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One-shot Learning for Task-oriented Grasping

Valerija Holomjova1∗, Andrew J. Starkey1, Bruno Yun2, Pascal Meißner3

Abstract— Task-oriented grasping models aim to predict a
suitable grasp pose on an object to fulfill a task. These systems
have limited generalization capabilities to new tasks, but have
shown the ability to generalize to novel objects by recognizing
the physical properties of objects that can be associated with
an action (i.e. affordances). However, this object generalization
often comes at the cost of being unable to recognize the object
category being grasped, which could lead to unpredictable or
risky behaviors, especially within unconstrained environments.
This paper overcomes these generalization limitations by ex-
ploring one-shot learning techniques to develop a task-oriented
grasping solution that can leverage explicit knowledge defined
in a database to implicitly generalize to new objects and tasks.
We propose the One-shot Task-oriented Grasping (OS-TOG)
framework, composed of four sub-models, that uses a database
of objects and tasks to identify suitable task-oriented grasps on
a specified object from an image scene. In physical experiments
with novel objects, OS-TOG recognizes 69.4% of detected
objects correctly and predicts suitable task-oriented grasps with
82.3% accuracy, having a physical grasp success rate of 82.3%.
Code and models will be released upon publication.

Index Terms— Deep Learning in Grasping and Manipulation,
Grasping, Computer Vision for Automation, Recognition

I. INTRODUCTION

Task-oriented Grasping (TOG) involves finding a grasp
pose on an object that enables the completion of a task [6,
8]. For instance, grasping the handle of a mug to pour out its
contents. TOG is a vital preliminary step to accomplishing
manipulations required by robotic grasping systems used for
assistive robotics (e.g. doing household chores) or assembly
tasks [29]. This ability to understand and interact with
surrounding objects enables robotic manipulators to operate
in unconstrained environments without human intervention.

Creating a dataset with sufficient coverage of the tasks
and objects present in the real world to train TOG models is
currently unfeasible [12], which encourages TOG solutions
that can generalize to new object categories or tasks. [6,
15, 16] show capabilities of generalizing to novel objects
by predicting and leveraging affordances [7, 22], which are
regions of an object that represent a functional interaction
(e.g. cut, pour, contain). By mapping relationships between
affordances and tasks, the robotic system can identify task-
suitable grasping regions. For instance, if the robotic manipu-
lator was given a handover task, it could grasp the hammer by
the pound affordance, leaving the grasp region to be safely
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Fig. 1: Given an observation image (a), OS-TOG uses a database containing
information on objects (b) and tasks (c) to predict a task-oriented grasp (e)
for a user-specified object and task (d). The object database (b) contains a
list of objects annotated with their labeled affordances. The task database (c)
maps relationships between tasks and affordances to determine task-suitable
regions that should be grasped.

retrieved by a human. However, these solutions are currently
unable to recognize the object category being grasped and
cannot generalize to novel affordances. The inability to
recognize objects could lead to unpredictable or risky actions
when working in unconstrained environments, such as an
assistive cooking robot grasping the handle of a knife instead
of a spatula. Incorporating standard object detectors [10,
23] could provide a means of object recognition, but these
are also limited to recognizing object categories they were
trained on.

To address the generalization limitations of TOG systems,
we explore the use of one-shot learning models, often used
for facial recognition and signature verification [3]. These
techniques measure the similarity between two images to
determine whether they belong to the same object category.
We incorporate these models and present the One-shot Task-
oriented Grasping (OS-TOG) framework, which leverages a
database of objects and task-affordance relations to produce
task-oriented grasps for specified objects and tasks from
images (Fig. 1). Embedded one-shot learning components
allow OS-TOG to generalize to new object categories and
tasks implicitly without needing further dataset collection or
re-training. OS-TOG is limited to recognizing objects and
tasks defined in its database but can generalize to more by
adding a single annotation of each new object or task to the
database. This requires significantly less labeling and training



effort than creating an entire dataset to re-train a standard
TOG model, where combinatorial amounts of examples are
needed to cover a range of objects and tasks.

