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This paper addresses the derivation of a two-phase flow model accounting for surface tension effects, by means of the Stationary Action Principle (SAP). The Lagrangian functional, defining the Action, is composed of a kinetic energy, accounting for interface feature, and a potential energy. The key element of the model lies on the assumption that the interface separating the two phases admits its own internal energy, satisfying a Gibbs form including both surface tension and interfacial area. Thus surface tension is taken into account both in the potential energy and the kinetic one which define the Lagrangian functional. Applying the SAP allows to build a set of partial differential equations modelling the dynamics of the two-phase flow. It includes evolution equations of the volume fraction and the interfacial area, accounting for mechanical relaxation terms. The final model is shown to be well posed (hyperbolicity, Lax entropy).

Introduction

The modelling of compressible multiphase flows have been the topic of a large literature over the past decades, notably for practical applications such as nuclear safety of pressurized water reactor. In the context of the loss of coolant accident for instance, the liquid water refrigerant is submitted to high pressure and temperature condition, so that a break in the refrigerant circuit could lead to the appearance of vapor and induce shock and phase transition waves [START_REF] Bartak | A study of the rapid depressurization of hot water and the dynamics of vapour bubble generation in superheated water[END_REF]. Hence the question is not only to capture the wave structure but also to get informations on the different exchanges occuring at the liquid-vapor interface.

These transfers depend strongly on the area of the interfaces, even when focusing on the large scale description. Several approaches have been proposed to establish the evolution of the interfacial area, depending mostly of the scale of description. When focusing on polydisperse flows, with many inclusions, bubbles or droplets, the modelling of the bubbles pulsation requires to keep a small scale description. For instance in [START_REF] Lhuillier | Evolution of the volumetric interfacial area in two-phase mixtures[END_REF], the author proposes a transport equation based on heuristics of particulate suspensions, assuming that both phases evolve with distinct velocities. Then focusing on the small scale, he proposes a second transport equation while studying the fluctuations of a small interface element. Following this approach several models have been proposed in a serie of works [START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF][START_REF] Cordesse | A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables[END_REF][START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF][START_REF] Battista | Towards a unified eulerian modeling framework for two-phase flows : geometrical small scale phenomena and associated flexible computing strategies[END_REF], considering the one-velocity framework. The set of bubbles/droplets is described by a probability density function, which satisfies the so-called Williams-Boltzmann equation. The distribution function describes then the probability of presence of a bubble at a certain time and position, which evolves with a given velocity. It also takes into account topological properties of the bubble/droplet such as its volume or radius. In a recent contribution [START_REF] Loison | Two-scale modelling of two-phase flows based on the Stationary Action Principle and a Geometric Method Of Moments[END_REF], the authors propose to make the density distribution depend on topological informations of the interface as well, considering in particular the level set of the interface and its local mean curvature. Doing so they manage to get informations on the interfacial area and provide a full partial differential equations (PDEs) model for the mixture dynamics, by means of Stationary Action Principle (SAP) applied to a given Lagrangian functional. Note that the model they get enters the class of averaged models, in the sense that it does not provide any information on the topology of the interface, which is solely indicated by evolution equations of 1) the void fraction of one of the two phases and 2) the interfacial area.

In the application we have in mind, a precise description of the interface topology is not mandatory. The high heterogeneity of the flows, the strong temperature and pressure conditions suggest to consider averaged models where the interface is depicted implicitly. However the interface between the two phases is the locus of all the thermodynamical exchanges, and the relaxation towards the thermodynamical depends strongly on this area, especially the relaxation time scales. This is the approach adopted in [START_REF] Boukili | Relaxation and simulation of a barotropic three-phase flow model[END_REF] where a convection equation of the interfacial area is coupled to a barotropic three-phase flow model of Baer-Nunziato type. The equation is endowed with a source term which cancels as soon as the Weber number (ratio of the momentum over the surface tension) is greater than a given threshold or when the relative velocity of the two phases is null. The interfacial area equation is inspired by the modelling proposed in [START_REF] Meignen | The challenge of modeling fuel-coolant interaction: Part ii -steam explosion[END_REF] for steam explosion simulations.

In the latter references the surface tension effect solely depends on geometrical features which define the kinetic energy of the bulk and the interface. In all the proposed derivations, the thermodynamic behaviour of the interface is not considered, and in particular, the surface tension does not affect the potential energy of the system. This is precisely this point of vue that we are developing here.

The derivation of the averaged fluid-interface model is obtained adapting the Stationary Action Principle as detailled in [START_REF] Burtea | Hamilton's principle of stationary action in multiphase flow modeling[END_REF]. The core of our model relies on the rigorous derivation of the potential energy involved in the Lagrangian functional, while the kinetic energy accounts for smale scales, in the spirit of [START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF].

The originality of our approach is to consider the surface tension not only as a dynamical feature but also a thermodynamics one. To do so we come back to classic extensive thermodynamics in the sense of Gibbs [START_REF] Callen | Thermodynamics and an introduction to thermostatistics[END_REF][START_REF] Kondepudi | Modern Thermodynamics[END_REF] to described as rigorously as possible the thermodynamical behaviour of the fluid-interface system. In the case of two phase flows, this methodology has been used for instance in [START_REF] Helluy | Relaxation models of phase transition flows[END_REF][START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF][START_REF] Faccanoni | Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium[END_REF][START_REF] Faccanoni | Admissible equations of state for immiscible and miscible mixtures[END_REF] and in the quoted references, leading to thermodynamically consistent multiphase flow models (for immiscible and miscible mixtures). The novelty here relies in the fact that the interface is assumed to be described by an extensive internal energy function, assuming that the interface has no mass, occupies no volume but is characterized by its temperature and its (interfacial) area. Thus the interface is entirely described by its internal energy which satisfies a Gibbs form involving not only temperature/entropy but also surface tension/interfacial area variations. Note that this characterization goes back to [START_REF] Landau | A Course of theoretical physics[END_REF][START_REF] Kondepudi | Modern Thermodynamics[END_REF] and more recently in [START_REF] Smaï | A thermodynamic formulation for multiphase compositional flows in porous media[END_REF] to model (multiphase) flows in porous media.

