
HAL Id: hal-04317553
https://hal.science/hal-04317553

Submitted on 12 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Linear Programs with Conjunctive Database Queries
Florent Capelli, Nicolas Crosetti, Joachim Niehren, Jan Ramon

To cite this version:
Florent Capelli, Nicolas Crosetti, Joachim Niehren, Jan Ramon. Linear Programs with Conjunctive
Database Queries. Logical Methods in Computer Science, inPress, Volume 20, Issue 1, �10.46298/lmcs-
20(1:9)2024�. �hal-04317553�

https://hal.science/hal-04317553
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

LINEAR PROGRAMS WITH CONJUNCTIVE DATABASE QUERIES

FLORENT CAPELLI a,b, NICOLAS CROSETTI b, JOACHIM NIEHREN b, AND JAN RAMON b

aUniversité de Lille
e-mail address: florent.capelli@univ-lille.fr

b Inria, Lille
e-mail address: nicolas.crosetti@inria.fr, joachim.niehren@inria.fr, jan.ramon@inria.fr

Abstract. In this paper, we study the problem of optimizing a linear program whose
variables are the answers to a conjunctive query. For this we propose the language LP(CQ)
for specifying linear programs whose constraints and objective functions depend on the
answer sets of conjunctive queries. We contribute an efficient algorithm for solving programs
in a fragment of LP(CQ). The natural approach constructs a linear program having as
many variables as there are elements in the answer set of the queries. Our approach
constructs a linear program having the same optimal value but fewer variables. This is
done by exploiting the structure of the conjunctive queries using generalized hypertree
decompositions of small width to factorize elements of the answer set together. We illustrate
the various applications of LP(CQ) programs on three examples: optimizing deliveries
of resources, minimizing noise for differential privacy, and computing the s-measure of
patterns in graphs as needed for data mining.

Contents

1. Introduction 2
1.1. A Concrete Example 3
1.2. Related Work 5
1.3. Organization of the paper 6
2. Preliminaries 6
2.1. Linear Programs 7
2.2. Conjunctive Queries 8
2.3. Relational Databases 9

Key words and phrases: Database, Linear program, optimization.
This work was partially supported by the French Agence Nationale de la Recherche, AGGREG project

reference ANR-14-CE25-0017-01, Headwork project reference ANR-16-CE23-0015, KCODA project ANR-
20-CE48-0004 and by a grant of the Conseil Régional Hauts-de-France. The project DATA, Ministère de
l’Enseignement Supérieur et de la Recherche, Région Nord-Pas de Calais and European Regional Development
Fund (FEDER) are acknowledged for supporting and funding this work. We also thank Sylvain Salvati,
Sophie Tison and Yuyi Wang for fruitful discussions and anonymous reviewers of a previous version of this
paper for their helpful comments.

Preprint submitted to
Logical Methods in Computer Science

© F. Capelli, N. Crosetti, J. Niehren, and J. Ramon
CC⃝ Creative Commons

ar
X

iv
:2

21
0.

16
69

4v
3

 [
cs

.D
B

]
 9

 D
ec

 2
02

3

https://orcid.org/0000-0002-2842-8223
https://orcid.org/0000-0002-2611-8950
https://orcid.org/0000-0002-0558-7176
http://creativecommons.org/about/licenses

2 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

2.4. Hypertree Decompositions 9
3. Linear Programs with Closed Weight Expressions 11
3.1. Example 12
3.2. Complexity of solving LPclos(CQΣ) 13
3.3. Replacement Rewriting 14
3.4. Interpretations of linear programs 16
4. Solving LPclos(CQΣ) linear programs efficiently 18
4.1. Tree decomposition of LPclos(CQΣ) 19
4.2. Factorized Interpretation of quantifier free LPclos(CQΣ) 19
4.3. Linear Programs with Existentially Quantified Conjunctive Queries 23
5. Linear Programs with Open Weight Expressions 26
5.1. Closure and semantics 28
5.2. Complexity of solving LP(CQΣ) programs 30
5.3. Case study 33
6. Weightings on Tree Decompositions 34
6.1. Factorized interpretation and weightings 35
6.2. Constructing Weightings 36
7. Applications 42
7.1. Minimizing Noise for ε-Differential Privacy. 42
7.2. Computing the s-Measure for Graph Pattern Matching. 44
8. Conclusion and future work 46
References 46
Appendix A. Proofs of Section 6.2 48
A.1. Proof of Lemma 6.2 48
A.2. Proof of Lemma 6.3 48
A.3. Proof of Lemma 6.4 48

1. Introduction

When modeling optimization problems it often seems natural to separate the logical con-
straints from the relational data. This holds for linear programming with AMPL [FGK90]
and for constraint programming in MiniZinc [NSB+07]. It was also noticed in the context
of database research, when using integer linear programming for finding optimal database
repairs as proposed by Kolaitis, Pema and Tan [KPT13], or when using linear optimization
to explain the result of a database query to the user as proposed by Meliou and Suciu [MS12].
Moreover, tools like SolveDB [ŠP16] have been developed to better integrate mixed integer
programming and thus linear programming into relational databases.

We also find it natural to define the relational data of linear optimization problems
by database queries. For this reason, we propose the language of linear programs with
conjunctive queries LP(CQΣ) in the present paper. An LP(CQΣ) program is a linear
program with constructs allowing to express linear constraints and linear sums over the
weightings of an answer set of database queries. It hence allows us to express an optimization
problem with a linear objective function subject to linear constraints that are parameterized
by conjunctive queries. To do so, we define the natural interpretation ⟨L⟩D of an LP(CQΣ)

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 3

L over a database D that is a linear program whose variables are in correspondence with
the answer set of the queries of L, hence, ⟨L⟩D expresses an optimization problem whose
solutions are weightings of the answer sets of conjunctive queries. The optimal weightings of
LP(CQΣ) programs can be computed in a natural manner, by first answering the database
queries, then generating the interpretation of L over D and solving it by calling a linear
solver. We then approach the question – to our knowledge for the first time – of whether
this can be done with lower complexity for subclasses of conjunctive queries such as the
class of acyclic conjunctive queries.

As our main contribution we present a more efficient algorithm for computing the optimal
value of a program in LP(CQΣ) programs that is able to exploit hypertree decomposition
of the queries to speed up the computation. Our algorithm operates in two phases: first, it
unfolds universal quantifiers present in LP(CQΣ) programs to generate a program in a more
restrictive language that we call LPclos(CQΣ). Then, the algorithm exploits a hypertree
decomposition to construct an alternate interpretation of an LPclos(CQΣ) program over
a database that we call the factorized interpretation. The factorized interpretation is a
linear program having the same optimal value as the linear program resulting in the natural
interpretation of LP(CQΣ) while being more succinct. It uses different linear program
variables that intuitively represent sums of the linear program variables in the natural
interpretation. The number of linear program variables in the factorized interpretation
depends only on the fractional hypertree width of hypertree decompositions of the queries
provided in the input, rather than on the number of query variables. In this manner, our
more efficient algorithm can decrease the data complexity, i.e., the degree of the polynomial
in the upper bound of the run time of the naive algorithm based on computing the natural
interpretation and solving it with a linear program solver. With respect to the combined
complexity, even solving LPclos(CQΣ) programs is NP-hard and coNP-hard in general, but
our approach shows that some cases are tractable.

We prove the correctness of the factorized interpretation with respect to the natural
interpretation – that is, the fact that factorized and natural interpretation generates linear
program with the same optimal value – by exhibiting a correspondence between weightings
of answer sets on the natural interpretation, and weightings of answer sets on the factorized
interpretation. This correspondence can be seen as an independent contribution as it
shows that one can reconstruct a relevant weighting of the answer set of a quantifier free
conjunctive query by only knowing the value of the projected weighting on the bags of
a tree decomposition. Conjunctive queries with existential quantifiers are dealt with by
showing that one can find an equivalent projecting LP(CQΣ) program with quantifier free
conjunctive queries only.

1.1. A Concrete Example. We start by illustrating the language LP(CQΣ) on an exam-
ple.

Resource Delivery Optimization. We consider a situation in logistics where a company
received orders for specific quantities of resource objects. The objects must be produced
at a factory, then transported to a warehouse before being delivered to the buyer. The
objective is to fulfill every order while minimizing the overall delivery costs and respecting
the production capacities of the factories as well as the storing capacities of the warehouses.

Let F be the set of factories, O the set of objects, W the set of warehouses and B the set
of buyers. We consider a database D with elements in the domain D = F ⊎ O ⊎W ⊎ B ⊎ R+.

4 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

The database D has four tables. The first table prodD ⊆ F × O × R+ contains triples
(f, o, q) stating that the factory f can produce up to q units of object o. The second table
orderD : B×O×R+ contains triples (b, o, q) stating that the buyer b orders q units of object
o. The third table storeD ⊆ W × R+ contains pairs (w, l) stating that the warehouse w has
a storing limit of l. The fourth table routeD : (F×W×R+)∪ (W× B×R+) contains triples
(f, w, c) stating that the transport from factory f to warehouse w costs c, and triples (w, b, c)
stating that the transport from warehouse w to buyer b costs c. The query:

dlr(f, w, b, o) = ∃q.∃q2.∃c.∃c2. prod(f, o, q) ∧ order(b, o, q2) ∧ route(f, w, c) ∧ route(w, b, c2)

selects from the database D all tuples (f, w, b, o) such that the factory f can produce some
objects o to be delivered to buyer b through the warehouse w. Let Q = dlr(f ′, w′, b′, o′)
and let solD(Q) be the answers of Q on database D. The goal is to determine for each
of these possible deliveries the quantity of the object that should actually be sent. These
quantities are modeled by the unknown weights θαQ of the query answers α ∈ solD(Q).

For any factory f and warehouse w the sum
∑

α∈solD(Q∧w′ .
=w∧f ′ .

=f) θ
α
Q is described by the

expression weightf ′ .
=f∧w′ .

=w(Q) when interpreted over D.
We use the LP(CQΣ) program in Figure 1 to describe the optimal weights that minimize

the overall delivery costs.

minimize
∑

(f,w,c):route(f,w,c) num(c) weightx:f ′ .
=f∧w′ .

=w(Q)+∑
(w,b,c):route(w,b,c) num(c) weightx:w′ .

=w∧b′ .
=b(Q)

subject to
∀(f, o, q):prod(f, o, q). weightx:f ′ .

=f∧o′ .
=o(Q) ≤ num(q) ∧

∀(b, o, q):order(b, o, q). weightx:b′ .
=b∧o′ .

=o(Q) ≥ num(q) ∧
∀(w, l):store(w, l). weightx:w′ .

=w(Q) ≤ num(l)

Figure 1: A LP(CQΣ) program for the resource delivery optimization where Q = dlr(x)
and x = (f ′, w′, b′, o′).

The weights depend on the interpretation of the program over the database, since D
specifies the production capacities of the factories, the stocking limits of the warehouses, etc.
The program has the following constraints:

- for each (f, o, q) ∈ prodD the overall quantity of object o produced by f is at most q1.
- for each (b, o, q) ∈ orderD the overall quantity of objects o delivered to b is at least q.
- for each (w, l) ∈ storeD the overall quantity of objects stored in w is at most l.

By answering the query Q on the database D and introducing a linear program variable
θαQ for each of the query answer α, we can interpret the LP(CQΣ) program in Figure 1 as
a linear program. A solution to this linear program will associate a real weight to each α,
that is, to each tuple (f, w, b, o) that is a solution of Q over D. Intuitively, this weight is
the quantity of object o that factory f has to produce to store in warehouse w before being
sent to buyer b. Moreover, these quantities are compatible with the constraints imposed on
the capacity of each factory, warehouse and on the orders of each buyer. Hence an optimal
solution of this linear program will yield an optimal way of producing what is necessary
while minimizing the transportation costs.

1In this constraint, we use the construct num(q) to explicitly specify that the domain of q is R+ and that,
when evaluating the LP(CQΣ) program on a database D, q will be decoded back as an element of R+.

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 5

1.2. Related Work. Our result builds on well-known techniques using dynamic program-
ming on tree decompositions of the hypergraph of conjunctive queries. These techniques
were first introduced by Yannkakis [Yan81] who observed that so-called acyclic conjunctive
queries could be answered in linear time using dynamic programming on a tree whose
nodes are in correspondence with the atoms of the query. Generalizations have followed in
two directions: on the one hand, generalizations of acyclicity such as notions of hypertree
width [GLS02, GLS99, Gro06] have been introduced and on the other hand enumeration
and aggregation problems have been shown to be tractable on these families of queries such
as finding the size of the answer set [PS13] or enumerating it with small delay [BDG07].
These tractability results can be obtained in a unified and generalized way by using factor-
ized databases introduced by Olteanu and Závodný [OZ12, OZ15], from which our work is
inspired. Factorized databases provide succinct representations for answer sets of queries on
databases. The representation enjoys interesting syntactic properties allowing to efficiently
solve numerous aggregation problems on answer sets in polynomial time in the size of the
representation. Olteanu and Závodný [OZ15] have shown that when the fractional hypertree
width of a query Q is bounded, then one can construct, given a hypertree decomposition of Q
and a database D, a factorized databases representing the answers of Q on D of polynomial
size. They also give a O(1) delay enumeration algorithm on factorized databases. Combining
both results gives a generalization of the result of Bagan, Durand and Grandjean [BDG07]
on the complexity of enumerating the answers of conjunctive queries.

Our result heavily draws inspiration from this approach as we use bottom up dynamic
programming on hypertree decomposition of the input query Q to construct a partial
representation of the answers set of Q on database D that we later use to construct a
factorized interpretation of the linear program to solve. While our approach could be made
to work directly on factorized representations of queries answer sets as defined by Olteanu
and Závodný [OZ15], we choose to directly work on tree decompositions. One reason for this
is because our factorized interpretation uses hypertree decompositions that are slightly more
constraint than the one usually used to efficiently handle complex linear programs. Namely,
our tree decomposition needs extra bags for dependencies between variables that are not
present in the query but only in the linear program. This constraints are not straightforward
to translate into factorized databases while they are natural on tree decompositions.

Comparison with conference version. This paper is a longer version of [CCNR22]. We
have improved the presentation of some results from this old version, added new ones and
added the full proofs left in the appendix in the earlier version. Some clarifications were
made through slight changes in the theoretical framework that are described in the next
paragraph. Our new contributions includes:

• A precise complexity analysis on how one can solve linear programs in LP(CQΣ) depending
on their structure, stated by explicitly using the AGM bound and fractional hypertree
width of the queries involved in the linear program,

• New hardness results for the general case,
• A cleaner logical framework to describe linear programs over database queries.

The main change in the presentation comes from the introduction of the core language
LPclos(CQΣ) on which the factorized interpretation is described. It allows for a cleaner
analysis of the complexity of our approach where we can separate the explanation of inter-
preting LPclos(CQΣ) languages, now called the natural interpretation (naive interpretation
in the conference paper), and the unfolding of quantifiers in LP(CQΣ). Indeed, in the

6 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

conference version, we started by unfolding quantifiers before performing the analysis. This
unfolding is now made explicit by the closure operation of LP(CQΣ) programs which pro-
duces an LPclos(CQΣ) program that can then be solved using our techniques. It allows
us to properly separate the unfolding phase from the interpretation phase and to describe
their complexity independently. In particular, in the conference version of the paper, the
tractability result holds only for a fragment of LP(CQΣ) where we are able to bound the
size of the unfolding. Thanks to the introduction of LPclos(CQΣ) and to a notion of normal
form for LP(CQΣ) programs, we are now able to state precise complexity bounds for every
program in LP(CQΣ) depending on their structure without assuming anything more. We
also removed one constructor from the definition of LP(CQΣ). Indeed, in the conference
version of the paper, LP(CQΣ) programs could use an expression of the form weightx:Q′(Q)
to generate a linear sum depending on both Q and Q′. However, our tractability results
worked only when Q′ has a very particular form, namely, Q′ needed to be of the form x

.
=y.

We hence removed this constructor from the definition of LPclos(CQΣ) language which
has now only constructors of the form weightx .

=c(Q) for a vector of database constants c.
Consequently we do not need to introduce a fragment of the general language anymore to
recover tractability since the tractable case is now the only one possible in LPclos(CQΣ).
It may appear that we lost some expressivity along the way but it turns out that we can
recover the same behavior using constructors in LP(CQΣ). Namely weightx:Q′(Q) can now
be expressed as

∑
y:Q′ weightx .

=y(Q).

1.3. Organization of the paper. Section 2 contains the necessary definitions to understand
the paper. Section 3 presents the language LPclos(CQΣ) of linear programs parameterized
by conjunctive queries and gives its semantics by interpreting programs in LPclos(CQΣ) as
linear programs, which we call the natural interpretation. This language is very simple and
does not allow universal quantification as used in Section 1.1. We show in Section 4 that one
can exploit hypertree decomposition to compute the optimal value of LPclos(CQΣ) programs
efficiently by interpreting them as more succinct linear programs, via an interpretation that
we call factorized interpretation. The soundness of this approach is delayed to Section 6
as it contains results on weightings of conjunctive queries that are of independent interest.
We then proceed to defining the language LP(CQΣ) in Section 5.1. The language is more
expressive than LPclos(CQΣ) as it allows for universal quantification over the database, as
it is hinted in the previous example. We give its semantics via a closure operation that
transforms an LP(CQΣ) program to an LPclos(CQΣ) program. We analyze the complexity
of solving LP(CQΣ) programs and show how one can leverage the results on LPclos(CQΣ) to
this program in Section 5.2. We present some preliminary experimental results in Section 5.3.
Finally, Section 7 presents some applications of LP(CQΣ).

2. Preliminaries

Sets, Functions and Relations. Let B = {0, 1} be the set of Booleans, N the set of
natural numbers including 0, R+ be the set of positive reals including 0 and subsuming N,
and R the set of all reals.

