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Abstract
In this paper, we present a tool, called MS-
Builder, which generates certificates for the Max-
SAT problem in the particular form of a sequence
of equivalence-preserving transformations. To gen-
erate a certificate, MS-Builder iteratively calls a
SAT oracle to get a SAT resolution refutation which
is handled and adapted into a sound refutation for
Max-SAT. In particular, the size of the computed
Max-SAT refutation is linear with respect to the
size of the initial refutation if it is semi-read-once,
tree-like regular, tree-like or semi-tree-like. Addi-
tionally, we propose an extendable tool, called MS-
Checker, able to verify the validity of any Max-SAT
certificate using Max-SAT inference rules.

1 Introduction
Given a Boolean formula in Conjunctive Normal Form
(CNF), the Maximum Satisfiability (Max-SAT) problem con-
sists in determining the maximum number of clauses that it is
possible to satisfy by an assignment of the variables, while
the Satisfiability (SAT) problem simply ascertains whether
there exists an assignment which satisfies all the clauses.
Max-SAT is an optimization extension of the satisfiabil-
ity problem and is a natural formalism enabling to model
many real-world and crafted problems [Muise et al., 2016;
Zhang and Bacchus, 2012; Demirovic and Musliu, 2017;
Manyà et al., 2020; Achá and Nieuwenhuis, 2014; Bofill
et al., 2015; Xu et al., 2003; Guerra and Lynce, 2012;
D’Almeida and Grégoire, 2012]. Different complete solv-
ing paradigms for Max-SAT have seen the day including
Branch and Bound algorithms [Li et al., 2007; Küegel, 2012;
Abramé and Habet, 2014; Li et al., 2022] and SAT-based
algorithms [Fu and Malik, 2006; Manquinho et al., 2009;
Ansótegui et al., 2009; Davies and Bacchus, 2011; Ansótegui
et al., 2013; Martins et al., 2014; Ignatiev et al., 2019].

Inference plays an important role in the context of Max-
SAT solving [Li et al., 2007; Narodytska and Bacchus, 2014;
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2021a].

Abramé and Habet, 2014] and this has led to an increasing in-
terest in studying proof systems for Max-SAT in the literature
[Larrosa and Heras, 2005; Bonet et al., 2006; Bonet et al.,
2007; Larrosa and Rollon, 2020a; Larrosa and Rollon, 2020b;
Bonet and Levy, 2020; Filmus et al., 2020; Cherif et al.,
2022]. In particular, Max-SAT resolution [Larrosa and Heras,
2005; Bonet et al., 2006; Bonet et al., 2007] is one of the first
known complete systems for Max-SAT and is a natural ex-
tension of the resolution rule [Robinson, 1965] used in the
context of SAT. Max-SAT resolution proofs are more con-
strained than their SAT counterparts as the premise clauses
are replaced by the conclusions when applying Max-SAT res-
olution. Consequently, switching from a resolution proof to
a Max-SAT resolution proof is possible and well-known for
the particular case of read-once resolution [Bonet et al., 2007;
Heras and Marques-Silva, 2011], where clauses can be used
at most once in the proof. However, the adaptation of any res-
olution proof to a Max-SAT resolution proof is an established
problem. Bonet et al. state that ”it seems difficult to adapt a
classical resolution proof to get a Max-SAT resolution proof,
and it is an open question if this is possible without increasing
substantially the size of the proof” [Bonet et al., 2006].

In this paper, we first contribute to the open problem of
adapting resolution refutations for Max-SAT. To this end, we
augment Max-SAT resolution with the split rule which allows
to generate two clauses subsumed by the original clause. We
prove that it is always possible to adapt a resolution refuta-
tion into a max-refutation, i.e., a refutation using Max-SAT
inference rules, whose size is linear with respect to the initial
refutation for the following cases: semi-read-once resolution,
tree-like regular resolution, tree-like resolution and semi-tree-
like resolution. Furthermore, we propose a complete adapta-
tion for any resolution refutation into a max-refutation, al-
though with a worst-case exponential blow-up in the size of
the proofs.