The paper is organized as follows. The Section 2 is devoted to the thermodynamical modelling focusing on the extensive and intensive descriptions of the two phases and the interface. The internal energy of the fluid-system is defined and the associated mixture temperature, pressure and chemical potential as well. Besides the initial setting ensures that the interfacial area and the surface tension appear naturally in the pressure. When focusing on the characterization of the thermodynamical equilibrium, some interessant properties arise, especially the fact that the mechanical equilibrium is depicted by a differential form involving the volume fraction and the interfacial area.

In Section 3 we make use of the fluid-interface internal energy to define the potential energy of the Lagrangian functional defining the Action. A review of the so-called small scale kinetic energies available in the literature is presented and motivates the choice of our kinetic energy. Then the SAP leads to the obtention of a set of PDEs describing the dynamics of the fluid-interface system. Since the SAP qualifies reversible processes, it guarantees the conservations of the momentum and the total energy and the hyperbolicity and symmetrization property of the model. Such properties are given in Section 4.

Thermodynamical modelling

We consider the fluid-interface system with volume V , mass M and entropy S. It is composed of the two immiscible fluids or phases k = 1, 2 with indices k = 1, 2, separated by an interface, with index i. At each point of this system, local equilibrium is reached so that each part of the system is depicted by its own Equation of State (EoS). In the present section are listed the notations and assumptions for the fluid phases and the interface, both in extensive and intensive variables. Then, the second law of thermodynamics allows us to characterize the fluid-interface internal energy and the thermodynamical equilibrium of the system. 2.1. Fluid phases. A phase k = 1, 2 of volume V k ≥ 0, entropy S k ≥ 0 and mass M k ≥ 0 is entirely described by its extensive internal energy function E k which complies with the following assumptions:

• (M k , V k , S k ) → E k (M k , V k , S k ) is C 2 on (R + ) 3 , • (M k , V k , S k ) → E k (M k , V k , S k ) is convex, • ∀λ ∈ R * + , ∀(M k , V k , S k ) ∈ (R + ) 3 , E k (λM k , λV k , λS k ) = λE k (M k , V k , S k
). The last assumption corresponds to the extensive character of the internal energy function : when doubling the volume, mass and entropy of the system, the extensive internal energy is doubled as well. This homogeneity property implies that the extensive internal energy E k is convex but not strictly convex.

Some intensive parameters are defined as partial derivatives of E k :

• the pressure p k (M k , V k , S k ) = -∂E k /∂V k (M k , V k , S k ), • the temperature T k (M k , V k , S k ) = ∂E k /∂S k (M k , V k , S k ) > 0, • the chemical potential µ k (M k , V k , S k ) = ∂E k /∂M k (M k , V k , S k ),
leading to the total differential form (1)

dE k = T k dS k -p k dV k + µ k dM k ,
referred as extensive (phasic) Gibbs form in the sequel. Since the internal energy is extensive, its satisfies the Euler relation

(2) E k = T k S k -p k V k + µ k M k .
Some intensive variables and potentials can be defined while considering the extensive ones relatively to the mass of the phase k. We introduce the specific volume τ k = V k /M k and the specific entropy s k = S k /M k of the phase k = 1, 2. Then the specific internal energy e k (τ k , s k ) corresponds to a restriction of the extensive energy:

(3)

e k (τ k , s k ) = E k (1, τ k , s k ).
The phasic pressure and temperature can be defined as functions of the intensive variables as well (while keeping the same notations):

(4) p k (τ k , s k ) = -∂e k /∂τ k (τ k , s k ), T k (τ k , s k ) = ∂e k /∂s k (τ k , s k ).
The intensive potentials comply thus with an intensive differential (phasic) Gibbs form:

(5)

de k = T k ds k -p k dτ k .
Note that scaling the extensive Euler relation [START_REF] Bedford | Hamilton's principle in continuum mechanics[END_REF] with respect to the mass M k gives another definition of the chemical potential µ k , which turns to be the Legendre transform of the internal energy e k :

(6)

µ k = e k -T k s k + p k τ k .
2.2. The interface. The interface separating the two phases is supposed to be sharp and to have no volume and no mass. Adopting an extensive description, it is thus characterized by its energy E i , function of its entropy S i and its area A i .

According to the first principle of thermodynamics, it holds

(7) dE i = T i dS i + γ i dA i ,
where γ i (S i A i ) is the surface tension and T i (S i , A i ) the interfacial temperature. The internal energy E i being an extensive quantity, its complies with the Euler relation ( 8)

E i = T i S i + γ i A i ,
which yields, after differentiating and subtracting [START_REF] Cordesse | A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables[END_REF], the so-called Gibbs-Duhem relation

(9) 0 = S i dT i + A i dγ i .
Since the interface has no mass, a way to deduce intensive potentials is to scale with respect to the volume V of the fluid-interface system. This way we introduce the interfacial density area (10)

a i = A i /V,
while scaling the area A i by the volume V of the mixture. Now, scaling the extensive variables with respect to the interface area A i defines the interfacial intensive entropy s i = S i /A i and the interfacial intensive energy e i = E i /A i . Scaling the Euler relation [START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF] with respect to the volume V of the mixture, one deduces [START_REF] Drumheller | A thermomechanical theory for reacting immiscible mixtures[END_REF] e i = T i s i + γ i , and doing so with the interfacial Gibbs relation [START_REF] Cordesse | A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables[END_REF] gives

(12) e ′ i (s i ) = T i , and (13) d(a i e i ) = T i d(a i s i ) + γ i da i .
By the definition (10) of the interfacial density area a i , observe that the relation ( 9) gives ( 14)

γ ′ i (T i ) = -s i (T i )
. This derivative relation is not often mentioned in the literature, but it can be found in [START_REF] Landau | A Course of theoretical physics[END_REF][START_REF] Kondepudi | Modern Thermodynamics[END_REF] for instance.

