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Task-oriented grasping models aim to predict a suitable grasp pose on an object to fulfill a task. These systems have limited generalization capabilities to new tasks, but have shown the ability to generalize to novel objects by recognizing the physical properties of objects that can be associated with an action (i.e. affordances). However, this object generalization often comes at the cost of being unable to recognize the object category being grasped, which could lead to unpredictable or risky behaviors, especially within unconstrained environments. This paper overcomes these generalization limitations by exploring one-shot learning techniques to develop a task-oriented grasping solution that can leverage explicit knowledge defined in a database to implicitly generalize to new objects and tasks. We propose the One-shot Task-oriented Grasping (OS-TOG) framework, composed of four sub-models, that uses a database of objects and tasks to identify suitable task-oriented grasps on a specified object from an image scene. In physical experiments with novel objects, OS-TOG recognizes 69.4% of detected objects correctly and predicts suitable task-oriented grasps with 82.3% accuracy, having a physical grasp success rate of 82.3%.

I. INTRODUCTION

Task-oriented Grasping (TOG) involves finding a grasp pose on an object that enables the completion of a task [START_REF] Detry | Task-oriented Grasping with Semantic and Geometric Scene Understanding[END_REF][START_REF] Fang | Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-Supervision[END_REF]. For instance, grasping the handle of a mug to pour out its contents. TOG is a vital preliminary step to accomplishing manipulations required by robotic grasping systems used for assistive robotics (e.g. doing household chores) or assembly tasks [START_REF] Bowen | CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation[END_REF]. This ability to understand and interact with surrounding objects enables robotic manipulators to operate in unconstrained environments without human intervention.

Creating a dataset with sufficient coverage of the tasks and objects present in the real world to train TOG models is currently unfeasible [START_REF] Kokic | Learning Task-Oriented Grasping From Human Activity Datasets[END_REF], which encourages TOG solutions that can generalize to new object categories or tasks. [START_REF] Detry | Task-oriented Grasping with Semantic and Geometric Scene Understanding[END_REF][START_REF] Lin | Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping[END_REF][START_REF] Liu | CAGE: Context-Aware Grasping Engine[END_REF] show capabilities of generalizing to novel objects by predicting and leveraging affordances [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF][START_REF] Nguyen | Object-Based Affordances Detection with Convolutional Neural Networks and Dense Conditional Random Fields[END_REF], which are regions of an object that represent a functional interaction (e.g. cut, pour, contain). By mapping relationships between affordances and tasks, the robotic system can identify tasksuitable grasping regions. For instance, if the robotic manipulator was given a handover task, it could grasp the hammer by the pound affordance, leaving the grasp region to be safely Fig. 1: Given an observation image (a), OS-TOG uses a database containing information on objects (b) and tasks (c) to predict a task-oriented grasp (e) for a user-specified object and task (d). The object database (b) contains a list of objects annotated with their labeled affordances. The task database (c) maps relationships between tasks and affordances to determine task-suitable regions that should be grasped.

retrieved by a human. However, these solutions are currently unable to recognize the object category being grasped and cannot generalize to novel affordances. The inability to recognize objects could lead to unpredictable or risky actions when working in unconstrained environments, such as an assistive cooking robot grasping the handle of a knife instead of a spatula. Incorporating standard object detectors [START_REF] He | Mask R-CNN[END_REF][START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF] could provide a means of object recognition, but these are also limited to recognizing object categories they were trained on.

To address the generalization limitations of TOG systems, we explore the use of one-shot learning models, often used for facial recognition and signature verification [START_REF] Bromley | Signature Verification Using A "Siamese" Time Delay Neural Network[END_REF]. These techniques measure the similarity between two images to determine whether they belong to the same object category. We incorporate these models and present the One-shot Taskoriented Grasping (OS-TOG) framework, which leverages a database of objects and task-affordance relations to produce task-oriented grasps for specified objects and tasks from images (Fig. 1). Embedded one-shot learning components allow OS-TOG to generalize to new object categories and tasks implicitly without needing further dataset collection or re-training. OS-TOG is limited to recognizing objects and tasks defined in its database but can generalize to more by adding a single annotation of each new object or task to the database. This requires significantly less labeling and training effort than creating an entire dataset to re-train a standard TOG model, where combinatorial amounts of examples are needed to cover a range of objects and tasks.

