. In Section 2.3, the second law of thermodynamics is used to
characterize the fluid-interface internal energy and the thermodynamic equilibrium
of the fluid-interface system.

2.1. Fluid phases. A fluid phase k = 1, 2 is characterized by its volume Vk ≥ 0,
its entropy Sk ≥ 0 and its mass Mk ≥ 0.

Assumptions 2 (Fluid phase thermodynamics). The fluid phase k = 1, 2 is en-
tirely described by its extensive internal energy function Ek such that:

• (Mk, Vk, Sk) 7→ Ek(Mk, Vk, Sk) is C2 on (R+)
3,

• (Mk, Vk, Sk) 7→ Ek(Mk, Vk, Sk) is convex,
• The extensive internal energy Ek is positively homogeneous of degree 1
(PH1), that is

∀λ ∈ R∗
+,∀(Mk, Vk, Sk) ∈ (R+)

3, Ek(λMk, λVk, λSk) = λEk(Mk, Vk, Sk).
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The last assumption corresponds to the extensive character of the internal energy
function : when doubling the volume, mass and entropy of the system, its extensive
internal energy is doubled as well. The extensive internal energy Ek is convex but
cannot be strictly convex, since it is PH1.

Some intensive parameters are defined as partial derivatives of Ek:

• the pressure pk(Mk, Vk, Sk) = −∂Ek/∂Vk(Mk, Vk, Sk),
• the temperature Tk(Mk, Vk, Sk) = ∂Ek/∂Sk(Mk, Vk, Sk) > 0,
• the chemical potential µk(Mk, Vk, Sk) = ∂Ek/∂Mk(Mk, Vk, Sk),

leading to the total differential form

(1) dEk = TkdSk − pkdVk + µkdMk,

referred as extensive (phasic) Gibbs form in the sequel. Since the internal energy
is extensive, its satisfies the Euler relation

(2) Ek = TkSk − pkVk + µkMk.

Some intensive variables and potentials can be defined while considering the exten-
sive ones relatively to the mass of the phase k. We introduce the specific volume
τk = Vk/Mk and the specific entropy sk = Sk/Mk of the phase k = 1, 2. Then
the specific internal energy ek(τk, sk) corresponds to a restriction of the extensive
energy:

(3) ek(τk, sk) = Ek(1, τk, sk).

The phasic pressure and temperature can be defined as functions of the intensive
variables as well (while keeping the same notations):

(4) pk(τk, sk) = −∂ek/∂τk(τk, sk), Tk(τk, sk) = ∂ek/∂sk(τk, sk).

The intensive potentials comply thus with an intensive differential (phasic) Gibbs
form:

(5) dek = Tkdsk − pkdτk.

Note that scaling the extensive Euler relation (2) with respect to the mass Mk gives
another definition of the chemical potential µk, which turns to be the Legendre
transform of the internal energy ek:

(6) µk = ek − Tksk + pkτk.

Example 1 (Stiffened gas law). Any equation of state that satisfies Assumptions
2 can be used in the following sections. As an illustration, we provide an example.
The stiffened gas equation of state is the simplest example of law that captures the
main physical properties of pure fluids, see [37, 15] and references therein. The
intensive internal energy reads

ek(τk, sk) = τγk−1 exp

(
sk − s0,k

cv,k

)
+ qk + πkτk,

where γk > 1 is the adiabatic coefficient, s0,k is the reference entropy, cv,k is the
heat capacity, −πk is minimal pressure and qk is a reference enthalpy. The case of
a perfect gas equation of state is recovered by setting πk = qk = 0. This equation of
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state complies with the Gibbs form (5), leading to

pk(τk, sk) = (γk − 1)τ−γk

k exp

(
sk − s0,k

cv,k

)
− πk,

Tk(τk, sk) =
τ
(1−γk)
k

cv,k
exp

(
sk − s0,k

cv,k

)
.

2.2. The interface. The interface separating the two phases is supposed to be
sharp and to have no volume and no mass. Adopting an extensive description [42],
it is characterized by its entropy Si ≥ 0 and its area Ai ≥ 0.

Assumptions 3 (Interface thermodynamics). The interface i is entirely described
by its extensive internal energy function Ei such that:

• (Si, Ai) 7→ Ei(Si, Ai) is C2 on (R+)
2,

• (Si, Ai) 7→ Ei(Si, Ai) is convex,
• The extensive internal energy Ei is positively homogeneous of degree 1

(PH1), that is

∀λ ∈ R∗
+,∀(Si, Ai) ∈ (R+)

2, Ei(λSi, λAi) = λEi(Si, Ai).

According to the first principle of thermodynamics, it holds

(7) dEi = TidSi + γidAi,

where γi(Si, Ai) is the surface tension and Ti(Si, Ai) the interfacial temperature.
Since the internal energy Ei ∈ C2((R+)

2) is PH1, it follows that the temperature Ti

and the surface tension γi are C1 on (R+)
2. The internal energy Ei being an PH1

quantity, its complies with the Euler relation

(8) Ei = TiSi + γiAi,

which yields, after differentiating and subtracting (7), the so-called Gibbs–Duhem
relation

(9) 0 = SidTi +Aidγi.