Given any set S and n ∈ N we denote by Sn the set of all n-tuples over S and by
S∗ = ∪n∈NS

n the set of all words over S. A weighting on S is a (total) function f : S → R+.
Given a set of (total) functions A ⊆ DS = {f | f : S → D} and a subset S′ ⊆ S, we

define the set of restrictions A|S′ = {f|S′ | f ∈ A}. For any binary relation R ⊆ S × S,

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 7

we denote its transitive closure by R+ ⊆ S × S and the reflexive transitive closure by
R∗ = R+ ∪ {(s, s) | s ∈ S}.
Variable assignments. We fix a countably infinite set of (query) variables X . For any
set D of database elements, an assignment of (query) variables to database elements is a
function α : X → D that maps elements of a finite subset of variables X ⊆ X to values of
D. For any two sets of variable assignments A1 ⊆ DX1 and A2 ⊆ DX2 we define their join
A1 ▷◁ A2 = {α1 ∪ α2 | α1 ∈ A1, α2 ∈ A2, α1|I = α2|I} where I = X1 ∩X2.

We also use a few vector notations. Given a vector of variables x = (x1, . . . , xn) ∈ X n

we denote by set(x) = {x1, . . . , xn} the set of the elements of x. For any variable assignment
α : X → D with set(x) ⊆ X we denote the application of the assignment α on x by
α(x) = (α(x1), . . . , α(xn)).

Linear expressions S, S′ ∈ Le ::= r | ξ | rS | S + S′

Linear constraints C,C ′ ∈ Lc ::= S ≤ S′ | C ∧ C ′ | true
Linear programs L ∈ Lp ::= maximize S subject to C

Figure 2: The set of linear programs Lp with variables ξ ∈ Ξ and constants r ∈ R.

2.1. Linear Programs. Let Ξ be a set of linear program variables. In Figure 2, we recall
the definition of the sets of linear expressions Le, linear constraints Lc, and linear programs
Lp with variables in Ξ. We consider the usual linear equations S

.
=S′ as syntactic sugar for

the constraints S ≤ S′ ∧ S′ ≤ S. For any linear program

L = maximize S subject to C

we call S the objective function of L and C the constraint of L. Note that the linear program
minimize S subject to C can be expressed by

maximize −1 · S subject to C.

We recall the formal semantics of linear programs in Figure 3.

evalw(r) = r with r ∈ R, w : Ξ → R
evalw(ξ) = w(ξ) with ξ ∈ Ξ
evalw(rS) = r · evalw(S)
evalw(S + S′) = evalw(S) + evalw(S

′)

JtrueK = {w | w : Ξ → R+}
JS ≤ S′K = {w | evalw(S) ≤ evalw(S

′)}
JC ∧ C ′K = JCK ∩ JC ′K

opt(maximize S subject to C)
= max({evalw(S) | w : Ξ → R+, w ∈ JCK})

Figure 3: Semantics of linear expressions, constraints and programs.

For any weightings w : Ξ → R+, the value of a sum S ∈ Le is the real number
evalw(S) ∈ R. We denote the solution set of a constraint C ∈ Lc by JCK ⊆ {w | w : Ξ → R+}.

8 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

The optimal value opt(L) ∈ R of a linear program L with objective function S and constraint
C is:

opt(L) = max{evalw(S) | w : Ξ → R+, w ∈ JCK}
The size |L| of a linear program L is defined to be the number of symbols needed to write it
down. It is well-known that the optimal solution of a linear program L can be computed in
polynomial time in |L| [Kar84].

Observe that we are only interested in non-negative weightings, without explicitly
imposing positivity constraints. It is a usual assumption in linear programming since it is
well known that one can transform any linear program L into L′ of size at most 2|L| so
that the feasible points of L′ over R+ are exactly the feasible points of L over R, by simply
replacing every occurrence of a variable x in L by x+ − x−.

2.2. Conjunctive Queries. A relational signature is a pair Σ = (R, C) where C a finite set

of constants ranged over by c and R = ∪n∈NR(n) is a finite set of relation symbols. The
elements R ∈ R(n) are called relation symbols of arity n ∈ N.

Expressions E1, . . . , En ::= x | c
Conjunctive queries Q,Q′ ∈ CQΣ ::= E1

.
=E2 | R(E1, . . . , En)

| Q ∧Q′ | ∃x.Q | true

Figure 4: The set of conjunctive queries CQΣ with signature Σ = ((R(n))n∈N, C) where

x ∈ X , c ∈ C, and R ∈ R(n).

In Figure 4 we recall the notion of conjunctive queries. An expression E is either a
(query) variable x ∈ X or a constant a ∈ C. The set of conjunctive queries Q ∈ CQΣ is built
from equations E1

.
=E2, atoms R(E1, . . . , En), the logical operators of conjunction Q ∧Q′

and existential quantification ∃x.Q. Given a vector x = (x1, . . . , xn) ∈ X n and a query Q,
we write ∃x.Q instead of ∃x1.∃xn.Q. For any sequence of constants c = (c1, . . . , cn) ∈ Cn

we write x
.
=c instead of x1

.
=c1 ∧ . . . ∧ xn

.
=cn. If n = 0 then x

.
=c is equal to true.

The set of free variables fv(Q) ⊆ X are those variables that occur in Q outside the scope
of an existential quantifier:

fv(R(E1, . . . , En)) =
⋃n

i=1 fv(Ei) fv(E1
.
=E2) = fv(E1) ∪ fv(E2)

fv(Q ∧Q′) = fv(Q) ∪ fv(Q′) fv(∃x.Q) = fv(Q) \ {x}
fv(x) = {x} fv(c) = ∅

A conjunctive query Q is said to be quantifier free if it does not contain any existential
quantifier. In the literature, such queries are sometimes also called full queries.

We can define operations to extend queries with additional variables x such that for all
Q ∈ CQΣ:

extx(Q) =
∧

x∈set(x)\fv(Q) x
.
=x ∧Q

For any n ≥ 0 and vector of constants c ∈ Cn and vector of variables x ∈ X n we define an
operator subs [x/c] on conjunctive queries, that substitutes any variable in a vector x by the
constant at the same position in vector c, so that for all queries Q ∈ CQΣ:

subs [x/c](Q) = Q[x/c],

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 9

i.e., where all occurrences in Q of variables in x are replaced by the corresponding elements
of c.

2.3. Relational Databases. A relational Σ-structure is a tuple D = (Σ, D, ·D), where
Σ = ((R(n))n≥0, C) is a relational signature, D a finite set, cD ∈ D an element for each

constant c ∈ C and RD ⊆ Dn a relation for any relation symbol R ∈ R(n) and n ≥ 0. We also
define the structures’ domain dom(D) = D. A (relational) database D is a finite relational
Σ-structure, i.e., all its components are finite. We denote the set of all databases by dbΣ.

For any conjunctive query Q ∈ CQΣ, set X ⊇ fv(Q) and relational database D ∈ dbΣ
we define the answer set JQKDX in Figure 5. It contains all those assignments α : X → D for
which Q becomes true on D.

evalD,α(x) = α(x) (with x ∈ X a variable)

evalD,α(c) = cD (with c ∈ C a constant)

JE1
.
=E2KDX = {α : X → D | evalD,α(E1) = evalD,α(E2)}

JR(E1, . . . , En)KDX = {α : X → D | (evalD,α(E1), . . . , eval
D,α(En)) ∈ RD}

JQ1 ∧Q2KDX = JQ1KDX ∩ JQ2KDX
J∃x.QKDX = {α|X | α ∈ JQKDX∪{x}} if x ̸∈ X

JtrueKDX = XD

Figure 5: The answer set of a conjunctive query Q ∈ CQΣ on a database D ∈ dbΣ for a set
of variables X ⊇ fv(Q).

We define the semantics of a query by:

JQKD = JQKDfv(Q)

In particular, observe that the semantics of existential quantifiers is the projection of the
answer set, that is: J∃x.QKD = JQKD|fv(Q)\set(x).

2.4. Hypertree Decompositions. Hypertree decompositions of conjunctive queries are
a way of laying out the structure of a conjunctive query in a tree. It allows to solve many
aggregation problems (such as checking the existence of a solution, counting or enumerating
the solutions etc.) on quantifier free conjunctive queries in polynomial time where the degree
of the polynomial is given by the width of the decomposition.

A digraph is a pair (V, E) with node set V and edge set E ⊆ V × V. A digraph is
acyclic if there is no v ∈ V for which (v, v) ∈ E+. For any node u ∈ V, we denote by
↓u = {v ∈ V | (u, v) ∈ E∗} the set of nodes in V reachable over some downwards path from
u, and we define the context of u, denoted ↑u, by ↑u = (V \ ↓u) ∪ {u}. The digraph (V, E)
is a forest if it is acyclic and for all u, u′, v ∈ V there holds that (u, v), (u′, v) ∈ E implies
u = u′. Moreover, (V, E) is a tree if there exists a node r ∈ V such that V = ↓r. In this case,
r is unique and called the root of the tree. If for v ∈ V it holds that ↓v = {v}, then v is
called a leaf. Observe that in this tree, the paths are oriented from the root to the leaves of
the tree.

Definition 2.1. Let X ⊆ X be a finite set of variables. A decomposition tree T of X is a
tuple (V, E ,B) such that:

10 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

- (V, E) is a finite directed rooted tree with edges from the root to the leaves,
- the bag function B : V → 2X maps nodes to subsets of variables in X,
- for all x ∈ X the subset of nodes {u ∈ V | x ∈ B(u)} is connected in the tree (V, E),
- each variable of X appears in some bag, that is

⋃
u∈V B(u) = X.

Now a hypertree decomposition of a quantifier free conjunctive query is a decomposition
tree where for each atom of the query there is at least one bag that covers its variables.

Definition 2.2 (Hypertree width of quantifier free conjunctive queries). Let Q ∈ CQΣ

be a quantifier free conjunctive query. A generalized hypertree decomposition of Q is a
decomposition tree T = (V, E ,B) of fv(Q) such that for each atom R(x) of Q there is a
vertex u ∈ V such that set(x) ⊆ B(u). The width of T with respect to Q is the minimal
number k such that every bag of T can be covered by the variables of k atoms of Q. The
generalized hypertree width of a query Q is the minimal width of a tree decomposition of Q.

For example, the query R(x, y) ∧R(y, z) has a generalized hypertree decomposition of
hypertree width 1: (V, E ,B) with vertices V = {1, 2, 3}, edges E = {(1, 2), (1, 3)}, and bags
B = [1/{y}, 2/{x, y}, 3/{y, z}].

While hypertree width allows to obtain efficient algorithms on conjunctive queries, our
results will also work for the more general notion of fractional hypertree width, which consists
in a fractional relaxation of the hypertree width. We let Q ∈ CQΣ be a quantifier free
conjunctive query, A be the atoms of Q and let X ⊆ fv(Q). A fractional cover of X is a
function c : A → R+ assigning positive weights to the atoms of Q such that for every x ∈ X,∑

R∈A,x∈fv(R) c(R) ≥ 1. The value of a fractional cover c is defined as
∑

R∈A c(R).

For example, consider the query Triangle = R(x, y)∧S(y, z)∧T (z, x) and X = {x, y, z}.
The function c such that c(R) = c(S) = c(T) = 1/2 is a fractional cover of X of value 3/2.

Definition 2.3. Let Q be a conjunctive query and T = (V, E ,B) be a generalized hypertree
decomposition of Q. The fractional hypertree width of T is the smallest k such that for
every u ∈ V, there exists a fractional cover of B(u) of value smaller than k. The fractional
hypertree width of Q, denoted by fhtw(Q), is the smallest k such that Q has a generalized
hypertree decomposition of fractional hypertree width k.

From now on, we will only write the width of T in place of the fractional hypertree width.
The key observation making fractional hypertree width suitable for algorithmic purposes is
due to Grohe and Marx [GM14] who proved that if a quantifier free conjunctive query is
such that fv(Q) has a fractional cover of value k, then |JQKD| ≤ |D|k. Hence, if T = (V, E ,B)
is a tree decomposition of Q of width k, then JQKD|B(u) is of size at most |D|k. Moreover, it

can be computed efficiently:

Lemma 2.4. Given a tree decomposition T = (V, E ,B) of a quantifier free conjunctive
query Q ∈ CQΣ of width k and a database D ∈ dbΣ, one can compute the collection of
bag projections (JQKD|B(u))u∈V in time O((|D|k log(|D|)) · |V|). Moreover, for every u ∈ V,
JQKD|B(u) is of size at most |D|k.

Lemma 2.4 is folklore: it can be proven by computing the semi-join of every bag in a
subtree in a bottom-up fashion, as it is done in [Lib13, Theorem 6.25] and using a worst-case
optimal join algorithm such as Triejoin [Vel14] for computing the relation at each bag. This
yields a superset Su of JQKD|B(u) for every u. Then, with a second top-down phase, one can

remove tuples from Su that cannot be extended to a solution of JQKD.

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 11

Following the previously mentioned upper bound of [GM14], Atserias, Grohe and Marx
proved in [AGM13] that the bound given by an optimal fractional cover of Q is tight (up
to polynomial factors). This bound is now usually referred to as the AGM bound. More
precisely, it says that if AGM(Q) denotes the smallest value over every fractional cover of

Q, then for every D, JQKD is of size at most |D|AGM(Q) and there exists a database D∗ such

that JQKD∗
is of size greater than |D∗|AGM(Q)

poly(|Q|) . Hence, even if Q is of width k, the size of JQKD

could be order of magnitudes bigger than |D|k when k < AGM(Q). Hence, Lemma 2.4 gives
a succinct way of describing the set of solutions of Q that we exploit in this paper.

Parts of our result will be easier to describe on so-called normalized decomposition trees:

Definition 2.5. Let T = (V, E ,B) be a decomposition tree. We call a node u ∈ V of T :

- an extend node: if it has a single child u′ and B(u) = B(u′)∪{x} for some x ∈ X \B(u′),
- a project node: if it has a single child u′ and B(u) = B(u′) \ {x} for some x ∈ X \ B(u),
- a join node: if it has k ≥ 1 children u1, ..., uk with B(u) = B(u1) = ... = B(uk).
We call T normalized 2 if all its nodes in V are either extend nodes, project nodes, join
nodes, or leaves.

It is well-known that tree decompositions can always be normalized without changing
the width. Thus normalization does not change the asymptotic complexity of the algorithms.

Lemma 2.6 (Lemma of 13.1.2 of [Klo94]). For every tree decomposition of T = (V, E ,B) of
Q of width k, there exists a normalized tree decomposition T ′ = (V ′, E ′,B′) having width k.
Moreover, one can compute T ′ from T in polynomial time.

3. Linear Programs with Closed Weight Expressions

In this section, we introduce the language LPclos(CQΣ) to express linear programs parame-
terized by conjunctive queries. This language is deliberately kept simple, which allow us to
design efficient algorithms for it. An element of LPclos(CQΣ) is called a closed LP(CQΣ)
program. We refer to such programs as “closed” because they do not contain quantification
in the linear program part, which contrasts with the more general definition of LP(CQΣ)
given in Section 5, which allows to express more interesting linear program. The case of
closed LP(CQΣ) programs is however central in this work as this is the class of optimization
problems for which we propose an efficient algorithm. The more general case of LP(CQΣ)
programs is dealt with using a “closure” procedure which transforms any programs from
LP(CQΣ) into a closed program LPclos(CQΣ).

Let Σ be a relational signature. A closed weight expression is an expression of the
form weightx .

=c(Q) where Q is a conjunctive query, set(x) ⊆ fv(Q), variables in x are
pairwise distinct and c are database constants. An LPclos(CQΣ) program is intuitively a
linear program whose variables are closed weight expressions. A formal definition is given in
Figure 6.

2In the literature this property is referred to as “nice” tree decompositions.

12 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Linear sums S, S′ ∈ LS clos(CQΣ) ::= weightx .
=c(Q) | rS | S + S′ | r

where set(x) ⊆ fv(Q),
variables in x are pairwise distinct
c are database constants

Linear constraints C,C ′ ∈ LC clos(CQΣ) ::= S ≤ S′ | S .
=S′ | C ∧ C ′ | true

Linear programs L ∈ LPclos(CQΣ) ::= maximize S subject to C

Figure 6: Linear sums, constraints, and programs with closed weight expressions containing
conjunctive queries Q ∈ CQΣ where r ∈ R.

Such linear programs can be interpreted as standard linear programs for any database D
with numerical values. In order to do so, we fix for any query Q ∈ CQΣ a set ΘD

Q of fresh
linear program variables θαQ arbitrarily:

ΘD
Q = {θαQ | α ∈ JQKD}

We can then map each closed weight expression to a linear sum with variables in ΘD
Q as

follows:
⟨weightx .

=c(Q)⟩D =
∑

α∈JQKD
α(x)=c

θαQ

Note that our assumption set(x) ⊆ fv(Q) ensures that α(x) is well-defined.

Definition 3.1. For any linear program L ∈ LPclos(CQΣ) we define the natural interpreta-
tion ⟨L⟩D ∈ LP by replacing any weight expression S in L by ⟨S⟩D. By applying the same
substitution we define the interpretation ⟨S⟩D ∈ LS of any linear sum S ∈ LS clos(CQΣ) and
the interpretation ⟨C⟩D ∈ LC of any linear constraint C ∈ LC clos(CQΣ) in analogy.

The size |L| of a program L ∈ LPclos(CQΣ) is defined to be the number of symbols
needed to write it down.

3.1. Example. As an example we consider the conjunctive query Q = R1(x) ∧R2(y) and
the following program L ∈ LPclos(CQΣ):

maximize weight∅(Q)
subject to weightx .

=0(Q) ≤ 1
∧ weightx .

=1(Q) ≤ 1

Let D be the database D with tables RD
1 = {(0), (1)} and RD

2 = {(0), (1)}. The answer set
of Q is JQKD = {α | α : {x, y} → {0, 1}}. The interpretation ⟨L⟩D is the following linear
program, where we denote any query answer α ∈ JQKD by a pair (α(x), α(y)) in the Cartesian
product {0, 1}2 for simplicity:

maximize θ
(0,0)
Q + θ

(0,1)
Q + θ

(1,0)
Q + θ

(1,1)
Q

subject to θ
(0,0)
Q + θ

(0,1)
Q ≤ 1

∧ θ
(1,0)
Q + θ

(1,1)
Q ≤ 1

The objective function θ
(0,0)
Q + θ

(0,1)
Q + θ

(1,0)
Q + θ

(1,1)
Q is the interpretation of the expression

weight∅(Q). The first constraint θ
(0,0)
Q +θ

(0,1)
Q is obtained by interpreting weightx .