2.3. Thermodynamical equilibrium. We now consider the fluid system with volume V , mass M and entropy S. The two immiscible phases k = 1, 2 are separated by the interface of area A i . Accounting for the constitutive laws of the two fluid phases and the interface, we now turn to the characterization of thermodynamical equilibrium of the whole system. For a given state (M, V, S, A i ) of the system, different modelling constraints have to be set. As mentioned before, the two phases are supposed to be immiscible and that no vacuum appears, such that the total volume is the sum of the phasic volumes

(15) V = V 1 + V 2 ,
since the interface has no volume. As the mass conservation of the system is concerned, it holds ( 16)

M = M 1 + M 2 ,
since the interface has no mass and only mass transfer can occur between the two phases (and not with the interface). Finally the homogeneity property of the system entropy states that

(17) S = S 1 + S 2 + S i .
It is convenient to provide the intensive counterpart of these constraints while introducing the fractions of presence of each phase, namely the volume fraction

α k = V k /V ∈ [0, 1], the mass fraction y k = M k /M ∈ [0, 1
] and the entropy fraction

z k = S k /S ∈ [0, 1], such that (18) y k τ k = α k τ, y k s k = z k s.
Then the intensive counterpart of the extensive constraints reads ( 19)

     1 = α 1 + α 2 , 1 = y 1 + y 2 , 1 = z 1 + z 2 + z i ,
where z i = S i /S ∈ [0, 1] stands for the entropy fraction of the interface.

We now turn to the definition of the extensive energy of the whole system. It corresponds to the sum of the energies of each part, namely ( 20)

E(M, V, S, A i ) = E 1 (M 1 , V 1 , S 1 ) + E 2 (M 2 , V 2 , S 2 ) + E i (S i , A i ).
Using the fractions definitions, the total derivative of

E reads dE = 2 k=1 T k dS k -p k dV k + µ k dM k + T i dS i + γ i dA i = 2 k=1 T k z k dS + ST k dz k -p k α k dV k -V p k dα k +y k µ k dM k + M µ k dy k + T i z i dS + ST i dz i + γ i a i dV + γ i V da i .
Reorganizing the terms and using the intensive constraints [START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF], one obtains Proposition 1. The extensive energy satisfies

(21) dE = (z 1 T 1 + z 2 T 2 + z i T i )dS -(α 1 p 1 + α 2 p 2 -a i γ i )dV + y 1 (µ 1 -µ 2 )dM + S((T 1 -T i )dz 1 + (T 2 -T i )dz 2 ) -V ((p 1 -p 2 )dα 1 -γ i da i ) + M (µ 1 -µ 2 )dy 1 .
As a consequence, the temperature, pressure and chemical potential of the fluidinterface system have natural definitions in terms of the phasic and interfacial quantities:

(22)      T := z 1 T 1 + z 2 T 2 + z i T i , p := α 1 p 1 + α 2 p 2 -a i γ i , µ := y 1 µ 1 + y 2 µ 2 .
In absence of the surface tension, the mixture pressure coincides with the mixture pressure classic bi-fluid or two-phase models [START_REF] Kapila | Two-phase modelling of ddt in granular materials: reduced equations[END_REF]. When accounting for surface tension, the mixture pressure is exactly the one of the two-phase flow model, derived in [START_REF] Hillairet | Analysis of compressible bubbly flows. Part II: Derivation of a macroscopic model[END_REF] by homogenization techniques. This pressure also appears in jump conditions of Euler-Korteweg system, see [START_REF] Jaegle | A multiscale method for compressible liquid-vapor flow with surface tension[END_REF]. The pressure we get is also close to the pressure term derived in [START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF][START_REF] Cordesse | A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables[END_REF] in the context of two-phase flows with surface tension.

For a given state (M, V, E, A i ), and according to the second principle of thermodynamics, the thermodynamical equilibrium corresponds to a minimum of the energy E defined in [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF] under the extensive constraints ( 15)- [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF]. Thus, in the interior of the constraint set, the derivatives of E with respect to independant variables cancel, leading to a characterization of the thermodynamical equilibrium in terms of phasic potentials.

Proposition 2. According to the differential form [START_REF] Helluy | Pressure laws and fast Legendre transform[END_REF], the thermodynamical equilibrium is characterized by

(23)      µ 1 = µ 2 , T 1 = T 2 = T i , γ i da i -(p 1 -p 2 )dα 1 = 0.
The two first equalities of ( 23) are classic: they denote the thermal equilibrium in the fluid-interface system and the mass transfer between the two fluid phases. The last (differential) relation represents the mechanical equilibrium, and brings out some comments:

• As γ i = 0, that is for a planar interface, one recovers that the mechanical equilibrium corresponds to the saturation of the phasic pressures p 1 = p 2 (see for instance [START_REF] Callen | Thermodynamics and an introduction to thermostatistics[END_REF]); • Assume that the phase 1 occupies a spherical bubble of radius R. Then its volume is V 1 = 4πR 3 /3 and the interfacial area is A i = 4πR 2 . On the other hand the differential relation in [START_REF] Hillairet | Analysis of compressible bubbly flows. Part II: Derivation of a macroscopic model[END_REF] gives

γd A i V -(p 1 -p 2 )d V 1 V = 0
Expressing this latter formula in terms of the radius R, it leads to the Young-Laplace law

p 1 -p 2 = 2γ i R .
Classically the Young-Laplace law involves the mean curvature which corresponds here to the inverse of the radius. When the radius tends to +∞, the surface becomes planar and one recovers the equality of the phasic pressures.