Since the interface has no mass, a way to deduce intensive potentials is to scale with
respect to the volume V of the fluid-interface system, see Assumptions 1. This way
we introduce the interfacial density area

(10) ai = Ai/V,

while scaling the area Ai by the volume V of the fluid-interface system.
Now, scaling the extensive variables with respect to the interface area Ai defines

the interfacial intensive entropy si = Si/Ai and the interfacial intensive energy
ei = Ei/Ai. Scaling the Euler relation (8) with respect to the volume V of the
fluid-interface system, one deduces

(11) ei = Tisi + γi,

and doing so with the interfacial Gibbs relation (7) gives

(12) e′i(si) = Ti,

and

(13) d(aiei) = Tid(aisi) + γidai.
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By the definition (10) of the interfacial density area ai, observe that the relation
(9) gives

(14) γ′
i(Ti) = −si(Ti).

This derivative relation is not often mentioned in the literature, but it can be found
in [36, 35] for instance.

Example 2 (Katayama-Guggenheim surface tension law). Any equation of state
that satisfies Assumptions 3 can be used in the following sections. As an illustra-
tion, we provide an example. The thermodynamic behavior of interfaces is typically
described by a surface tension law expressed as a function of temperature. In gen-
eral, observed surface tension values of liquids decrease as temperature increases
[42]. One famous law is given by the Katayama-Guggenheim formula [13]

γi(Ti) = γ0

(
1− Ti

Tc

)κ

,

where γ0 > 0 is a contant, Tc > 0 is a reference temperature (usually the critical
temperature) and κ > 1, parameters for ordinary water substance being available in
[17]. Hence using (14) and (12), one deduces that the associated internal energy
and temperature read,

ei(si) = Tcsi − γ0(κ− 1)

(
Tcsi
γ0κ

) κ
κ−1

,

Ti(si) = Tc

(
1−

(
Tcsi
γ0κ

) 1
κ−1

)
.

2.3. Thermodynamic equilibrium of the fluid-interface system. The aim
is now to describe the thermodynamic behaviour of the fluid-interface system as
a whole. Following [36, 35], and considering the fluid-interface system as isolated,
it is fully described by an internal energy E, which is a function of (M,V, S); see
Assumptions 1. The two immiscible fluid phases k = 1, 2, with extensive states
(Mk, Vk, Sk), are described by equations of state consistent with Assumptions 2.
The interface, with the extensive state (Si, Ai), is depicted by an internal energy
that satisfies Assumptions 3. The state of the fluid-interface system evolves towards
equilibrium due to irreversible processes. This equilibrium state is a time-invariant
state in which no further physical or chemical changes occur. At equilibrium, the
irreversible processes vanish.

The purpose of this section is to define the internal energy of the fluid-interface
system and the extended Gibbs form it satisfies, see Proposition 1. Then, by impos-
ing thermodynamic equilibrium, we derive the algebraic and differential relation-
ships that characterize the system’s thermodynamic equilibrium, see Proposition
2.

For a given state (M,V, S,Ai) of the system, different modeling constraints have
to be set. As mentioned before, the two phases are supposed to be immiscible
and that no vacuum appears, such that the total volume is the sum of the phasic
volumes

(15) V = V1 + V2,
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since the interface has no volume. As the mass conservation of the system is
concerned, it holds

(16) M = M1 +M2,

since the interface has no mass and only mass transfer can occur between the two
phases (and not with the interface). Finally the homogeneity property of the system
entropy states that

(17) S = S1 + S2 + Si.

It is convenient to provide the intensive counterpart of these constraints while
introducing the fractions of presence of each phase, namely the volume fraction
αk = Vk/V ∈ [0, 1], the mass fraction yk = Mk/M ∈ [0, 1] and the entropy fraction
zk = Sk/S ∈ [0, 1], such that

(18) ykτk = αkτ, yksk = zks.

Then the intensive counterpart of the extensive constraints (15)-(17) reads

(19)


1 = α1 + α2,

1 = y1 + y2,

1 = z1 + z2 + zi,

where zi = Si/S ∈ [0, 1] stands for the entropy fraction of the interface.
We now turn to the definition of the extensive energy of the whole system. It

corresponds to the sum of the energies of each part, namely

(20) E(M,V, S,Ai) = E1(M1, V1, S1) + E2(M2, V2, S2) + Ei(Si, Ai).

Using the fractions definitions, the total derivative of E reads

dE =

2∑
k=1

(
TkdSk − pkdVk + µkdMk

)
+ TidSi + γidAi

=

2∑
k=1

(
TkzkdS + STkdzk − pkαkdVk − V pkdαk

+ykµkdMk +Mµkdyk
)

+ TizidS + STidzi + γiaidV + γiV dai.

Reorganizing the terms and using the intensive constraints (19), one obtains

Proposition 1. The extensive energy satisfies

(21)

dE = (z1T1 + z2T2 + ziTi)dS − (α1p1 + α2p2 − aiγi)dV

+ y1(µ1 − µ2)dM

+ S((T1 − Ti)dz1 + (T2 − Ti)dz2)

− V ((p1 − p2)dα1 − γidai)

+M(µ1 − µ2)dy1.

