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Abstract

Linear Independent Component Analysis (ICA) is a blind source separation technique that has
been used in various domains to identify independent latent sources from observed signals. In
order to obtain a higher signal-to-noise ratio, the presence of multiple views of the same sources
can be used. In this work, we present MultiView Independent Component Analysis with Delays
(MVICAD). This algorithm builds on the MultiView ICA model by allowing sources to be delayed
versions of some shared sources: sources are shared across views up to some unknown latencies that
are view- and source-specific. Using simulations, we demonstrate that MVICAD leads to better
unmixing of the sources. Moreover, as ICA is often used in neuroscience, we show that latencies
are age-related when applied to Cam-CAN, a large-scale magnetoencephalography (MEG) dataset.
These results demonstrate that the MVICADmodel can reveal rich effects on neural signals without
human supervision.

1 Introduction

Independent Component Analysis (ICA) allows to separate mixed signals without knowing the mixing
operator [Comon, 1994; Hyvärinen and Oja, 2000]. In linear ICA [Hyvarinen, 1999; Ablin et al., 2018],
the mixing is assumed linear and the goal is to find a linear transformation of the mixed signals that
maximizes the statistical independence of the resulting sources. The parameters of the transformation
matrix are estimated by optimizing a cost function, such as a likelihood.

In real-world data, one can sometimes access multiple views from the same data. For example, a
doctor may have an MRI scan, a CT scan, and the answers to a clinical questionnaire for a diseased
patient. In the context of ICA, a naive method would be to use ICA on each view and compare the
resulting sources, but this solution would not take advantage of the group structure. Thus, many
multi-view ICA methods have been developed to take advantage of multiple data views and increase
the signal-to-noise ratio of the obtained sources (see Section 2). As multiple views are used to obtain
a better recovery of the sources, it is typically assumed that the sources are the same for all views.

MultiView Independent Component Analysis (MVICA) [Richard et al., 2020] is an algorithm that
makes the latter assumption. It aims to jointly estimate the transformation matrices for multiple views
while assuming that they all share the exact same sources. While MVICA guarantees the identifiability
of its model and produces state-of-the-art results for several machine learning tasks, it assumes that
the sources are perfectly identical and temporally aligned between views. In other words, MVICA
ignores the view-specific variability of the sources, which can lead to suboptimal separation results for
certain applications.

This kind of inter-view variability typically arises in neuroscience, a critical application of ICA.
Indeed, ICA has been extensively used for the analysis of electroencephalography (EEG) [Makeig
et al., 1995] and magnetoencephalography (MEG) signals [Vigário et al., 2000], which are non-invasive
recordings of the electrical potentials and magnetic fields produced by neurons in the brain. Since
these signals are a mixture of the brain’s complex neural activity, ICA has been successfully used to
separate out the different sources of activity. In this context, using data from multiple subjects at
once can reveal better insights about brain functional organization. Yet, neural sources can present
temporal delays between different subjects due to individual differences in brain anatomy and func-
tional connectivity [Price et al., 2017; Roberts et al., 2010]. These delays can affect the performance
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of standard multi-view ICA algorithms, as they assume that the sources are uncorrelated and have the
exact same temporal structure across subjects.

In this work, building on the MVICA model, our goal is to develop an ICA algorithm that is
robust to temporal delays. Specifically, we propose a novel method, called MultiView Independent
Component Analysis with Delays (MVICAD), that incorporates an iterative temporal alignment step
in the estimation procedure. We demonstrate the effectiveness of our method using simulations and
MEG data, showing that it outperforms the MVICA algorithm. Besides, we report that the estimated
delays of certain sources are related to age.

2 Related works

Many ICA algorithms have been proposed to process data from multiple datasets at once. They vary
by their assumptions: some methods assume that the datasets have the same dimension, while others
consider that all datasets share the same sources. In this section, we describe some of these algorithms.

MVICA [Richard et al., 2020] is our reference algorithm. It is designed to identify shared indepen-
dent components across multiple datasets. It assumes that the sources in each dataset are independent
and that the shared sources have the same temporal patterns across datasets. Unlike some other multi-
view ICA approaches, MVICA’s likelihood can be written in closed form and is then optimized with
a quasi-Newton algorithm, using the gradient and an approximation of the Hessian of the likelihood.
Since comparisons with other multi-view ICA methods have been made in [Richard et al., 2020], we
compare our method to MVICA.