2.4. Another characterization of the thermodynamical equilibrium using free energies. In the context of two-phase flows in porous media, Smaï proposed in [START_REF] Smaï | A thermodynamic formulation for multiphase compositional flows in porous media[END_REF] to minimize the free energy of the mixture instead of minimizing the energy. The advantage is that the free energy of the mixture (also called canonical grand potential in the porous media framework) is solely a function of the mixture temperature and the phasic pressures.

In the extensive framework, the free energy Ω k of the phase k = 1, 2 is defined as the (total) Legendre transform of the energy E k :

(24) Ω k = E k -T k S k -µ k M k .
Differentiating [START_REF] Jaegle | A multiscale method for compressible liquid-vapor flow with surface tension[END_REF] and using the Gibbs relation ( 1) give ( 25)

dΩ k = -p k dV k -S k dT k -M k dµ k .
In order to introduce intensive potential, it is convenient to scale with respect to the volume V k to define the intensive (volumic) free energy ω k = Ω k /V k . Then using the definitions [START_REF] Geurst | Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures[END_REF], it holds

α k ω k = e k τ k α k -T k s k τ k α k - µ k τ k α k ,
from which one deduces the following differential form

(26) d(α k ω k ) = -p k dα k - α k s k τ k dT k - α k τ k dµ k ,
using the intensive relations ( 5) and ( 6).

As the interfacial potentials are concerned, the free energy is defined as a partial Legendre transform of the energy E i , namely ( 27)

Ω i = E i -T i S i .
Using the interfacial Gibbs relation [START_REF] Cordesse | A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables[END_REF], it yields ( 28)

dΩ i = -S i dT i + γ i dA i .
The appropriate intensive free energy is deduced by scaling with respect to the interfacial area:

ω i = Ω i /A i .
Hence the intensive free energy reads ( 29)

a i ω i = a i e i -T i a i s i , whose differential is (30) d(a i ω i ) = a i s i dT i + γ i da i ,
according to [START_REF] Faccanoni | Admissible equations of state for immiscible and miscible mixtures[END_REF].

For the fluid-interface system, the extensive free energy corresponds to the sum of the phasic and interfacial free energies

Ω = Ω 1 + Ω 2 + Ω i , whose intensive formulation is (31) ω = α 1 ω 1 + α 2 ω 2 + a i ω i .
According to the differentials ( 26) and [START_REF] Loison | Two-scale modelling of two-phase flows based on the Stationary Action Principle and a Geometric Method Of Moments[END_REF], it yields

(32) dω = -(p 1 -p 2 )dα 1 + γ i da i -α 1 dp 1 -α 2 dp 2 + a i s i dT i , since α 1 + α 2 = 1.
At thermodynamical equilibrium, the phasic and interfacial potentials agree with [START_REF] Hillairet | Analysis of compressible bubbly flows. Part II: Derivation of a macroscopic model[END_REF]. As a consequence the thermodynamical equilibrium has to comply with an equation of state compatible with

(33) dω = -α 1 dp 1 -α 2 dp 2 + as i dT.
This differential implies that the equation of state of the fluid-interface system can be expressed in term ω, seen as a function of T and p k , k = 1, 2, such that

as i = ∂ω ∂T (T, p 1 , p 2 ), α k = - ∂ω ∂p k (T, p 1 , p 2 ).
The idea of Smaï is to take advantage of this alternative description of the thermodynamical equilibrium to get rid of the complex description of the interface: from the equation of state ω(T, p 1 , p 2 ), one recovers all the information relative to the interface, without explicitly computing the interfacial area. This approach is not developed here since we precisely want to derive an evolution equation of the interfacial area.

2.4.1. Potential energy candidate. We can now turn to the definition of the potential energy which will be used in the Lagrangian formulation. A natural proposition would be to consider the intensive mixture internal energy when scaling the extensive energy [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF] by the total mass M . Then for a given intensive state (τ, s, a i ), accounting for the intensive constraints [START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF], the intensive energy would read (34) e(τ, s, a i ,

(y k ) k , (α k ) k , (z k ) k , z i ) = y 1 e 1 (τ 1 , s 1 ) + y 2 (τ 2 , s 2 ) + a i τ e i z i a s τ ,
with notations (18) of the phasic quantities. However it turns out that this choice of variables is not appropriate. Indeed it is not clear how the entropy fractions z k evolve along trajectories when applying the Stationary Action Principle whereas specific entropies are conserved along trajectories, according to [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF]. Hence it is more convenient to express the intensive fluid-interface internal energy as a function of the intensive entropies s and s k , k = 1, 2 rather than using the entropy fractions z k .

In the sequel, we choose to express the intensive energy as a function of (35) B = {ρ, s, s 1 , s 2 , a i , y, α}, where ρ = 1/τ denotes the mixture density and y := y 1 and α := α 1 . It reads then ( 36)

e( B) =ye 1 α yρ , s 1 + (1 -y)e 2 1 -α (1 -y)ρ , s 2 + a i ρ e i s -ys 1 -(1 -y)s 2 a i ρ .
Observe that one makes use of the extensive relation [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF] on the entropies to express the interfacial entropy s i as a function of s, s 1 and s 2 , namely (37)

s = ys 1 + (1 -y)s 2 + a i ρ s i .
Remark 1. In [6, paragraph 2.1.3.3], the author points out the importance of the choice of variables on which the Lagrangian functional depends. This is also emphasized in the work of Gavrilyuk [START_REF] Gavrilyuk | uncertainty´principle in two fluid-mechanics[END_REF]. Indeed if specific entropies are convenient variables for computations, the fact that they are conserved along trajectories prohibits any interaction between the phases. The fluid-interface entropy will also be conserved since only reversible processes can be depicted by the SAP. However it is possible to add relaxation source terms a posteriori, in agreement with the second law of thermodynamics. See [9, Paragraph 3.5] for a presentation of the method when dissipation is due to pulsating behaviour of bubbles in two-phase flows.