This research aims to evaluate the performance of OS-
TOG on TOG and explore the extent can generalize to new
objects and tasks. Our contributions can be summarized as
three-fold; 1) We present a novel framework for TOG, called
OS-TOG, that is capable of generalizing to new objects and
tasks. 2) We propose and train suitable sub-models for the
interchangeable neural network components in OS-TOG and
evaluate them to state-of-the-art in their respective tasks. 3)
Experiments with a 7-DoF robotic arm having an RGB-D
camera are carried out to demonstrate OS-TOG’s ability to
perform TOG on previously unseen objects and various tasks.

II. RELATED WORK

Task-oriented grasping is a challenging research area that
involves finding a suitable grasp on an object to fulfill a
specified task. One challenging aspect is that there is a large
variety of tasks and objects in the real world, leading to
extensive manual efforts required to create annotated datasets
with sufficient coverage across multiple domains.

Over the years, several machine-learning solutions have
been proposed to solve task-oriented grasping [6, 8, 12,
14–16, 20, 29, 30], that require large amounts of data. To
overcome the dataset limitations in the field, most literature
focuses on using alternative methods to generate datasets for
training or improving the generalization capabilities of their
systems. These data alternative methods include generating
synthetic data [6, 15, 30], training in simulated environments
[8, 29], or leveraging video footage of human-object inter-
actions [12, 14]. However, these methods often show a drop
in performance in real-world scenes or require re-training for
new objects and tasks. Certain solutions have demonstrated
the ability to generalize to new object categories by learning
feature representations of task-relevant geometries within
similar objects [6, 8, 29], leveraging semantic knowledge
between tasks and objects [20] or segmenting parts of the
object with a particular functionality (i.e. affordance) to assist
in predictions [15, 16]. Nonetheless, some of these solutions
were not designed to work in multi-object scenes with all
being unable to recognize the objects they are grasping fully.
Hence, we identify a research gap for novel task-oriented
grasping solutions that can recognize objects and generalize
to new objects and tasks within multi-object scenes with
minimal training effort required.

The task of segmenting and labeling parts of objects with
functionality is referred to as “affordance segmentation”.
Machine-learning solutions that predict affordance maps are
mostly semantic segmentation models consisting of object
detection components. For instance, [22] proposed a CNN-
based framework that detects objects and then segments their
affordances from RGB images. [7] extends this solution by
creating an end-to-end architecture, similar to a Mask R-
CNN [10], that recognizes objects and segments affordances
in parallel. [4] build upon an object detector and add domain
adaptation components to learn from synthetic data and adapt
to real-world data. [28] construct an end-to-end autoencoder

that learns from human-object interactions. However, these
techniques are unable to generalize to new objects and
affordances without requiring re-training. To this matter, [17]
and [9] demonstrate the use of one-shot learning techniques
to find and segment previously unseen affordances without
requiring re-training.

One-shot learning is the task of classifying objects from
a single or few training examples. The most popular one-
shot learning technique is Siamese networks [3], composed
of two sub-networks that share the same weights to predict
the similarity between two different inputs. [5] use a Mask
R-CNN followed by a Siamese network to recognize target
objects from cluttered bins in order to be grasped. Alternative
one-shot learning methods surpassing the performance of
Siamese networks have also been introduced over the years.
[27] create a novel two-branched approach for one-shot
image segmentation, where one branch generates parameters
from the query image which is used by the second branch to
produce a segmentation mask from the query image. [19] seg-
ments objects from cluttered scenes by segmenting instances,
masking their backgrounds, and computing the best match.
[31] wins first place in the Amazon Robotics Challenge for
categorizing objects in a cluttered bin. Their solution isolates
each object through grasping and then matches them to the
nearest object in a database using a two-stream CNN-based
model. Their system obtains a high recognition rate but is
inefficient in settings where you need to retrieve only a
specific object category from a multi-object scene. Inspired
by the solutions of [5, 9, 17, 31] and capabilities of one-
shot learning models, we design a task-oriented grasping
framework that recognizes and grasps objects from multi-
object scenes with generalization properties to both tasks and
objects without the need for re-training.