As a consequence, the temperature, pressure and chemical potential of the fluid-
interface system have natural definitions in terms of the phasic and interfacial
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quantities:

(22)


T := z1T1 + z2T2 + ziTi,

p := α1p1 + α2p2 − aiγi,

µ := y1µ1 + y2µ2.

In absence of the surface tension, the fluid-interface system pressure coincides
with the pressure of classic bi-fluid or two-phase models [33]. When accounting for
surface tension, the fluid-interface pressure is exactly the one of the two-phase flow
model, derived in [30] by homogenization techniques. This pressure also appears
in jump conditions of Euler-Korteweg system, see [31]. The pressure we get is also
close to the pressure term derived in [8, 7] in the context of two-phase flows with
surface tension.

For a given state (M,V,E,Ai), and according to the second principle of thermo-
dynamics, the thermodynamic equilibrium corresponds to a minimum of the energy
E defined in (20) under the extensive constraints (15)-(17). Thus, in the interior
of the constraint set, the derivatives of E with respect to independant variables
cancel, leading to a characterization of the thermodynamic equilibrium in terms of
phasic potentials.

Proposition 2. According to the differential form (21), the thermodynamic equi-
librium is characterized by

(23)


µ1 = µ2,

T1 = T2 = Ti,

γidai − (p1 − p2)dα1 = 0.

The characterization (23) of the thermodynamic equilibrium holds pointwise in
the elementary domain. The two first equalities of (23) are classic: they denote the
thermal equilibrium in the fluid-interface system and the mass transfer between
the two fluid phases. The last (differential) relation represents the mechanical
equilibrium and brings out some comments:

• The case γi = 0 corresponds to a situation where there is no interface. Ei-
ther only the two fluid phases are present, leading to the standard modeling
of two-phase systems, see [5, 32, 29, 28, 15], with equilibrium achieved when
the phasic pressures are equal, p1 = p2. Alternatively, the system is in a
supercritical configuration: the fluid phases are indistinguishable, and the
interface no longer exists; see [5] for a detailed description.

• Assume that the phase 1 occupies a spherical bubble of radius R. Then its
volume is V1 = 4πR3/3 and the interfacial area is Ai = 4πR2. On the other
hand the differential relation in (23) gives

γid

(
Ai

V

)
− (p1 − p2)d

(
V1

V

)
= 0

Expressing this latter formula in terms of the radius R, it leads to the
Young-Laplace law

p1 − p2 =
2γi
R

.

Typically the Young-Laplace law involves the mean curvature which corre-
sponds here to the inverse of the radius. When the radius tends to +∞,
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the surface becomes planar and one recovers the equality of the phasic
pressures.

Remark 1. In the context of two-phase flows in porous media, Smäı proposed in
[47] minimizing the free energy of the fluid-interface system instead of minimizing its
internal energy. The advantage of this approach is that the free energy of the system
(also known as canonical grand potential in the framework of porous media) depends
solely on the temperature of the fluid-interface system and the phasic pressures. By
using this method, one can recover all information related to the interface without
explicitly computing the interfacial area.
This approach is not developed here, as our goal is specifically to derive an evolution
equation for the interfacial area.

2.3.1. Potential energy candidate. We now turn to the definition of the potential
energy to be used in the Lagrangian formulation. A natural proposition would be
to consider the intensive internal energy of the fluid-interface system by scaling the
extensive energy (20) with the total mass M . Thus, for a given intensive state
(τ, s, ai), while accounting for the intensive constraints (19), the intensive energy
would be expressed as follows:

(24) e(τ, s, ai, (yk)k, (αk)k, (zk)k, zi) = y1e1(τ1, s1) + y2(τ2, s2) + aiτei

(zi
a

s

τ

)
,

with notations (18) of the phasic quantities.
However, it turns out that this choice of variables is not convenient for compu-

tations. Following [25, 20], it is more appropriate to express the intensive fluid-
interface internal energy as a function of the intensive entropies s and sk, k = 1, 2,
rather than using the entropy fractions zk as in [21].

In the sequel, we choose to express the intensive energy as a function of

(25) B̃ = {ρ, s, s1, s2, ai, y, α},
where ρ = 1/τ denotes the system density and y := y1 and α := α1. It reads then

(26)

e(B̃) =ye1

(
α

yρ
, s1

)
+ (1− y)e2

(
1− α

(1− y)ρ
, s2

)
+

ai
ρ
ei

(
s− ys1 − (1− y)s2

ai
ρ

)
.

Observe that one makes use of the extensive relation (17) on the entropies to express
the interfacial entropy si as a function of s, s1 and s2, namely

(27) s = ys1 + (1− y)s2 +
ai
ρ
si.