Derivation of the evolution equations by means of Stationary Action Principle

Accounting for the previous characterization of the thermodynamical equilibrium, we now turn to the modelling of the fluid dynamics. The objective is to derive the Euler-type equations satisfied by the fluid-interface system using the Stationary Action Principle, following the serie of works [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Drui | Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d'une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle[END_REF][START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF][START_REF] Cordesse | A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables[END_REF][START_REF] Battista | Towards a unified eulerian modeling framework for two-phase flows : geometrical small scale phenomena and associated flexible computing strategies[END_REF][START_REF] Loison | Two-scale modelling of two-phase flows based on the Stationary Action Principle and a Geometric Method Of Moments[END_REF].

We focus on homogeneous two-phase flows, in the sense that the two phases evolve with the same velocity field u ∈ R 3 . Note that considering distinct velocities is possible as in [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF].

The variational approach and the Hamilton's principle of stationary action rely on the definition of an appropriate Lagrangian L. This Lagrangian is the difference of a kinetic energy and a potential energy. The potential energy we propose to consider has been derived in the previous section, see (36). As far as the kinetic one is concerned, a small review of recent models is given in Section 3.1, focusing on the so-called two-scale kinetic modelling brought forward in [START_REF] Drui | Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d'une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle[END_REF][START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF].

In Section 3.2 are stated the main lines of the SAP as well as the additional assumptions we make (total and partial mass conservations for instance). As a result is presented the final set of equations, in its rough form.

3.1.

A non-exhaustive review of kinetic energy. Recent references takle the derivation of the kinetic energy, motivated by the initial works of Gavrilyuk and coauthors [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF]. In the latter propositions, the kinetic energy L kin is composed of a classic bulk energy linked to the translational motion of the fluid and a small scale contribution T pulse . For instance in [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF], considering distinct velocities for both the phases k = 1, 2 and the interface, it yields

L kin = 2 k=1 ρ k |u k | 2 2 + T pulse ,
where u k stands for the velocity field of the phase k and

T pulse = m 2 D i α Dt 2 ,
where D i • Dt is the material derivative associated to the velocity of the interface u i ,

namely D i • Dt = ∂ t • +u i • ∇ x •.
According to the authors, the second term is a pulsation kinetic energy, where the coefficient m and the interfacial velocity u i are given by appropriate closure laws. Considering a one-velocity model, Drui proposes in [START_REF] Drui | Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d'une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle[END_REF] to consider T pulse = 1 2 ν(α)|D t α| 2 . The function ν corresponds to the inertia associated with the motion of the interface which depends on the volume fraction α only. Another improvement is introduced by Cordesse [START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF][START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF], where the function ν is a function of the interfacial area, namely

T pulse = 1 2 m |D t α| 2 a 2 i .
Here and in the sequel, the material derivative is defined using the common velocity field u

D t • = ∂ t • +u • ∇ x • .
This last expression of T pulse is derived from geometrical considerations: when the interface is subjected to a small displacement, the interfacial area a i and the volume fraction α vary as well, and the relationships between these quantities involve the local curvature of the interface and the surface tension parameter, see [START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF]Chapter 3] for more details. Finally in [START_REF] Battista | Towards a unified eulerian modeling framework for two-phase flows : geometrical small scale phenomena and associated flexible computing strategies[END_REF] the function ν is no longer an explicit function of α or a i . The pulsating energy reads

T pulse = 1 2 ν(α, a i )|D t h| 2 ,
where h is the local deformation of the interface, which satisfies differential relations involving the interfacial area, the local curvature and the volume fraction. Among all the propositions, what is mandatory is to make the kinetic energy L kin depends on D t α, otherwise there will we be no hope to get an evolution equation on α. For the same reason and because we want an evolution equation of the interfacial area density, we propose to consider also a term involving D t a i :

(38) L kin = 1 2 ρ|u| 2 + m 2 |D t α| 2 + ν 2 |D t a i | 2 ,
where m and ν are constants (with the appropriate dimensions, namely m[kg • m -1 ] and ν[kg • m]). Doing so ensures to get an evolution equation of the interfacial area density, without considering any additional quantities as local curvature or interface displacement as in [START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF][START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF].

3.2. The Lagrangian functional and additional assumptions. We introduce the vector of variables B (39) B := {ρ, s, s 1 , s 2 , a i , y, α, u, D t α, D t a i }, which corresponds to the vector B, defined in (35), completed by the variables involved in the kinetic energy L kin , that are u, D t α and D t a i . The Lagrangian L, function of B, is the difference of the kinetic and the potential contribution

(40) L(B) = L kin -L pot ,
where L kin (B) is defined in (38) and L pot (B) = ρe( B), with e( B) defined in (36). Before going further with the variational method, we make additional assumptions that govern the fluid-interface system. First we assume masses conservation, in the sense that (41) ∂ t ρ + div x (ρu) = 0, D t y = 0.

One emphasizes that although the modelling presented in Section 2.3 allows mass exchange between the two phases, it is not the case here. This is due to the fact that SAP is valid for reversible processes only. For the same reasons, we also assume that the specific entropies are conserved along trajectories

(42) D t s = 0, D t s k = 0, k = 1, 2,
following [START_REF] Gouin | Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF]. Notice that, since the specific phasic entropies are conserved, the interface intensive entropy (which is relative to the interfacial area A i and not to mass M ) is not conserved along trajectories but satisfies

D t (s i a i τ ) = 0,
that is to say, using extensive variables, s i a i τ = S i /M is constant along trajectories.