=0(Q) ≤ 1

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 13

and the second constraint by interpreting weightx .
=1(Q) ≤ 1. Note that the objective

function is the sum of the lefthandsides of the two constraints, so the three weight expressions
of L are semantically related.

3.2. Complexity of solving LPclos(CQΣ). In this section, we are interested in the com-
plexity of computing opt(⟨L⟩D) given L ∈ LPclos(CQΣ) and a database D. From a combined
complexity point of view, that is, when both L and D are assumed to be part of the input, it
is not hard to see that the problem is NP-hard since it requires to implicitly find the answer
set of every conjunctive query appearing in L. We formalize this intuition in the following
theorem:

Theorem 3.2. The problem of deciding whether opt(⟨L⟩D) ̸= 0 given a relational signature
Σ, L ∈ LPclos(CQΣ) and a database D is both NP-hard and coNP-hard.

Proof. It is well-known that the problem of deciding whether JQKD ≠ ∅ given a conjunctive
query Q and a database D in the input is NP-complete [CM77]. We show that this problem
can be reduced to the problem of deciding whether the optimal value opt(⟨L⟩D) is non-zero,
given a relational signature Σ, a linear program L ∈ LPclos(CQΣ) and a database D with
schema Σ. The NP-hardness of computing opt(⟨L⟩D) is thus a direct corollary.

For any conjunctive query Q, we consider the following LPclos(CQΣ) program:

LQ = maximize weighttrue(Q) subject to weighttrue(Q) ≤ 1

We claim that

opt(⟨LQ⟩D) ̸= 0 if and only if JQKD ̸= ∅
We first note that:

⟨LQ⟩D = maximize S subject to S ≤ 1 where S =
∑

α∈JQKD
θαQ

So, if JQKD = ∅, then evalw(S) = 0 for all w, so that opt(⟨LQ⟩D) = 0. So consider the other

case where JQKD ̸= ∅. Let α ∈ JQKD and consider the weighting w such that w(θαQ) = 1

and w(θα
′

Q) = 0 for every α′ ∈ JQKD such that α′ ̸= α. This weighting clearly respects the

constraints of S ≤ 1, so w ∈ JS ≤ 1K showing that opt(⟨LQ⟩D) ≥ 1 ̸= 0.
To show the coNP-hardness, it is sufficient to observe that the same trick can be applied

to reduce the problem of deciding whether JQKD = ∅ given Q and D, which is coNP-complete
from [CM77].

Data complexity. The hardness from Theorem 3.2 mainly stems from the hardness of
answering conjunctive queries, that is only relevant in the context of combined complexity.
It is often assumed however that the size of the query is small with respect to the size of the
data, hence one can study the data complexity of the problem, that is, the complexity of
the problem when we fix the linear program L. In this case, computing opt(⟨L⟩D) can be
done in polynomial time in |D| using the following procedure:

• Compute explicitly JQKD for every Q appearing in L,
• Compute ⟨L⟩D,
• Solve ⟨L⟩D in time polynomial in |⟨L⟩D| using an LP-solver.

14 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

The exact complexity of the previous procedure is however dependent on the size of
⟨L⟩D whose number of variables is the sum of |JQKD| for every Q appearing in L. We lift the
AGM bound presented in Section 2.4 to linear programs in LPclos(CQΣ) by defining AGM(L)
to be the maximum of AGM(Q) for every query Q appearing in L. The size of ⟨L⟩D can now

be upper bounded by |L| × |D|AGM(L). Using a worst-case optimal join algorithm such as

Triejoin [Vel14] to compute JQKD in time O(|D|AGM(Q)), we conclude that one can compute

opt(⟨L⟩D) in time O((|L||D|AGM(L))ℓ), where ℓ is the best known constant to compute the
optimal value of a linear program. Currently, the best known value for ℓ is smaller than
2.37286 by combining a result relating the complexity of solving linear programs with the
complexity of multiplying matrices [CLS21] with the best known algorithm for multiplying
matrices [AW21].

Theorem 3.3. Given a relational signature Σ, L ∈ LPclos(CQΣ) and a database D, one
can compute opt(⟨L⟩D) in time O(|L|ℓ|D|ℓ·AGM(L)) with ℓ < 2.37286.

3.3. Replacement Rewriting. In this paper, we will often introduce alternate ways of
interpreting linear program of LPclos(CQΣ) over a database. We will say that such alternate
interpretation is sound if for any database D, when interpreting the linear program using this
alternate interpretation over D, we obtain a linear program having the same optimal value
as ⟨L⟩D , the natural interpretation of L over D. It will allow us for example to construct
smaller linear programs and hence speed up the computation of opt(⟨L⟩D). Formally proving
the soundness of an alternate interpretation is usually tedious as it involves transforming
solutions from one interpretation to the other while proving by induction that the constraints
in L are all satisfied. However, every interpretation that we will consider in this paper is
based on interpreting weight expressions differently with some extra equality constraints.
Hence, most of the time, the reasoning may be reduced to very simple linear programs
involving only equality constraints. Our goal in this section is to provide formal tools to
simplify soundness proofs.

One can always construct a function ν mapping every possible weight expression W into
a fresh linear program variable ν(W) such that if W ̸= W ′, then ν(W) ̸= ν(W ′). We will

often denote ν(weightx .
=c(Q)) by νx

.
=c

Q . From now on, we assume such function ν has been
fixed. For a set of weight expressions W, we define the weight constraints of W, denoted by
wcν(W) as the following set of linear constraints:∧

W∈W
ν(W) = W.

For for any linear sum S ∈ LS clos(CQΣ), let ⟨S⟩ν ∈ LS be defined by replacing any
weight expression W in S by ν(W) and for C ∈ LC clos(CQΣ), let ⟨C⟩ν ∈ LP be the linear
constraint obtained by applying the substitution to every linear sum appearing in C.

Consider a linear program L = maximize S subject to C with some linear sum
S ∈ LS clos(CQΣ) and some linear constraint C ∈ LC clos(CQΣ). We denote by W(L) the
set of weight expressions that appear in L. The replacement rewriting of L is the following
linear program replν(L) ∈ LP(CQΣ):

replν(L) = maximize ⟨S⟩ν subject to ⟨C⟩ν ∧ wcν(W(L)).

Observe that in replν(L), the only place where weightx .
=c(Q) constructors appear is in

the wcν(W(L)) part. Hence, we can naturally lift the interpretation of L over a database D

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 15

to replν(L) as follows:

⟨replν(L)⟩D = maximize ⟨S⟩ν subject to ⟨C⟩ν ∧ ⟨wcν(W(L))⟩D.

The main feature of replν(L) is that it allows to formally separate the linear programming
part from the part that is interpreted over a database, which will be helpful whenever we
need to reason only on weight expressions.

Example. In the example of Section 3.1, the rewriting replν(L) of L is:

maximize ν2
subject to ν0 ≤ 1 ∧

ν1 ≤ 1 ∧

ν0
.
= weightx .

=0(Q) ∧
ν1

.
= weightx .

=1(Q) ∧
ν2

.
= weight∅(Q)

.

which is then interpreted as ⟨replν(L)⟩D as:

maximize ν2
subject to ν0 ≤ 1 ∧

ν1 ≤ 1 ∧

ν0
.
= θ

(0,0)
Q + θ

(0,1)
Q ∧

ν1
.
= θ

(1,0)
Q + θ

(1,1)
Q ∧

ν2
.
= θ

(0,0)
Q + θ

(0,1)
Q + θ

(1,0)
Q + θ

(1,1)
Q

.

Note that the linear program’s variables θ
(i,j)
Q do not occur in the objective function,

so they are implicitly existentially quantified. Up to existential quantification, the above
constraint is equivalent to:

ν2
.
= ν0 + ν1

So we obtain a linear program with much fewer variables:

maximize ν2 subject to ν0 ≤ 1 ∧ ν1 ≤ 1 ∧ ν2
.
= ν0 + ν1

The optimal value of this new linear program is achieved with the solution ν0 = ν1 = 1 and
ν2 = 2. We can see that it directly corresponds to the optimal solution of the original linear

program where θ
(0,0)
Q = θ

(0,1)
Q = θ

(1,0)
Q = θ

(1,1)
Q = 1

2 . How to derive such factorized rewritings
of constraints and how to reconstruct an optimal solution from the optimal solution of the
rewritten program from a given LP (CQΣ) program in a systematic manner is studied in
the remainder of this article.

It is easy to see that for every database D over signature Σ, the optimal value of
⟨replν(L)⟩D is the same as the optimal value of ⟨L⟩D which is formalized as follows:

Proposition 3.4 (Soundness of replacement rewriting). Given a database D with signature
Σ and a linear program L ∈ LPclos(CQΣ), we have:

opt(⟨L⟩D) = opt(⟨replν(L)⟩D).

16 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Proof. For every weight expression weightx .
=c(Q) of L and w : ΘD

Q → R+, we extend w to

νx
.
=c

Q by defining

w(νx
.
=c

Q) :=
∑

α∈JQKD
α(x)=c

w(θαQ).

Clearly, by definition, this extension of w satisfies the weight constraint

νx
.
=c

Q
.
=

∑
α∈JQKD
α(x)=c

θαQ

that appears in ⟨replν(L)⟩D. Moreover, for any sum expression S of L, evalw(⟨S⟩D) will give
the same value as evalw(⟨replν(S)⟩D) as every weight expression W of S has been replaced in
replν(S) by ν(W) and that from what precedes w(ν(W)) has the same value as evalw(⟨W ⟩D).
Hence, any solution of ⟨L⟩D can be extended to a solution of ⟨replν(L)⟩D that evaluates to
the same objective value.

On the other hand, with the same reasoning, any solution w of ⟨replν(L)⟩D directly gives
a solution of ⟨L⟩D that evaluates to the same objective value since the weight constraints
ensure that evalw(⟨W ⟩D) = w(ν(W)).

3.4. Interpretations of linear programs. In this section, we formalize the notion of
interpretation of linear programs in LPclos(CQΣ) and give necessary conditions for an
alternate interpretation to be sound. In the following, we denote by Queriesw(L) the set of
conjunctive queries that appear in L, that is, the set of Q such that there is an expression
of the form weightx .

=c(Q) in L.
An interpretation I = (IW , IC) of LPclos(CQΣ) is a pair of functions such that, given a

database D over signature Σ:

• IW maps every weight expression W := weightx .
=c(Q) and database D to a linear sum

IDW (W) over linear program variables XD
I,Q,

• IC maps every conjunctive query Q over signature Σ and database D to a set of constraints
IDC(Q) on variables XD

I,Q,

• and for every two conjunctive queries Q,Q′, if Q ̸= Q′ then XD
I,Q ∩XD

I,Q′ = ∅.
Given an interpretation I, a conjunctive query Q and a set of weight constraints W

over Q, we denote by:

IDQ(W) := IDC(Q) ∧
∧

W∈W
ν(W) = IDW (W)

where ν is a fixed function as constructed in Section 3.3. Observe that when Q′ ̸= Q, then
IDQ(W) and IDQ′(W′) have disjoint variables.

Given a linear program L = maximize S subject to C with some linear sum S ∈
LS clos(CQΣ) and some linear constraint C ∈ LC clos(CQΣ), we denote by WQ(L) the set of
weight expressions of L over Q. The I-interpretation of L is the following linear program
ID(L):

ID(L) = maximize ⟨S⟩ν
subject to ⟨C⟩ν ∧∧

Q∈Queriesw(L)
IDQ(WQ(L)).

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 17

For example, the replacement rewriting of a linear program in L can be defined by the
interpretation N = (NW , NC) such that ND

C (Q) := true and

NW (weightx .
=c(Q))D :=

∑
α∈JQKD
α(x)=c

θαQ.

It is readily verified that ND(L) corresponds to replν(L).
Since, for Q ≠ Q′, the variables of IDQ(L) and of IDQ′(L) are disjoint, it allows us to prove

the following sufficient condition for an interpretation to be sound, that only depends on the
value of the interpretation on weight expressions over one conjunctive query Q:

Proposition 3.5. Let I = (IW , IC) be an interpretation of LPclos(CQΣ) such that for every
conjunctive query Q and set W of weight expressions over Q we have that JIDQ(W)K|ν(W)

=

J⟨wcν(W)⟩DK|ν(W). Then I is sound, that is, for every L ∈ LPclos(CQΣ) and database D,
opt(⟨L⟩D) = opt(ID(L)).

Proof. Let L = maximize S subject to C. By Proposition 3.4,

opt(⟨L⟩D) = opt(⟨replν(L)⟩D).

Hence it is sufficient to show that opt(⟨replν(L)⟩D) = opt(ID(L)).
Now recall that ⟨replν(L)⟩D and ID(L) have the same objective function ⟨S⟩ν and the

same constraint ⟨C⟩ν on variables ν(W). Only the last part of the program is different.
ID(L) contains additional constraints

∧
Q∈Queriesw(L)

IDQ(WQ(L)) and ⟨replν(L)⟩D con-

tains ⟨wcν(W(L))⟩D.
However, the assumption from the statement applied to every Q ∈ Queriesw(L) shows

that

J⟨wcν(W(L))⟩DK|ν(W) = J
∧

Q∈Queriesw(L)

IDQ(WQ(L))K|ν(W)

since every IDQ(WQ(L)) contains disjoint variables.

It thus means that for any solution w of constraints ⟨wcν(W(L))⟩D, one can construct
a solution w′ of constraints

∧
Q∈Queriesw(L)

IDQ(WQ(L)) that assign variables ν(W) to the

same values. Hence, we have evalw′(⟨S⟩ν) = evalw(⟨S⟩ν). Moreover, since evalw(⟨C⟩ν) is
true by definition, and since w and w′ coincide on ν variables and that ⟨C⟩ν only contains
ν(W) variables, evalw′(⟨C⟩ν) is also true. Hence w′ is a solution of ID(L) and the values of
both linear programs on w and w′ respectively coincide. Taking w so that it is optimal for
⟨replν(L)⟩D yields that opt(⟨replν(L)⟩D) ≤ opt(ID(L)).

On the other hand, we also have that given a solution w′ of constraints∧
Q∈Queriesw(L)

IDQ(WQ(L)),

one can construct a solution w of constraints ⟨wcν(W(L))⟩D that assign variables ν(W) to
the same value. By the same reasoning, it implies that opt(⟨replν(L)⟩D) ≥ opt(ID(L)), and
the equality follows.

18 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Example. To illustrate the notion of interpretations, we will consider a toy alternative
interpretation I = (IW , IC) defined as follows: the linear program variables XD

I,Q are defined

as {xαQ | α ∈ JQKD} and IW is defined as:

IDW (weightx .
=c(Q)) =

∑
α∈JQKD
α(x)=c

3× xαQ

We also define IDC as ∑
α∈JQKD

xαQ ≥ 0

The interpretation ID(L) of the example given in Section 3.1 is thus:

maximize ν2
subject to ν0 ≤ 1 ∧

ν1 ≤ 1 ∧

ν0
.
= 3x

[x/0,y/0]
Q + 3x

[x/0,y/1]
Q ∧

ν1
.
= 3x

[x/1,y/0]
Q + 3x

[x/1,y/1]
Q ∧

ν2
.
= 3x

[x/0,y/0]
Q + 3x

[x/0,y/1]
Q + 3x

[x/1,y/0]
Q + 3x

[x/1,y/1]
Q ∧

x
[x/0,y/0]
Q + x

[x/0,y/1]
Q + x

[x/1,y/0]
Q + x

[x/1,y/1]
Q ≥ 0

.

The last constraint corresponds to IDC(Q). It is clear that this program has the same
optimal value as the original one because it is obtained by substituting θαQ by 3xαQ and by
adding a constraint that is always true since xαQ ≥ 0. Actually, Proposition 3.5 tells us that

for every LPCQ L and database D, ID(L) has the same optimal value as ⟨L⟩D. Indeed,
given a solution w of ⟨wcν(W)⟩D, we can transform it into a solution w′ of IDQ(W) defined

as w′(xαQ) =
w(θαQ)

3 and w′(ν(W)) = w(ν(W)). It is readily verified that w′ respects every

constraint of IDC(W) and that w′ has the same values as w on variables ν(W). Similarly,

a solution w′ of IDQ(W) can be transformed into a solution w of ⟨wcν(W)⟩D by defining w

as w(θαQ) = 3w′(xαQ) and w(ν(W)) = w′(ν(W)). Hence JIDQ(W)K|ν(W)
= J⟨wcν(W)⟩DK|ν(W)

and Proposition 3.5 can be applied.

4. Solving LPclos(CQΣ) linear programs efficiently

In this section, we propose an algorithm for solving linear programs in LPclos(CQΣ) that
is better than the one given in Theorem 3.3. The proof of Theorem 3.2 suggests that the
main source of intractability stem from the complexity of answering conjunctive queries,
which is reflected in the upper bound given in Theorem 3.3 where the complexity here
depends on the worst-case size of the answer sets of queries. However, for many problems
on conjunctive queries such as computing the number of answers, one can get better
upper bounds by exploiting the fact that they have small fractional hypertree width. By
leveraging the notion of fractional hypertree width from conjunctive queries to linear
programs of LPclos(CQΣ), we are able to lower the complexity from O(|L|ℓ|D|ℓAGM(L))

given by Theorem 3.3 to O(|L|ℓ|D|ℓfhtw(L)), where fhtw(L) denotes the (leveraged notion of)

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 19

fractional hypertree width of L, when an optimal tree decomposition of L is provided in the
input.

To achieve this, we avoid the expensive step of computing ⟨L⟩D by exploiting tree
decompositions T of the queries of L to generate a smaller linear program ρT,D(L) having

only O(|D|fhtw(T)) variables and show that the optimal value for ρT,D(L) is the same as the
optimal value of ⟨L⟩D.