This research aims to evaluate the performance of OS-TOG on TOG and explore the extent can generalize to new objects and tasks. Our contributions can be summarized as three-fold; 1) We present a novel framework for TOG, called OS-TOG, that is capable of generalizing to new objects and tasks. 2) We propose and train suitable sub-models for the interchangeable neural network components in OS-TOG and evaluate them to state-of-the-art in their respective tasks. 3) Experiments with a 7-DoF robotic arm having an RGB-D camera are carried out to demonstrate OS-TOG's ability to perform TOG on previously unseen objects and various tasks.

II. RELATED WORK

Task-oriented grasping is a challenging research area that involves finding a suitable grasp on an object to fulfill a specified task. One challenging aspect is that there is a large variety of tasks and objects in the real world, leading to extensive manual efforts required to create annotated datasets with sufficient coverage across multiple domains.

Over the years, several machine-learning solutions have been proposed to solve task-oriented grasping [6, 8, 12, 14-16, 20, 29, 30], that require large amounts of data. To overcome the dataset limitations in the field, most literature focuses on using alternative methods to generate datasets for training or improving the generalization capabilities of their systems. These data alternative methods include generating synthetic data [START_REF] Detry | Task-oriented Grasping with Semantic and Geometric Scene Understanding[END_REF][START_REF] Lin | Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping[END_REF][START_REF] Yang | Task-oriented Grasping in Object Stacking Scenes with CRF-based Semantic Model[END_REF], training in simulated environments [START_REF] Fang | Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-Supervision[END_REF][START_REF] Bowen | CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation[END_REF], or leveraging video footage of human-object interactions [START_REF] Kokic | Learning Task-Oriented Grasping From Human Activity Datasets[END_REF][START_REF] Li | Learning Task-Oriented Dexterous Grasping from Human Knowledge[END_REF]. However, these methods often show a drop in performance in real-world scenes or require re-training for new objects and tasks. Certain solutions have demonstrated the ability to generalize to new object categories by learning feature representations of task-relevant geometries within similar objects [START_REF] Detry | Task-oriented Grasping with Semantic and Geometric Scene Understanding[END_REF][START_REF] Fang | Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-Supervision[END_REF][START_REF] Bowen | CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation[END_REF], leveraging semantic knowledge between tasks and objects [START_REF] Murali | Same Object, Different Grasps: Data and Semantic Knowledge for Task-Oriented Grasping[END_REF] or segmenting parts of the object with a particular functionality (i.e. affordance) to assist in predictions [START_REF] Lin | Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping[END_REF][START_REF] Liu | CAGE: Context-Aware Grasping Engine[END_REF]. Nonetheless, some of these solutions were not designed to work in multi-object scenes with all being unable to recognize the objects they are grasping fully. Hence, we identify a research gap for novel task-oriented grasping solutions that can recognize objects and generalize to new objects and tasks within multi-object scenes with minimal training effort required.