3.3.

Variational principle. This paragraph recalls the classic lines of the Stationary Action Principle, whose application to the two-phase flow modeling has been the subjects of numerous works, including [START_REF] Drumheller | A thermomechanical theory for reacting immiscible mixtures[END_REF][START_REF] Bedford | Hamilton's principle in continuum mechanics[END_REF][START_REF] Geurst | Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures[END_REF][START_REF] Gouin | Variational theory of mixtures in continuum mechanics[END_REF][START_REF] Burtea | Hamilton's principle of stationary action in multiphase flow modeling[END_REF]. See also [START_REF] Battista | Towards a unified eulerian modeling framework for two-phase flows : geometrical small scale phenomena and associated flexible computing strategies[END_REF] for a synthetic presentation of the method and an overview of the technic in the two-fluid framework.

Consider a volume ω(t) ∈ R 3 occupied by the fluid-interface system for time

t ∈ [t 1 , t 2 ] and denote Ω = {(t, x) ∈ ×[t 1 , t 2 ] × R d | x ∈ ω(t), t 1 ≤ t ≤ t 2 }.
Following Section 3.2, we assume the flow to be fully characterized by the quantities (t, x) → B and by the constitutive constraints (41)-(42). We now define the Hamiltonian Action as the space-time integral of the Lagrangian functional (40)

(43) A(B) = Ω L(B)(x, t)dxdt,
and apply the Stationary Action principle. If (t, x) → B is a physically relevant transformation of the system, it is the solution of a variational problem leading to a PDE system. The methodology is to consider a family of perturbation (t,

x, ζ) → B ζ of B, parametrized by ζ ∈ [0, 1] such that
• the physical path is obtained when ζ = 0:

B ζ (t, x, ζ = 0) = B(t, x),
• B ζ satisfies the conservation constraints (41) and ( 42)

for all ζ ∈ [0, 1], • B ζ (t, x, ζ) = B(t, x) for (t, x, ζ) ∈ ∂Ω × [0, 1]. The Stationary Action Principle states that B is physically relevant if it is a sta- tionary point of ζ → A(B ζ ), that is (44) dA(B ζ ) dζ (0) = 0.
This stationary condition yields the governing set of PDEs of motion without dissipative process. For b ∈ B, denoting

δ ζ b(t, x) = ∂b ζ ∂ζ |t,x (t, x, ζ = 0) 
a family of infinitesimal transformations, the identity (44) reads

(45) dA(B ζ ) dζ (ζ = 0) = Ω b∈B ∂L ∂b δ ζ bdxdt.
Infinitesimal variations are related through the conservation principles (41) and (42) (see [START_REF] Gavrilyuk | Multiphase flow modeling via hamilton's principle[END_REF] and [START_REF] Burtea | Hamilton's principle of stationary action in multiphase flow modeling[END_REF] for detailed computations)

• variation of density

(46) δρ = -div x (ρδx),
where δx denotes the infinitesimal displacement (t, x) → δx around the physical path, which complies with δx |t=t1 = δx |t=t2 = 0 and δx |∂ω(t) = 0.

• variation of velocity (47) δu = D t (δx) -∇ x u • δx,
• conservation along trajectories of the fluid specific entropies and the mass fraction

(48) δb = -∇ x b • δx, for b ∈ {s, y, z 1 , z 2 }.
We now list all the contributions in (45).

• Density contribution: using the mass conservation (41), one has (49)

Ω ∂L ∂ρ δρdxdt = - Ω ∂L ∂ρ div x (ρδx) dxdt = Ω ρ∇ x ∂L ∂ρ • δx dxdt,
by integration by parts. In order to make the partial Legendre transform of L with respect to ρ (written here as a function of B)

(50) L * ,ρ (B) = ρ ∂L ∂ρ -L(B)
appear, one develops ( 51)

Ω ∂L ∂ρ δρ dxdt = Ω ∇ x ρ ∂L ∂ρ - ∂L ∂ρ ∇ x ρ • δx dxdt = Ω ∇ x ρ ∂L ∂ρ -L + ∇ x L - ∂L ∂ρ ∇ x ρ • δx dxdt = Ω   ∇xL * ,ρ + b∈B b̸ =ρ ∇ x b ∂L ∂b    • δx dxdt.
• Velocity contribution: according to (47), it holds ( 52)

Ω ∂L ∂u δu dxdt = Ω ∂L ∂u (D t (δx) -∇ x u • δx) dxdt.
By definition of the material derivative D t • and using an integration by part, it holds (53)

Ω ∂L ∂u δu dxdt = Ω ∂L ∂u [∂ t (δx) + u • ∇ x (δx) -∇ x u • δx] dxdt = - Ω ∂ t ∂L ∂u + div x u ∂L ∂u + ∂L ∂u ∇ x u • δx dxdt.
• Contributions of conserved quantities along trajectories: using (48), it holds for b ∈ {s, s 1 , s 2 , y}

Ω ∂L ∂b δb dxdt = - Ω ∂L ∂b ∇ x b • δx dxdt. (54) 
• Contributions in α and a i : the variation of the volume fraction α is not subjected to any constraint. Doing so ensures to get an evolution equation on α. Therefore the variation δα, involved with the family of transformations of the medium, is arbitrary. The same holds for the interfacial area density a i . Besides, the fact that they evolve independently will yield separate equations for the volume fraction and the interfacial area density. • Contributions in D t α and D t a i : the variations of D t α (resp. D t a i ) is related to the variation of α (resp. a i ). According to [START_REF] Kokh | Lecture notes on stationary action principle applied to fluid problems[END_REF], it holds, for any functions f and g, it holds (55)