4.1. Tree decomposition of LPclos(CQΣ). We start by lifting the concept of hypertree
decompositions from conjunctive queries to linear programs in LPclos(CQΣ). Given a linear
program L ∈ LPclos(CQΣ), recall that we denote by Queriesw(L) the set of conjunctive
queries that appear in L.

Intuitively, our notion of hypertree decomposition for LPclos(CQΣ) will consist in a
collection of hypertree decomposition for every ∃y.Q ∈ Queriesw(L). However, we will need
a stronger condition on the decomposition than the usual one:

Definition 4.1. Let L ∈ LPclos(CQΣ), ∃y.Q ∈ Queriesw(L), with Q the quantifier free part
of ∃y.Q and weightx .

=c(∃y.Q) a weight expression of L.
A tree decomposition T = (V, E ,B) of ∃y.Q compatible with weightx .

=c(∃y.Q) is a tree
decomposition of Q such that there exists u ∈ V with set(x) = B(u).

T is said to be compatible with L if it is a tree decomposition of Q compatible with
every weightx .

=c(∃y.Q) of L.

Observe that the requirement that a tree decomposition has to be compatible with the
linear program may increase the optimal width of the decomposition. For example, consider
the conjunctive query Q = R(x, y) ∧ S(y, z). If a linear program L contains an expression
of the form weightx .

=0,z
.
=0(Q), then every tree decomposition of Q compatible with L has

width at least 3/2 whereas optimal tree decomposition for Q have width 1 (a decomposition
of Q is given in Section 2.4).

Definition 4.2. Let L be an LPclos(CQΣ) program. A tree decomposition of L is defined to
be a collection TL = (TQ)Q∈Queriesw(L) such that TQ is a tree decomposition ofQ ∈ Queriesw(L)
that is compatible with L.

The width of TL is defined to be the maximal width of the decomposition trees in TL.
The size of TL is defined to be |TL| =

∑
(V,E,B)∈T |V|.

4.2. Factorized Interpretation of quantifier free LPclos(CQΣ). In this section, we
present a more succinct way of interpreting weight constraints in linear programs in
LPclos(CQΣ), called the factorized interpretation, that exploits a tree decomposition of
the queries. In this section, we assume that the linear program only contains quantifier
free queries. We will explain in Section 4.3 how one can reduce the case with existentially
quantified queries to the case of quantifier free queries.

From now on, we fix a linear language L ∈ LPclos(CQΣ) and T a tree decomposition of

L. We will describe an interpretation ρT = (ρTW , ρTC) of L exploiting tree decompositions.

20 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Interpreting weight constraints. Given a conjunctive query Q ∈ Queriesw(L) and T = TQ
the tree decomposition of Q compatible with L given by T, we define an interpretation of
weight expressions on the following set of variables:

ΞD
Q,T := {ξβQ,u | u ∈ V, β ∈ JQKD|B(u)}.

Computing the set ΞD
Q,T can be done efficiently with respect to the width of the

decomposition:

Lemma 4.3. Let k be the width of T . The size of ΞD
Q,T is at most |V| · |D|k and one can

compute ΞD
Q,T in time O(|T | · |D|k log(|D|)).

Proof. It follows directly by Lemma 2.4 in Section 2.4.

We define the factorized interpretation of the weight expressions weightx .
=c(Q) as

follows:

ρT,DW (weightx .
=c(Q)) =

{
ξβQ,u if β = [x/c] ∈ JQKD|B(u)
0 else

where u ∈ V is the vertex such that set(x) = B(u) that is the closest to the root of T 3. If no

such u exists then ρT,DW (weightx .
=c(Q)) is undefined. However, for every weight expression

of L, the existence of u is implied by the fact that T is compatible with L, see Definition 4.1.

For Q ∈ Queriesw(L), we define ρT,DW (weightx .
=c(Q)) := ρ

TQ,D
W (weightx .

=c(Q)). It gives
a function to interpret weight expressions in the sense given in Section 3.4 since if Q and

Q′ are distinct conjunctive queries, then ρT,DW (weightx .
=c(Q)) and ρT,DW (weightx .

=c(Q
′)) will

contain disjoint linear program variables.

Local soundness constraints. If one simply defines the factorized interpretation as
(ρTW , true), it will not give a sound interpretation. We illustrate this phenomenon on the
example from Section 3.1 using the tree decomposition having three nodes r, u, v rooted at r
with r connected to u and v and with B(r) = ∅, B(u) = {x} and B(v) = {y}. Interpreting
only the weights without additional constraints would yield the following:

maximize ν2

subject to ν0 ≤ 1 ∧

ν1 ≤ 1 ∧

ν0
.
= ξ

[x/0]
Q,u ∧

ν1
.
= ξ

[x/1]
Q,u ∧

ν2
.
= ξ

[]
Q,r.

One strange aspect of this program is that is does not depends on the variables ξ
[y/c]
Q,v

and hence on the value of y, because the program does not contain weight expression on
variable y. It can be easily checked that the optimal value of this program is not the same
as the on from Section 3.1. Indeed, in the above linear program, the values of ν0, ν1 and ν2

3Actually, any vertex u such that set(xi) = B(u) would work but we choose it to be the closest to the root
to have a deterministic definition of the factorized interpretation. It is well-defined by connectedness of tree
decompositions. Indeed, if two bags B,B′ contain a set S, then their least common ancestor also contains S.

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 21

are now completely independent. Hence, the optimal value of the above linear program is
actually unbounded.

To make the factorized interpretation equivalent to the natural interpretation, one has to
restore somehow the forgotten dependencies. One way of resolving it in the above program

would be to add a new constraint ξ
[]
Q,r

.
=ξ

[x/0]
Q,u + ξ

[x/1]
Q,u . To achieve this, we add so-called local

soundness constraints. For every edge e = (u, v) ∈ E of T and γ ∈ JQKD|B(u)∩B(v), we define

the equality constraint E e,D
γ (Q) as follows:∑

β∈JQKD|B(u)

γ=β|B(u)

ξβQ,u
.
=

∑
β′∈JQKD|B(v)

γ=β′
|B(v)

ξβ
′

Q,v.

Intuitively, this constraint encodes the following: for expressions weightx .
=c(Q) and

weighty .
=c′(Q), if the assignments β = [x/c] and β′ = [y/c′] are compatible with one another,

in the sense that they agree on the common variables they assign, then ⟨weightx .
=c(Q)⟩D

and ⟨weighty .
=c′(Q)⟩D will contain common variables from ΘD

Q and hence, will not produce
independent linear sums. On the other hand, in the factorized interpretation without

additional constraint, they will be interpreted as independent variables ξβQ,u and ξβ
′

Q,v for

some u, v in V . If e = (u, v) is an edge of T , then E e,D
γ (Q) accounts for the missed dependency

in the factorized interpretation. It turns out that these constraints are enough to make the
factorized interpretation equivalent to the natural interpretation (in the sense that they
have the same optimal value).

Hence, we define ρT,DC (Q), the local soundness constraints of Q w.r.t T , as follows:∧
e=(u,v)∈E

∧
γ∈JQKD|B(u)∩B(v)

E e,D
γ (Q)

Local soundness constraints can be efficiently computed with respect to the width of
the decomposition:

Lemma 4.4. Let k be the width of T . The size of ρT,DC (Q) is at most |T | · |D|k and one can

compute ρT,DC (Q) in time O(|Q| · |T | · |D|k log(|D|)).

Proof. There is one constraint E e,D
γ (Q) in ρT,DC (Q) for every edge e of T and γ ∈ JQKD|B(u)∩B(v).

Since B(u) ∩ B(v) ⊆ B(u), JQKD|B(u)∩B(v) is smaller than JQKD|B(u) which is itself smaller

than |D|k by Lemma 2.4. Hence there are at most |T | · |D|k constraints in ρT,DC (Q).

Now, to compute ρT,DC (Q), we start by computing (JQKD|B(u))u∈V using Lemma 2.4. Now

for each edge e = (u, v) of T , we construct E e,D
γ (Q) as follows: we start by enumerating

the tuples β ∈ JQKD|B(u) and let γ = β|B(v). If it is not yet constructed, we create an empty

linear sum Sγ
u and add ξβQ,u in it. If Sγ

u has already been created, we append +ξβQ,u to it. We

do the same by enumerating β′ ∈ JQKD|B(v) and let γ = β′
|B(u). If it is not yet constructed,

we create an empty linear sum Sγ
v and add ξβ

′

Q,v in it. If Sγ
v already exists, we just append

+ξβ
′

Q,v to it. Finally, we let E e,D
γ (Q) be Sγ

u
.
=Sγ

v for each γ ∈ JQKD|B(u)∩B(v) that have been

found.

22 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

To construct it, observe that each JQKD|B(u) is listed at most once for each edges of T

and that the projection γ can be constructed in time O(|Q|). Hence, the total time required

to construct ρT,DC (Q) is O(|Q| · |T | · |D|k log(|D|)).

Factorized interpretation. Taking local soundness constraints into account, we can now
define the T-factorized interpretation ρT of a linear program L as the pair (ρTW , ρTC) where

ρT,DC (Q) = ρ
TQ,D
C (Q). When T is clear from context, we will simply say “the factorized

interpretation”.
The soundness of factorized interpretation follows from Proposition 3.5 and from results

on weighting answer sets of conjunctive queries that can be of independent interest and that
we give in Section 6.1:

Theorem 4.5. Let L be a LPclos(CQΣ) program such that every conjunctive query in
Queriesw(L) is quantifier free, T a decomposition of L and D a database. The factorized
interpretation ρT,D(L) then has the same optimal value as ⟨L⟩D:

opt(ρT,D(L)) = opt(⟨L⟩D)

Moreover, given an optimal solution W of ρT,D(L), there exists a canonical optimal solution
ω of ⟨L⟩D such that given W and a variable θ of ⟨L⟩D, one can compute ω(θ) in polynomial
time.

The first part of Theorem 4.5 is proven by providing two explicit transformations: one to
go from a solution of ρT,D(L) to a solution of ⟨L⟩D having the same value and another one to
go from a solution of ⟨L⟩D to a solution of ρT,D(L) having the same value. The preservation
of the values by these transformations is enough to establish that both linear programs have
the same optimal value. More interestingly, it also allows us to prove the second part of the
theorem, that is, that one can recover an optimal solution of ⟨L⟩D from an optimal solution
of ρT,D(L). This transformation is described in the proof of Theorem 6.13.

Example. Going back to the example from Section 3.1, and the tree decomposition previously
mentioned, ρT,D(L) is the following program:

maximize ν2

subject to ν0 ≤ 1 ∧

ν1 ≤ 1 ∧

ν0
.
= ξ

[x/0]
Q,u ∧

ν1
.
= ξ

[x/1]
Q,u ∧

ν2
.
= ξ

[]
Q,r∧

ξ
[]
Q,r

.
=ξ

[x/0]
Q,u + ξ

[x/1]
Q,u ∧

ξ
[]
Q,r

.
=ξ

[y/0]
Q,v + ξ

[y/1]
Q,v

The two last lines contain the local soundness constraint ρT,DC (Q). The last constraint

mentions variables ξ
[y/0]
Q,v and ξ

[y/1]
Q,v that are not used elsewhere in the program and can safely

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 23

be ignored when looking for the optimal value. The other soundness constraint directly
implies that ν2 = ν0 + ν1 and hence, the optimal value for this program is 2.

Computing the factorized interpretation. The factorized interpretation ρT,D(L) is
interesting because it is smaller than the natural interpretation ⟨L⟩D. Indeed, while ⟨L⟩D
has O(|D|AGM(L)) variables and O(|L|) constraints (see Section 3.2), one can show that if k
is the width of T, then the size of ρT,D(L) is O(|D|k) in the data complexity model (where L
is considered constant). It follows from the following, more precise, combined complexity
analysis:

Theorem 4.6. Given a relational signature Σ, L ∈ LPclos(CQΣ) such that every query in
Queriesw(L) is quantifier free, a tree decomposition T of L and a database D, we let k be
the width of T, t be the sum of the sizes of the tree decompositions in T and q be the sum
of the sizes of the queries in Queriesw(L). Then ρT,D(L) has at most O(t · |D|k) variables,
O(|L|+ t · |D|k) constraints and can be computed in time O(|L|+ qt · |D|k log |D|). Moreover,
ρT,D(L) has size O(|L||D|k).

Proof. This is a direct consequence of applying Lemma 4.3 and Lemma 4.4 to each query
in Queriesw(L). Concerning the size of ρT,D(L), it comes from the fact that each weight
construct has been replaced by at most one variables resulting in a program of size at most
|L| and then we add O(t|D|k) = O(|L||D|k) soundness constraints.

Theorem 4.6 together with Theorem 4.5 implies that the data complexity of computing
the optimal value of a linear program L ∈ LPclos(CQΣ) having only quantifier free queries is

below O(|D|ℓ·fhtw(L)) with ℓ < 2.37286 which improves the complexity stated in Theorem 3.3.
We observe however that the factorized interpretation may be small in practice than

the worst-case theoretical bound given by the fractional hypertree width of L. Indeed, the
number of variables in the factorized interpretation is the sum of the sizes of JQKD|B(u) for

each u. In particular, each one of them contains less elements than JQKD. Hence, even when
JQKD is small with respect to the worst case, the factorized interpretation will also be smaller
than the worst case.

We summarize this discussion in the following theorem, which mirrors Theorem 3.3:

Theorem 4.7. Given a relational signature Σ, L ∈ LPclos(CQΣ), a database D and op-
timal tree decompositions T of L of width fhtw(L), one can compute opt(⟨L⟩D) in time

O(|L|ℓ|D|ℓ·fhtw(L)) with ℓ < 2.37286.

4.3. Linear Programs with Existentially Quantified Conjunctive Queries. One
drawback of Theorem 4.5 is that it only works for a linear program L in LPclos(CQΣ)
containing only quantifier free conjunctive queries. This restriction can actually be lifted
since replacing existentially quantified queries of L with their quantifier free part yield a
linear program that has the same optimal value under the natural interpretation for any
database D. We formalize this approach and prove its correctness in this section.

Given a quantified conjunctive query Q′ = ∃y.Q with Q a quantifier free conjunctive
query, we denote by qf (Q ′) the conjunctive query Q ∧ y

.
=y. Clearly, for any database D,

the answer set JQKD is the same as Jqf (Q ′)KD and qf (Q ′) and Q have the same hypertree
decompositions and hence the same width. However, in the following, we will need to be able
to syntactically distinguish two queries having the same quantifier free part but different

24 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

quantifier prefix and qf (Q ′) allows us to do so. Indeed,qf (Q ′) is syntactically different from
Q′′ = ∃y′.Q for different y and y′.

We lift the definition of qf (Q) to a linear program in L ∈ LPclos(CQΣ): we denote by
qf (L) the LPclos(CQΣ) language obtained by replacing every expression weightx .

=c(Q
′) in

L by weightx .
=c(qf (Q

′)). It is clear that qf (L) now only contains quantifier free conjunctive
query.

Example. We adapt the example from Section 3.1 by considering the conjunctive query
Q′ = ∃y.R1(x) ∧R2(y) and the following program L′ ∈ LPclos(CQΣ):

maximize weight∅(Q
′)

subject to weightx .
=0(Q

′) ≤ 1
∧ weightx .

=1(Q
′) ≤ 1

Over the database given in Section 3.1, we have ⟨L′⟩D:

maximize θ0Q′ + θ1Q′

subject to θ0Q′ ≤ 1

∧ θ1Q′ ≤ 1

It has optimal value 2.
On the other hand, we have qf (Q ′) = R1(x) ∧R2(y) ∧ y

.
=y and qf (L′) is:

maximize weight∅(qf (Q
′))

subject to weightx .
=0(qf (Q

′)) ≤ 1
∧ weightx .

=1(qf (Q
′)) ≤ 1

which is clearly equivalent from the linear program L from Section 3.1 which itself has
optimal value 2 when interpreted on the database given in the same section.

Soundness of quantifier elimination. It turns out that it is equivalent to L in the
following sense:

Proposition 4.8. For every L ∈ LPclos(CQΣ) and D on signature Σ, we have

opt(⟨qf (L)⟩D) = opt(⟨L⟩D).

Proof. By Proposition 3.4, it is sufficient to show

opt(⟨replν(qf (L))⟩D) = opt(⟨replν(L)⟩D).

We start by observing that WQ(L) is in one to one correspondence with Wqf (Q)(qf (L))
by definition since we replaced every occurrence of Q in L by qf (Q) in qf (L). Moreover,
observe that if Q and Q′ are distinct queries of Queriesw(L), then qf (Q) and qf (Q ′) are also
distinct. Indeed, either Q and Q′ have distinct quantifier free part and it is obvious, or they
have distinct quantifier prefix y and y′ respectively, in which case qf (Q) and qf (Q ′) will be
distinct since qf (Q) contains y

.
=y and qf (Q ′) contains y′ .=y′.

Hence, exploiting this one to one correspondence, for

L = maximize S subject to C

with some linear sum S ∈ LS clos(CQΣ) and some linear constraint C ∈ LC clos(CQΣ), we
can see ⟨replν(qf (L))⟩D as:

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 25

maximize ⟨S⟩ν subject to ⟨C⟩ν ∧
∧

W∈W(L)

ν(W) = MD(W)

where MD maps weight expressions of L to a sum expression. In other words, one can
see that ⟨replν(qf (L))⟩D as ID(L) where I = (M, true) is the alternate interpretation in the
sense given in Section 3.4 defined as follows: for a weight expression W = weightx .

=c(Q
′)

where Q′ = ∃y.Q and Q is quantifier free, MD
Q(W) is defined over variables

XD
Q′ := {χα

Q′ | α ∈ JQKD}

by the following sum expression:

MD
Q(W) :=

∑
α∈JQKD
α(x)=c

χα
Q′ .

By Proposition 3.5, it is thus sufficient to show that for a set W of weight expressions
over a conjunctive query Q′ = ∃y.Q with Q a quantifier free conjunctive query, we have
JIDQ′(W)K|ν = J⟨wcν(W)⟩DK|ν . We let V be the free variables of Q′.

