Thermal Modelling

ractional-order system identification

Conclusions and perspectives

Fractional order modeling and identification for heat transfer in lungs

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Université de Bordeaux

May 12th 2022

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Université de Bordeaux

Conclusions and perspectives

1 Introduction

- **2** Thermal Modelling
- **3** Fractional-order system identification
- **4** Conclusions and perspectives

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

- 2 Thermal Modelling
- ③ Fractional-order system identification
- 4 Conclusions and perspectives

Introduction (1/2)

- During cardiac surgery, it is usually required to use extracorporeal circulation (ECC)
- A heart-lung machine is then connected to the patient's circulatory system
- Hypothermia and oxygen consumption are slowed down by means of hypothermia

Introduction (2/2)

- Thermal modelling for transient temperature response in longs : fractional-order models.
 - Heat equation : circuit models.
 - Physiological scenario.
- Fractional-order system identification.
 - Recursive identification.
 - Real-time identification of continuous-time models.

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Mathematical background (1/3)

 Grünwald-Letnikov's fractional derivative definition is well suited for implementation :

$$_{0}\mathbf{D}^{lpha}f(t)pprox rac{1}{T_{s}^{lpha}}\sum_{j=0}^{\lfloorrac{t}{T_{s}}
floor}(-1)^{j}inom{lpha}{j}f(t-jT_{s})\quad,lpha\in\mathscr{R}^{+}$$

• Newton's generalized binomial :

$$\begin{pmatrix} \alpha \\ j \end{pmatrix} = rac{\Gamma(\alpha+1)}{\Gamma(j+1)\Gamma(\alpha-j+1)}.$$

• On Laplace domain with null initial conditions :

$$\mathscr{L}\{\mathbf{D}^{\alpha}f(t)\}=s^{\alpha}F(s).$$

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Mathematical background (2/3)

Figure 1 - GL fractional derivative of a ramp function

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Mathematical background (3/3)

• Fractional order model of a SISO plant :

$$y(t) + a_1 \mathbf{D}^{lpha_1} y(t) + ... a_{m_A} \mathbf{D}^{lpha_{m_A}} = b_0 \mathbf{D}^{eta_0} u(t) + b_1 \mathbf{D}^{eta_1} u(t) + ... b_{m_B} \mathbf{D}^{eta_{m_B}} u(t)$$

• Fractional order transfer function :

$$G(s)=rac{B(s)}{A(s)}=rac{\sum_{i=0}^{m_B}b_is^{eta_i}}{1+\sum_{j=1}^{m_A}a_js^{lpha_j}}$$

• Commensurate transfer function :

$$G(s) = rac{B(s)}{A(s)} = rac{\sum_{i=0}^{m_B} b_i s^{i
u}}{1 + \sum_{j=1}^{m_A} a_j s^{j
u}}.$$

2 Thermal Modelling

8 Fractional-order system identification

4 Conclusions and perspectives

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Thermal two-port network formalism $(1/3)^{1}$

Figure 1 - 1D thermal system

• Heat equation :

$$\rho c \frac{\partial T}{\partial t} = \nabla^2 T(x, y, z, t),$$

• For a 1D case and by taking the Laplace transform :

$$sT(x,s) = rac{k}{
ho c} rac{\partial^2 T(x,s)}{\partial x^2}.$$

1. D. MAILLET et al. *Thermal Quadrupoles : Solving the Heat Equation through Integral Transforms*. John Wiley et sons, 2000.

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Thermal two-port network formalism (2/3)

• In and out heat flows are expressed as :

$$\dot{Q}_{in}(s) = -kS_w rac{\partial T(x,s)}{\partial x}\Big|_{x=0}$$

 $\dot{Q}_{out}(s) = -kS_w rac{\partial T(x,s)}{\partial x}\Big|_{x=L}$

• Under matrix form :

$$\begin{bmatrix} T_{in}(s) \\ \dot{Q}_{in}(s) \end{bmatrix} = \boldsymbol{M} \begin{bmatrix} T_{out}(s) \\ \dot{Q}_{out}(s) \end{bmatrix}$$

• Transmission matrix :

$$\boldsymbol{M} = \begin{bmatrix} \cosh(\delta L) & \frac{1}{kS_w\delta}\sinh(\delta L) \\ kS_w\delta\sinh(\delta L) & \cosh(\delta L) \end{bmatrix}$$

with
$$\delta = \sqrt{\frac{s}{a}}$$
 and $a = \frac{k}{\rho c}$.