Group ICA refers to a whole category of ICA algorithms for processing multiple views of the
same data. It usually consists in first applying Principal Component Analysis (PCA) on each view
separately. Then all the resulting sets are assembled into one set, using either concatenation or multi-
set CCA [Kettenring, 1971; Correa et al., 2010], and PCA is used again on the obtained set. Finally,
an ICA algorithm is used. Concatenation can be either spatial or temporal: temporal concatenation
produces individual sources and a common mixing matrix, whereas spatial concatenation gives common
sources and individual mixing matrices. Since we look for shared sources, we can compare our method
to Group ICA with spatial concatenation [Calhoun et al., 2009]. Adding a back-reconstruction step is
also possible to recover individual sources. However, this method does not bring statistical guarantees
like consistency or asymptotic efficiency, contrary to MVICA. It also gives poorer results than MVICA
on several neuroimaging tasks [Richard et al., 2020]. One strength of CCA-based ICA [Varoquaux
et al., 2009; Tsatsishvili et al., 2015] is that they project multiple datasets onto a common underlying
space by maximizing correlations between sets, which can be used for data fusion. Some of these
methods can handle datasets with different numbers of sources. However, taking temporal delays into
account in Group ICA would only be possible in the assembling step (done with PCA or multi-set
CCA), which is less explicit than doing it during ICA optimization as we do in this paper.

Shared and Individual Multiview Independent Component Analysis [Pandeva and Forré, 2022] can
identify both shared and individual sources at the same time. This method assumes that the sources
are independent within each dataset but allows for both shared and individual sources to contribute
to the data. It uses a joint estimation approach to simultaneously estimate the shared and individual
components and their corresponding spatial and temporal maps. However, the number of shared
components needs to be specified, which can be difficult.

3 METHOD

Notation The absolute value of the determinant of a matrix W is |W |. The ℓ2 norm of a vector s
is ∥s∥, and ∥S∥ is the Frobenius norm of a matrix S. For a scalar valued function f and a matrix
S ∈ Rp×n, we write f(S) =

∑p
j=1

∑n
i=1 f(Sji).

3.1 Model and likelihood

Given m views and p sources, we model the observed signals Xi ∈ Rp×n, i = 1, . . . ,m, as a linear
combination of shared but delayed sources plus noise. Here n is the number of observations (assumed
to be common to each view) and p is the number of features, typically corresponding to the number
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Figure 1: Sources of 2 views. We observe different delays τ ij for each view i and each source j. Blue
curves represent the first view’s sources and orange ones represent the sources of the second view. Left:
first source. Right: second source.

of channels for multivariate signals. The model is:

Xi = Ai(Tτ i(S) +N i) , i = 1, . . . ,m , (1)

where the Ai ∈ Rp×p are view-specific mixing matrices, assumed to be full-rank, T is a shift operator
that delays sources across samples, S ∈ Rp×n are the shared sources, the vector τ i ∈ {−τmax, . . . , τmax}p
contains the integer delays for the p sources for a given view and N i ∈ Rp×n are the noise matrices. In
practice, if there are 2 sources and delays are {1, 2}, the shift operator will shift to the right the first
source by 1 sample and the second source by 2 samples. The hyperparameter τmax thus represents
the maximum shift allowed. These delays represent a temporal shift rather than a time distortion, so
they correspond to what is called “constant delays” and not to “cumulative delays” in [Roberts et al.,
2010].

Figure 1 aims to help understand how delays are modeled. It shows how delay can differ for every
source and every view: in the figure, the first view has a first source that peaks later than the second
view but has an earlier peak for the second source. Also, we observe that the parameters τ ij , where i
is the view and j is the source, model the delay between sources and the average source, represented
in a dotted grey line.

As usual in ICA, we assume that observations are i.i.d., and so are the sources. Also, we assume
that the noise is Gaussian decorrelated of variance σ2 and independent across views and from the
sources. In practice, thanks to MVICA’s robustness to noise misspecification [Richard et al., 2020],
estimating the noise level is not critical, so we usually set it to 1.

Importantly, our model is identifiable (see Appendix A) up to scale and permutation for the mixing
matrices and up to a common delay for the estimated delays. Therefore recovering the sources is a
well-posed problem.