So let w ∈ JIDQ′(W)K. It maps variables χα
Q′ to a positive real number, where α is in

JQKD. For β ∈ JQ′KD, we define w′(θβQ′) :=
∑

α∈JQKD|α|V =β

w(χα
Q′). For a weight constraint W ,

we set w′(ν(W)) = w(ν(W)). Clearly, w and w′ coincide on ν variables. It remains to show
that w′ ∈ J⟨wcν(W)⟩DK, that is, for a weight expression W ∈ W of the form weightx .

=c(Q
′),

w′(ν(W)) = w′(⟨W ⟩D), that is:

w′(ν(W)) =
∑

β∈JQ′KD
α(x)=c

w′(θβQ′).

By definition of w′, the right-hand side of this equation rewrites to:∑
β∈JQ′KD
α(x)=c

w′(θβQ′) =
∑

β∈JQ′KD
β(x)=c

∑
α∈JQKD
α|V =β

w(χα
Q′)

=
∑

α∈JQKD
α(x)=c

w(χα
Q′) since set(x) ⊆ V

= w(W) since w ∈ JIDQ′(W)K.

Hence, w′ ∈ J⟨wcν(W)⟩DK.
For the other way around, let w′ ∈ J⟨wcν(W)⟩DK. For α ∈ JQKD, we let β = α|V and

define w(χα
Q′) := 1

Nβ
w′(θβQ′), where Nβ is the number of γ ∈ JQKD such that γ|V = β. For

every weight expression W ∈ W, we let w(ν(W)) := w′(ν(W)). Clearly w and w′ coincide
on ν variables. Now, it remains to show that w ∈ JIDQ′(W)K that is for a weight expression

26 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

W ∈ W of the form weightx .
=c(Q

′), w(ν(W)) = w(MD
Q(W)). By definition, we have:

w(MD
Q(W)) =

∑
α∈JQKD
α(x)=c

w(χα
Q′)

=
∑

α∈JQKD
α(x)=c

1

Nβ
w′(θβQ′) with β = α|V

=
∑

β∈JQ′KD
β(x)=c

∑
α∈JQKD
α|v=β

1

Nβ
w′(θβQ′)

=
∑

β∈JQ′KD
β(x)=c

w′(θβQ′) by definition of Nβ

= w′(ν(W)) since w′ ∈ J⟨wcν(W)⟩DK
= w(ν(W)) by definition of w.

Recall that by definition, a hypertree decomposition T of width k of a linear program L
in LPclos(CQΣ) consists of a collection of tree decompositions for the quantifier free part
of each query in Queriesw(L) of width at most k. For Q ∈ Queriesw(L), TQ is then also a
decomposition of qf (Q) with width at most k. Hence, T is a hypertree decomposition of
qf (L) of width k. The fractional hypertree width of qf (L) is thus the same as the fractional

hypertree width of L. Hence, one can compute the optimal value of L in O(|D|ℓ·fhtw(L))
with ℓ < 2.37286 in data complexity by computing the optimal value of the factorized
interpretation of qf (L) using Theorem 4.5 and Theorem 4.6, even when the program contains
existentially quantified conjunctive queries.

This is wrapped up in the following theorem which is an improvement over Theorem 3.3:

Theorem 4.9. Given a relational signature Σ, L ∈ LPclos(CQΣ), a tree decomposition T of
L of width k and a database D, there exists some ℓ < 2.37286 such that one can compute
opt(⟨L⟩D) in time O((|L|+ tq|D|k)ℓ) where t is the sum of the sizes of tree decompositions
in T and q the sum of the sizes of the conjunctive queries in Queriesw(L).

5. Linear Programs with Open Weight Expressions

While we have shown that LPclos(CQΣ) programs can be solved efficiently by exploiting tree
decompositions of the input conjunctive queries, it is not yet powerful enough to express
interesting linear program such as the one presented in Section 1.1. The missing feature
in LPclos(CQΣ) for is their inability to quantify over values in the database to create new
constraints. This is especially useful in the example of Section 1.1. The last quantified
constraint states that the storing limit of every warehouse in the database will not be
exceeded in the solution of the linear program. This expressivity is enabled by the fact that
one can universally quantify over warehouses given the table store, which will be interpreted

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 27

as generating one constraint for each. Moreover, observe that this constraint also draws a
numerical value num(l) from the database.

In this section, we introduce the language LP(CQΣ) allowing to universally quantify
and sum over answers set of database queries. The syntax of the language is presented in
Figure 7. It includes definitions for linear sums, linear constraints and linear programs. The
semantics of programs in LP(CQΣ) will be given in Section 5.1 via a closure operation,
transforming an LP(CQΣ) into a program in LPclos(CQΣ).

Domain expressions E ∈ Exp(CQΣ) ::= x | c
Constant numbers N ∈ Num(CQΣ) ::= r | num(E)
Linear sums S, S′ ∈ LS (CQΣ) ::= weightz:x .

=y(Q)
where set(x) ⊆ fv(Q) ⊆ set(z),
set(y) contains variables and constants
and set(y) ∩ set(z) = ∅

|
∑

x:Q S

| NS | S + S′ | N
Linear constraints C,C ′ ∈ LC (CQΣ) ::= S ≤ S′ | S .

=S′ | C ∧ C ′ | true
| ∀x:Q.C

Linear programs L ∈ LP(CQΣ) ::= maximize S subject to C
where fv(S) = fv(C) = ∅.

Figure 7: Linear sum, constraints, and programs with open weight expressions over conjunc-
tive queries Q,Q′ ∈ CQΣ, with variables x ∈ X, sequences of variables x ∈ X∗,
constants c ∈ C, and reals r ∈ R.

Apart from the addition of an operator num(E) which will intuitively allow to get
numerical constants from the database, universal quantifiers and sums ranging over a
conjunctive query, the main difference with LPclos(CQΣ) programs is that non-constant
values are allowed in weightz:x .

=y(Q) expressions. We will call such weight expression open
weight expressions, as opposed to closed weight expressions where y only contains constants.
Intuitively, variables in set(y) will be replaced by database constants in the closure of an
LP(CQΣ).

A valid LP(CQΣ) program L does not have free variables, that is, every variable has to
be bound by one of the new operator: either a linear sum

∑
x:Q S or a universal quantifiers

∀x:Q.C. To formalize this notion, we give in Figure 8 the definition of the free variables of
an LP(CQΣ) program.

Observe in particular that for weightz:x .
=y(Q), only variables in set(y) are considered

free since fv(Q) ⊆ set(z). The free variables of the conjunctive queries (and hence in
set(x) since set(x) ⊆ fv(Q)) are not considered free variables. In other words, variables
bounded through universal quantifiers and sums over conjunctive queries in LP(CQΣ) will
not introduce constants in conjunctive queries appearing in weight expressions.4 If one follows
Barendregt’s variable convention, it means that the variables appearing in the conjunctive
queries of L ∈ LP(CQΣ) may be considered disjoint from the variables used in the linear
program part.

4This restriction was not present in the conference version of this paper [CCNR22] which may lead to
counter intuitive behaviors.

28 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

fv(c) = ∅ fv(num(E)) = fv(E)
fv(weightz:x .

=y(Q)) = (fv(Q) ∪ set(y)) \ set(z) fv(
∑

x:Q S) = fv(S) ∪ fv(Q) \ set(x)
fv(NS) = fv(N) ∪ fv(S) fv(S ≤ S′) = fv(S) ∪ fv(S′)
fv(S + S′) = fv(S) ∪ fv(S′) fv(S

.
=S′) = fv(S) ∪ fv(S′)

fv(∀x:Q. C) = fv(Q) ∪ fv(C) \ {x} fv(C ∧ C ′) = fv(C) ∪ fv(C ′)
fv(maximize S subject to C) = ∅ fv(true) = ∅

Figure 8: Free variables of expressions, constraints, and programs, where var(y) denotes
the elements of set(y) that are not constants.

5.1. Closure and semantics. We define the semantics of linear programs with open weight
expressions over a database D by mapping it to a linear program with closed weight expression.
Intuitively, the queries in

∑
x:Q S and a universal quantifiers ∀x:Q.C get interpreted over D

and it maps x to some possible values that passed into a context. The details are given in
Figure 9.

close(r)D,γ = r
close(num(d))D,γ = d
close(num(x))D,γ = numD(γ(x))

close(weightx:z .
=y(Q))D,γ = weightz .

=γ̃(y)(Q)

close(S1 + S2)
D,γ = close(S1)

D,γ + close(S2)
D,γ

close(NS)D,γ = close(N)D,γclose(S)D,γ

close(
∑

x:Q S)D,γ =
∑

γ′∈Jextx(subs γ̃(Q))KD close(S)
D,γ̃∪γ′

close(∀x:Q. C)D,γ =
∧

γ′∈Jextx(subs γ̃(Q))KD close(C)D,γ̃∪γ
′

close(S1 ≤ S2)
D,γ = close(S1)

D,γ ≤ close(S2)
D,γ

close(C1 ∧ C2)
D,γ = close(C1)

D,γ ∧ close(C2)
D,γ

close(true)D,γ = true

close(maximize S subject to C)D

= maximize close(S)D,∅ subject to close(C)D,∅

Figure 9: Closure close(F)D,γ of linear programs F with relational descriptors L ∈ LP (CQΣ)
to linear programs with set descriptors close(L)D ∈ LPclos(CQΣ). Furthermore,
γ : Y → D a variable assignment with fv(F) ⊆ Y ⊆ X , and γ̃ = γ|Y \set(x). Recall
that subs is the substitution operator and extx is the extension operator as defined
in Section 2.2

The closure is defined in a somewhat classical way: one inductively evaluates a linear
program L over a database D and an environment γ mapping free variables of L to values
in the domain. We illustrate this on by detailing the closure of (∀x:Q. C) over a database D
given an environment γ. The closure of

∑
x:Q S and of weightx:z .

=y(Q) being very similar.

The closure of (∀x:Q. C) generates one set of constraint for each answer of Q over D
(over variables x). It intuitively means that for every answer of Q, we want the constraints
of the closure of C to be satisfied. However, when evaluated the closure inductively, Q may
contain free variables. These variables must have a value set by γ. We start by mapping the

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 29

variables of Q that are free to their value in the environment using subs γ̃(Q), where γ̃ is
the restriction of γ to the free variables of Q. Indeed, it may be that γ assigns a variable
x that appears in x. In this case, we consider that x is not bounded by γ since it is not
free in (x : Q). For example, ∀x : Q1.∀x : Q2.C has the same closure as ∀x : Q1.∀y : Q2.C
since the value of γ over x when computing the closure of ∀x : Q2.C is not used in γ̃. To
summarize, the closure of (∀x:Q. C) over a database D in an environment γ generates a set

of constraints close(C)D,γ̃∪γ
′
for every γ′ that is a solution of Q over variables x where each

variable of Q that are not in x have been replaced by their value under γ, which is formally
written as γ′ ∈ Jextx(subs γ̃(Q))KD.

Observe that the closure is always well-defined due to the syntactic restrictions on linear
programs. Also observe that one needs to be able to interpret some database constants as
numerical values because of the num operation. Hence, one needs to use databases that can
contain real numbers. This is formalized in the following definition: a (relational) database
with real numbers is a tuple D = (Σ, dom(D), ·D,numD) such that D = (Σ, dom(D), ·D) is a
relational Σ-structure and numD a partial function from dom(D) to R.

Since a linear programs L ∈ LP(CQΣ) do not have free variables, the closure of L
indeed produces a linear program in LPclos(CQΣ), as stated below:

Proposition 5.1. For any linear programs L ∈ LP(CQΣ) with open weight expressions
and database with numerical values D = (Σ, D, J·KD, numD) such that D ⊆ C, the closure
close(L)D is a linear program in LPclos(CQΣ).

The natural interpretation ⟨L⟩D of an LP(CQΣ) L over a database D is defined to be
the natural interpretation of its closure, that is, ⟨L⟩D is defined to be ⟨close(L)D⟩D.

Example. As an example, we reconsider the conjunctive query Q = R1(x) ∧ R2(y) from
Section 3.1. Assume we also have a unary relation S and a binary relation T in D with
SD = {0, 1} and TD = {(0, 0.4), (0, 0.6), (1, 0.3)}. We then consider the following LP(CQΣ)
program L:

maximize weight(x,y):true(Q)

subject to ∀(z):S(z). weight(x,y):x .
=z(Q) ≤

∑
y:T (z,y) num(y)

To compute the closure over D of this program, we start by unfolding the universal quantifier.
Hence close(L)D,[] is equal to:

maximize weight(x,y):true(Q)

subject to close(weight(x,y):x .
=z(Q))D,z 7→0 ≤ close(

∑
y:T (0,y) num(y))D,z 7→0

∧ close(weight(x,y):x .
=z(Q))D,z 7→1 ≤ close(

∑
y:T (0,y) num(y))D,z 7→1

By evaluating the closure of the weights and sum we then have:

maximize weight(x,y):true(Q)

subject to weightx .
=0(Q) ≤ close(num(y))D,z 7→0,y 7→0.4 + close(num(y))D,z 7→0,y 7→0.6

∧ weightx .
=1(Q) ≤ close(num(y))D,z 7→1,y 7→0.3

And finally:
maximize weight(x,y):true(Q)

subject to weightx .
=0(Q) ≤ 0.4 + 0.6

∧ weightx .
=1(Q) ≤ 0.3

30 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

5.2. Complexity of solving LP(CQΣ) programs. In this section, we are interested in
the complexity of solving LP(CQΣ) programs.

Hardness. Universal quantifiers make the complexity of solving programs in LP(CQΣ)
much harder than for LPclos(CQΣ):

Theorem 5.2. The problem of computing ⟨L⟩D for an LP(CQΣ) L and a database D with
real values given in the input is #P-hard.

Proof. Given a conjunctive query Q on variables x, we define LQ to be the following
LP(CQΣ) program:

maximize weighttrue(Q)
subject to ∀y:Q(y). weightx:x .

=y(Q) ≤ 1.

We claim that given a database D, the optimal value of ⟨L⟩D is the size of JQKD. Indeed,
close(L)D contains one constraint weightx .

=α(x)(Q) ≤ 1 for each α ∈ JQKD. Hence, it

is translated as a constraint θαQ ≤ 1 in ⟨L⟩D, while the objective function is
∑

α∈JQKD θ
α
Q.

Assigning every θαQ yields a solution of ⟨L⟩D whose value is the size of JQKD. Moreover, since

every constraint in ⟨L⟩D is saturated, it is also optimal.
The problem of computing the size of JQKD when both Q and D are given in the input

is #P-complete [PS13], hence, computing opt(⟨L⟩D) is #P-hard.

Data complexity. When considering the input linear program size to be constant, that is,
in the data complexity model, it turns out that one can compute the optimal value of the
natural interpretation of an LP(CQΣ) program L over D in time polynomial in the size of
the database D. To analyze the precise complexity of solving programs in LP(CQΣ), we
start by defining a normal form for LP(CQΣ) programs that will be helpful.

An atomic linear constraint is a linear constraint of the form ∀x:Q. S ≤ S′, ∀x:Q. S = S′,
S ≤ S′ or S = S′ where S and S′ are linear sums. We insist on the fact that an atomic
linear constraint has at most one conjunctive query on which the universal quantifier applies.
An atomic linear sum is a linear sum of the form N , N

∑
z:Q′ 1,

∑
z:Q′ weightz:x .

=y(Q) or

N
∑

z:Q′ weightz:x .
=y(Q) with N a constant number (of the form r ∈ R or num(E)).

A linear sum is said to be in normal form if it is written as a sum of atomic linear
sum. A linear constraint is in normal form if it is written as a conjunction of atomic linear
constraints on linear sum in normal form. Finally, an LP(CQΣ) is in normal form if its
objective is a linear sum in normal form and if its constraint is in normal form.

It turns out that every LP(CQΣ) program can be written as an equivalent linear program
in normal form of polynomial size.

Theorem 5.3. Let L be an LP(CQΣ). There exists a normal form LP(CQΣ) L
′ such that

L′ is of size at most |L|3 and such that for every database D, close(L)D and close(L′)D have
the same constraints (up to permutations).

Proof. We first assume that L is written using Barendregt’s variable convention [Bar12] to
avoid variables capture. First we observe that a linear constraint can always be written as a
conjunction of constraints of the form

∀x1 : Q1 . . . ∀xk : Qk.B

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 31

where B is of the form S = S′ or S ≤ S′ (we consider that k = 0 corresponds to the case
without quantifier). It comes from the fact that the closure of ∀x : Q.(C1 ∧C2) will generate
the same constraints as (∀x : Q.C1)∧ (∀x : Q.C2)). One can hence apply this transformation
until all constraints are of the desired form. The transformation applied to L results in an
LP(CQΣ) L1 of size at most d∀|L| where d∀ is the depth of universal quantifiers of L, that is,
the maximal number of universal quantifiers that are enclosed in one another. Indeed, one
can see that L1 will contain a conjunction of constraints of the form ∀x1 : Q1 . . . ∀xk : Qk.B
where B is of the form S = S′ or S ≤ S′ and appears in L enclosed in several quantifiers
∀x1 : Q1, . . . ,∀xk : Qk.

Similarly, one can rewrite each linear sum S as a sum of expressions of the form∑
x1:Q1

· · ·
∑
xk:Qk

B

where B is of the form N , weightz:x .
=y(Q) or Nweightz:x .

=y(Q) (again, the case k = 0
corresponds to the case without

∑
). Indeed, we proceed similarly by observing that the

closure of (
∑

x:Q(S1 + S2)) produces the same terms as (
∑

x:Q S1) + (
∑

x:Q S2). Like above,

the transformation applied to L1 results in an LP(CQΣ) L2 of size at most dΣ|L1| ≤ dΣd∀|L|
where dΣ is the maximal number of enclosed

∑
expressions of L.

It remains to observe that a constraint of the form ∀x1 : Q1 . . . ∀xk : Qk.B where B is
of the form S = S′ or S ≤ S′ can be rewritten as

∀(x1, . . . ,xk) : (Q1 ∧ · · · ∧Qk).B.