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Thermal two-port network formalism (3/3)

Figure 1 – Thermal system equivalent circuit

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Thermal impedance approximation : $Z_1(s)$ and $Z_2(s)$

• Low-frequency behavior :

$$\lim_{\omega\to 0} Z_1(j\omega) = \frac{L}{2kS_w} = R$$

• High-frequency behavior :

$$Z_{1-HF}(s) = \frac{1}{C_s s^{0.5}}$$

• Asymptotic approximation :

$$Z_{1-asymp}(s) = \frac{R}{1 + RC_s\sqrt{s}}$$

Figure $1 - Z_1$ true gain and asymptotic approximation

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Thermal impedance approximation : $Z_1(s)$ and $Z_2(s)$

- Asymptotic approximation may lead to significant error around mid-band frequencies.
- Zeros and poles cells are added :

$$Z_{1-
ho z}(s) = rac{R}{1+RC\sqrt{s}}\prod_{i}^{N_{cells}}rac{1+rac{s}{z_i}}{1+rac{s}{p_i}}$$

Parameter vector :

$$\theta = [\mathbf{p} \ \mathbf{z}]$$

• Issue : θ may have an important dimension

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Thermal impedance approximation : $Z_1(s)$ and $Z_2(s)$

• Alternative proposition :

$$Z_{1-BW}(s) = rac{d}{s^{lpha+eta}+as^{lpha}+bs^{eta}+c}$$

• By considering asymptotic behavior :

$$\alpha + \beta = 0.5, \quad c = \frac{1}{RC}, \quad d = \frac{1}{C}$$

The new parameter vector :

$$\theta = [\alpha \quad a \quad b].$$

Université de Bordeaux

Thermal Modelling

Thermal impedance approximation : $Z_1(s)$ and $Z_2(s)$

Figure $1 - Z_1$ true gain and approximations Figure 2 - Error for Z_1 approximations

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Thermal impedance approximation : $Z_3(s)$

• Low-frequency behavior :

$$Z_{3-cap}(s) = \frac{1}{C_t s}$$

• High-frequency approximation :

 $\lim_{\omega\to\infty}\arg|Z_3(j\omega)|=-\infty$

• For a given frequency band, an approximation has the following form :

$$Z_{3-HF}(s) = \frac{1}{C_t s} H_{filter}(s)$$

Figure $1 - Z_3$ true gain and capacitance approximation

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Thermal impedance approximation : $Z_3(s)$

• Fractional-order slope :

$$Z_{3-frac}(s) = rac{1}{C_t s} \left[rac{1}{1+(au s)^{\phi}}
ight]$$

• Parameter vector :

$$\theta_{frac-slope} = \begin{bmatrix} \tau & \phi \end{bmatrix}$$

• Multiple fractional-order slopes :

$$Z_{3-mult-frac}(s) = rac{1}{C_t s} \prod_{i=1}^N rac{1}{1+(au_i s)^
u}$$

• Integer order poles :

$$Z_{3-rec-poles}(s) = rac{1}{C_t s} \prod_{i=1}^{ ilde{N}} rac{1}{1+ au_i s}$$

• Relationship between poles :

$$\tau_{i+1} = \tau_1^{i\gamma}$$

• Limited parameter vector :

$$\theta_{\mathit{red}} = \begin{bmatrix} \tau_1 & \gamma \end{bmatrix}$$

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Thermal impedance approximation : $Z_3(s)$

Figure $1 - Z_3$ true gain and approximations

Figure 2 – Error for Z_3 approximations

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Bio-heat two-port network (1/2)

• Bio-heat equation :

$$\rho c \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b c_b \omega_b (T_a - T) + Q_{met} + Q_{ext}$$

• Variable change :

$$\tilde{T} = T - T_{body}$$

• By supposing $T_a pprox T_{body}$ and neglecting q_{met} and q_{ext} :

$$\rho c \frac{\partial \tilde{T}}{\partial t} = k \nabla^2 \tilde{T} - \rho_b c_b \omega_b \tilde{T}$$