Ω g δ(D t f ) dxdt = - Ω ∂ t g + div x (ug) δf dxdt - Ω [(∂ t g + div x (ug))∇ x f + g∇ x (D t f )] • δx dxdt.
Thus using (55) with g = ∂L ∂(D t α)

=: M and f = D t α gives ( 56)

Ω ∂L ∂(D t α) δ(D t α) dxdt = - Ω (∂ t M + div x (M u))δα dxdt - Ω ((∂ t M + div x (M u))∇ x α + M ∇ x (D t α)) • δx dxdt.
Analogously it holds with g = ∂L ∂(D t a i ) =: P and f = D t a i (57)

Ω ∂L ∂(D t a i ) δ(D t a i ) dxdt = - Ω (∂ t P + div x (P u))δa i dxdt - Ω ((∂ t P + div x (P u))∇ x a i + P ∇ x (D t a i )) • δx dxdt.
Finally gathering (51), ( 53), ( 56) and (57) gives

Ω(0) [A α δα + A ai δa i + A u δx] dxdt = 0.
where (58)

             A α = ∂ t M + div(M u) - ∂L ∂α , with M = ∂L ∂(D t α) , A ai = ∂ t P + div(P u) - ∂L ∂a i , with P = ∂L ∂(D t a i ) , A u = ∂ t K + div(Ku) -∇L * ,ρ , with K = ∂L ∂u .
Note that to express the term C, one makes use of the terms A and B.

Since one assumes the infinitesimal displacement and the variations of volume fraction and interfacial area density to be independent, the SAP applied to the Lagrangian energy L yields the equations of motion given by A α = 0, A ai = 0, A u = 0.

Final system and properties

As a result of the Stationary Action Principle, one obtains the following set of equations describing the time evolution of the fluid-interface system governed by the Lagrangian L. It reads (59)

         ∂ t M + div(M u) - ∂L ∂α = 0, ∂ t P + div(P u) - ∂L ∂a i = 0, ∂ t K + div(Ku) -∇L * ,ρ = 0,
where L * ,ρ the partial Legendre transform of L defined in (50), and it is completed by the mass conservation laws (41) and the entropies evolution equations (42).

Actually the SAP ensures conservation principle (as a consequence of the Noether's theorem, see [START_REF] Burtea | Hamilton's principle of stationary action in multiphase flow modeling[END_REF]). Let E be the partial Legendre transform of the Lagrangian L with respect to the kinetic variables u, D t α and D t a i . It reads Proposition 3 (Hyperbolicity). The energy E, defined by (60), satisfies the additional scalar conservation equation

(62) ∂ t E + div((E -L * ,ρ )u) = 0.
If the energy E(ρ, K, M, P, α, a i , s, s 1 , s 2 , y) is convex, then the system (41)-( 42)-( 59) is hyperbolic and it is symmetrizable.

Proof. Using that E is the partial Legendre transform of the Lagrangian L with respect to the kinetic variables, it holds (dropping the dependency of E and L for readability)

D t E = D t   b∈{u,Dtα,Dtai} b ∂L ∂b -L   = b∈{u,Dtα,Dtai} D t b ∂L ∂b + bD t ∂L ∂b -D t L.
Using the notations K, M and P , given in (58), and the transport of the specific entropies (42) and of the mass fraction (41), it holds

D t E = uD t K + D t αD t M + D t a i D t P - ∂L ∂ρ D t ρ - ∂L ∂α D t α - ∂L ∂a i D t a i .
Then using the evolution equations (59), it yields

D t E = u • (-Kdiv x (u) + ∇ x L * ,ρ ) + D t α -M div x (u) + ∂L ∂α + D t a i -P div x (u) + ∂L ∂a i - ∂L ∂ρ D t ρ - ∂L ∂α D t α - ∂L ∂a i D t a i = -div x (u) Ku + M D t α + P D t a i -ρ ∂L ∂ρ + u • ∇ x ρ ∂L ∂ρ -L .
Using the definition (60) of E, it gives

D t E = -div x (u) E + L -ρ ∂L ∂ρ + u • ∇ x L * ,ρ = -div x (u) (E -∇ x L * ,ρ ) + u • ∇ x L * ,ρ ,
which coincides with (62). Now if E is supposed to be convex with respect to the variables (ρ, K, M, P, α, a i , s, s 1 , s 2 , y), then it is a Lax entropy of the system which can be symmetrized in the sense of Godunov-Mock. □ Note that the sufficient criterion is quite restrictive since the potential energy L pot (B) = ρe( B) is not necessarily strictly convex. 

* ,ρ is (63) L * ,ρ (B) = - m 2 |D t α| 2 + ν 2 |D t a i | 2 + p , with (64) 
p = αp 1 + (1 -α)p 2 -a i γ i ,
is the fluid-interface pressure derived first in [START_REF] Helluy | Relaxation models of phase transition flows[END_REF]. Here one uses p 1 := p 1 α yρ , s 1 and p 2 := p 2 1 -α (1 -y)ρ , s 2 . Then the equation on K = ∂L/∂u = ρu gives the momentum equation, namely

∂ t (ρu) + div x (ρu ⊤ u) + ∇ x p + m 2 |D t α| 2 + ν 2 |D t a i | 2 = 0.
This equation is similar to the one obtained in [START_REF] Drui | Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d'une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle[END_REF] or [START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF], except that, in this latter reference, the pressure term accounts for ∇ x α. When dropping the small scale terms D t α and D t a i , one recovers the momentum flux derived in [START_REF] Hillairet | Analysis of compressible bubbly flows. Part II: Derivation of a macroscopic model[END_REF] for bubbly flows using an homogenization approach. The pressure term p comes from the potential energy L pot which defines the pressure term in the momentum equation. 4.1.2. Evolution equations on α and a i . Since M = mD t α and P = νD t a i , the equations on M and P involve second order derivatives in time on α and a i respectively. Using the definition (40) of L, and relations (11)-( 12), direct computations give (65)

∂L ∂α = p 1 -p 2 , ∂L ∂a i = γ i , which lead to (66)    ∂ t (D t α) + div x (uD t α) = p 1 -p 2 m , ∂ t (D t a i ) + div x (uD t a i ) = γ i ν .
Following [START_REF] Drui | Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d'une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle[END_REF][START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF], the idea is to decompose these second order equations into a pair of two first order derivative in time equations, while introducing additional unknowns.