The task of segmenting and labeling parts of objects with functionality is referred to as "affordance segmentation". Machine-learning solutions that predict affordance maps are mostly semantic segmentation models consisting of object detection components. For instance, [START_REF] Nguyen | Object-Based Affordances Detection with Convolutional Neural Networks and Dense Conditional Random Fields[END_REF] proposed a CNNbased framework that detects objects and then segments their affordances from RGB images. [START_REF] Do | AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection[END_REF] extends this solution by creating an end-to-end architecture, similar to a Mask R-CNN [START_REF] He | Mask R-CNN[END_REF], that recognizes objects and segments affordances in parallel. [START_REF] Fu | Learning Affordance Segmentation for Real-World Robotic Manipulation via Synthetic Images[END_REF] build upon an object detector and add domain adaptation components to learn from synthetic data and adapt to real-world data. [START_REF] Thermos | A Deep Learning Approach to Object Affordance Segmentation[END_REF] construct an end-to-end autoencoder that learns from human-object interactions. However, these techniques are unable to generalize to new objects and affordances without requiring re-training. To this matter, [START_REF] Luo | One-Shot Affordance Detection[END_REF] and [START_REF] Hadjivelichkov | One-Shot Transfer of Affordance Regions? AffCorrs![END_REF] demonstrate the use of one-shot learning techniques to find and segment previously unseen affordances without requiring re-training.

One-shot learning is the task of classifying objects from a single or few training examples. The most popular oneshot learning technique is Siamese networks [START_REF] Bromley | Signature Verification Using A "Siamese" Time Delay Neural Network[END_REF], composed of two sub-networks that share the same weights to predict the similarity between two different inputs. [START_REF] Danielczuk | Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter[END_REF] use a Mask R-CNN followed by a Siamese network to recognize target objects from cluttered bins in order to be grasped. Alternative one-shot learning methods surpassing the performance of Siamese networks have also been introduced over the years.

[27] create a novel two-branched approach for one-shot image segmentation, where one branch generates parameters from the query image which is used by the second branch to produce a segmentation mask from the query image. [START_REF] Michaelis | One-Shot Segmentation in Clutter[END_REF] segments objects from cluttered scenes by segmenting instances, masking their backgrounds, and computing the best match. [START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF] wins first place in the Amazon Robotics Challenge for categorizing objects in a cluttered bin. Their solution isolates each object through grasping and then matches them to the nearest object in a database using a two-stream CNN-based model. Their system obtains a high recognition rate but is inefficient in settings where you need to retrieve only a specific object category from a multi-object scene. Inspired by the solutions of [START_REF] Danielczuk | Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter[END_REF][START_REF] Hadjivelichkov | One-Shot Transfer of Affordance Regions? AffCorrs![END_REF][START_REF] Luo | One-Shot Affordance Detection[END_REF][START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF] and capabilities of oneshot learning models, we design a task-oriented grasping framework that recognizes and grasps objects from multiobject scenes with generalization properties to both tasks and objects without the need for re-training.

Fig. 2: An example of an object annotated with an object segmentation mask (a) and affordance segmentation masks (b), and an example of a grasp pose g = (x g , y g , w g , h g , θ g ) on an object, with center co-ordinates (x g , y g ), gripper opening w g , gripper size h g and rotation

θ g ∈ [-π 2 , π 2 ] (c).

III. PROBLEM STATEMENT

Assume a database D containing a set of user-defined tasks D T and annotated objects D O . Each object in D O is represented by an RGB image which is annotated with an object segmentation mask (Fig. 2a) and suitable affordance segmentation masks (Fig. 2b) from a determined set of affordances A. These segmentation masks are binary masks of the RGB image. Each task in D T is mapped to a suitable affordance a ∈ A through "a" or "NOT a" relations, denoting whether grasping in the region of a will allow the task to be accomplished or not. t ∈ D T , the objective is to localize and grasp o from the scene in a manner that satisfies the conditions of t.

The target object o is localized by predicting a bounding box b = (x b , y b , w b , h b ) and segmentation map of an object n ∈ N from the scene s.t. n = o. Given a parallel plate gripper, o can be grasped by predicting a 2D task-oriented grasp that can be parameterized as an oriented bounding box g = (x g , y g , w g , h g , θ g ) (Fig. 2c). To ensure the grasp is task-suitable, (x g , y g ) should be in the affordance regions of o that satisfy the relations defined by t in D T .