Remark 2. In [6, paragraph 2.1.3.3], the author highlights the importance of the
choice of variables on which the Lagrangian functional depends. This point is also
emphasized in the work of Gavrilyuk [19]. Indeed, while specific entropies are conve-
nient variables for computations, their conservation along trajectories prevents any
interaction between the phases. The fluid-interface entropy will also be conserved,
as only reversible processes can be described by the stationary action principle. How-
ever, it is possible to introduce relaxation source terms a posteriori, in accordance
with the second law of thermodynamics. See [10, Paragraph 3.5] for a presentation
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of this method when dissipation is due to pulsating behaviour of bubbles in two-phase
flows.

Example 3. If one consider that the fluid phases are depicted by stiffened gas
laws, see Example 1, and the interface follows a Katayama-Gugguenheim law, see
Example 2, then the associated intensive energy of the fluid-interface system reads

e(B̃) = y

[
(γ1 − 1)

(
α

ρy

)−γ1

exp

(
s1 − s0,1

cv,1

)
− π1

]

+ (1− y)

[
(γ2 − 1)

(
1− α

ρ(1− y)

)−γ2

exp

(
s2 − s0,2

cv,2

)
− π2

]

+
ai
ρ

[
Tc

ρ(s− ys1 − (1− y)s2)

ai

−γ0(κ− 1)

(
Tc

γ0κ

ρ(s− ys1 − (1− y)s2)

ai

) κ
κ−1

]
.

3. Derivation of the evolution equations by means of stationary
action principle

Accounting for the previous characterization of the thermodynamic equilibrium,
we now turn to modeling the fluid dynamics. The objective is to derive the Euler-
type equations governing the fluid-interface system using Hamilton’s principle on
least action (or stationary action), following the serie of works [25, 20, 11, 8, 7, 10,
40].

We focus on homogeneous two-phase flows, meaning that the two phases evolve
with the same velocity field u ∈ R3. Note that considering distinct velocities for
each phase is also possible, as discussed in [20].

The variational approach and the Hamilton’s principle of stationary action rely
on the definition of an appropriate Lagrangian L. This Lagrangian is the difference
of a kinetic energy and a potential energy. The potential energy we consider has
been derived in the previous section, see (26). Regarding the kinetic energy, a
brief review of recent models is provided in Section 3.1, focusing on the so-called
two-scale kinetic modeling proposed in [11, 6, 39].

In Section 3.2, we outline the main elements of Hamilton’s principle on least
action, along with the additional assumptions we make (such as total and partial
mass conservation). The resulting equations are then presented in their preliminary
form.

3.1. A non-exhaustive review of kinetic energy. Recent references address
the derivation of the kinetic energy, building on the initial works of Gavrilyuk and
coauthors [25, 20]. In these contributions, the kinetic energy Lkin is composed of
a classic bulk energy associated with the translational motion of the fluid, and a
small-scale contribution. This small-scale kinetic energy is expressed as a quadratic
form of the material derivative of the volume fraction, Dtα. Here and throughout
the following, the material derivative is defined with the common velocity field u

Dt· = ∂t ·+u · ∇x · .
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In [11, 8, 6], others quadratic forms are considered, depending on α and ai as
well. Recently in [10, 39], the authors propose a reduced-order modeling of a small-
scale kinetic equation to derive geometric variables (Gauss and mean curvatures for
instance) and an associated small-scale kinetic energy.

Among all the proposed approaches, it is essential to make the kinetic energy
Lkin depend on Dtα; otherwise there will be no way to derive an evolution equation
for α. For the same reason, and because we aim to obtain an evolution equation for
the interfacial area density, we propose to consider a term involving Dtai as well:

(28) Lkin =
1

2
ρ|u|2 + m

2
|Dtα|2 +

ν

2
|Dtai|2,

where m and ν are constants (with the appropriate dimensions so that Lkin has
the right unit, namely m[kg · m−1] and ν[kg · m]). By doing so, we ensure the
derivation of an evolution equation for the interfacial area density, without the
need to introduce any additional quantities such as local curvature or interface
displacement, as in [6, 8]. It is important to note that any positive definite quadratic
form of variables Dtα and Dtai could serve as a kinetic energy relative to the
so-called small-scale contributions. The choice made in equation (28) allows for
comparison with models derived in [20, 11, 8, 6, 39].

3.2. The Lagrangian functional and additional assumptions. We introduce
the vector of variables B

(29) B := {ρ, s, s1, s2, ai, y, α,u,Dtα,Dtai},

which corresponds to the vector B̃, defined in (25), completed by the variables
involved in the kinetic energy Lkin, that are u, Dtα and Dtai.

The Lagrangian L, function of B, is the difference between the kinetic and the
potential contribution

(30) L(B) = Lkin − Lpot,

where Lkin(B) is defined in (28) and Lpot(B) = ρe(B̃), with e(B̃) defined in (26).
Before proceeding with the variational method, we make additional assumptions

that govern the fluid-interface system. First we assume mass conservation, meaning
that

(31)
∂tρ+ divx(ρu) = 0,

Dty = 0.