Fig. 2: An example of an object annotated with an object segmentation mask
(a) and affordance segmentation masks (b), and an example of a grasp pose
g = (xg , yg , wg , hg , θg) on an object, with center co-ordinates (xg , yg),
gripper opening wg , gripper size hg and rotation θg ∈ [−π

2
, π
2
] (c).

III. PROBLEM STATEMENT

Assume a database D containing a set of user-defined
tasks DT and annotated objects DO. Each object in DO is
represented by an RGB image which is annotated with an
object segmentation mask (Fig. 2a) and suitable affordance
segmentation masks (Fig. 2b) from a determined set of
affordances A. These segmentation masks are binary masks
of the RGB image. Each task in DT is mapped to a suitable
affordance a ∈ A through “a” or “NOT a” relations, denoting
whether grasping in the region of a will allow the task to
be accomplished or not. Given an RGB image of a multi-
object scene containing different objects N , database D =
DT ∪ DO, target object o ∈ (N ∩ DO), and a target task



Fig. 3: An illustration of the proposed framework (OS-TOG) for task-oriented grasping. OS-TOG takes as input an RGB image, target object, target task,
and database of objects and tasks (green) and outputs a 2D task-oriented grasp on the target object for the target task (red). The four sub-models are
represented by grey arrows (a, c, g, f), and the external reasoning components are represented by colored arrows (b, d, e, h).

t ∈ DT , the objective is to localize and grasp o from the
scene in a manner that satisfies the conditions of t.

The target object o is localized by predicting a bounding
box b = (xb, yb, wb, hb) and segmentation map of an object
n ∈ N from the scene s.t. n = o. Given a parallel plate
gripper, o can be grasped by predicting a 2D task-oriented
grasp that can be parameterized as an oriented bounding box
g = (xg, yg, wg, hg, θg) (Fig. 2c). To ensure the grasp is
task-suitable, (xg, yg) should be in the affordance regions of
o that satisfy the relations defined by t in DT .

IV. ONE-SHOT TASK-ORIENTED GRASPING

OS-TOG is a framework designed for TOG with embed-
ded one-shot learning components that leverage database
knowledge (i.e. references) to generalize to new objects
and tasks without needing re-training. OS-TOG comprises
four neural networks and external reasoning components that
process predictions from the sub-models and acquire object
or affordance references from the database (Fig. 3). The
neural network components of OS-TOG are interchangeable
allowing us to select state-of-the-art models for their respec-
tive tasks. This section proceeds to describe the neural and
reasoning components in further detail.
Instance Segmentation - The first sub-model (Fig. 3a)
performs category-agnostic instance segmentation to segment
and isolate all N objects in the 640×480 RGB scene image
producing N binary masks. Each binary mask is combined
with the RGB scene image to create a set of color masks C.
We use Mask R-CNN [10] with a ResNet-50 FPN backbone
and weights pre-trained on ImageNet [24]. The Mask R-CNN
heads predict an object class, a bounding box, and a binary
segmentation map for each object. We replace the mask and
class predictor heads to predict two object classes; “object”
or “background”, and train the model using the same multi-
task loss function defined in [10].
Object Matching - External reasoning components retrieve
a color mask oc of the target object o from the database by

combining its 256×256 RGB image oi ∈ DO and binary
mask om ∈ DO (Fig. 3b). Each predicted color mask ci ∈ C
is magnified by cropping its bounding box and padding it
to a size of 256×256. The magnified predicted masks and
target object mask are fed into a one-shot learning model
which extracts their embedding vectors and computes the L2
distance between them to determine which c has the smallest
distance and is most similar s.t.ϕ = argminci∈C{d(ci, oc)}
(Fig. 3d). For the object matching model, we re-implement
N-net from [31] in PyTorch as it obtained the highest novel
object recognition accuracy.