IV. ONE-SHOT TASK-ORIENTED GRASPING

OS-TOG is a framework designed for TOG with embedded one-shot learning components that leverage database knowledge (i.e. references) to generalize to new objects and tasks without needing re-training. OS-TOG comprises four neural networks and external reasoning components that process predictions from the sub-models and acquire object or affordance references from the database (Fig. 3). The neural network components of OS-TOG are interchangeable allowing us to select state-of-the-art models for their respective tasks. This section proceeds to describe the neural and reasoning components in further detail. Instance Segmentation -The first sub-model (Fig. 3a) performs category-agnostic instance segmentation to segment and isolate all N objects in the 640×480 RGB scene image producing N binary masks. Each binary mask is combined with the RGB scene image to create a set of color masks C. We use Mask R-CNN [START_REF] He | Mask R-CNN[END_REF] with a ResNet-50 FPN backbone and weights pre-trained on ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]. The Mask R-CNN heads predict an object class, a bounding box, and a binary segmentation map for each object. We replace the mask and class predictor heads to predict two object classes; "object" or "background", and train the model using the same multitask loss function defined in [START_REF] He | Mask R-CNN[END_REF]. Object Matching -External reasoning components retrieve a color mask o c of the target object o from the database by combining its 256×256 RGB image o i ∈ D O and binary mask o m ∈ D O (Fig. 3b). Each predicted color mask c i ∈ C is magnified by cropping its bounding box and padding it to a size of 256×256. The magnified predicted masks and target object mask are fed into a one-shot learning model which extracts their embedding vectors and computes the L2 distance between them to determine which c has the smallest distance and is most similar s.t.ϕ = argmin ci∈C {d(c i , o c )} (Fig. 3d). For the object matching model, we re-implement N-net from [START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF] in PyTorch as it obtained the highest novel object recognition accuracy.

During training, N-net is comprised of three streams. One stream computes features for a reference object image x a , and the other two streams compute features for two query object images (positive x p and negative x n ). x a shares the same object class as x p , whereas x n has a different object class. N-net uses embedding vectors from a frozen ResNet-50 model with pre-trained ImageNet weights for the reference image stream to improve novel object accuracy. This is further improved by using multiple product images for each reference object in training and selecting the nearest one based on L2 distances between features. We replace N-net's original training loss function with standard triplet loss (TL) [START_REF] Schroff | FaceNet: A unified embedding for face recognition and clustering[END_REF] and use a balanced batch sampler (BBS) after seeing improved accuracies in preliminary experiments. The BBS randomly selects p samples from k object classes in each mini-batch, generating p × k triplets in each mini-batch. Triplet loss is a metric that minimizes the L2 embedding distance between x a and x p , and maximizes the distance between x a and x n by a minimum margin α. Given that f (x) is the embedding vector of an image x, triplet loss L t for a triplet (x a i , x p i , x n i ) can be defined as;

L t = max{d(x a i , x p i ) -d(x a i , x n i ) + α, 0} (1) 
d(x i , y i ) = ||f (x i ) -f (y i )|| 2 (2) 
One-shot Affordance Recognition -OS-TOG retrieves a reference binary affordance mask o a of o depending on the task-affordance relation defined by t in the database (Fig. 3e).

For "a" relations, OS-TOG retrieves a binary mask a m ∈ D O of a on the target object o s.t. o a = a m . For unconstrained relations (e.g. transport in Table II), we take the binary mask

o m ∈ D O of o s.t. o a = o m .
For "NOT a" relations, we obtain a binary mask s.t. o a = o m -a m . The one-shot affordance recognition model takes as input ϕ, o i , and o a to produce a binary affordance mask ϕ m that represents the task-suitable region in ϕ (Fig. 3f). We use the AffCorrs model [START_REF] Hadjivelichkov | One-Shot Transfer of Affordance Regions? AffCorrs![END_REF] for one-shot affordance recognition without reimplementation or training as it is unsupervised and the only sub-model in OS-TOG that is not re-implemented or trained.