• On Laplace domain :

$$\rho cs\tilde{T} = k \frac{\partial^2 \tilde{T}}{\partial x^2} - \rho_b c_b \omega_b \tilde{T}$$

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification 0000000000000 Conclusions and perspectives 0000

Bio-heat two-port network (2/2)

• We consider :

$$a=rac{k}{
ho c}, \quad h_{blood}=rac{
ho_b c_b \omega_b}{k}$$

• Bio-heat equation leads to :

$$\frac{\partial^2 \tilde{T}(z,s)}{\partial z^2} = [\frac{s}{a} + h_{blood}]\tilde{T}(z,s)$$

• A very similar thermal two-port network is found, with one difference :

...

$$\delta = \sqrt{rac{s}{a} + h_{blood}}$$

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Université de Bordeaux

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Lung structure and geometrical relationships²

Figure 1 - Lung scheme

- Each branch n has length L_n and cross section S_n .
- Murray's law :

$$\frac{S_{n+1}}{S_n} = 2^{-\frac{2}{3}}$$

$$\frac{L_{n+1}}{L_n} = 2^{-\frac{1}{3}}$$

2. Fujio KUWAHARA et al. "A Porous Media Approach for Bifurcating Flow and Mass Transfer in a Human Lung". In : Journal of Heat Transfer 131.101013 (juill. 2009). ISSN : 0022-1481. DOI : 10.1115/1.3180699. URL : https://doi.org/10.1115/1.3180699 (visité le 16/03/2021).

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

000000	

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Global circuit model

Figure 1 – Global circuit model for the lung

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Université de Bordeaux

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Equivalent thermal impedance

Figure 1 – Input equivalent impedance at n = 1 and n = 13

Conclusions and perspectives

1 Introduction

- **2** Thermal Modelling
- **3** Fractional-order system identification

4 Conclusions and perspectives

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

System identification general problem

- Consider an input u(t) and output $y^*(t)$ with a sampling period T_s going from t = 0 to $t = T_f$.
- Sensor imperfections as well as experience errors are considered by adding a noise signal p(t) to ideal noise-free signal y(t) :

$$y^*(t) = y(t) + p(t)$$

• Supposing input and noise-free output are related by a transfer function :

$$G(s) = rac{Y(s)}{U(s)} = rac{\sum_{i=0}^{m_B} b_i s^{eta_i}}{1 + \sum_{j=1}^{m_A} a_i s^{lpha_i}}$$

Thermal Modelling

Conclusions and perspectives

Recursive Least Squares with State Variable Filter (RLSSVF) (1/3)

• Linear relationship between parameter vector θ and noise-free output y(t).

$$y(t) = \phi^*(t)^T \theta$$

• Matrix ϕ^* :

$$\phi^*(t)^{\mathcal{T}} = \left[\mathsf{D}^{eta_0} u(t) \dots \mathsf{D}^{eta_{m_B}} u(t) \quad - \mathsf{D}^{lpha_1} y^*(t) \dots - \mathsf{D}^{lpha_{m_A}} y^*(t)
ight]$$

• The error :

$$\epsilon(t) = y^*(t) - \phi^*(t)^T \theta.$$

• In order to limit noise impact, a Poisson filter is used :

$$F(s) = rac{1}{\left[\left(rac{s}{\omega_f}
ight)^n + 1
ight]^{N_f}}.$$

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Recursive Least Squares with State Variable Filter (RLSSVF) (2/3)

• Filtered input $u_f(t)$ and output $y_f^*(t)$:

$$u_f(t) = \{\mathscr{L}^{-1}F(s)\} * u(t)$$

 $y_f^*(t) = \{\mathscr{L}^{-1}F(s)\} * y^*(t)$

• Filtered error $\epsilon_f(t)$:

$$\epsilon_f(t) = y_f^*(t) - \phi_f^*(t)^{\mathsf{T}} heta$$

• Matrix $\phi_f^*(t)$:

$$\phi_f^*(t)^T = [\mathbf{D}^{eta_0} u_f(t) \dots \mathbf{D}^{eta_{m_B}} u_f(t) \quad - \mathbf{D}^{lpha_1} y_f^*(t) \dots - \mathbf{D}^{lpha_{m_A}} y_f^*(t)]$$