Secondly, we propose an independent tool, called MS-
Builder, able to build certificates for the Max-SAT problem.
To build such certificates, MS-Builder iteratively calls a SAT
oracle to get a resolution refutation, adapts it for Max-SAT
and applies it on the current formula. Moreover, we im-
plemented an associated tool, called MS-Checker to check
the validity of the certificates. Both tools are experimentally
evaluated on the unweighted and weighted benchmarks of the
2020 Max-SAT Evaluation [Bacchus et al., 2020].



2 Preliminaries
2.1 Definitions and Notations
Let X be the set of propositional variables. A literal l is a vari-
able x ∈ X or its negation x. A clause c = (l1 ∨ l2 ∨ ...∨ lk)
is a disjunction of literals. A unit clause is composed of only
one literal. A formula in Conjunctive Normal Form (CNF)
ϕ = c1 ∧ c2 ∧ ... ∧ cm is a conjunction of clauses. An as-
signment I : X −→ {0, 1} maps each variable to a Boolean
value. A literal l is satisfied (resp. falsified) by an assign-
ment I if l ∈ I (resp. l ∈ I). A clause c is satisfied by
an assignment I if at least one of its literals is satisfied by I ,
otherwise it is falsified. The empty clause □ contains zero
literals and is always falsified. A CNF formula ϕ is satisfied
by an assignment I , that we call model of ϕ, if each clause
c ∈ ϕ is satisfied by I , otherwise it is falsified. Solving the
Satisfiability problem (SAT) consists in determining whether
there exists an assignment I that satisfies a given CNF for-
mula ϕ. In the case where such an assignment exists, we say
that ϕ is satisfiable, otherwise we say that ϕ is unsatisfiable
or inconsistent. Solving the Maximum Satisfiability problem
(Max-SAT) consists in determining the maximum number of
clauses that can be satisfied by an assignment of a CNF for-
mula ϕ, or equivalently the minimum number of clauses that
each assignment must falsify. In the weighted partial Max-
SAT problem, a finite or infinite weight is associated to each
clause, representing the penalty of falsifying it.

2.2 SAT Resolution
To certify that a CNF formula is satisfiable, it is sufficient to
exhibit a model of the formula. On the other hand, to prove
that a CNF formula is unsatisfiable, we need to refute the ex-
istence of a model. A well-known SAT refutation system is
based on an inference rule for SAT called resolution [Robin-
son, 1965]. The resolution rule deduces a clause called resol-
vent which can be added to the formula. Note that this rule is
sound for SAT as it maintains SAT equivalence (models are
the same before and after the transformation) and it is exten-
sively used in the context of SAT solving and particularly the
CDCL framework [Silva and Sakallah, 1996].

Definition 1 (Resolution [Robinson, 1965]).

c1 = (x ∨A) c2 = (x ∨B)
c3 = (A ∨B)

It is possible to prove that a formula is unsatisfiable us-
ing a resolution refutation, which is a sequence of resolutions
leading to an empty clause. Many restricted classes of reso-
lution refutations have been studied in the literature namely
linear [Loveland, 1970], unit [Hertel and Urquhart, 2009],
input [Hertel and Urquhart, 2009], regular [Urquhart, 2011],
read-once [Iwama and Miyano, 1995] and tree-like resolu-
tion refutations [Ben-Sasson et al., 2004] among others. In
particular, a resolution refutation is tree-like if every inter-
mediate clause is used at most once in the proof. Similarly,
a resolution refutation is read-once if each clause is used at
most once in the proof. Finally, a resolution refutation is reg-
ular if each branch, i.e., path from a leaf to the empty clause,
contains at most one resolution per variable.

Example 1. We consider the CNF formula ϕ = (x1 ∨ x3) ∧
(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3). The resolution refutation of
ϕ, represented in Figure 1, is tree-like (and) regular, but not
read-once because of clause (x1).

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

□

Figure 1: A resolution refutation

2.3 Max-SAT Resolution
One of the first and most studied proof systems for Max-
SAT is based on an inference rule called Max-SAT resolu-
tion, which is an extension of the resolution rule. The aim of
complete Max-SAT systems is to compute the Max-SAT op-
timum of a given CNF formula, i.e., the maximum number of
falsified clauses. The formula is thus refuted as many times
as its optimum through equivalence-preserving transforma-
tions in the sense of Max-SAT (each assignment falsfies the
same amount of clauses before and after the transformation).
Other than the resolvent clause, Max-SAT resolution intro-
duces new clauses referred to as compensation clauses and
which are essential to preserve Max-SAT equivalence.

