Matthieu Py
email: matthieu.py@uca.fr

Mohamed Sami Cherif
email: mohamed-sami.cherif@univ-amu.fr

Djamal Habet
email: djamal.habet@univ-amu.fr

Proofs and Certificates for Max-SAT (Extended Abstract) *

In this paper, we present a tool, called MS-Builder, which generates certificates for the Max-SAT problem in the particular form of a sequence of equivalence-preserving transformations. To generate a certificate, MS-Builder iteratively calls a SAT oracle to get a SAT resolution refutation which is handled and adapted into a sound refutation for Max-SAT. In particular, the size of the computed Max-SAT refutation is linear with respect to the size of the initial refutation if it is semi-read-once, tree-like regular, tree-like or semi-tree-like. Additionally, we propose an extendable tool, called MS-Checker, able to verify the validity of any Max-SAT certificate using Max-SAT inference rules.

Introduction

Given a Boolean formula in Conjunctive Normal Form (CNF), the Maximum Satisfiability (Max-SAT) problem consists in determining the maximum number of clauses that it is possible to satisfy by an assignment of the variables, while the Satisfiability (SAT) problem simply ascertains whether there exists an assignment which satisfies all the clauses. Max-SAT is an optimization extension of the satisfiability problem and is a natural formalism enabling to model many real-world and crafted problems [Muise et al., 2016;Zhang and Bacchus, 2012;[START_REF] Demirovic | Emir Demirovic and Nysret Musliu. MaxSAT-based large neighborhood search for high school timetabling[END_REF]Manyà et al., 2020;Achá and Nieuwenhuis, 2014;[START_REF] Bofill | [END_REF]Xu et al., 2003;Guerra and Lynce, 2012;[START_REF] Almeida | Model-based diagnosis with default information implemented through MAX-SAT technology[END_REF]. Different complete solving paradigms for Max-SAT have seen the day including Branch and Bound algorithms [Li et al., 2007;Küegel, 2012;[START_REF] Abramé | Ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver[END_REF][START_REF] Li | [END_REF] and SAT-based algorithms [Fu and Malik, 2006;[START_REF] Manquinho | [END_REF]Ansótegui et al., 2009;[START_REF] Davies | [END_REF]Ansótegui et al., 2013;Martins et al., 2014;Ignatiev et al., 2019].

Inference plays an important role in the context of Max-SAT solving [Li et al., 2007;Narodytska and Bacchus, 2014;[START_REF] Abramé | Ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver[END_REF] and this has led to an increasing interest in studying proof systems for Max-SAT in the literature [Larrosa and Heras, 2005;Bonet et al., 2006;Bonet et al., 2007;Larrosa and Rollon, 2020a;Larrosa and Rollon, 2020b;Bonet and Levy, 2020;Filmus et al., 2020;Cherif et al., 2022]. In particular, Max-SAT resolution [Larrosa and Heras, 2005;Bonet et al., 2006;Bonet et al., 2007] is one of the first known complete systems for Max-SAT and is a natural extension of the resolution rule [Robinson, 1965] used in the context of SAT. Max-SAT resolution proofs are more constrained than their SAT counterparts as the premise clauses are replaced by the conclusions when applying Max-SAT resolution. Consequently, switching from a resolution proof to a Max-SAT resolution proof is possible and well-known for the particular case of read-once resolution [Bonet et al., 2007;[START_REF] Heras | Read-Once Resolution for Unsatisfiability-Based Max-SAT Algorithms[END_REF], where clauses can be used at most once in the proof. However, the adaptation of any resolution proof to a Max-SAT resolution proof is an established problem. Bonet et al. state that "it seems difficult to adapt a classical resolution proof to get a Max-SAT resolution proof, and it is an open question if this is possible without increasing substantially the size of the proof" [Bonet et al., 2006].