This is only true when set(x1), . . . , set(xk) are pairwise disjoint, which is ensured by the fact
that we adopted Barendregt’s variables convention. Indeed, we can always rename variables
that are bounded by a quantifier so that they have different names. We show it for the case
k = 2, the general case being a straightforward induction from there.

Let D be a database and let

• E = ∀x1 : Q1∀x2 : Q2.B and
• F = ∀(x1,x2) : (Q1 ∧Q2).B,

By definition, for α mapping every free variables of E and F (they have the same free
variables by definition), we have:

close(E)D,α =
∧

γ1∈JQ′
1KD

∧
γ2∈subsγ1 (JQ

′
2KD)

close(B)D,α̃∪γ1∪γ2

close(F)D,α =
∧

γ∈JQ′
1∧Q′

2KD
close(B)D,α̃∪γ

where Q′
1 = extx1(subs α̃(Q1)) and Q′

2 = extx2(subs α̃(Q2))
Hence, the proof follows from the fact that JQ′

1 ∧Q′
2K

D are the same as the set of γ such
that:

• γ|set(x1) = γ1 is in JQ′
1K

D,

• γ|set(x2) = γ2 is such that γ1 ∪ γ2 is in JQ′
2K

D

which is clear from the definition of conjunctive queries and the fact that set(x1) ∩ set(x2).

32 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Similarly, the closure of linear sums of the form
∑

x1:Q1
· · ·

∑
xk:Qk

S will generate the
same terms as ∑

(x1,...,xk):(Q1∧···∧Qk)

S.

The size of L′ is then at most dΣd∀|L| ≤ |L|3.

Linear programs in LP(CQΣ) in normal form allows us to upper bound the size of
the closure more precisely. For an LP(CQΣ) L in normal form, we denote by Queries∀(L)
the set of conjunctive query Q that appear in L in an expression of the form ∀x : Q and
by QueriesΣ(L) the set of conjunctive query Q that appear in L in an expression of the
form

∑
x:Q. As for LPclos(CQΣ), we let Queriesw(L) be the set of conjunctive query Q

that appear in L in an expression of the form weightz:x .
=y(Q). We let AGM∀(L) to be

maxQ∈Queries∀(L) AGM(Q) and similarly, AGMΣ(L) is maxQ∈QueriesΣ(L) AGM(Q) and AGMw(L)
is maxQ∈Queriesw(L) AGM(Q).

Observe that, given a database D, an atomic linear constraint of the form ∀x:Q. B will
generate at most |D|AGM(Q) constraints in the closure close(L)D. Similarly, an atomic linear

sum of the form
∑

x:QB will generate at most |D|AGM(Q) terms in close(L)D. Hence, we
have the following:

Proposition 5.4. Let L be an LP(CQΣ) in normal form and D be a database. close(L)D

has at most |L| · |D|AGM∀(L) constraints, of size at most |L| · |D|AGMΣ(L). In particular, ⟨L⟩D
has at most |L| · |D|AGM∀(L) constraints, |L| · |D|AGMw(L) variables and can be computed in

time O(|L| · |D|AGMΣ(L)+AGM∀(L)+AGMw(L)). Hence, there exists ℓ < 2.37286 such that one

can compute opt(⟨L⟩D) in time O(|L|ℓ · |D|ℓ(AGMΣ(L)+AGM∀(L)+AGMw(L))).

Proposition 5.4 directly implies that LP(CQΣ) can be solved in polynomial time in the
data complexity.

Factorized interpretation of LP(CQΣ). One can get a better time complexity than the
one stated in Proposition 5.4 by exploiting the factorized interpretation presented in Section 4.
Indeed, one can directly lift Definition 4.2 of hypertree decomposition and fractional hypertree
width of LPclos(CQΣ) to LP(CQΣ). Now, observe that for every LP(CQΣ) programs for
L and every database D, we have Queriesw(L) = Queriesw(close(L)

D). Hence we have the
following:

Lemma 5.5. Let L be an LP(CQΣ) program and let T be a tree decomposition of L. Then
for every D, T is a tree decomposition of close(L)D.

Hence, let L be an LP(CQΣ) in normal form and T a tree decomposition of L of width
k. Given a database D and an LP(CQΣ) L in normal form, one can compute L′ = close(L)D

in time O(|L| · |D|AGM∀(L)+AGMΣ(L)). Then using Theorem 4.9, one can compute opt(L′) in
time O((|L′|+ qt|D|k)ℓ) where q and t respectively denotes the sum of sizes of the queries
in Queriesw(L) and of the tree decompositions in T. Hence, in the data complexity model,
there exists ℓ < 2.37286 such that one can compute opt(⟨L⟩D) in time O(|D|ℓp) where
p = max(k,AGM∀(L) + AGMΣ(L))

5.

5In the conference version of this paper [CCNR22], we were restricting LP(CQΣ) to only use queries
with one atom in Queries∀(L) and QueriesΣ(L) to get a tractable fragment of LP(CQΣ). Our assumption

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 33

While it is not clear to us how one could avoid unfolding every universal quantifiers
when constructing the factorized interpretation of an LP(CQΣ), we explain how one could

possibly get a complexity that sometimes may be smaller than |D|AGMΣ(L) when computing
the closure of a linear expression. Observe that when computing the closure over a database
D of an expression of the form

∑
x:Q 1, it will evaluate to the size of JQKD. Now, if Q

has fractional hypertree width k, one can reduce the data complexity of this task from
O(|D|AGM(Q)) to O(|D|k) using [PS13]. Similarly, when evaluating expression of the form∑

x:Qweightx′:y
.
=z(Q

′), we can first exploit a tree decomposition of Q′ of width k′ to

compute JQ′KD|set(y) which will be of size at most |D|k′ . Now observe that the closure

of
∑

x:Qweightx′:y
.
=z(Q

′) over D will be of the form
∑

α∈JQ′KD|set(y)
Kα ·weighty .

=α(y)(Q
′)

where Kα is the number of γ ∈ JQKD such that γ(z) = α(y). Again, if Q has bounded
fractional hypertree width k, one can compute Kα efficiently since the condition γ(z) = α(y)
corresponds into some condition of the values of that some variables in x have to take. Hence,
since computing the list of possible α being doable in time O(|D|k′) and since computing

Kα for each α can be done in time O(|D|k), we can compute the closure in time O(|D|k+k′)
if we have the relevant tree decomposition.

5.3. Case study. The practical performances of our idea heavily depends on how linear
solvers perform on factorized interpretation. We compared the performances of GLPK on
both the natural interpretation and the factorized interpretation of the resource delivery
problem from Section 1.1 using some synthetic data.

For each run we fixed an input size m as well as a domain D of size n = f(m). We then
generated each input table of arity k by uniformly sampling m tuples from the nk possible
tuples on D. The value of k was defined so that the ratio of selected tuples m

nk was constant
throughout the runs. We used Python and the Pulp library to build the linear programs as
well as a hard-coded tree-decomposition of the dlr query (see Section 1.1). The tests were
run on an office laptop by progressively increasing the size of the generated input tables. A
summary of our experiments is displayed on Figure 10.

Figure 10: Number of variables and performances of GLPK for natural (blue) and factorized
(red) interpretation of the resource delivery problem with respect to table size.

allowed us to born the size of the closure, which is now implicitly done by observing that in this case,
AGM∀(L) + AGMΣ(L) ≤ 2. This new formulation allows us to be more precise and provides better bounds.

34 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Interestingly, in this example, the theoretical guarantees given by the factorized inter-
pretation should not be much better than the theoretical guarantees given by the natural
interpretation. Indeed, recall that the query considered in this example is the following one:

dlr(f, w, b, o) = ∃q.∃q2.∃c∃c2. prod(f, o, q) ∧ order(b, o, q2) ∧ route(f, w, c) ∧ route(w, b, c2)

Observe that the existentially quantified variables functionally depends on the free variables
of dlr . For example, in the table prod , q represents the quantity of objects o that factory
f can produce, q is hence functionally dependent on f, o. Hence, the AGM bound for dlr
implies that for every database D, JdlrKD is of size at most |D|2. Now, observe that the
fractional hypertree width of dlr is also 2. Hence, both the factorized interpretation and
the natural interpretation may have up to O(|D|2) variables. Observe however, that, in
the light of Lemma 2.4, the number of variables in the factorized interpretation will never
exceed the number of variables in the natural interpretation multiply by a factor depending
only on the size of the tree decomposition. But, even if the decomposition has width 2, the
factorized interpretation may still be smaller in practice than the natural interpretation
and that is what our experiments show. The decomposition we used for the experiments
consist in a normalized version of the tree decomposition having two connected vertices
u1, u2 with B(u1) = {f, o, q, w, b, c2} and B(u2) = {b, o, q2, f, w, c}. Hence, the variables in
the factorized interpretation will be the projection of JdlrKD over B(u1) and B(u2). It turns
out that in the syntactical data we have experimented on, these projections are much smaller
than the total size of JdlrKD, leading to a factorized interpretation that is more succinct
than the natural one.

As expected when comparing both linear programs we observed a larger number of
constraints (due to the soundness constraints) in the factorized interpretation. We observe
that the factorized interpretation has less variables, as explained in the previous paragraph.
While building the natural interpretation quickly became slower than building the factorized
interpretation, we did not analyze this aspect further since we are not using a database engine
to build the natural interpretation and solve it directly from the tree decomposition, which
may not be the fastest method without further optimizations. Most interestingly solving
the factorized interpretation was faster than solving the natural interpretation in spite of
the increased number of constraints thanks to the decrease in the number of variables. In
particular for an instance with an input size of 2000 lines per table, the natural interpretation
had roughly 1.5 million variables while the factorized interpretation had only roughly 150000.
The solving time was also noticeably improved at 22s for the factorized case against 106s for
the natural one.

6. Weightings on Tree Decompositions

This section is dedicated to the proof of Theorem 4.5 stating the soundness of the factorized
interpretation. The soundness of the factorized interpretation boils down to a purely algebraic
result concerning conjunctive queries that we now explain. Let Q be a conjunctive query,
D a database, T = (V, E ,B) a tree decomposition of Q. We are interested in weightings
of JQKD, that is, mappings w : JQKD → R+. Such a mapping naturally defines a mapping
πT (w) from {α|B(u) | α ∈ JQKD, u ∈ V} to R+ as follows: for β = α|B(u) for some u ∈ V, we
define the projection of w on T as follows: πT (w)(β) =

∑
γ∈JQKD : γ|B(u)=β w(γ). That is, the

weight of β is obtained by summing the weight of every answer of Q compatible with β.

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 35

We show in Section 6.1 that the soundness of the factorized interpretation boils down to
inverting this projection. Namely, if we are given a weightingW of {α|B(u) | α ∈ JQKD, u ∈ V},
can we construct a weighting ⨿(W) of JQKD such that πT (⨿(W)) = W? While this is not
always possible, we show in Section 6.2 that it is always possible as long as W is sound, a
property that roughly says that W (β) and W (γ) could not be independent if β and γ are
compatible tuples (that is, they assign the same value to their common variables). The proof
structure is as follows: Proposition 6.6 established that πT (w) is sound. Then Theorem 6.13
explains the constructions of ⨿(W) from a sound W . The proof of this theorem relies on a
good understanding on how projections of the form JQKD|B(u) are related to one another,

which is done via several intermediate lemmas presented in Section 6.2.

6.1. Factorized interpretation and weightings. By Proposition 3.5, to prove Theo-
rem 4.5, it is sufficient to show that for every quantifier free conjunctive query Q with tree
decomposition T = (V, E ,B) and for any set W over weight expressions over Q, we have
JρT,D(W)K|ν(W) = J⟨wcν(W)⟩DK|ν(W).

In other words, we have to prove the following:

Lemma 6.1. • Given w2 ∈ J⟨wcν(W)⟩DK, there exists w1 ∈ JρT,D(W)K such that for every
W ∈ W, w1(ν(W)) = w2(ν(W)).

• Given w1 ∈ JρT,D(W)K, there exists w2 ∈ J⟨wcν(W)⟩DK such that for every W ∈ W,
w1(ν(W)) = w2(ν(W)).

Now recall that ⟨wcν(W)⟩D is a set of equality constraints of the form:

ν(weightx .
=c(Q))

.
=

∑
α∈JQKD
α(x)=c

θαQ.

In other words, w2 ∈ J⟨wcν(W)⟩DK is a function that maps every θαQ to a value in R+

and maps ν(weightx .
=c(Q)) to

∑
α∈JQKD
α(x)=c

w2(θ
α
Q). We thus have a one-to-one correspondence

between J⟨wcν(W)⟩DK and weightings of JQKD by associating w2 ∈ J⟨wcν(W)⟩DK to the
weighting ω of JQKD such that for every α ∈ JQKD, ω(α) := w2(θ

α
Q).

Similarly, recall that ρT,D(W) is a set of equality constraints of the form:

ν(weightx .
=c(Q)) = ξβQ,u

and a conjunction of local soundness constraints, for every edge e = (u, v) ∈ E of T and

γ ∈ JQKD|B(u)∩B(v), we define the equality constraint E e,D
γ (Q) as follows:∑

β∈JQKD|B(u)

γ=β|B(u)

ξβQ,u
.
=

∑
β′∈JQKD|B(v)

γ=β′
|B(v)

ξβ
′

Q,v.

Hence, one can naturally associate JρT,D(W)K to a family of weightings (Wu)u∈V where
Wu is a weighting of JQKD|B(u). We do so by associating w1 ∈ JρT,D(W)K to the family of

weightings Wu such that for every β ∈ JQKD|B(u), Wu(β) = w1(ξ
β
Q,u).

36 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Observe however that every family of (Wu)u∈V cannot always be mapped back to
JρT,D(W)K since it may not satisfy the local soundness constraints. One needs also (Wu)u∈V
to be sound, that is, for every edge (u, v) ∈ E and γ ∈ JQKD|B(u)∩B(v), we have:∑

β∈JQKD|B(u)

γ=β|B(u)

Wu(β) =
∑

β′∈JQKD|B(v)

γ=β′
|B(v)

Wv(β
′).

Observe that, when interchanging ξβQ,u and Wu(β) in the equality, it exactly corresponds
to the local soundness constraints of Q over D. Hence, we have a one-to-one correspondence
between JρT,D(W)K and sound family of weightings (Wu)u∈V .

Hence, proving Lemma 6.1 boils down to the following. For a query Q, a set of weight
expressions W, a tree decomposition of T = (V, E ,B) of Q compatible with W, we have:

• Given a weighting w of JQKD, there exists a sound family of weightings (Wu)u∈V such that
for every weightx .

=c(Q) ∈ W, we have:

Wu([x/c]) =
∑

α∈JQKD
α(x)=c

w(α),

where u is the vertex of T closest to the root such that B(u) = set(x).
• Given a sound family of weightings (Wu)u∈V , there exists a weighting w of JQKD such that
for every weightx .

=c(Q) ∈ W, we have:∑
α∈JQKD
α(x)=c

w(α) = Wu([x/c]),

where u is the vertex of T closest to the root such that B(u) = set(x).

The existence of such weightings will be proven in Theorem 6.13. Proving the first item
is actually relatively straightforward as it is sufficient to define Wu([x/c]) as

∑
α∈JQKD
α(x)=c

w(α)

and prove that it yields a sound weighting. The second item requires a bottom up inductive
construction from T . Section 6.2 is dedicated to proving this correspondence between
weightings.

6.2. Constructing Weightings. To make notations lighter, we fix in this section a relation
A ⊆ DX = {α | α : X → D} on a finite set of variables X. In this work, A can be thought
as the answer set of a conjunctive query Q with fv(Q) = X on database with domain D
but the results presented in this section could apply to any relation that is conjunctive with
respect to a tree decomposition (see Definition 6.7 for more details).

We also fix T = (V, E ,B) a decomposition tree for X and define a few useful notations.
Given two nodes u, v ∈ V we denote the intersection of their bags by Buv = B(u)∩B(v). We
denote by ↓u the set of vertices v such that v is in the subtree rooted in u (u included) and
by ↑u the set of vertices containing u and every vertex v not in ↓u. We extend the notation:
B(↓u) (resp. B(↑u)) is the union of B(v) for v in ↓u (resp. ↑u).

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 37

6.2.1. Projections and Extensions. We start by introducing a few notations to formally
restrict relations and manipulate weightings on relations that will be necessary to write
down the proofs. Let X ′ ⊆ X ⊆ X . For any α′ : X ′ → D we define the set of its extensions
into A by:

A[α′] = {α ∈ A | α|X′ = α′}.

For a weighting ω of A and subset of variables X ′ ⊆ X, the projection of ω on X ′

denoted as πX′(ω) : A|X′ → R+ is defined for all α′ ∈ A|X′ as:

πX′(ω)(α′) =
∑

α∈A[α′]

ω(α).

We make a few useful observations on how extensions and projections interact with one
another. Formal proofs of these statements may be found in the appendix.

Lemma 6.2. For any two α1, α2 ∈ A|X′, if α1 ̸= α2 then A[α1] ∩A[α2] = ∅.

Lemma 6.3. For A ⊆ DX , X ′′ ⊆ X ′ ⊆ X, α′′ ∈ A|X′′: A[α′′] =
⊎

α′∈A|X′ [α′′]A[α′].

Lemma 6.4. For A ∈ DX , ω : A → R+, X ′′ ⊆ X ′ ⊆ X: πX′′(ω) = πX′′(πX′(ω)).

6.2.2. Weighting Collections.

Definition 6.5. A family Ω = (Ωv)v ∈V is a weighting collection on T for A if it satisfies
the following conditions for any two nodes u, v ∈ V:
- Ωu is a weighting of A|B(u): i.e., Ωu : A|B(u) → R+.
- Ωu is sound for T at {u, v}: i.e., πBuv(Ωu) = πBuv(Ωv).

Intuitively, the soundness of a weighting collection on T is a minimal requirement for
the existence of a weighting ω of A such that Ωu is the projection of ω on the bag B(u) of
T , that is Ωu = πB(u)(ω) since we have the following:

Proposition 6.6. For any weighting ω : A → R+, the family (πB(v)(ω))v∈V is a weighting
collection on T for A.