Definition 2 (Max-SAT resolution [Larrosa and Heras, 2005;
Bonet et al., 2006; Bonet et al., 2007]).

c1 = x ∨A c2 = x ∨B
cr = A ∨B

cc1 = x ∨A ∨ b1
cc2 = x ∨A ∨ b1 ∨ b2

...
cct = x ∨A ∨ b1 ∨ ... ∨ bt−1 ∨ bt

cct+1 = x ∨B ∨ a1
cct+2 = x ∨B ∨ a1 ∨ a2

...
cct+s = x ∨B ∨ a1 ∨ ... ∨ as−1 ∨ as

As a sound and complete rule for Max-SAT [Bonet et al.,
2006], Max-SAT resolution plays an important role in the
context of Max-SAT theory and solving. In particular, it is ex-
tensively used in the context of Branch and Bound algorithms
[Li et al., 2007; Küegel, 2012; Abramé and Habet, 2014;
Cherif et al., 2020] and more marginally in the context
of SAT-based algorithms [Heras and Marques-Silva, 2011;
Narodytska and Bacchus, 2014]. For a given CNF formula,
it is always possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [Bonet et
al., 2006] to deduce empty clauses. A Max-SAT refutation,



or simply max-refutation, is a sequence of Max-SAT infer-
ence steps deducing the empty clause. Its size is the number
of its inference steps.
Example 2. We consider the CNF formula from Example 1.
A hand-made max-refutation of ϕ was proposed in [Bonet et
al., 2006] and is represented in Figure 2.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x1 ∨ x3

x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3 x3

□

Figure 2: A max-refutation

In recent work, Max-SAT resolution was augmented with
other rules such as the split rule [Larrosa and Rollon, 2020b;
Bonet and Levy, 2020; Py et al., 2021b; Py et al., 2021c]
or the extension rule [Larrosa and Rollon, 2020a]. The ad-
dition of such rules to Max-SAT resolution can improve its
efficiency in generating shorter proofs [Larrosa and Rollon,
2020b; Larrosa and Rollon, 2020a; Py et al., 2021c] or in
simulating other proof systems [Filmus et al., 2020; Bonet
and Levy, 2020]. To be exhaustive, we must also mention
that other Max-SAT proof systems were introduced and stud-
ied in the literature [Li et al., 2016; Atserias and Lauria, 2019;
Larrosa and Rollon, 2020a; Filmus et al., 2020].
Definition 3 (Split rule). Given a clause c1 = (A) where
A is a disjunction of literals and x a variable, the split rule
replaces the premise c1 by two new clauses as follows:

c1 = (A)
c2 = (x ∨A) c3 = (x ∨A)

If these proof systems have been extensively studied in the-
ory, generating proofs remains an unexplored topic in prac-
tice. Hence, this work aims to contribute to this topic by
proposing tools to build and check certificates for the Max-
SAT problem. To this aim, we first propose adaptations from
resolution refutations to max-refutations. These adaptations
are used in a tool enabling to build certificates for the Max-
SAT problem. For the sake of simplicity, we will exhibit ex-
amples with unweighted unpartial formulas to introduce MS-
Builder. However, MS-Builder is also able to generate certifi-
cates for weighted (partial) Max-SAT formulas, using the fold
and the unfold rules, and the weighted version of Max-SAT
resolution and split [Bonet et al., 2007; Larrosa et al., 2008;
Larrosa and Rollon, 2020b].
Definition 4 (Fold & Unfold). Given a weighted clause c and
two positive weights w1 and w2, the fold and unfold rules are
respectively defined as follows:

(c, w1) (c, w2)
(c, w1 + w2)

(c, w1 + w2)
(c, w1) (c, w2)

3 From Resolution Refutations to
Max-Refutations

In the state of the art, the adaptation of any resolution refuta-
tion to get a max-refutation is known possible in the read-
once case, and the size of the computed max-refutation is
linear with respect to the size of the initial resolution refu-
tation. In our work [Py et al., 2022; Py et al., 2020], we
prove extend this result in the case of semi-read-once, tree-
like regular, tree-like or semi-tree-like resolution. We also
prove that the adaptation is always possible in the unrestricted
case, but with a worst-case exponential blow-up in the size of
the proofs. The theoretical results are resumed in Table 1.