During training, N-net is comprised of three streams. One
stream computes features for a reference object image xa,
and the other two streams compute features for two query
object images (positive xp and negative xn). xa shares the
same object class as xp, whereas xn has a different object
class. N-net uses embedding vectors from a frozen ResNet-50
model with pre-trained ImageNet weights for the reference
image stream to improve novel object accuracy. This is
further improved by using multiple product images for each
reference object in training and selecting the nearest one
based on L2 distances between features. We replace N-net’s
original training loss function with standard triplet loss (TL)
[26] and use a balanced batch sampler (BBS) after seeing
improved accuracies in preliminary experiments. The BBS
randomly selects p samples from k object classes in each
mini-batch, generating p × k triplets in each mini-batch.
Triplet loss is a metric that minimizes the L2 embedding
distance between xa and xp, and maximizes the distance
between xa and xn by a minimum margin α. Given that
f(x) is the embedding vector of an image x, triplet loss Lt

for a triplet (xa
i , x

p
i , x

n
i ) can be defined as;

Lt = max{d(xa
i , x

p
i )− d(xa

i , x
n
i ) + α, 0} (1)

d(xi, yi) = ||f(xi)− f(yi)||2 (2)

One-shot Affordance Recognition - OS-TOG retrieves a
reference binary affordance mask oa of o depending on the



Fig. 4: Predictions made by OS-TOG in physical experiments when given an RGB image and target object and task as input (a). OS-TOG retrieves an
object and suitable affordance reference of the target inputs from the database to be used by its one-shot learning models (b). This figure shows predictions
of each sub-model (c-f) and the final set of task-oriented grasp candidates (g). The green candidate represents the most confident grasp which is executed.

task-affordance relation defined by t in the database (Fig. 3e).
For “a” relations, OS-TOG retrieves a binary mask am ∈ DO

of a on the target object o s.t. oa = am. For unconstrained
relations (e.g. transport in Table II), we take the binary mask
om ∈ DO of o s.t. oa = om. For “NOT a” relations, we
obtain a binary mask s.t. oa = om − am. The one-shot
affordance recognition model takes as input ϕ, oi, and oa

to produce a binary affordance mask ϕm that represents the
task-suitable region in ϕ (Fig. 3f). We use the AffCorrs
model [9] for one-shot affordance recognition without re-
implementation or training as it is unsupervised and the only
sub-model in OS-TOG that is not re-implemented or trained.
In physical experiments we found that AffCorrs performs
significantly better if the orientation of the objects in ϕ, oi

are similar, hence, we rotate {oi, oa} in 45◦ intervals and use
the pair with the smallest L2 distance between oi and ϕ.
Grasp Detection - A grasp detection model predicts grasp
candidates on the image scene (Fig. 3g). We use our baseline
from previous work [11] that uses a Faster R-CNN [23]
model with a ResNet-50 FPN backbone and pre-trained
ImageNet weights. Faster R-CNN predicts an object class
and bounding box for each object in a scene, hence, we
replace the object classes it predicts and an orientation class
r. We discretize θg ∈ [−π

2 ,
π
2 ] orientation values into Q = 12

classes s.t. the set of possible orientation classes is R =
{r1, ..., rQ} with an additional class denoting an invalid grasp
and replace the Faster R-CNN class predictor head to predict
Q+1 classes. The model is trained using the same multi-task
loss function defined in [23]. The grasp candidates are filtered
to only consider those that have a confidence threshold > 0.5
and (xg, yg) lies in the predicted affordance region ϕm (Fig.
3h). The most confident grasp is taken giving a task-oriented
grasp on object o for task t.

V. EXPERIMENTS AND EVALUATION

OS-TOG was built in PyTorch using Python 3.8. Since
there is currently no publicly available gold-standard TOG
dataset, the system is evaluated in three separate settings.
First, we evaluate each sub-model of OS-TOG that we
implemented to the state-of-the-art in their respective tasks
(Sec. V-C). Second, we evaluate the performance of OS-
TOG in affordance recognition which uses all its sub-model
components except for the final grasp model (Sec. V-D).