In physical experiments we found that AffCorrs performs significantly better if the orientation of the objects in ϕ, o i are similar, hence, we rotate {o i , o a } in 45 • intervals and use the pair with the smallest L2 distance between o i and ϕ. Grasp Detection -A grasp detection model predicts grasp candidates on the image scene (Fig. 3g). We use our baseline from previous work [START_REF] Holomjova | Exploring Rotated Object Detection Models for Antipodal Robotic Grasping[END_REF] that uses a Faster R-CNN [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF] model with a ResNet-50 FPN backbone and pre-trained ImageNet weights. Faster R-CNN predicts an object class and bounding box for each object in a scene, hence, we replace the object classes it predicts and an orientation class r. We discretize θ g ∈ [-π 2 , π 2 ] orientation values into Q = 12 classes s.t. the set of possible orientation classes is R = {r 1 , ..., r Q } with an additional class denoting an invalid grasp and replace the Faster R-CNN class predictor head to predict Q+1 classes. The model is trained using the same multi-task loss function defined in [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF]. The grasp candidates are filtered to only consider those that have a confidence threshold > 0.5 and (x g , y g ) lies in the predicted affordance region ϕ m (Fig. 3h). The most confident grasp is taken giving a task-oriented grasp on object o for task t.

V. EXPERIMENTS AND EVALUATION

OS-TOG was built in PyTorch using Python 3.8. Since there is currently no publicly available gold-standard TOG dataset, the system is evaluated in three separate settings. First, we evaluate each sub-model of OS-TOG that we implemented to the state-of-the-art in their respective tasks (Sec. V-C). Second, we evaluate the performance of OS-TOG in affordance recognition which uses all its sub-model components except for the final grasp model (Sec. V-D).

Lastly, the entire framework is evaluated on TOG in physical experiments with random household objects (Sec. V-E). 

A. Evaluation Metrics

We adopt standard metrics from literature [START_REF] Ainetter | End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB[END_REF][START_REF] Hadjivelichkov | One-Shot Transfer of Affordance Regions? AffCorrs![END_REF] to evaluate the performance of our models; the Intersection over Union (IoU) score and F w β -measure [START_REF] Margolin | How to Evaluate Foreground Maps?[END_REF] using β = 1 signifying equal importance to weighted recall and precision. The grasp accuracy score is calculated by classifying a predicted grasp as a success if it has an IoU score greater than 25% with a ground-truth grasp and a θ g angle difference within 30 • . We report the same metrics as [START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF] for one-shot learning.

B. Datasets

Cornell grasp dataset [START_REF] Lenz | Deep Learning for Detecting Robotic Grasps[END_REF] contains 1,035 RGB-D images of single-object scenes covering 280 object classes handannotated with multiple grasps. OCID grasp dataset [START_REF] Margolin | How to Evaluate Foreground Maps?[END_REF] has 1,763 RGB-D images of multi-object scenes covering 30 object categories annotated with multiple grasps. Each object in the scene is also labeled with a segmentation mask of its object class. ARC image matching dataset [START_REF] Fang | Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-Supervision[END_REF] has over 4,000 images of 61 different object categories against a green screen with matching masked product images in various orientations. UMD dataset [START_REF] Myers | Affordance detection of tool parts from geometric features[END_REF] has 30,000 RGB-D images of singleobject scenes containing random household objects of 17 categories and 105 classes, and 7 affordance classes (grasp, cut, scoop, contain, pound, support, and wrap-grasp). UMD i dataset [START_REF] Hadjivelichkov | One-Shot Transfer of Affordance Regions? AffCorrs![END_REF] a subset of the UMD dataset tailored for one-shot learning containing only a single instance of each object class from UMD with original annotations kept.

C. Evaluating the sub-models of OS-TOG

Each sub-model is trained and evaluated on datasets used by state-of-the-art models in grasping literature for instance segmentation, grasp detection, and one-shot learning on their reported metrics (Tables III andIV). As mentioned in Section IV, we do not train or evaluate AffCorrs but provide reported metrics from [START_REF] Hadjivelichkov | One-Shot Transfer of Affordance Regions? AffCorrs![END_REF] on the UMD i Dataset (Table V). These metrics are not directly comparable to the other baselines which are supervised and evaluated on the full UMD Dataset. 