Resolution Refutation Size of the Max-Refutation
Read-Once Linear [Bonet et al., 2007]

Semi-Read-once Linear
Tree-like regular Linear

Tree-like Linear
Semi-tree-like Linear
Unrestricted Exponential

Table 1: Adaptation of resolution refutations for Max-SAT

3.1 From Semi-Read-Once Resolution Refutations
to Max-Refutations

SAT algorithms are based on unit propagation, which means
that when a unit clause is deduced, the value of its only lit-
eral is propagated in the whole formula, because satisfying
this literal is necessary to satisfy the formula. Applying unit
propagation can be seen as the use of a particular unit clause
in several resolution steps. As such, transforming resolution
refutations to fix non-read-once unit clauses can therefore be
a useful preprocessing technique to our proof builder which
relies on iterative calls to a SAT oracle, as will be shown in
Section 4. To fix a non-read-once unit clause, we remove
the resolution steps in which it is involved and we add a new
resolution step at the end of the refutation. Such a strategy
works when the refutation is based on unit propagation, i.e.,
every time a resolution step is applied on a unit clause, the
variable contained in the unit clause no longer appears in the
rest of the refutation. As SAT algorithms make a strong ap-
plication of the unit propagation technique, we made the hy-
pothesis, confirmed by experiments, that the computed reso-
lution refutation will be often based on unit propagation. The
proposed transformation can be seen as a preprocessing tech-
nique for any non-read-once resolution refutation. In partic-
ular, some non-read-once resolution refutations can be non-
read-once only because of unit clauses and we say that such
refutations are semi-read-once.

Definition 5 (Semi-read-once). A resolution refutation is
semi-read-once if it is based on unit propagation and if each
non-read-once clause is also a unit clause.

Theorem 1. Given an unsatisfiable formula ϕ and a semi-
read-once resolution refutation P of ϕ, there exists a max-
refutation of ϕ containing O(|P |) inference steps.



3.2 From Tree-Like Regular Resolution
Refutations to Max-Refutations

To adapt a tree-like regular resolution refutation for Max-
SAT, the idea is to use the split rule to fix non-read-once
clauses. More precisely, if a clause c is used k times (k > 1)
as a premise of a resolution step, we use the split rule on
clause c with respect to a particular variable x which is care-
fully chosen to duplicate c into two distinct clauses c ∨ x and
c∨x. We then use c∨x and c∨x to replace c as a premise of
its resolution steps. If necessary, we repeat the same process
on clauses c ∨ x and/or c ∨ x.
Theorem 2. Given an unsatisfiable formula ϕ and a regu-
lar tree-like resolution refutation P of ϕ, there exists a max-
refutation of ϕ containing O(|P |) inference steps.

3.3 From (Semi-)Tree-Like Resolution Refutations
to Max-Refutations

To extend the linear case to tree-like resolution refutations,
we simply use a known transformation from any tree-like res-
olution refutation to a regular tree-like resolution refutation
without increasing its size (proved in [Urquhart, 1995]).
Theorem 3. Given an unsatisfiable formula ϕ and a tree-like
resolution refutation P of ϕ, there exists a max-refutation of
ϕ containing O(|P |) inference steps.

To extend our result to semi-tree-like resolution refuta-
tions, defined below, we propose an adaptation which relies
on the fact that such refutations can be partitioned into two
parts where the first part is a read-once sequence of resolu-
tions and the second part is a tree-like resolution refutation.
Definition 6 (semi-tree-like resolution refutation). A resolu-
tion refutation is semi-tree-like if, for any branch of the refu-
tation, at most one clause is non-read-once.
Theorem 4. Given an unsatisfiable formula ϕ and a semi-
tree-like resolution refutation P of ϕ, there exists a max-
refutation of ϕ containing O(|P |) inference steps.