In this paper, we first contribute to the open problem of adapting resolution refutations for Max-SAT. To this end, we augment Max-SAT resolution with the split rule which allows to generate two clauses subsumed by the original clause. We prove that it is always possible to adapt a resolution refutation into a max-refutation, i.e., a refutation using Max-SAT inference rules, whose size is linear with respect to the initial refutation for the following cases: semi-read-once resolution, tree-like regular resolution, tree-like resolution and semi-treelike resolution. Furthermore, we propose a complete adaptation for any resolution refutation into a max-refutation, although with a worst-case exponential blow-up in the size of the proofs.

Secondly, we propose an independent tool, called MS-Builder, able to build certificates for the Max-SAT problem. To build such certificates, MS-Builder iteratively calls a SAT oracle to get a resolution refutation, adapts it for Max-SAT and applies it on the current formula. Moreover, we implemented an associated tool, called MS-Checker to check the validity of the certificates. Both tools are experimentally evaluated on the unweighted and weighted benchmarks of the 2020 Max-SAT Evaluation [START_REF] Bacchus | Fahiem Bacchus, Matti Järvisalo, and Ruben Martins[END_REF].

Preliminaries

Definitions and Notations

Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation x. A clause c = (l 1 ∨ l 2 ∨ ... ∨ l k) is a disjunction of literals. A unit clause is composed of only one literal. A formula in Conjunctive Normal Form (CNF) ϕ = c 1 ∧ c 2 ∧ ... ∧ c m is a conjunction of clauses. An assignment I : X -→ {0, 1} maps each variable to a Boolean value. A literal l is satisfied (resp. falsified) by an assignment I if l ∈ I (resp. l ∈ I). A clause c is satisfied by an assignment I if at least one of its literals is satisfied by I, otherwise it is falsified. The empty clause □ contains zero literals and is always falsified. A CNF formula ϕ is satisfied by an assignment I, that we call model of ϕ, if each clause c ∈ ϕ is satisfied by I, otherwise it is falsified. Solving the Satisfiability problem (SAT) consists in determining whether there exists an assignment I that satisfies a given CNF formula ϕ. In the case where such an assignment exists, we say that ϕ is satisfiable, otherwise we say that ϕ is unsatisfiable or inconsistent. Solving the Maximum Satisfiability problem (Max-SAT) consists in determining the maximum number of clauses that can be satisfied by an assignment of a CNF formula ϕ, or equivalently the minimum number of clauses that each assignment must falsify. In the weighted partial Max-SAT problem, a finite or infinite weight is associated to each clause, representing the penalty of falsifying it.

SAT Resolution

To certify that a CNF formula is satisfiable, it is sufficient to exhibit a model of the formula. On the other hand, to prove that a CNF formula is unsatisfiable, we need to refute the existence of a model. A well-known SAT refutation system is based on an inference rule for SAT called resolution [Robinson, 1965]. The resolution rule deduces a clause called resolvent which can be added to the formula. Note that this rule is sound for SAT as it maintains SAT equivalence (models are the same before and after the transformation) and it is extensively used in the context of SAT solving and particularly the CDCL framework [Silva and Sakallah, 1996].

Definition 1 (Resolution [Robinson, 1965]).

c 1 = (x ∨ A) c 2 = (x ∨ B) c 3 = (A ∨ B)
It is possible to prove that a formula is unsatisfiable using a resolution refutation, which is a sequence of resolutions leading to an empty clause. Many restricted classes of resolution refutations have been studied in the literature namely linear [Loveland, 1970], unit [START_REF] Hertel | [END_REF], input [START_REF] Hertel | [END_REF], regular [Urquhart, 2011], read-once [Iwama and Miyano, 1995] and tree-like resolution refutations [START_REF] Ben-Sasson | Near Optimal Separation Of Tree-Like And General Resolution[END_REF] among others. In particular, a resolution refutation is tree-like if every intermediate clause is used at most once in the proof. Similarly, a resolution refutation is read-once if each clause is used at most once in the proof. Finally, a resolution refutation is regular if each branch, i.e., path from a leaf to the empty clause, contains at most one resolution per variable.