For the equation on M = mD t α, we fix

(67) D t α = ρyw √ m ,
where w is a new unknown. Then it holds (68)

     ∂ t α + u • ∇ x α = ρyw √ m , ∂ t w + u • ∇ x w = 1 √ mρy (p 2 -p 1 ).
Doing so for the equation on P = νD t a i , we introduce the unknown n satisfying

(69) D t a i = ρyn √ ν ,
and it yields (70)

     ∂ t a i + u • ∇ x a i = ρyn √ ν , ∂ t n + u • ∇ x n = γ i √ νρy .
According to [START_REF] Cordesse | Derivation of a two-phase flow model with two-scale kinematics and surface tension by means of variational calculus[END_REF][START_REF] Cordesse | Contribution to the study of combustion instabilities in cryotechnic rocket engines : coupling diffuse interface models with kinetic-based moment methods for primary atomization simulations[END_REF][START_REF] Battista | Towards a unified eulerian modeling framework for two-phase flows : geometrical small scale phenomena and associated flexible computing strategies[END_REF], the equations on the quantities w and n, defined in this way, refer to small scale momentum equations. In that sense the equations on α and a i connect small and large scales.

4.1.3. Energy equations. The transport equations of the specific entropies are not convenient, especially for numerical computations. We replace them by energy equations using the Gibbs relations given in Section 2. The total energy equation E = L kin + L pot has already been given in (62), see Proposition 3, and its developed form reads (71)

∂ t E + div x ((E + p)u) = 0, where p refers to the fluid-interface pressure (64).

For sake of completness, we provide the phasic (nonconservative) internal energy equations which read, for k = 1, 2, (72)

∂ t α k ρ k e k + |u| 2 2 + div x α k ρ k e k + |u| 2 2 + α k p k u = α k p k div x u -y k u • ∇ x p -p k ρyw √ m ,
where p = p + m 2 |D t α| 2 + ν 2 |D t a i | 2 . Now using the transport equations of the specific entropies (42) and the mass conservation equations (41), one deduces that the interfacial entropy complies with (73) ∂ t (a i s i ) + div x (a i s i u) = 0.

Then combining [START_REF] Faccanoni | Admissible equations of state for immiscible and miscible mixtures[END_REF] and [START_REF] Drumheller | A thermomechanical theory for reacting immiscible mixtures[END_REF] leads to the following interfacial energy evolution equation (74) ∂ t (a i e i ) + div x (a i e i u) -a i γ i ∇ x • u = γ i ρyn √ ν .

4.1.4. Summary. Using the definitions (67) and (69) the final set of equations reads (75) 

                                       ∂ t ρ + div x (ρu) =

4.2.

Hyperbolicity. To finish we investigate the eigenstructure of the system (75), focusing on its one-dimensional version (with velocity u).

For that purpose, let consider the vector B = (y, α, a i , w, n, s, s 1 , s 2 ) ⊤ ∈ R 8 and write the system (75) in the following quasilinear form As mention in Remark 1, the SAP depicts reversible processes only. Hence relaxation has to be set a posteriori according to the second principle. For instance one may use source terms presented in [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF] or [START_REF] Battista | Towards a unified eulerian modeling framework for two-phase flows : geometrical small scale phenomena and associated flexible computing strategies[END_REF] to enforce damping due to bubble pulsation. One could also make use of the paragraph 2.3 to design dissipative phase transition source terms in agreement with the thermodynamical equilibrium given in Proposition 2.

This work has received the financial support from the CNRS grant Défi Mathématiques France 2030. The authors would like to thank S. Kokh and N. Seguin for the fruitful discussions.

  , K, M, P, α, a i , s, s 1 , s 2 , y) = uK + D t αM + D t a i P -L(B) or analogously (61)E(B) = L kin (B) + L pot (B),with notations (40). If the latter formula is more classic, the definition (60) has the advantage of simplifying the following computations.

4. 1 .

 1 Extended final set. We explicit in this paragraph the three equations using the definition (40) of the Lagrangian functional. 4.1.1. Momentum equation. By the definition (50), the Legendre transform of L with respect to the density L

2 .

 2 0, 0) ⊤ ∈ R10 , and the matrix C is given by (77)C(ρ, u, B) =The eigenvalues of C are(78) λ 1,2 = u ± ρ yc 2 1 + (1 -y)c 2 2 + m(yw) 2 + ν(yn) 2 , λ 3,...,10 = u, where c 2 k = ∂p k ∂ρ k (ρ k , s k )is the speed of sound of the phase k = 1, 2. All the eigenvalues are real and the right eigenvectors of C constitute a basis of R10 . This proves again the hyperbolicity of the system.

  0, ∂ t (ρy) + div x (ρyu) = 0, ∂ t (ρu) + div x ρu ⊤ u + p +

	∂ t α + u • ∇ x α = ∂ t a i + u • ∇ x a i =	ρyw √ m ρyn , √ ν ,	m 2	(ρyw) 2 +	ν 2	(ρyn) 2 Id = 0,
	∂ t w + u • ∇ x w =	√	1 mρy	(p 1 -p 2 ),	
	∂					

t n + u • ∇ x n = γ i √ νρy , D t s = D t s 1 = D t s 2 = 0.