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Recursive Least Squares with State Variable Filter (RLSSVF) (3/3)

• Correction term :

$$L(k) = \frac{F(k-1)\phi_f^*(k)}{\lambda + \phi_f^*(k)^T F(k-1)\phi_f^*(k)}$$

• Parameter update :

$$\hat{\theta}(k) = \hat{\theta}(k-1) + L(k) \left[y_f^*(k) - \phi_f^*(k)^T \hat{\theta}(k-1) \right]$$

• Matrix F update :

$$F(k) = \frac{1}{\lambda} \left[I - L(k)\phi_f^*(k)^T \right] F(k-1)$$

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Prediction Error Method (PEM) (1/2)

• Quadratic criterion is to be minimized :

$$J(heta) = rac{1}{2} \sum_{k=1}^t \epsilon(k, heta)^2$$

• Criterion gradient :

$$rac{\partial J(heta)}{\partial heta} = -\sum_{k=1}^t \psi(k, heta) \epsilon(k, heta)$$

• Function ψ :

$$\psi(k, heta) = -rac{\partial\epsilon(k, heta)}{\partial heta}$$

- - -

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Fractional order modeling and identification for heat transfer in lungs

Université de Bordeaux

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Prediction Error Method (PEM) (2/2)

• Estimation error :

$$\epsilon(k) = y^*(k) - \hat{y}(k)$$

• R update :

$$R(k) = R(k-1) + \gamma \left[\psi(k,\theta) \psi^{T}(k,\theta) - R(k-1)
ight]$$

• Parameter update :

$$\hat{ heta}(k) = \hat{ heta}(k-1) + \gamma R^{-1}(k)\psi(k, heta)\epsilon(k)$$

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Long Memory Prediction Error Method (LMRPEM) (1/2)

- Fractional-order operatos have non-local nature. This suggests using more information on each iteration to correct parameter vector.
- Extended error function :

$$\tilde{\epsilon}(k) = \left[\epsilon(0)\,\epsilon(T_s)\,\epsilon(2T_s)\ldots\epsilon(kT_s)\right]^{T}$$

• Corresponding sensitivity functions :

$$\psi_{ex}(K,\theta) = -\begin{bmatrix} \frac{\partial \epsilon(0)}{\partial b_0} & \frac{\partial \epsilon(T_s)}{\partial b_0} & \frac{\partial \epsilon(2T_s)}{\partial b_0} & \cdots & \frac{\partial \epsilon(kT_s)}{\partial b_0} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \epsilon(0)}{\partial a_{m_A}} & \frac{\partial \epsilon(T_s)}{\partial a_{m_A}} & \frac{\partial \epsilon(2T_s)}{\partial a_{m_A}} & \cdots & \frac{\partial \epsilon(kT_s)}{\partial a_{m_A}} \end{bmatrix}$$

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Université de Bordeaux

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives

Long Memory Prediction Error Method (LMRPEM) (2/2)

Estimation error :

$$\tilde{\epsilon}(kT_s) = \tilde{Y}^*(kT_s) - \tilde{Y}(kT_s)$$

• R update

$$R(k) = R(k-1) + \gamma \left[\psi_{ex}(kT_s,\theta) \psi_{ex}^{T}(kT_s,\theta) - R(k-1) \right]$$

• Parameter update :

$$\hat{\theta}(k) = \hat{\theta}(k-1) + \gamma R^{-1}(k)\psi_{ex}(kT_s,\theta)\epsilon(kT_s)$$

000000	

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives 0000

Simulation example

• System true model :

$$G(s) = rac{b_0}{1+a_1s^
u+a_2s^{2
u}}$$

- Parameter values $b_0 = 1$, $a_1 = 1$, $a_2 = 2$ and $\nu = 0.5$.
- PRBS input going from -5 à 5 with 1000 points.
- Sampling period $T_s = 0.1 s$
- Initial conditions $\hat{b}_0 = 1$ $\hat{a}_1 = 0.5$ and $\hat{a}_2 = 2.5$.
- Poisson filter parameters $\omega_f = 1 \text{ rad/s}$, $n = 1 \text{ and } N_f = 2$.