Proof. For any u ∈ V let Wu = πB(u)(ω). The first condition on weighting projections holds
trivially so we only have to show that the soundness constraint holds. By definition of Wu,
πBuv(Wu) = πBuv(πB(u)(ω)). Observe that Buv ⊆ B(u) so by Lemma 6.4 πBuv(Wu) = πBuv(ω).
Similarly πBuv(Wv) = πBuv(ω).

What is more interesting is the other way around. For any weighting ω : A → R+ with
A ⊆ DX and decomposition tree T = (V, E ,B) of X, let:

ΠT (ω) = (πB(v)(ω))v∈V

So the question is then given Ω = (Ωu)u∈V a weighting collection on T whether we can find
a weighting ω of A such that Ω = ΠT (ω). It turns out that soundness is not enough to
ensure the existence of such a weighting.

38 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

6.2.3. Conjunctive Decompositions. However it becomes possible when A is conjunctively
decomposed, as we define next. For this, given a decomposition tree T = (V, E ,B) and a
subsets V ⊆ V we define B(V) =

⋃
v∈V B(v).

Definition 6.7. Let T = (V, E ,B) be a decomposition tree of X ⊆ X . We call a subset of
variable assignments A ⊆ DX conjunctively decomposed by T if for all u ∈ V and β ∈ A|B(u):

{α1 ∪ α2 | α1 ∈ A|B(↑u)[β], α2 ∈ A|B(↓u)[β]} ⊆ A[β]

Note that the inverse inclusion does hold in general in any case.

Proposition 6.8. For any tree decomposition T of a quantifier free conjunctive query
Q ∈ CQΣ and database D ∈ dbΣ, the answer set JQKD is conjunctively decomposed by T .

Proof. Let u be a node of T . Let R(x) be an atom of Q such that x ̸⊆ B(u). Then we
either have x ⊆ B(↓u) or x ⊆ B(↑u). Indeed, by definition, there exists v in T such that
x ⊆ B(v). Since it is not u, v is either in B(↓u) or B(↑u) and the result follows. Hence Q
can be written as a conjunction Q1 ∧Q2 where the variables of Q1 are included in B(↓u)
and the variables of Q2 are included in B(↑u) by defining Q1 as the set of atom R(x) of Q
such that x ⊆ B(↓u) and Q2 to be the other atoms (observe that if x ⊆ B(u), R(x) will
appear in Q1 by definition).

Moreover, recall that B(u) = B(↓u)∩B(↑u) by the connectedness of tree decompositions.
Let β ∈ JQKD|B(u)and let α1 ∈ JQKD|B(↓u)[β] and α2 ∈ JQKD|B(↑u)[β]. We have to show that

α := α1 ∪ α2 ∈ JQKD[β]. Clearly, α|B(u) = β by construction. It remains to show that

α ∈ JQKD. To do so, it is sufficient to observe that α1 ∈ JQ1KD and α2 ∈ JQ2KD which is true
since α1 (and symmetrically α2) is a projection of some α′ ∈ JQKD to B(↓u) and that the
variables of Q1 are included in B(↓u). It shows that JQKD is conjunctively decomposed by T .

Proposition 6.8 does not hold when Q is not quantifier free. It is the reason why this
technique only works when every query in the linear program are quantifier free.

Conjunctive decomposition is necessary to get clean relations between the projections of
the form A|B(u) for a vertex u and projections of A|B(v) for v a child of u. We express these
relations depending on the type of u in Lemma 6.9, 6.10, 6.11 and 6.12. These relations will
be necessary to prove the correctness of our construction.

Lemma 6.9 (Extend nodes). Let T be a decomposition tree of X, u an extend node of T
with child v, and A ⊆ DX a subset of variable assignments. If A is conjunctively decomposed
by T then any assignment β ∈ A|B(u) satisfies:

A|B(↓u)[β]|B(↓v) = A|B(↓v)[β|B(v)]

Proof. For the inclusion from the left to the right let α ∈ A|B(↓u)[β]|B(↓v). Since α ∈ A|B(↓v)
and α|B(v) = β|B(v) it follows that α ∈ A|B(↓v)[β|B(v)].

For the inclusion from the right to the left let α ∈ A|B(↓v)[β|B(v)]. Let γ ∈ A|B(↑v)[β] be
arbitrary and τ = γ ∪ α.

Note that (τ|B(↓u))|B(↓v) = α, so it is sufficient to show τ|B(↓u) ∈ A|B(↓u)[β].

Since u is an extend node with child v it follows that B(↑u) = B(↑v), and thus
γ ∈ A|B(↑v)[β]. By conjunctive decomposition of A by T it follows that τ ∈ A[β]. Hence,
τ|B(↓u) ∈ A|B(↓u)[β] as required.

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 39

Lemma 6.10 (Join nodes). Let T be a decomposition tree of X, u a join node of T with
children v1, . . . , vk where k ≥ 1, and A ⊆ DX a subset of variable assignments. If A is
conjunctively decomposed by T then any β ∈ A|B(u) satisfies:

A|B(↓u)[β] = A|B(↓v1)[β] ▷◁ . . . ▷◁ A|B(↓vk)[β]

Proof. The inclusion from the left to the right is obvious by projecting an element of
A|B(↓u)[β] to B(↓v1) . . .B(↓vk).

For the inclusion from the right to the left let α1 ∈ A|B(↓v1)[β], . . . αk ∈ A|B(↓vk)[β]. We

show by induction that ∀p ∈ [1, k], τp = α1 ▷◁ . . . ▷◁ αp ∈ A|Yp
[β] where Yp =

⋃p
i=1 B(↓vi).

Base case: p = 1: Obvious.
Inductive case:: Recall that by induction τp ∈ A|Yp

[β] and observe that Yp ⊆ B(↑vp+1) so
there exists γ ∈ B(↑vp+1)[β] such that γ|Yp

= τp.
By conjunctive decomposition on vp+1, α = γ ▷◁ αp+1 ∈ A. Finally we have

α|Yp+1
= (γ ▷◁ αp+1)|Yp∪B(↓vp+1)

= γ|Yp
▷◁ αp+1|B(↓vp+1)

= τp ▷◁ αp+1 = τp+1 so

τp+1 ∈ A|Yp+1
. Thus τp+1 ∈ Yp[β] because τp+1|B(u) = β.

Lemma 6.11. Let T be a decomposition tree of X and u a join of T with children v1, . . . , vk.
If A ⊆ DX is conjunctively decomposed by T then for any α ∈ A|B(↓v1) and β = α|B(u):

A|B(↓u)[α] = {α} ▷◁ A|B(↓v2)[β] ▷◁ . . . ▷◁ A|B(↓vk)[β]

Proof. Clearly A|B(↓u)[α] = {τ ∈ A|B(↓u)[β] | τ|B(↓v1) = α} since β = α|B(u). Thus by
Lemma 6.10, A|B(↓u)[α] = {τ ∈ A|B(↓v1)[β] ▷◁ . . . ▷◁ A|B(↓vk)[β] | τ|B(↓u) = α} = {α} ▷◁
A|B(↓v2)[β] ▷◁ . . . ▷◁ A|B(↓vk)[β].

Lemma 6.12 (Extend node). Let v be the child of an extend node u. It the holds for all
α ∈ A|B(↓v) with β = α|B(v) that:

A[α] =
⊎

β′∈A|B(u)[β]

A[α ∪ β′]

Proof. For the inclusion from the left to the right, let τ ∈ A[α] and β′ = τ|B(u). Observe
that β′ ∈ A|B(u)[β]. Moreover B(↓u) = B(↓v) ∪ B(u) so τ|B(↓u) = α ∪ β′ so τ ∈ A[α ∪ β′].

For the inclusion from the right to the left, let τ ∈
⊎

β′∈A|B(u)[β]
A[α ∪ β′]. By definition

τ ∈ A and τ|B(↓v) = α so τ ∈ A[α].

6.2.4. Correspondence Theorem. We can now establish the correspondence.

Theorem 6.13 (Correspondence). Let T = (V, E ,B) be a normalized decomposition tree of
X ⊆ X and A ⊆ DX be a set of variable assignments that is conjunctively decomposed by T .

• For every weighting ω of A, ΠT (ω) is a weighting collection on T for A.
• For any weighting collection Ω on T for A there exists a weighting ω of A such that
Ω = ΠT (ω).

40 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Proof. The first property was shown in Proposition 6.6. So it remains to prove the second
property. Let Ω = (Ωu)u∈V be a weighting collection on T for A ⊆ DX . We start with the
construction of ω from (Ωu)u∈V . For this we inductively construct for any node u ∈ V, a
weighting ωu : A|B(↓u) → R+, always assuming that ωu′ is defined for all children u′ of u.
For any α ∈ A|B(↓u) and β = α|B(u) we define ωu(α) as follows:

Case u is a leaf of T .: We define ωu(α) = Ωu(α).
Case u is an extend node of T with a single child v.: We define:

ωu(α) =

{
Ωu(β)

Ωv(α|B(v))
ωv(α|B(↓v)) if Ωv(α|B(v)) > 0

0 otherwise

Case u is a project node of T with a single child v.: We define ωu(α) = ωv(α|B(↓v)).
Case u is a join node of T with children v1, . . . , vk.: Then we define:

ωu(α) =

{ ∏k
i=1 ωvi (α|B(↓vi))

Ωu(β)k−1 if Ωu(β) > 0

0 otherwise

Finally, we define ω = ωr where r is the root of T . The proof that ∀u : Ωu = πB(u)(ω) is done
via two inductions. The first one is a bottom-up induction to prove that Ωu = πB(u)(ωu)
for every node u in the tree decomposition, see Lemma 6.14 below. Then, by top-down
induction, one can prove that ωu = πB(↓u)(ωr). See Lemma 6.15 below. Thus:

Ωu = πB(u)(ωu) = πB(u)(πB(↓u)(ωr)) = πB(u)(ωr) = πB(u)(ω)

In other words, Ω = ΠT (ω) as stated by the proposition.

Lemma 6.14. For all u ∈ V: Ωu = πB(u)(ωu).

Proof. We show by bottom-up induction on the nodes of T that for all u ∈ V and β ∈ A|B(u),∑
α∈A|B(↓u)[β]

ωu(α) = Ωu(β).

The base case is clearly true by the definition of ωu when u is a leaf.

Case 1: u is an extend node with v its only child.
Let β ∈ A|B(u) and β′ = β|B(v).

Case 1.1: Ωv(β
′) = 0.

By definition ∀α ∈ A|B(↓u)[β], ωu(α) = 0.
Recall that by soundness

∑
β′′∈A|B(u)[β

′]Ωu(β
′′) = Ωv(β

′) = 0. Observe that

β ∈ A|B(u)[β
′] so Ωu(β) = 0 =

∑
α∈A|B(↓u)[β]

ωu(α).

Case 1.2: Ωv(β
′) > 0.

∑
α∈A|B(↓u)[β]

ωu(α)

=
∑

α∈A|B(↓u)[β]
Ωu(β)
Ωv(β′)ωv(α|B(↓v)) by definition

= Ωu(β)
Ωv(β′)

∑
α∈A|B(↓u)[β]

ωv(α|B(↓v))

= Ωu(β)
Ωv(β′)

∑
α′∈A|B(↓v)[β′] ωv(α

′)
conj. decomp. Lemma 6.9
for extend nodes

= Ωu(β)
Ωv(β′)Ωv(β

′) by induction

= Ωu(β)

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 41

Case 2: u is a project node with only child v.

∑
α∈A|B(↓u)[β]

ωu(α)

=
∑

α∈A|B(↓u)[β]
ωu(α) by definition

=
∑

β′∈A|B(v)[β]

∑
α′∈A|B(↓u)[β′] ωv(α) by Lemma 6.4 and B(v) ⊆ B(↓u)

=
∑

β′∈A|B(v)[β]
Ωv(β

′) by induction and B(↓u) = B(↓v)
= Ωu(β) by soundness at (u, v)

Case 3: u is a join node with children v1, . . . , vk.
Let β ∈ A|B(u).

Case 3.1:
Wu(β) = 0.
By definition ∀α ∈ A|B(↓u)[β], ωu(α) = 0.
Thus

∑
α∈A|B(↓u)[β]

ωu(α) = 0 = Ωu(β).

Case 3.2: Ωu(β) > 0.

∑
α∈A|B(↓u)[β]

ωu(α)

=
∑

α∈A|B(↓u)[β]

∏k
i=1 ωvi (α|B(↓vi))

Ωu(β)k−1 by definition

=
∑

α1∈A|B(↓v1)[β]
· · ·

∑
αk∈A|B(↓vk)[β]

∏k
i=1 ωvi (αi)

Ωu(β)k−1

conj. decomp. Lemma 6.10
for join nodes

=

∏k
i=1

∑
αi∈A|B(↓vi)

[β] ωvi (αi)

Ωu(β)k−1

=
∏k

i=1 Ωvi (β)

Ωu(β)k−1 by induction

= Ωu(β)k

Ωu(β)k−1 by soundness at (u, vi)

= Ωu(β)

Lemma 6.15. For all u ∈ V: ωu = πB(↓u)(ωr).

Proof. We show by top-down induction on the nodes of T that for all v ∈ V and α ∈ A|B(↓v),∑
τ∈A[α] ωr(τ) = ωv(α).

The base case is clearly true when v is the root r of T .
In the following we consider a given α ∈ A|B(↓v). and we let β = α|B(v)

Case 1: v is the only child of an extend node u.
By Lemma 6.12,

∑
τ∈A[α] ωr(τ) =

∑
β′∈A|B(u)[β]

∑
τ∈A[α∪β′] ωr(τ). By induction this

is equal to
∑

β′∈A|B(u)[β]
ωu(α ▷◁ β′).

Case 1.1: Ωv(β) = 0.
By definition of ωu,

∑
β′∈A|B(u)[β]

ωu(α ▷◁ β′) = 0.

Observe that by Proposition 6.14,
∑

α′∈A|B(↓u)[β]
ωv(α

′) = Ωv(β) = 0. However

ωv is non-negative so ωv(α) = 0 =
∑

τ∈A[α] ωr(τ).

Case 1.2: Ωv(β) > 0.

42 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

∑
β′∈A|B(u)[β]

ωu(α ▷◁ β′)

=
∑

β′∈A|B(u)[β]
Ωu(β′)
Ωv(β)

ωv((α ▷◁ β′)|B(↓v)) by definition

=

∑
β′∈A|B(u)[β]

Ωu(β′)

Ωv(β)
ωv(α)

= ωv(α) by soundness at (u, v)

Case 2: v is the only child of a project node u.
Observe that B(↓u) = B(↓v) because u is a project node so by induction:∑

τ∈A[α]

ωr(τ) = ωu(α) = ωv(α).

Case 3: v is the child of a join node u.
Let v1, . . . , vn be the children of u, we assume wlog that v is v1.
By Lemma 6.4,

∑
τ∈A[α] ωr(τ) =

∑
α′∈A|B(↓u)[α]

∑
τ∈A[α′] ωr(τ).

By induction we obtain
∑

α′∈A|B(↓u)[α]
ωu(α

′).

Case 3.1: Ωu(β) = 0.
By definition of ωu,

∑
α′∈A|B(↓u)[α]

ωu(α
′) = 0.

Recall that because u is a join node, Ωv(β) = Ωu(β) = 0 so similarly to Case 1.2,
ωv(α) = 0 =

∑
τ∈A[α] ωr(τ).

Case 3.2: Ωv(β) > 0.

By definition of ωu,
∑

α′∈A|B(↓u)[α]
ωu(α

′) =
∑

α′∈A|B(↓u)[α]

∏k
i=1 ωvi (α

′
|B(↓vi))

Ωu(β)k−1 . More-

over by Lemma 6.11 we can split α′ into α× α2 × · · · × αk and the sum into∑
α2∈A|B(↓v2)[β]

· · ·
∑

αk∈A|B(↓vk)[β]

∏k
i=1 ωvi (α

′
|B(↓vi))

Ωu(β)k−1 . Observe that each term in

the product only depends on αi (or α for i = 1) and that the denominator
only depends on the fixed β so we can rewrite the formula into the following

ωv(α) ·
∏k

i=2

∑
αi∈A|B(↓vi)

[β] ωvi (αi)

Ωu(β)k−1 which is equal to ωv(α) ·
∏k

i=2 Ωvi (β)

Ωu(β)k−1 by Proposi-

tion 6.14. Finally observe that by soundness,
∏k

i=2Ωvi(β) = Ωu(β)
k−1.

Thus
∑

τ∈A[α] ωr(τ) = ωv(α).

7. Applications

In this section, we provide two applications of our results for existing optimization problems
in different areas of computer science.

7.1. Minimizing Noise for ε-Differential Privacy. The strategy of differential privacy is
to add noise to the relational data before publication. Roughly speaking, the general objective
of ε-differential privacy [DR14] is to add as little noise as possible, without disclosing more
than an ε amount of information. We illustrate this with the example of a set of hospitals
which publish medical studies aggregating results of tests on patients, which are to be kept
confidential. We consider the problem of how to compute the optimal amount of noise to
be added to each separate piece of sensitive information (in terms of total utility of the

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 43

studies) while guaranteeing ε-differential privacy. We show that this question can be solved
(approximately) by computing the optimal solution of a projecting program in LP(CQΣ)
with a single conjunctive query that is acyclic, i.e., of hypertree with 1. While the natural
interpretation yields a linear program with a quadratic number of variables in the size of
the database, the factorized interpretation requires only a linear number.

We consider a database D with signature Σ = {H,Test , St,Priv ,Sens} whose domain
provides patients, hospitals, studies, and positive real numbers. The relations of D are the
following:

• (pat, hosp) ∈ HD: the patient pat is in the hospital hosp.
• (pat, st) ∈ TestD: the patient pat participates in the study st.
• (test, st) ∈ StD: the test test is used in the study st.
• (obj, ε) ∈ PrivD: the object obj is either a patient or a hospital. The positive real number
ε indicates the privacy budget for obj.