It is important to emphasize that, although the modeling presented in Section 2.3
allows for mass exchange between the two phases, this is not the case here. This
arises because the stationary action principle applies only for reversible processes.
Similarly, for the same reasons, we assume that the specific entropies are conserved
along trajectories

(32) Dts = 0, Dtsk = 0, k = 1, 2,

following [25, 20, 6]. Note that, since the specific phasic entropies are conserved,
the interface intensive entropy (which is relative to the interfacial area Ai and not
to the mass M) is not conserved along trajectories but satisfies

Dt(siaiτ) = 0,

which means that, when expressed in terms of extensive variables, siaiτ = Si/M
remains constant along trajectories.
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3.3. Variational principle. This paragraph recalls the classic lines of the station-
ary action principle, whose application to the two-phase flow modeling has been
the subject of numerous works, including [12, 2, 23, 24, 4]. See also [10] for a syn-
thetic presentation of the method and an overview of the technic in the two-fluid
framework.

Consider a volume ω(t) ∈ R3 occupied by the fluid-interface system for time
t ∈ [t1, t2] and denote Ω = {(t,x) ∈ ×[t1, t2]×Rd| x ∈ ω(t), t1 ≤ t ≤ t2}. Following
Section 3.2, we assume the flow to be fully characterized by the quantities (t,x) 7→ B
and by the constitutive constraints (31)-(32). We now define the Hamiltonian action
as the space-time integral of the Lagrangian functional (30)

(33) A(B) =

∫
Ω

L(B)(x, t)dxdt,

and apply the stationary action principle. If (t,x) 7→ B̄ is a physically relevant
transformation of the system, it is the solution of a variational problem leading to
a PDE system. The methodology is to consider a family of perturbation (t,x, ζ) 7→
Bζ of B̄, parametrized by ζ ∈ [0, 1] such that

• the physical path is obtained when ζ = 0:

Bζ(t,x, ζ = 0) = B̄(t,x),

• Bζ satisfies the conservation constraints (31) and (32) for all ζ ∈ [0, 1],
• Bζ(t,x, ζ) = B̄(t,x) for (t,x, ζ) ∈ ∂Ω× [0, 1].

The stationary action principle states that B̄ is physically relevant if it is a station-
ary point of ζ 7→ A(Bζ), that is

(34)
dA(Bζ)

dζ
(0) = 0.

This stationary condition leads to the governing set of PDEs of motion for the
system without dissipative processes. For b ∈ B̄, denoting

δζb(t,x) =

(
∂bζ
∂ζ

)
|t,x

(t,x, ζ = 0)

a family of infinitesimal transformations, the identity (34) reads

(35)
dA(Bζ)

dζ
(ζ = 0) =

∫
Ω

∑
b∈B

∂L

∂b
δζbdxdt.

Infinitesimal variations are related through the conservation principles (31) and
(32) (see [18] and [4] for detailed computations)

• variation of density

(36) δρ = −divx(ρδx),

• variation of velocity

(37) δu = Dt(δx)−∇xu · δx,

• conservation along trajectories of the fluid specific entropies and the mass
fraction

(38) δb = −∇xb · δx, for b ∈ {s, y, z1, z2}.

We now list all the contributions in (35).
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• Density contribution: using the mass conservation (31), one has

(39)

∫
Ω

∂L

∂ρ
δρdxdt = −

∫
Ω

∂L

∂ρ
divx(ρδx) dxdt

=

∫
Ω

ρ∇x

(
∂L

∂ρ

)
· δx dxdt,

by integration by parts. In order to make the partial Legendre transform
of L with respect to ρ (written here as a function of B)

(40) L∗,ρ(B) = ρ
∂L

∂ρ
− L(B)

appear, one develops

(41)

∫
Ω

∂L

∂ρ
δρdxdt

=

∫
Ω

[
∇x

(
ρ
∂L

∂ρ

)
− ∂L

∂ρ
∇xρ

]
· δx dxdt

=

∫
Ω

[
∇x

(
ρ
∂L

∂ρ
− L

)
+∇xL− ∂L

∂ρ
∇xρ

]
· δx dxdt

=

∫
Ω

∇xL
∗,ρ +

∑
b∈B
b ̸=ρ

∇xb
∂L

∂b

 · δx dxdt.

• Velocity contribution: according to (37), it holds

(42)

∫
Ω

∂L

∂u
δu dxdt =

∫
Ω

∂L

∂u
(Dt(δx)−∇xu · δx) dxdt.

By definition of the material derivative Dt·, and using an integration by
part, it holds

(43)

∫
Ω

∂L

∂u
δu dxdt

=

∫
Ω

∂L

∂u
[∂t(δx) + u · ∇x(δx)−∇xu · δx] dxdt

=−
∫
Ω

(
∂t

(
∂L

∂u

)
+ divx

(
u
∂L

∂u

)
+

∂L

∂u
∇xu

)
· δx dxdt.

• Contributions of conserved quantities along trajectories: using (38), it holds
for b ∈ {s, s1, s2, y}

(44)

∫
Ω

∂L

∂b
δbdxdt = −

∫
Ω

∂L

∂b
∇xb · δx dxdt.