D. Evaluation OS-TOG on Affordance Recognition

OS-TOG is evaluated on the UMD dataset on two separate data splits; intra-class and inter-class. Intra-class signifies that all object categories are present in both data splits, whereas inter-class signifies that the test set contains exclusive object categories. A database containing a single example of each object class with all possible labeled affordances is built from the dataset. The evaluation procedure begins by iterating through each image in the test set and segmenting the object in the image, then matching it to the nearest reference object in the database. For each ground-truth affordance label in the current scene, a reference affordance mask having the same label is retrieved and used to predict an affordance mask on the scene object. Lastly, we calculate the IoU score and F w βmeasure between the ground-truth and predicted affordance masks when the scene object is correctly matched (Table V).

E. Evaluation OS-TOG in Physical Experiments

For physical experiments, the grasp detection model was trained on Cornell, and the object matching model was trained on UMD. The instance segmentation model was trained on OCID, single-object UMD scenes, and then 20 multi-object scenes from UMD that we manually annotated. We conduct physical experiments using a 7-DoF robotic arm by Franka Emika equipped with a D415 Intel RealSense camera. The Frankx library [START_REF] Berscheid | Frankx: High-Level Motion Library for the Franka Emika Robot[END_REF] was used for motion planning. Experiments are carried out on 10 random objects having at least one affordance. Half of the objects were seen by at least one of the trained sub-models in training (intraclass) (Fig. 5a), and the latter were never seen in training (inter-class) (Fig. 5b). We create a database by annotating a single instance of each object with suitable object masks and affordances (Table I) and create a list of tasks mapped to suitable affordance regions (Table II). Our approach allows us to have multiple affordances on objects even if overlapped. We carry out five trials for each object per task. Table VI shows OS-TOG's ability to segment the object (Obj. Det.), match the detected object to the reference object correctly (Obj. Match.), detect a grasp in the correct affordance region of the correctly matched object (Grasp Det.), and physically succeed in grasping the predicted grasp (Grasp Succ.).

VI. RESULTS

Instance Segmentation and Grasp Detection -As shown by Table III, our trained grasp model and instance segmentation achieve comparable performance to Det Seg [START_REF] Ainetter | End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB[END_REF] on both datasets and significantly outperforms Det Seg on grasp detection in the OCID grasp dataset. This suggests that Faster R-CNN may perform better in multi-object scenes. Object Matching -Our re-implementation of N-net performs better in all metrics than N-net from [START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF]. Our model still does not reach the performance of K-net and the Twostage model from [START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF] on known object recognition, and mixed object recognition, however, it achieves the highest recognition rate on novel object recognition which is the metric most important to our system. color. For instance, the hammer was often mismatched to the screwdriver when the head of the hammer was not properly segmented due to them sharing the same color properties. The results also show that a task-suitable grasp was successfully predicted at a rate of 88.8% for known objects and 82.3% for novel objects. Task-oriented grasp detection failures are attributed to mis-segmentations, insufficient grasps predicted on the target scene object, and affordance recognition failures. For example, the model failed to segment the correct affordance region in the screw since the thread and head had a very similar shape (Fig. 4). Physical grasp success rates were 77.4% for known objects and 82.3% for novel objects with most failures attributed to objects slipping from the grippers or predicting w g too small. Note that the physical grasp success rate for the spoon's handover task and frying pan's frying task is unavailable since it failed to detect any task-suitable grasps in the trials.