Figure 1 – Input and output with $SNR = 15 \ dB$

Thermal Modelling

Conclusions and perspectives 0000

RLSSVF

SNR	a ₂	a1	<i>b</i> ₀
True	2.00	1.00	1.00
20	2.023 ± 0.021	1.060 ± 0.031	1.000 ± 0.008
15	2.002 ± 0.034	1.017 ± 0.031	0.987 ± 0.013
10	1.946 ± 0.065	0.909 ± 0.095	0.946 ± 0.025
5	1.854 ± 0.098	0.595 ± 0.124	0.856 ± 0.034
3	1.736 ± 0.116	0.400 ± 0.166	0.785 ± 0.045

Table $1-\mbox{Mean}$ values and standard deviations with RLSSVF for a 100 run Monte Carlo simulation

- Small variations, slow stabilisation ©
- Sensitive to noise, important bias $\ensuremath{\textcircled{}}$

Figure 1 – RLSSVF estimation for SNR = 15 dB

Thermal Modelling

Conclusions and perspectives

RPEM

SNR	a ₂	a ₁	<i>b</i> 0
True	2.00	1.00	1.00
20	2.008 ± 0.042	1.009 ± 0.091	1.004 ± 0.028
15	1.995 ± 0.083	1.022 ± 0.179	1.005 ± 0.059
10	2.003 ± 0.142	1.025 ± 0.303	1.009 ± 0.099
5	2.026 ± 0.267	1.250 ± 0.502	1.078 ± 0.159
3	1.989 ± 0.390	1.273 ± 0.695	1.082 ± 0.205

Table 2 – Mean values and standard deviations with RPEM for a 100 run Monte Carlo simulation

- Many oscillations for parameter oscillation, slower transient ©
- More robust to noise, no bias. ©

Figure 2 – RPEM estimation for $SNR = 15 \, dB$

Thermal Modelling

Conclusions and perspectives

LMRPEM

SNR	a ₂	a ₁	<i>b</i> ₀
True	2.00	1.00	1.00
20	1.998 ± 0.024	1.001 ± 0.030	1.000 ± 0.007
15	1.993 ± 0.044	1.003 ± 0.060	0.999 ± 0.015
10	2.010 ± 0.073	0.9805 ± 0.092	0.995 ± 0.024
5	1.982 ± 0.149	1.049 ± 0.180	1.009 ± 0.040
3	1.974 ± 0.116	1.023 ± 0.213	1.002 ± 0.053

Table 3 – Mean values and standard deviations with LMRPEM for a 100 run Monte Carlo simulation

- Slow transient, no oscillation.
- Robust to noise, no bias. ©

Figure 3 – LMRPEM estimation for $SNR = 15 \, dB$

Thermal Modelling

Conclusions and perspectives

Frequency response

Figure 4 – Bode plots for Monte Carlo simulations with SNR = 5 dB

000000	

Conclusions and perspectives 0000

Commensurate order influence

- True order $\nu = 0.5$.
- A wrong order may lead to important estimation errors.

Figure 5 – Criterion J vs commensurate order ν (SNR = 20 dB)

- 2 Thermal Modelling
- ③ Fractional-order system identification
- **4** Conclusions and perspectives

Conclusions

- Thermal impedance approximations for 1D heat conduction
- Inclusion of blood perfusion influence on heat transfer for physiological scenarios
- Simple thermal equivalent impedance from lung global circuit model
- Coefficient identification of a fractional-order transfer function without bias
- Algorithms were adapted to be recursive

Perspectives

- Thermal impedance parameter analysis : optimization by using phase
- Commensurate order ν recursive estimation 3
- Long-memory problem : real-time implementation issue⁴

- 3. Stéphane VICTOR et al. "Long Memory Recursive Prediction Error Method for Identification of Continuous-time Fractional Models". In : (jan. 2022). DOI : 10.21203/rs.3.rs-1272889/v1.
- 4. Jean-François DUHÉ et al. "Fractional Derivative Truncated approximation for real-time system identification". In : Communications in Nonlinear Science and Numerical Simulation (2022).

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Thermal Modelling

Fractional-order system identification

Conclusions and perspectives $_{\text{OOO}}\bullet$

Questions ?

J-Fr. Duhé S. Victor P. Melchior Y. Abdelmounen F. Roubertie

Université de Bordeaux