• Contributions in α and ai: the variation of the volume fraction α is not sub-
ject to any constraint. This ensures the derivation of an evolution equation
for α. Therefore, the variation δα, associated with the family of transfor-
mations of the medium, is arbitrary. The same applies to the interfacial
area density ai. Furthermore, the fact that these quantities evolve inde-
pendently will lead to separate equations for the volume fraction and the
interfacial area density.
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• Contributions in Dtα and Dtai: the variations of Dtα (resp. Dtai) is related
to the variation of α (resp. ai). According to [34], it holds, for any functions
f and g,

(45)

∫
Ω

g δ(Dtf) dxdt =−
∫
Ω

(
∂tg + divx(ug)

)
δf dxdt

−
∫
Ω

[(∂tg + divx(ug))∇xf + g∇x(Dtf)] · δx dxdt.

Thus using (45) with g = ∂L
∂(Dtα)

=: M and f = Dtα gives

(46)

∫
Ω

∂L

∂(Dtα)
δ(Dtα) dxdt

= −
∫
Ω

(∂tM + divx(Mu))δα dxdt

−
∫
Ω

((∂tM + divx(Mu))∇xα+M∇x(Dtα)) · δx dxdt.

Analogously it holds with g = ∂L
∂(Dtai)

=: P and f = Dtai

(47)

∫
Ω

∂L

∂(Dtai)
δ(Dtai) dxdt

= −
∫
Ω

(∂tP + divx(Pu))δai dxdt

−
∫
Ω

((∂tP + divx(Pu))∇xai + P∇x(Dtai)) · δx dxdt.

Finally gathering (41), (43), (46) and (47) gives∫
Ω

[Aαδα+Aai
δai +Auδx] dxdt = 0.

where

(48)


Aα = ∂tM + divx(Mu)− ∂L

∂α , with M = ∂L
∂(Dtα)

,

Aai = ∂tP + divx(Pu)− ∂L
∂ai

, with P = ∂L
∂(Dtai)

,

Au = ∂tK + divx(Ku)−∇xL
∗,ρ, with K = ∂L

∂u .

Note that to express the term Au, one makes use of the terms Aα and Aai
.

Since it is assumed that the infinitesimal displacement and the variations of
volume fraction and interfacial area density, are independent, the stationary action
principle applied to the Lagrangian energy L yields the equations of motion given
by

Aα = 0, Aai
= 0, Au = 0.

4. Final system and properties

As a result of the Hamilton’s principle on least action, the following set of equa-
tions is obtained, describing the time evolution of the fluid-interface system gov-
erned by the Lagrangian L. It reads

(49)


∂tM + divx(Mu)− ∂L

∂α = 0,

∂tP + divx(Pu)− ∂L
∂ai

= 0,

∂tK + divx(Ku)−∇xL
∗,ρ = 0,
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where L∗,ρ is the partial Legendre transform of L defined in (40). The system is
completed by the mass conservation laws (31) and the entropies evolution equations
(32). Noether’s theorem states that the governing equations for M , P and K
correspond to the conservation of total momentum and total energy, arising from
the invariance of the Lagrangian under space and time shifts, as discussed in [4].
The quantity K refers to the bulk momentum, while the equations governing M
and P describe the evolution of the small scales within the fluid-interface system.

Let E be the partial Legendre transform of the Lagrangian L with respect to the
kinetic variables u, Dtα and Dtai. It reads

(50) E(ρ,K,M,P, α, ai, s, s1, s2, y) = uK +DtαM +DtaiP − L(B)

or analogously

(51) E(B) = Lkin(B) + Lpot(B),

with notations (30). If the latter formula is more classic, the definition (50) has the
advantage of simplifying the following computations.

Proposition 3 (Hyperbolicity). The energy E, defined by (50), satisfies the addi-
tional scalar conservation equation

(52) ∂tE + divx((E − L∗,ρ)u) = 0.

If the energy E(ρ,K,M,P, α, ai, s, s1, s2, y) is convex, then the system (31)-(32)-
(49) is hyperbolic and it is symmetrizable.

Proof. Using that E is the partial Legendre transform of the Lagrangian L with
respect to the kinetic variables, it holds (dropping the dependency of E and L for
readability)

DtE = Dt

 ∑
b∈{u,Dtα,Dtai}

b
∂L

∂b
− L


=

∑
b∈{u,Dtα,Dtai}

(
Dtb

∂L

∂b
+ bDt

(
∂L

∂b

))
−DtL.

Using the notations K,M and P , given in (48), and the transport of the specific
entropies (32) and of the mass fraction (31), it holds

DtE = uDtK +DtαDtM +DtaiDtP − ∂L

∂ρ
Dtρ−

∂L

∂α
Dtα− ∂L

∂ai
Dtai.

Then using the evolution equations (49), it yields

DtE = u · (−Kdivx(u) +∇xL
∗,ρ) + Dtα

(
−Mdivx(u) +

∂L

∂α

)
+Dtai

(
−Pdivx(u) +

∂L

∂ai

)
− ∂L

∂ρ
Dtρ−

∂L

∂α
Dtα− ∂L

∂ai
Dtai

= −divx(u)

(
Ku+MDtα+ PDtai − ρ

∂L

∂ρ

)
+ u · ∇x

(
ρ
∂L

∂ρ
− L

)
.