Example 1. We consider the CNF formula ϕ = (x 1 ∨ x 3) ∧ (x 1) ∧ (x 1 ∨ x 2) ∧ (x 2 ∨ x 3). The resolution refutation of ϕ, represented in Figure 1, is tree-like (and) regular, but not read-once because of clause (x 1).

x 1 ∨ x 3 x 1 x 1 ∨ x 2 x 2 ∨ x 3 x 3 x 2 x 3 □ Figure 1: A resolution refutation

Max-SAT Resolution

One of the first and most studied proof systems for Max-SAT is based on an inference rule called Max-SAT resolution, which is an extension of the resolution rule. The aim of complete Max-SAT systems is to compute the Max-SAT optimum of a given CNF formula, i.e., the maximum number of falsified clauses. The formula is thus refuted as many times as its optimum through equivalence-preserving transformations in the sense of Max-SAT (each assignment falsfies the same amount of clauses before and after the transformation).

Other than the resolvent clause, Max-SAT resolution introduces new clauses referred to as compensation clauses and which are essential to preserve Max-SAT equivalence.

Definition 2 (Max-SAT resolution [Larrosa and Heras, 2005;Bonet et al., 2006;Bonet et al., 2007]).

c 1 = x ∨ A c 2 = x ∨ B c r = A ∨ B cc 1 = x ∨ A ∨ b 1 cc 2 = x ∨ A ∨ b 1 ∨ b 2 . . . cc t = x ∨ A ∨ b 1 ∨ ... ∨ b t-1 ∨ b t cc t+1 = x ∨ B ∨ a 1 cc t+2 = x ∨ B ∨ a 1 ∨ a 2 . . . cc t+s = x ∨ B ∨ a 1 ∨ ... ∨ a s-1 ∨ a s
As a sound and complete rule for Max-SAT [Bonet et al., 2006], Max-SAT resolution plays an important role in the context of Max-SAT theory and solving. In particular, it is extensively used in the context of Branch and Bound algorithms [Li et al., 2007;Küegel, 2012;[START_REF] Abramé | Ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver[END_REF]Cherif et al., 2020] and more marginally in the context of SAT-based algorithms [START_REF] Heras | Read-Once Resolution for Unsatisfiability-Based Max-SAT Algorithms[END_REF]Narodytska and Bacchus, 2014]. For a given CNF formula, it is always possible to generate a Max-SAT resolution proof of its optimum by applying the saturation algorithm [Bonet et al., 2006] to deduce empty clauses. A Max-SAT refutation, or simply max-refutation, is a sequence of Max-SAT inference steps deducing the empty clause. Its size is the number of its inference steps. Example 2. We consider the CNF formula from Example 1. A hand-made max-refutation of ϕ was proposed in [Bonet et al., 2006] and is represented in Figure 2.

x 1 ∨ x 3 x 1 x 1 ∨ x 2 x 2 ∨ x 3 x 3 x 1 ∨ x 3 x 2 ∨ x 3 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 2 ∨ x 3 x 3 □ Figure 2: A max-refutation
In recent work, Max-SAT resolution was augmented with other rules such as the split rule [Larrosa and Rollon, 2020b;Bonet and Levy, 2020;Py et al., 2021b;Py et al., 2021c] or the extension rule [Larrosa and Rollon, 2020a]. The addition of such rules to Max-SAT resolution can improve its efficiency in generating shorter proofs [Larrosa and Rollon, 2020b;Larrosa and Rollon, 2020a;Py et al., 2021c] or in simulating other proof systems [Filmus et al., 2020;Bonet and Levy, 2020]. To be exhaustive, we must also mention that other Max-SAT proof systems were introduced and studied in the literature [Li et al., 2016;[START_REF] Atserias | Albert Atserias and Massimo Lauria. Circular (yet sound) proofs[END_REF]Larrosa and Rollon, 2020a;Filmus et al., 2020]. Definition 3 (Split rule). Given a clause c 1 = (A) where A is a disjunction of literals and x a variable, the split rule replaces the premise c 1 by two new clauses as follows:

c 1 = (A) c 2 = (x ∨ A) c 3 = (x ∨ A)
If these proof systems have been extensively studied in theory, generating proofs remains an unexplored topic in practice. Hence, this work aims to contribute to this topic by proposing tools to build and check certificates for the Max-SAT problem. To this aim, we first propose adaptations from resolution refutations to max-refutations. These adaptations are used in a tool enabling to build certificates for the Max-SAT problem. For the sake of simplicity, we will exhibit examples with unweighted unpartial formulas to introduce MS-Builder. However, MS-Builder is also able to generate certificates for weighted (partial) Max-SAT formulas, using the fold and the unfold rules, and the weighted version of Max-SAT resolution and split [Bonet et al., 2007;Larrosa et al., 2008;Larrosa and Rollon, 2020b]. Definition 4 (Fold & Unfold). Given a weighted clause c and two positive weights w 1 and w 2 , the fold and unfold rules are respectively defined as follows:

(c, w 1) (c, w 2) (c,

w 1 + w 2) (c, w 1 + w 2) (c, w 1) (c, w 2)
3 From Resolution Refutations to Max-Refutations

In the state of the art, the adaptation of any resolution refutation to get a max-refutation is known possible in the readonce case, and the size of the computed max-refutation is linear with respect to the size of the initial resolution refutation. In our work [START_REF] Py | [END_REF][START_REF] Py | [END_REF], we prove extend this result in the case of semi-read-once, treelike regular, tree-like or semi-tree-like resolution. We also prove that the adaptation is always possible in the unrestricted case, but with a worst-case exponential blow-up in the size of the proofs. The theoretical results are resumed in Table 1.

Resolution Refutation Size of the Max-Refutation

Read-Once Linear [Bonet et al., 2007 SAT algorithms are based on unit propagation, which means that when a unit clause is deduced, the value of its only literal is propagated in the whole formula, because satisfying this literal is necessary to satisfy the formula. Applying unit propagation can be seen as the use of a particular unit clause in several resolution steps. As such, transforming resolution refutations to fix non-read-once unit clauses can therefore be a useful preprocessing technique to our proof builder which relies on iterative calls to a SAT oracle, as will be shown in Section 4. To fix a non-read-once unit clause, we remove the resolution steps in which it is involved and we add a new resolution step at the end of the refutation. Such a strategy works when the refutation is based on unit propagation, i.e., every time a resolution step is applied on a unit clause, the variable contained in the unit clause no longer appears in the rest of the refutation. As SAT algorithms make a strong application of the unit propagation technique, we made the hypothesis, confirmed by experiments, that the computed resolution refutation will be often based on unit propagation. The proposed transformation can be seen as a preprocessing technique for any non-read-once resolution refutation. In particular, some non-read-once resolution refutations can be nonread-once only because of unit clauses and we say that such refutations are semi-read-once.

Definition 5 (Semi-read-once). A resolution refutation is semi-read-once if it is based on unit propagation and if each non-read-once clause is also a unit clause.

Theorem 1. Given an unsatisfiable formula ϕ and a semiread-once resolution refutation P of ϕ, there exists a maxrefutation of ϕ containing O(|P |) inference steps.

From Tree-Like Regular Resolution Refutations to Max-Refutations

To adapt a tree-like regular resolution refutation for Max-SAT, the idea is to use the split rule to fix non-read-once clauses. More precisely, if a clause c is used k times (k > 1) as a premise of a resolution step, we use the split rule on clause c with respect to a particular variable x which is carefully chosen to duplicate c into two distinct clauses c ∨ x and c ∨ x. We then use c ∨ x and c ∨ x to replace c as a premise of its resolution steps. If necessary, we repeat the same process on clauses c ∨ x and/or c ∨ x. Theorem 2. Given an unsatisfiable formula ϕ and a regular tree-like resolution refutation P of ϕ, there exists a maxrefutation of ϕ containing O(|P |) inference steps.

From (Semi-)Tree-Like Resolution Refutations to Max-Refutations

To extend the linear case to tree-like resolution refutations, we simply use a known transformation from any tree-like resolution refutation to a regular tree-like resolution refutation without increasing its size (proved in [Urquhart, 1995]). Theorem 3. Given an unsatisfiable formula ϕ and a tree-like resolution refutation P of ϕ, there exists a max-refutation of ϕ containing O(|P |) inference steps.