Lastly, the entire framework is evaluated on TOG in physical
experiments with random household objects (Sec. V-E).

Fig. 5: Objects used for physical grasping experiments.

A. Evaluation Metrics

We adopt standard metrics from literature [1, 9] to evaluate
the performance of our models; the Intersection over Union
(IoU) score and Fw

β -measure [18] using β = 1 signifying
equal importance to weighted recall and precision. The grasp
accuracy score is calculated by classifying a predicted grasp
as a success if it has an IoU score greater than 25% with a
ground-truth grasp and a θg angle difference within 30◦. We
report the same metrics as [31] for one-shot learning.

B. Datasets

Cornell grasp dataset [13] - contains 1,035 RGB-D images
of single-object scenes covering 280 object classes hand-
annotated with multiple grasps.
OCID grasp dataset [18] - has 1,763 RGB-D images of
multi-object scenes covering 30 object categories annotated
with multiple grasps. Each object in the scene is also labeled
with a segmentation mask of its object class.
ARC image matching dataset [8] - has over 4,000 images
of 61 different object categories against a green screen with
matching masked product images in various orientations.
UMD dataset [21] - has 30,000 RGB-D images of single-
object scenes containing random household objects of 17
categories and 105 classes, and 7 affordance classes (grasp,
cut, scoop, contain, pound, support, and wrap-grasp).
UMDi dataset [9] - a subset of the UMD dataset tailored for
one-shot learning containing only a single instance of each
object class from UMD with original annotations kept.



C. Evaluating the sub-models of OS-TOG

Each sub-model is trained and evaluated on datasets used
by state-of-the-art models in grasping literature for instance
segmentation, grasp detection, and one-shot learning on their
reported metrics (Tables III and IV). As mentioned in Section
IV, we do not train or evaluate AffCorrs but provide reported
metrics from [9] on the UMDi Dataset (Table V). These
metrics are not directly comparable to the other baselines
which are supervised and evaluated on the full UMD Dataset.

TABLE I: LIST OF OBJECTS AND LABELLED AFFORDANCES

Split Object Affordances
hammer grasp,pound
spoon grasp,contain
screwdriver grasp,screw
marker grasp,write

INTRA-
CLASS

bowl grasp,contain
chisel grasp,file
frying pan grasp,fry
wrench grasp,loosen,unscrew
pliers grasp,hold

INTER-
CLASS

screw grasp,screw

TABLE II: LIST OF TASKS AND GRASP CONSTRAINTS

Task Name Constraints Affected Objects
transport - all
hammering grasp hammer
handover NOT grasp all except bowl
filing NOT file chisel
loosening NOT loosen wrench
unscrewing NOT unscrew unscrew
holding grasp pliers
writing grasp marker
screwing NOT screw screwdriver, screw
scooping NOT contain spoon
frying NOT grasp frying pan

D. Evaluation OS-TOG on Affordance Recognition

OS-TOG is evaluated on the UMD dataset on two separate
data splits; intra-class and inter-class. Intra-class signifies that
all object categories are present in both data splits, whereas
inter-class signifies that the test set contains exclusive object
categories. A database containing a single example of each
object class with all possible labeled affordances is built
from the dataset. The evaluation procedure begins by iterating
through each image in the test set and segmenting the object
in the image, then matching it to the nearest reference object
in the database. For each ground-truth affordance label in the
current scene, a reference affordance mask having the same
label is retrieved and used to predict an affordance mask on
the scene object. Lastly, we calculate the IoU score and Fw

β -
measure between the ground-truth and predicted affordance
masks when the scene object is correctly matched (Table V).