Using the definition (50) of E , it gives

DtE = −divx(u)

(
E + L− ρ

∂L

∂ρ

)
+ u · ∇xL

∗,ρ

= −divx(u) (E −∇xL
∗,ρ) + u · ∇xL

∗,ρ,
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which coincides with (52). Now if E is supposed to be convex with respect to the
variables (ρ,K,M,P, α, ai, s, s1, s2, y), then it is a Lax entropy of the system which
can be symmetrized in the sense of Godunov-Mock. □

The convexity constraint on the E is quite restrictive since it is not clear the E
is strictly convex, since Lpot(B) = ρe(B̃) is not necessarily strictly convex.

Example 4. Following on the Example 3, if one considers that the fluid phases fol-
low stiffened gas laws (see Example 1) and the interface a Katayama-Guggenheim-
type equation (see Example 2), then the energy E(B) is given by equation (51) with

the kinetic contribution Lkin given in (28) and Lpot = ρe(B̃) with e(B̃) given in
(26) and in Example 3. It reads

E(B) =
1

2
ρ|u|2 + m

2
|Dtα|2 +

ν

2
|Dtai|2

+ ρy

[
(γ1 − 1)

(
α

ρy

)−γ1

exp

(
s1 − s0,1

cv,1

)
− π1

]

+ ρ(1− y)

[
(γ2 − 1)

(
1− α

ρ(1− y)

)−γ2

exp

(
s2 − s0,2

cv,2

)
− π2

]

+ ai

[
Tc

ρ(s− ys1 − (1− y)s2)

ai

−γ0(κ− 1)

(
Tc

γ0κ

ρ(s− ys1 − (1− y)s2)

ai

) κ
κ−1

]
.

4.1. Extended final set. In this paragraph, we present the final set of equations
using the Lagrangian functional in equation (30).

4.1.1. Momentum equation. By the definition (40), the Legendre transform of L
with respect to the density L∗,ρ is

(53) L∗,ρ(B) = −
(m
2
|Dtα|2 +

ν

2
|Dtai|2 + p

)
,

where

(54) p = αp1 + (1− α)p2 − aiγi,

is the fluid-interface pressure derived first in (22). Here one uses p1 := p1

(
α
yρ , s1

)
and p2 := p2

(
1−α

(1−y)ρ , s2

)
. Then the equation for K = ∂L/∂u = ρu gives the

momentum equation, namely

∂t(ρu) + divx(ρu
⊤u) +∇x

(
p+

m

2
|Dtα|2 +

ν

2
|Dtai|2

)
= 0.

This equation is similar to the one obtained in [11] or [8], except that, in this
latter reference, the pressure term includes ∇xα. When the small-scale terms Dtα
and Dtai are neglected, the equation flux reduces to the momentum flux derived
in [30] for bubbly flows using an homogenization approach. The pressure term p
arises from the potential energy Lpot which defines the pressure in the momentum
equation.
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4.1.2. Evolution equations on α and ai. Since M = mDtα and P = νDtai, the
equations on M and P involve second order derivatives in time on α and ai respec-
tively. Using the definition (30) of L, and relations (11)-(12), direct computations
give

(55)
∂L

∂α
= p1 − p2,

∂L

∂ai
= γi,

which lead to

(56)

{
∂t(Dtα) + divx(uDtα) =

p1−p2

m ,

∂t(Dtai) + divx(uDtai) =
γi

ν .

Following [11, 8], the approach is to decompose these second-order equations
into a pair of two first-order time derivative equations by introducing additional
unknowns.

Concerning the equation for M = mDtα, we fix

(57) Dtα =
ρyw√
m

,

where w is a new unknown. Then it holds

(58)

{
∂tα+ u · ∇xα = ρyw√

m
,

∂tw + u · ∇xw = 1√
mρy

(p2 − p1).

Doing so for the equation for P = νDtai, we introduce the unknown n, which
satisfies

(59) Dtai =
ρyn√
ν
,

and it yields

(60)

{
∂tai + u · ∇xai =

ρyn√
ν
,

∂tn+ u · ∇xn = γi√
νρy

.

According to [8, 6, 10], the equations for the quantities w and n, as defined here,
correspond to small-scale momentum equations. In this context, the equations for
α and ai link the small scales and the large scales.

4.1.3. Energy equations. The transport equations for the specific entropies are not
practical, particularly for numerical computations. Therefore, we replace them with
energy equations, using the Gibbs relations given in Section 2.

The total energy equation E = Lkin + Lpot has already been given in (52), see
Proposition 3, and its developed form reads

(61) ∂tE + divx((E + p)u) = 0,

where p refers to the fluid-interface pressure (54).
For sake of completness, we provide the phasic (nonconservative) internal energy

equations which read, for k = 1, 2,

(62)
∂t

(
αkρk

(
ek +

|u|2

2

))
+ divx

((
αkρk

(
ek +

|u|2

2

)
+ αkpk

)
u

)
= αkpkdivxu− yku · ∇xp̃− pk

ρyw√
m

,

where p̃ = p+ m
2 |Dtα|2 + ν

2 |Dtai|2.
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Now using the transport equations of the specific entropies (32) and the mass
conservation equations (31), it can be deduced that the interfacial entropy satisfies

(63) ∂t(aisi) + divx(aisiu) = 0.