3.4 From Unrestricted Resolution Refutations to
Max-Refutations

To adapt any resolution refutation to a max-refutation, we add
a prior transformation to make the initial resolution refuta-
tion (semi-)tree-like. To achieve this prior transformation, we
iteratively search the proof for the first non-read-once inter-
mediate clause c, and we duplicate the the part of the proof
leading to c. Repeating this treatment on intermediary non-
read-once clauses forces the resolution refutation to become
(semi-)tree-like, even if we accept an exponential blow-up of
the size of the formula.
Theorem 5. Given an unsatisfiable formula ϕ and an un-
restricted resolution refutation P of ϕ, there exists a max-
refutation of ϕ with O(2µ(P ) × |P |) inference steps.

4 MS-Builder & MS-Checker
MS-Builder [Py et al., 2022; Py et al., 2021a] generates cer-
tificates for the Max-SAT Problem in the particular form of
a Max-SAT-equivalence-preserving transformation from the
initial formula into a formula composed of a set of empty

Algorithm 1 MS-Builder

Require: Formula ϕ
Ensure: Max-SAT certificate c for ϕ

1: (T, opt)← (∅, 0)
2: while ϕ is inconsistent do
3: RP ← compute RES refutation(ϕ)
4: MRP ← adapt RES refutation for Max-SAT(RP )
5: ϕ← apply max-refutation(ϕ,MRP )
6: (ϕ, opt)← remove empty clauses(ϕ, opt)
7: T ← concatenate(T,MRP )
8: end while
9: I ← compute model(ϕ)

10: return (T, opt, I)

clauses and a satisfiable sub-formula. Given an initial for-
mula, MS-Builder iteratively calls a SAT oracle [Biere, 2010]
to get a resolution refutation, adapts it for Max-SAT and ap-
plies it to the current formula. When the SAT oracle returns
that the current formula is now satisfiable (with a model), the
algorithm terminates. The complete sequence of transforma-
tions generating k empty clauses is a proof that the Max-SAT
optimum is at least k while the model is a proof that it is pos-
sible to falsify exactly k clauses and therefore that the Max-
SAT optimum is k. MS-Builder also works on weighted (par-
tial) formulas. MS-Builder receives a file containing a for-
mula in the standard WCNF format and it returns a certificate.
The builder is also coupled with a tool called MS-Checker
which verifies the validity of the computed certificates.

On the complete track benchmarks of the 2020 Max-SAT
Evaluation [Bacchus et al., 2020], MS-Builder has succeeded
to construct full proofs for 163 instances over 576 unweighted
(partial) instances and for 144 instances over 600 weighted
(partial) instances. In the experiments, a slot of only 1 hour
and at most 16 GB of memory was allocated to each instance.
More interestingly, MS-Builder has also succeeded to build at
least half of the proofs (with respect to the optimum value) of
302 instances over 463 unweighted instances and of 326 in-
stances over 489 weighted instances for which the optimum
cost is known. Finally, we report in Table 2 the encountered
refutation types during proof building. We observed different
behaviours for unweighted and weighted instances. Indeed,
while the percentage of read-once and semi-read-once reso-
lution refutations is 83.7 % in the unweighted benchmark, it is
only 35.60 % in the weighted benchmark. Such a difference
can explain why weighted instances are harder to proove than
unweighted ones.

Unweighted instances Weighted instances
Number Percentage Number Percentage

read-once 169,239 83.7 % 135,594 35.60 %
semi-read-once 24,556 12.1 % 87,748 23.04 %
tree-like regular 2,879 1.4 % 23,612 6.20 %
tree-like 1,795 0.9 % 87,529 22.99 %
unrestricted 3,799 1.9 % 46,337 12.17 %

Table 2: Encountered types of resolution refutations
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Jordi Levy. Solving (Weighted) Partial MaxSAT through Satisfi-
ability Testing. In Oliver Kullmann, editor, Theory and Applica-
tions of Satisfiability Testing - SAT 2009, 12th International Con-
ference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Pro-
ceedings, volume 5584 of Lecture Notes in Computer Science,
pages 427–440. Springer, 2009.
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