VII. CONCLUSION

We present a novel framework called OS-TOG, composed of four sub-models and reasoning components that coordinate to perform task-oriented grasping. By leveraging the properties of one-shot learning models and a database of individually annotated objects and tasks, OS-TOG produces taskoriented grasps on previously unseen objects and tasks from RGB multi-object scenes. Experimentation results showed that OS-TOG is capable of generalizing substantially to new objects and tasks, which is beyond the generalization capabilities of current task-oriented grasping systems. Future work involves improving the performance of each sub-component further.

  Given an RGB image of a multiobject scene containing different objects N , database D = D T ∪ D O , target object o ∈ (N ∩ D O ), and a target task

Fig. 3 :

 3 Fig. 3: An illustration of the proposed framework (OS-TOG) for task-oriented grasping. OS-TOG takes as input an RGB image, target object, target task, and database of objects and tasks (green) and outputs a 2D task-oriented grasp on the target object for the target task (red). The four sub-models are represented by grey arrows (a, c, g, f), and the external reasoning components are represented by colored arrows (b, d, e, h).

Fig. 4 :

 4 Fig. 4: Predictions made by OS-TOG in physical experiments when given an RGB image and target object and task as input (a). OS-TOG retrieves an object and suitable affordance reference of the target inputs from the database to be used by its one-shot learning models (b). This figure shows predictions of each sub-model (c-f) and the final set of task-oriented grasp candidates (g). The green candidate represents the most confident grasp which is executed.
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 5 Fig. 5: Objects used for physical grasping experiments.

  

TABLE I :

 I LIST OF OBJECTS AND LABELLED AFFORDANCES

	Split	Object	Affordances
		hammer	grasp,pound
	INTRA-CLASS	spoon screwdriver marker	grasp,contain grasp,screw grasp,write
		bowl	grasp,contain
		chisel	grasp,file
	INTER-CLASS	frying pan wrench pliers	grasp,fry grasp,loosen,unscrew grasp,hold
		screw	grasp,screw

TABLE II :

 II LIST OF TASKS AND GRASP CONSTRAINTS

	Task Name	Constraints	Affected Objects
	transport	-	all
	hammering	grasp	hammer
	handover	NOT grasp	all except bowl
	filing	NOT file	chisel
	loosening	NOT loosen	wrench
	unscrewing	NOT unscrew	unscrew
	holding	grasp	pliers
	writing	grasp	marker
	screwing	NOT screw	screwdriver, screw
	scooping	NOT contain	spoon
	frying	NOT grasp	frying pan

TABLE III :

 III GRASP DET. AND INSTANCE SEG. RESULTS

	Method	Dataset	Grasp Accuracy (%)	IOU (%)
	Det Seg [1]	OCID grasp Cornell	89.0 98.2	94.1 -
	Faster R-CNN [23] and	OCID grasp	98.1	93.0
	Mask R-CNN [10] (ours)	Cornell	96.6	-

TABLE IV :

 IV OBJECT MATCHING RESULTS ON ARC[START_REF] Zeng | Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching[END_REF] TableVIshows that OS-TOG successfully matched previously seen objects at a rate of 75.0%, and 69.4% for novel object categories when segmented. Most object matching failures are a result of incomplete or noisy segmentation predictions, or objects being too similar in

	Method	K vs N	Known	Novel	Mixed
	N-net [31]	69.2	56.8	82.1	64.6
	K-net [31]	93.2	99.7	29.5	78.1
	Two-stage K-net + N-net [31]	93.2	93.6	77.5	88.6
	N-net + TL + BBS (ours)	71.7	75.5	86.7	78.7
	Affordance Recognition -OS-TOG is able to correctly
	detect and match objects from the scene 65.4% of the time
	for inter-class objects and 71.5% for intra-class. When cor-
	rectly detecting and matching the object, OS-TOG is able to
	outperform the baseline approaches on nearly all affordance
	types and achieves an average IoU and F w β score of 0.77 and
	0.85 for intra-class objects and 0.77 and 0.84 for inter-class
	objects. The similarity between OS-TOG's results for inter-
	class and intra-class objects demonstrates the generalization
	capabilities of the network to new objects.		
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