Then combining (13) and (11) leads to the following interfacial energy evolution
equation

(64) ∂t(aiei) + divx(aieiu)− aiγi∇x · u = γi
ρyn√
ν
.

4.1.4. Summary. Using the definitions (57) and (59) the final set of equations reads

(65)



∂tρ+ divx(ρu) = 0,

∂t(ρy) + divx(ρyu) = 0,

∂t(ρu) + divx
(
ρu⊤u+

(
p+ m

2 (ρyw)
2 + ν

2 (ρyn)
2
)
Id
)
= 0,

∂tα+ u · ∇xα = ρyw√
m
,

∂tai + u · ∇xai =
ρyn√

ν
,

∂tw + u · ∇xw = 1√
mρy

(p1 − p2),

∂tn+ u · ∇xn = γi√
νρy

,

Dts = Dts1 = Dts2 = 0.

4.2. Hyperbolicity. To finish we investigate the eigenstructure of the system (65),
focusing on its one-dimensional version (with velocity u).

For that purpose, let consider the vector B̂ = (y, α, ai, w, n, s, s1, s2)
⊤ ∈ R8,

(ρ, u, B̂) ∈ R+ ×R×R8 and write the system (65) in the following quasilinear form

(66) ∂t

ρ
u

B̂

+C(ρ, u, B̂)∂x

ρ
u

B̂

 = R,

where R = (0, 0, 0, ρyw√
m
, ρyn√

ν
, 1√

mρy
(p1 − p2),

γi√
νρy

, 0, 0, 0)⊤ ∈ R10, and the matrix

C is given by

(67) C(ρ, u, B̂) =

 u ρ 01×8
p̂
∂ρ u 1

ρ∇B̂p̂

08×1 08×1 uI8×8

 ,

with

p̂(B̂) = αp1

(
α

yρ
, s1

)
+ (1− α)p2

(
1− α

(1− y)ρ
, s2

)
− aiγi

+
m

2
(ρyw)2 +

ν

2
(ρyn)2.

The eigenvalues of C are

(68) λ1,2 = u± ρ
√
yc21 + (1− y)c22 +m(yw)2 + ν(yn)2, λ3,...,10 = u,

where c2k = ∂pk

∂ρk
(ρk, sk) is the speed of sound of the phase k = 1, 2. The associated

right eigenvectors are the following
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• Eigenvectors associated to the multiple eigenvalue λ3,...,10 = u:(
−1

ρ

∂p̂

∂y

(
∂p̂

∂ρ

)−1

, 0, 1, 0, 0, 0, 0, 0, 0, 0

)⊤

,

(
−1

ρ

∂p̂

∂α

(
∂p̂

∂ρ

)−1

, 0, 0, 1, 0, 0, 0, 0, 0, 0

)⊤

,

(
−1

ρ

∂p̂

∂ai

(
∂p̂

∂ρ

)−1

, 0, 0, 0, 1, 0, 0, 0, 0, 0

)⊤

,

(
−1

ρ

∂p̂

∂w

(
∂p̂

∂ρ

)−1

, 0, 0, 0, 0, 1, 0, 0, 0, 0

)⊤

,

(
−1

ρ

∂p̂

∂n

(
∂p̂

∂ρ

)−1

, 0, 0, 0, 0, 0, 1, 0, 0, 0

)⊤

,

(
−1

ρ

∂p̂

∂s

(
∂p̂

∂ρ

)−1

, 0, 0, 0, 0, 0, 0, 1, 0, 0

)⊤

,

(
−1

ρ

∂p̂

∂s1

(
∂p̂

∂ρ

)−1

, 0, 0, 0, 0, 0, 0, 0, 1, 0

)⊤

,

(
−1

ρ

∂p̂

∂s2

(
∂p̂

∂ρ

)−1

, 0, 0, 0, 0, 0, 0, 0, 0, 1

)⊤

,

• Eigenvector associated to λ1:√ρ

(
∂p̂

∂ρ

)−1

, 1, 0, 0, 0, 0, 0, 0, 0, 0

⊤

,

• Eigenvector associated to λ2:−

√
ρ

(
∂p̂

∂ρ

)−1

, 1, 0, 0, 0, 0, 0, 0, 0, 0

⊤

.

All the eigenvalues are real and the right eigenvectors of C constitute a basis of
R10. This proves again the hyperbolicity of the system.

As mentioned in Remark 2, the stationary action principle describes only re-
versible processes. Therefore, relaxation effects must be introduced a posteriori in
accordance with the second principle. For example, one may use source terms, as
presented in [20] or [10], to model damping due to bubble pulsation. Alternatively,
dissipative phase transition source terms can be designed using the framework in
Section 2.3, ensuring consistency with the thermodynamic equilibrium outlined in
Proposition 2.

Acknowledgements. This work has received the financial support from the
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