• (st, test, val) ∈ SensD: the value (in terms of study results) of a patient participating in a
study and contributing a unit of information on their result on test test.

The following query defines the sensitive information that will be revealed to the
researchers performing the medical studies. It selects all pairs of patients pat and tests test,
such pat did the test which was then used by some study st.

InStudy(pat, test) = ∃st. Test(pat, test) ∧ St(test, st)

More precisely, the sensitive information is the answer set of this query over the database D.
We want to assign a weight to all the pairs in the answer set. The weight of a sensitive pair
states the amount of information that may be disclosed about the pair after the addition
of the noise. The needed amount of noise for the pair is then inversely proportional to the
amount of information that may be disclosed, i.e, the weight of the pair, which is also called
its privacy budget. The weight of a patient pat and a test test is specified by the weight
expression:

weight(pat′,test′):test′ .
=test∧pat′ .

=pat(InStudy(pat
′, test′))

In an environment γ for the global variables pat and test this weight expression is interpreted
as the linear program variable:

θ
[pat′/γ(pat),test′/γ(test)]
InStudy(pat′,test′)

The overall weight of all sensitive tests of the same patient pat is described by the weight
expression:

weight(pat′,test′):pat′ .
=pat(InStudy(pat

′, test′))

In an environment γ for the global variable pat this weight expression is interpreted as the
following sum of linear program variables:∑

α∈solD(InStudy(pat′,test′)∧pat′=γ(pat))

θ
[pat′/γ(pat),test′/α(test′)]
InStudy(pat′,test′)

This sum may be represented more compactly in factorized interpretation avoiding the
enumeration of the answer set for the database D.

The LP(CQΣ) program for this example is given in Figure 11.
The linear privacy constraints that are to be satisfied are CPat and CHosp. Constraint

CPat states that for all patients pat with privacy requirement ε, i.e., ∀(pat, ε) : Priv(pat, ε),
the sum of all weights of all sensitive pairs (pat, test′) in InStudy must be bounded by ε.

44 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Queries

InStudy(pat, test) = ∃st. Test(pat, test) ∧ St(st, test)

Constraints

CPat = ∀(pat, ε):Priv(pat, ε).
weight(pat′,test′):pat′ .

=pat(InStudy(pat
′, test′)) ≤ num(ε)

CHosp = ∀(hosp, ε):Priv(hosp, ε).
∑

(pat):H(pat,hosp)

weight(pat′,test′):pat′ .
=pat(InStudy(pat

′, test′)) ≤ num(ε)

Program

maximize
∑

(st,test,val):Sens(st,test,val)

num(val) weight(pat′,test′):test′ .
=test(InStudy(pat

′, test′))

subject to CPat ∧ CHosp

Figure 11: An LPproj (CQΣ) program for differential privacy when publishing medical
studies aggregating patient tests in hospitals.

This constraint is motivated by the composition rule of differential privacy (DP). Suppose
we have sensitive pairs pi = (pati, testi). If pi is εi-DP for 1 ≤ i ≤ n, then {p1 . . . pn} is
(
∑n

i=1 εi)-DP.
Similarly, constraint CHosp states that for all hospitals hosp with privacy requirement

ε, i.e., ∀(hosp, ε) : Priv(hosp, ε), the sum of all weights of all sensitive pairs (pat, test) in
InStudy where pat is a patient of hosp must be bounded by ε. Finally, the objective function
is to maximize the sum over all triples (st, test, val) in Sens of the weights of pairs (pat′, test)
in InStudy but multiplied with num(val), the utility of the information for the study.

This program is projecting, so it is a member of LPproj (CQΣ) . Furthermore, a hypertree
decomposition of width 1 is available. While the natural interpretation over a database
yields a linear program with a quadratic number of variables (in the size of the database),
the factorized interpretation yields a linear program with a linear number of variables.

Please note that the approach presented above is only approximate. For example,
summing over noise variance in the objective function would be more accurate but would
only lead to a convex program, which motivates us to extend beyond linear programs
in future work. Also, the composition rule for DP is only approximate, more advanced
composition rules have been studied but they are more complex and still approximate.

7.2. Computing the s-Measure for Graph Pattern Matching. A matching of a
subgraph pattern in a graph is a graph homomorphism from the pattern to the graph.
The s-measure of Wang et al. [WRF13] is used in data mining to measure the frequency
of matchings of subgraph patterns, while accounting for overlaps of different matchings.
The idea is to find a maximal weighting for the set of matchings, such that for any node
of the subgraph pattern, the set of matchings mapping it on the same graph node must
have an overall weight less than 1. This optimization problem can be expressed by a
projecting LP(CQΣ) program over a database storing the graph. The conjunctive query of
this program expresses the matching of the subgraph pattern. The hypertree width of this
conjunctive query is bounded by the hypertree width of the subgraph pattern. Our factorized

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 45

interpretation therefore reduces the size of the linear program for subgraph patterns with
small hypertree width.

The s-measure has been introduced by Wang et al. [WRF13] to evaluate the frequency
of matchings of a subgraph pattern in a larger graph. Here, we consider pattern matches as
graph homomorphism, but we could also restrict them to graph isomorphisms.

A naive way of evaluating this frequency is to use the number of pattern matches as the
frequency measure. Using this value as a frequency measure is problematic since different
pattern matches may overlap, and as such they share some kind of dependencies that is
relevant from a statistical point of view. More importantly, due to the overlaps, this measure
fails to be anti-monotone, meaning that a subpattern may be counter-intuitively matched
less frequently than the pattern itself. Therefore, the finding of better anti-monotonic
frequency measures – also known as support measures – has received a lot of attention in
the data mining community [BN08, CRVD11, FB07]. A first idea is to count the maximal
number of non-overlapping patterns [VGS02]. However, finding such a maximal subset of
patterns essentially boils down to finding a maximal independent set in a graph, a notorious
NP-complete problem [GJ79].

The s-measure is a relaxation of this idea where the frequency of pattern matches is
computed as the maximum of the sum of the weights that can be assigned to each pattern
match, under the constraint that for any node v of the graph and node v′ in the subgraph
pattern that the sum of the weights of the matchings mapping v′ to v is at most 1. More
formally, given two digraphs G = (VG, EG) and P = (VP , EP), we define a matching of
the pattern P in graph G as a graph homomorphism h : VP → VG. Recall that a graph
homomorphism requires for all (v, v′) ∈ Ep that (h(v), h(v′)) ∈ EG. We denote by hom(P,G)
the set of matchings of P in G. The s-measure of P in G is then defines as the optimal
value of the following linear program with variables in {θh | h ∈ hom(P,G)} for positive real
numbers:

maximize
∑

h∈hom(P,G) θh
subject to ∀v ∈ VG.∀v′ ∈ VP .

∑
h∈hom(P,G)

h(v′)=v

θh ≤ 1

We can consider each graph G as a database D with signature Σ = {node, edge}, domain
D(DG) = VG and relations nodeD = VG and edgeD = EG. Since the names of the nodes
of the pattern do not care for pattern matching, we can assume without loss of generality
that VP = {1, . . . , ℓ} for some ℓ ∈ N. We can then define a matching of a pattern P by a
conjunctive query matchP (x1, . . . , xℓ):

matchP (x1, . . . , xℓ) =
∧

(i,j)∈EP

edge(xi, xj)

It is clear that α ∈ solD(matchP (x1, . . . , xℓ) if and only if α ◦ [1/x1, . . . , ℓ/xℓ] is a pattern
matching in hom(P,Q). One can thus rewrite the previous linear program as LP(CQΣ)
program as follows:

maximize
∑

(x):node(x)weight(x1,...,xn):x1
.
=x(matchP (x1, . . . , xn))

subject to ∀(x) : node(x): ∧ℓ
i=1 weight(x1,...,xn):xi

.
=x(matchP (x1, . . . , xn)) ≤ 1.

Moreover, the hypertree width of the conjunctive query matchP (x1, . . . , xℓ) is at most
the (hyper)tree width of the pattern graph P . By our main Theorem 4.5, the factorized
interpretation yields a linear program with at most (|VG| + |EG])

k variables, where k is
the (hyper)tree width of pattern P . The original linear program could have been of size

46 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

(
|VG|
ℓ

)
which is bounded by |VG|ℓ. So the factorized interpretation will pay off if the

(hyper)tree width k of the pattern is considerably smaller than the number ℓ of its nodes.

8. Conclusion and future work

In this paper we studied linear programs whose variables are the answers to conjunctive
queries. While in general it is possible to construct in this way large and hard to solve
programs, we defined a tractable fragment which can benefit from factorization. Our
experiments suggest the efficiency of factorized interpretation, in accordance with our
complexity results.

Several directions for future work exist. One direction is to explore how to better integrate
our approach into a database engine, in the way it is done by SolveDB for example. Also,
other optimization problems may benefit from this approach such as convex optimization
or integer linear programming. It would be interesting to define languages analogous to
LP(CQΣ) for these optimization problems and study how conjunctive query decompositions
could help to improve the efficiency.

References

[AGM13] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational joins.
SIAM Journal on Computing, 42(4):1737–1767, 2013. doi:10.1137/110859440.

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multi-
plication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 522–539. SIAM, 2021. doi:10.1137/1.9781611976465.32.

[Bar12] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics. College Publications, 2012. doi:10.2307/2274112.

[BDG07] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries and
constant delay enumeration. In International Workshop on Computer Science Logic, pages 208–222.
Springer, 2007. doi:10.1007/978-3-540-74915-8_18.

[BN08] Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 858–863. Springer, 2008. doi:
10.1007/978-3-540-68125-0_84.

[CCNR22] Florent Capelli, Nicolas Crosetti, Joachim Niehren, and Jan Ramon. Linear programs with
conjunctive queries. In Dan Olteanu and Nils Vortmeier, editors, 25th International Conference on
Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference),
volume 220 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ICDT.2022.5.

[CLS21] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021. doi:10.1145/3424305.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing,
STOC ’77, pages 77–90, New York, NY, USA, 1977. ACM. doi:10.1145/800105.803397.

[CRVD11] Toon Calders, Jan Ramon, and Dries Van Dyck. All normalized anti-monotonic overlap graph
measures are bounded. Data Mining and Knowledge Discovery, 23(3):503–548, 2011. doi:10.
1007/s10618-011-0217-y.

[DR14] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations
and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014. doi:10.1561/0400000042.

[FB07] Mathias Fiedler and Christian Borgelt. Support computation for mining frequent subgraphs in a
single graph. In MLG. Citeseer, 2007.

[FGK90] Robert Fourer, David M Gay, and Brian W Kernighan. A modeling language for mathematical
programming. Management Science, 36(5):519–554, 1990. doi:10.1287/mnsc.36.5.519.

https://doi.org/10.1137/110859440
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.2307/2274112
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-68125-0_84
https://doi.org/10.1007/978-3-540-68125-0_84
https://doi.org/10.4230/LIPIcs.ICDT.2022.5
https://doi.org/10.1145/3424305
https://doi.org/10.1145/800105.803397
https://doi.org/10.1007/s10618-011-0217-y
https://doi.org/10.1007/s10618-011-0217-y
https://doi.org/10.1561/0400000042
https://doi.org/10.1287/mnsc.36.5.519

LINEAR PROGRAMS WITH CONJUNCTIVE QUERIES 47

[GJ79] Michael R Garey and David S Johnson. Computers and intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman And Company, 1979.

[GLS99] Georg Gottlob, Nicola Leone, and Francesco Scarcello. On tractable queries and constraints. In
International Conference on Database and Expert Systems Applications, pages 1–15. Springer,
1999. doi:10.1007/3-540-48309-8_1.

[GLS02] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions and Tractable
Queries. Journal of Computer and System Sciences, 64(3):579–627, 2002. doi:10.1145/303976.
303979.

[GM14] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transactions
on Algorithms (TALG), 11(1):4, 2014. doi:10.1145/2636918.

[Gro06] Martin Grohe. The structure of tractable constraint satisfaction problems. In International
Symposium on Mathematical Foundations of Computer Science, pages 58–72. Springer, 2006.
doi:10.1007/11821069_5.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM, 1984.
doi:10.1145/800057.808695.

[Klo94] Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science & Business
Media, 1994.

[KPT13] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of inconsistent
databases with binary integer programming. Proceedings of the VLDB Endowment, 6(6):397–408,
2013. doi:10.14778/2536336.2536341.

[Lib13] Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013. doi:
10.1007/978-3-662-07003-1.

[MS12] Alexandra Meliou and Dan Suciu. Tiresias: The database oracle for how-to queries. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
pages 337–348, New York, NY, USA, 2012. ACM. doi:10.1145/2213836.2213875.

[NSB+07] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In International Conference
on Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007. doi:
10.1007/978-3-540-74970-7_38.

[OZ12] Dan Olteanu and Jakub Závodnỳ. Factorised representations of query results: size bounds and
readability. In Proceedings of the 15th International Conference on Database Theory, pages 285–298.
ACM, 2012. doi:10.1145/2274576.2274607.

[OZ15] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.
ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015. doi:10.1145/2693969.

[PS13] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive queries.
Journal of Computer and System Sciences, 79:984–1001, 2013. doi:10.1016/j.jcss.2013.01.012.

[ŠP16] Laurynas Šikšnys and Torben Bach Pedersen. SolveDB: Integrating optimization problem solvers
into SQL databases. In Proceedings of the 28th International Conference on Scientific and
Statistical Database Management, page 14. ACM, 2016. doi:10.1145/2949689.2949693.

[Vel14] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole Schweikardt,
Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International Conference on Database
Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 96–106. OpenProceedings.org, 2014.
doi:10.5441/002/icdt.2014.13.

[VGS02] Natalia Vanetik, Ehud Gudes, and Solomon Eyal Shimony. Computing frequent graph pat-
terns from semistructured data. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on, pages 458–465. IEEE, 2002. doi:10.1109/ICDM.2002.1183988.

[WRF13] Yuyi Wang, Jan Ramon, and Thomas Fannes. An efficiently computable subgraph pattern
support measure: counting independent observations. Data Mining and Knowledge Discovery,
27(3):444–477, 2013. doi:10.1007/s10618-013-0318-x.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the Seventh
International Conference on Very Large Data Bases - Volume 7, VLDB ’81, pages 82–94. VLDB
Endowment, 1981. doi:10.5555/1286831.1286840.

https://doi.org/10.1007/3-540-48309-8_1
https://doi.org/10.1145/303976.303979
https://doi.org/10.1145/303976.303979
https://doi.org/10.1145/2636918
https://doi.org/10.1007/11821069_5
https://doi.org/10.1145/800057.808695
https://doi.org/10.14778/2536336.2536341
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/2213836.2213875
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2693969
https://doi.org/10.1016/j.jcss.2013.01.012
https://doi.org/10.1145/2949689.2949693
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1109/ICDM.2002.1183988
https://doi.org/10.1007/s10618-013-0318-x
https://doi.org/10.5555/1286831.1286840

48 F. CAPELLI, N. CROSETTI, J. NIEHREN, AND J. RAMON

Appendix A. Proofs of Section 6.2

In this section, we provide missing proofs of some easy lemmas stated in Section 6.2.

A.1. Proof of Lemma 6.2. If α1 ̸= α2 ∈ A|X′ , then there exists x′ ∈ X ′ such that
α1(x

′) ̸= α2(x
′), so if γ1 ∈ A[α1] and γ2 ∈ A[α2] then γ1(x

′) = α1(x
′) ̸= α2(x

′) = γ2(x
′).

A.2. Proof of Lemma 6.3. First note that the union on the right is disjoint by Lemma 6.2.
For the inclusion from the left to the right, let α ∈ A[α′′] and α′ = α|X′ . By definition,

α′ ∈ A|X′ so α ∈ A[α′]. Furthermore, α′ ∈ A|X′ [α′′] so α ∈
⊎

α̃′∈A|X′ [α′′]A[α̃′].

For the inclusion from the right to the left, let α ∈
⊎

α′∈A|X′ [α′′]A[α′] and let α′ ∈ A|X′ [α′′]

be such that α ∈ A[α′]. By definition, α|X′ = α′ and α′
|X′′ = α′′. Since X ′′ ⊆ X ′,

α|X′′ = α′
|X′′ = α′′. Thus α ∈ A[α′′].

A.3. Proof of Lemma 6.4. Let α′′ ∈ A|X′′ . We have:

πX′′(ω)(α′′) =
∑

α∈A[α′′]

ω(α) by definition

=
∑

α′∈A|X′ [α′′]

∑
α∈A[α′]

ω(α) by Lemma 6.3

=
∑

α′∈A|X′ [α′′]

πX′(ω)(α′) by definition of πX′(ω)

= πX′′(πX′(ω))(α′′) by definition of πX′′(πX′(ω)).

The last equality is well defined since α′′ ∈ A|X′′ = (A|X′)|X′′ .

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	1.1. A Concrete Example
	1.2. Related Work
	1.3. Organization of the paper

	2. Preliminaries
	2.1. Linear Programs
	2.2. Conjunctive Queries
	2.3. Relational Databases
	2.4. Hypertree Decompositions

	3. Linear Programs with Closed Weight Expressions
	3.1. Example
	3.2. Complexity of solving LPclos(CQ)
	3.3. Replacement Rewriting
	3.4. Interpretations of linear programs

	4. Solving LPclos(CQ) linear programs efficiently
	4.1. Tree decomposition of LPclos(CQ)
	4.2. Factorized Interpretation of quantifier free LPclos(CQ)
	4.3. Linear Programs with Existentially Quantified Conjunctive Queries

	5. Linear Programs with Open Weight Expressions
	5.1. Closure and semantics
	5.2. Complexity of solving LP(CQ) programs
	5.3. Case study

	6. Weightings on Tree Decompositions
	6.1. Factorized interpretation and weightings
	6.2. Constructing Weightings

	7. Applications
	7.1. Minimizing Noise for -Differential Privacy.
	7.2. Computing the s-Measure for Graph Pattern Matching.

	8. Conclusion and future work
	References
	Appendix A. Proofs of Section 6.2
	A.1. Proof of Lemma 6.2
	A.2. Proof of Lemma 6.3
	A.3. Proof of Lemma 6.4