To extend our result to semi-tree-like resolution refutations, defined below, we propose an adaptation which relies on the fact that such refutations can be partitioned into two parts where the first part is a read-once sequence of resolutions and the second part is a tree-like resolution refutation. Definition 6 (semi-tree-like resolution refutation). A resolution refutation is semi-tree-like if, for any branch of the refutation, at most one clause is non-read-once. Theorem 4. Given an unsatisfiable formula ϕ and a semitree-like resolution refutation P of ϕ, there exists a maxrefutation of ϕ containing O(|P |) inference steps.

From Unrestricted Resolution Refutations to Max-Refutations

To adapt any resolution refutation to a max-refutation, we add a prior transformation to make the initial resolution refutation (semi-)tree-like. To achieve this prior transformation, we iteratively search the proof for the first non-read-once intermediate clause c, and we duplicate the the part of the proof leading to c. Repeating this treatment on intermediary nonread-once clauses forces the resolution refutation to become (semi-)tree-like, even if we accept an exponential blow-up of the size of the formula. Theorem 5. Given an unsatisfiable formula ϕ and an unrestricted resolution refutation P of ϕ, there exists a maxrefutation of ϕ with O(2 µ(P) × |P |) inference steps.

MS-Builder & MS-Checker

MS-Builder [START_REF] Py | [END_REF]Py et al., 2021a] generates certificates for the Max-SAT Problem in the particular form of a Max-SAT-equivalence-preserving transformation from the initial formula into a formula composed of a set of empty (ϕ, opt) ← remove empty clauses(ϕ, opt) 7:

T ← concatenate(T, M RP) 8: end while 9: I ← compute model(ϕ) 10: return (T, opt, I) clauses and a satisfiable sub-formula. Given an initial formula, MS-Builder iteratively calls a SAT oracle [START_REF] Biere | Armin Biere. Booleforce[END_REF] to get a resolution refutation, adapts it for Max-SAT and applies it to the current formula. When the SAT oracle returns that the current formula is now satisfiable (with a model), the algorithm terminates. The complete sequence of transformations generating k empty clauses is a proof that the Max-SAT optimum is at least k while the model is a proof that it is possible to falsify exactly k clauses and therefore that the Max-SAT optimum is k. MS-Builder also works on weighted (partial) formulas. MS-Builder receives a file containing a formula in the standard WCNF format and it returns a certificate. The builder is also coupled with a tool called MS-Checker which verifies the validity of the computed certificates.

On the complete track benchmarks of the 2020 Max-SAT Evaluation [START_REF] Bacchus | Fahiem Bacchus, Matti Järvisalo, and Ruben Martins[END_REF], MS-Builder has succeeded to construct full proofs for 163 instances over 576 unweighted (partial) instances and for 144 instances over 600 weighted (partial) instances. In the experiments, a slot of only 1 hour and at most 16 GB of memory was allocated to each instance. More interestingly, MS-Builder has also succeeded to build at least half of the proofs (with respect to the optimum value) of 302 instances over 463 unweighted instances and of 326 instances over 489 weighted instances for which the optimum cost is known. Finally, we report in Table 2 the encountered refutation types during proof building. We observed different behaviours for unweighted and weighted instances. Indeed, while the percentage of read-once and semi-read-once resolution refutations is 83.7 % in the unweighted benchmark, it is only 35.60 % in the weighted benchmark. Such a difference can explain why weighted instances are harder to proove than unweighted ones.

Table 1 :

 1 Adaptation of resolution refutations for Max-SAT

]

3.1 From Semi-Read-Once Resolution Refutations

to Max-Refutations

Table 2 :

 2 Encountered types of resolution refutations

		Unweighted instances	Weighted instances
		Number Percentage Number Percentage
	read-once	169,239	83.7 %	135,594	35.60 %
	semi-read-once	24,556	12.1 %	87,748	23.04 %
	tree-like regular	2,879	1.4 %	23,612	6.20 %
	tree-like	1,795	0.9 %	87,529	22.99 %
	unrestricted	3,799	1.9 %	46,337	12.17 %