E. Evaluation OS-TOG in Physical Experiments

For physical experiments, the grasp detection model was
trained on Cornell, and the object matching model was
trained on UMD. The instance segmentation model was
trained on OCID, single-object UMD scenes, and then 20
multi-object scenes from UMD that we manually annotated.
We conduct physical experiments using a 7-DoF robotic arm
by Franka Emika equipped with a D415 Intel RealSense
camera. The Frankx library [2] was used for motion planning.
Experiments are carried out on 10 random objects having
at least one affordance. Half of the objects were seen by

at least one of the trained sub-models in training (intra-
class) (Fig. 5a), and the latter were never seen in training
(inter-class) (Fig. 5b). We create a database by annotating
a single instance of each object with suitable object masks
and affordances (Table I) and create a list of tasks mapped to
suitable affordance regions (Table II). Our approach allows us
to have multiple affordances on objects even if overlapped.
We carry out five trials for each object per task. Table VI
shows OS-TOG’s ability to segment the object (Obj. Det.),
match the detected object to the reference object correctly
(Obj. Match.), detect a grasp in the correct affordance region
of the correctly matched object (Grasp Det.), and physically
succeed in grasping the predicted grasp (Grasp Succ.).

VI. RESULTS

Instance Segmentation and Grasp Detection - As shown by
Table III, our trained grasp model and instance segmentation
achieve comparable performance to Det Seg [1] on both
datasets and significantly outperforms Det Seg on grasp
detection in the OCID grasp dataset. This suggests that Faster
R-CNN may perform better in multi-object scenes.

TABLE III: GRASP DET. AND INSTANCE SEG. RESULTS

Method Dataset Grasp
Accuracy (%) IOU (%)

Det Seg [1] OCID grasp 89.0 94.1
Cornell 98.2 -

Faster R-CNN [23] and
Mask R-CNN [10] (ours)

OCID grasp 98.1 93.0
Cornell 96.6 -

Object Matching - Our re-implementation of N-net performs
better in all metrics than N-net from [31]. Our model still
does not reach the performance of K-net and the Two-
stage model from [31] on known object recognition, and
mixed object recognition, however, it achieves the highest
recognition rate on novel object recognition which is the
metric most important to our system.

TABLE IV: OBJECT MATCHING RESULTS ON ARC [31]

Method K vs N Known Novel Mixed
N-net [31] 69.2 56.8 82.1 64.6

K-net [31] 93.2 99.7 29.5 78.1

Two-stage K-net + N-net [31] 93.2 93.6 77.5 88.6

N-net + TL + BBS (ours) 71.7 75.5 86.7 78.7

Affordance Recognition - OS-TOG is able to correctly
detect and match objects from the scene 65.4% of the time
for inter-class objects and 71.5% for intra-class. When cor-
rectly detecting and matching the object, OS-TOG is able to
outperform the baseline approaches on nearly all affordance
types and achieves an average IoU and Fw

β score of 0.77 and
0.85 for intra-class objects and 0.77 and 0.84 for inter-class
objects. The similarity between OS-TOG’s results for inter-
class and intra-class objects demonstrates the generalization
capabilities of the network to new objects.
Physical Experiments - Table VI shows that OS-TOG suc-
cessfully matched previously seen objects at a rate of 75.0%,
and 69.4% for novel object categories when segmented. Most
object matching failures are a result of incomplete or noisy
segmentation predictions, or objects being too similar in



TABLE V: AFFORDANCE RECOGNITION RESULTS ON UMD [21]

Method Data Split Grasp Cut Scoop Contain Wrap-Grasp Pound Support Total Avg.
IoU Fw

β IoU Fw
β IoU Fw

β IoU Fw
β IoU Fw

β IoU Fw
β IoU Fw

β IoU Fw
β

AffordanceNet [7] Intra-class - 0.73 - 0.81 - 0.76 - 0.83 - 0.82 - 0.79 - 0.84 - 0.80

ResNet [25] Inter-class 0.33 - 0.51 - 0.69 - 0.52 - 0.85 - 0.09 - 0.51 - 0.50 -
Intra-class 0.71 - 0.79 - 0.86 - 0.86 - 0.84 - 0.72 - 0.55 - 0.76 -

AffCorrs [9] Inter-class 0.39 0.41 0.51 0.50 0.62 0.65 0.71 0.75 0.83 0.87 0.72 0.73 0.82 0.79 0.66 0.68
Intra-class 0.55 0.65 0.72 0.81 0.73 0.81 0.82 0.87 0.83 0.89 0.78 0.87 0.82 0.87 0.75 0.82

OS-TOG (ours) Inter-class 0.58 0.69 0.65 0.76 0.78 0.86 0.85 0.91 0.80 0.89 0.86 0.93 0.87 0.93 0.77 0.84
Intra-class 0.55 0.66 0.66 0.75 0.82 0.89 0.90 0.94 0.81 0.89 0.84 0.91 0.78 0.86 0.77 0.85

TABLE VI: PHYSICAL EXPERIMENT RESULTS

Success Rates (%)Object Task Obj. Det. Obj. Match. Grasp Det. Grasp Succ.
Bowl transport 100.0 100.0 100.0 40.0

Screwdriver transport 100.0 80.0 100.0 80.0
screwing 100.0 80.0 100.0 75.0
handover 100.0 80.0 100.0 50.0

Spoon transport 100.0 80.0 100.0 50.0
scooping 100.0 60.0 100.0 100.0
handover 100.0 20.0 0.0 N/A

Hammer transport 100.0 60.0 100.0 66.7
hammering 100.0 60.0 100.0 66.7
handover 80.0 75.0 100.0 100.0

Marker transport 100.0 100.0 100.0 100.0
writing 100.0 100.0 80.0 100.0

handover 100.0 80.0 75.0 100.0

IN
T

R
A

-C
L

A
SS

Avg. Total 98.5 75.0 88.8 77.4

Chisel transport 100.0 60.0 66.7 50.0
filing 100.0 80.0 100.0 50.0

handover 100.0 40.0 100.0 00.0
Frying Pan transport 100.0 100.0 100.0 60.0

frying 100.0 100.0 0.0 N/A
handover 100.0 100.0 100.0 100.0

Pliers transport 100.0 40.0 100.0 100.0
holding 100.0 40.0 100.0 100.0

handover 100.0 80.0 100.0 75.0
Wrench transport 100.0 80.0 100.0 100.0

unscrewing 100.0 40.0 100.0 100.0
handover 100.0 40.0 50.0 100.0
loosening 100.0 60.0 100.0 100.0

Screw transport 100.0 80.0 100.0 100.0
screwing 80.0 80.0 75.0 100.0
handover 80.0 100.0 25.0 100.0

IN
T

E
R

-C
L

A
SS

Avg. Total 97.5 69.4 82.3 82.3

color. For instance, the hammer was often mismatched to the
screwdriver when the head of the hammer was not properly
segmented due to them sharing the same color properties.

The results also show that a task-suitable grasp was suc-
cessfully predicted at a rate of 88.8% for known objects and
82.3% for novel objects. Task-oriented grasp detection fail-
ures are attributed to mis-segmentations, insufficient grasps
predicted on the target scene object, and affordance recogni-
tion failures. For example, the model failed to segment the
correct affordance region in the screw since the thread and
head had a very similar shape (Fig. 4). Physical grasp success
rates were 77.4% for known objects and 82.3% for novel
objects with most failures attributed to objects slipping from
the grippers or predicting wg too small. Note that the physical
grasp success rate for the spoon’s handover task and frying
pan’s frying task is unavailable since it failed to detect any
task-suitable grasps in the trials.

VII. CONCLUSION

We present a novel framework called OS-TOG, composed
of four sub-models and reasoning components that coordinate
to perform task-oriented grasping. By leveraging the proper-
ties of one-shot learning models and a database of individ-
ually annotated objects and tasks, OS-TOG produces task-
oriented grasps on previously unseen objects and tasks from

RGB multi-object scenes. Experimentation results showed
that OS-TOG is capable of generalizing substantially to new
objects and tasks, which is beyond the generalization capabil-
ities of current task-oriented grasping systems. Future work
involves improving the performance of each sub-component
further.
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