We insist on the fact that we represent signals as matrices containing all time samples instead of
representing them as vectors. We made that choice because of the use of the circular shift operator
T . Indeed, here we assume periodic boundary conditions, so this operator takes as inputs p signals
of length n and p integer delays and rolls each signal by its corresponding delay. Thus, we prefer to
consider all observations at once. Having periodic boundary conditions on real signals can sometimes
produce unwanted abrupt discontinuities when signals are noisy at the edges of the time interval. This
however can be mitigated by applying a windowing function pushing signals to zero at the edges. In
particular, this is appropriate in neuroscience for EEG or MEG signals because sources are supposed
to emerge from baseline level and go back to baseline at the end of the period of interest.

We derive a maximum-likelihood approach to recover the parameters of the model, in a very
similar way to [Richard et al., 2020]. As usual in ICA, sources reconstruction is done by estimating
first the unmixing matrices W i = (Ai)−1 ∈ Rp×p. Thus, we see the likelihood as a function of
W = {W 1, . . . ,Wm} and τ = {τ 1, . . . , τm}. The negative log-likelihood can be written as:

L(W, τ ) = −
m∑
i=1

log |W i|+ 1

2σ2

m∑
i=1

∥Y i − S̄∥2 + f(S̄), (2)
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where Y i = T−τ i(W iXi) are the aligned estimated sources of subject i, S̄ = 1
m

∑m
i=1 Y

i are the average
estimated sources and f is a smoothed version of the logarithm of the source density d by convolution
with a Gaussian kernel. As explained in [Jung et al., 1997], the density d does not need to be known
and can be estimated easily as soon as we know if sources are sub- or super-Gaussian. In neuroscience,
we commonly assume that neural sources are super-Gaussian.

3.2 Unmixing matrix optimization

Optimizing Equation (2) with respect to all parameters at once is complex since the variables τ i are
discrete, while the W i are continuous, so we choose to minimize it iteratively by block coordinate
descent. First, L is alternatively minimized with respect to each W i. Subsequently, the minimization
process takes place alternately with respect to each τ i, and so forth.

By applying Tτ i(·) in the squared norm and in function f , optimization of L with respect to W i

boils down to minimizing:

Li(W i) = −n log |W i|

+
m− 1

2mσ2

∥∥∥∥∥∥W iXi −
∑
j ̸=i

Tτ i−τ j (W jXj)

m− 1

∥∥∥∥∥∥
2

+ f

 1

m
W iXi +

1

m

∑
j ̸=i

Tτ i−τ j (W jXj)

 .

This formula strongly looks like Equation (4) in [Richard et al., 2020]. Indeed, the only difference
lies in the fact that we obtained Tτ i−τ j (W jXj) instead of W jXj in both sums over j. Intuitively,
in the squared norm, we compare W iXi to the quantity 1

m−1

∑
j ̸=i Tτ i−τ j (W jXj), where the last

term is the shared source estimate of all subjects but subject i, deliberately delayed by subject i’s
delays. Having similar formulas allows us to derive the relative gradient expression and Hessian
approximation of L with respect to W i immediately. To do so, we need to replace the estimated
sources W jXj of subject j ̸= i by its shifted version Tτ i−τ j (W jXj) in the formulas of gradient
Gi ∈ Rp×p and Hessian approximation Hi ∈ Rp×p×p×p in [Richard et al., 2020]. Then, we use a
quasi-Newton approach by computing a direction D = −(Hi)−1Gi and finding with line search a step
size ρ such that Li((Ip + ρD)W i) < Li(W i).

3.3 Delay optimization

Equation 2 should be optimized with respect to τ i. Because of its complex form, the term f(S̄) is
burdensome to minimize rapidly, so we chose to discard it. Indeed, minimization of the true loss
function would require an exhaustive search that has a computational complexity of o(τmax × n),
while using only the squared norm part will allow us to use cross-correlation to quickly compute the
error, hence a computational complexity of o(τmax × log(n)). As the first term, −

∑m
i=1 log |W i|, is

independent from τ i, the only part that needs to be minimized is:

Li′(τ i) =

m∑
i=1

∥Y i − S̄∥2 =

m∑
i=1

p∑
j=1

∥yi
j − s̄j∥2 ,

where yi
j ∈ Rn (resp. s̄j ∈ Rn) is the j-th row of Y i (resp. S̄). Since yi

j − s̄j only depends on τ i
j , and

not on τ i
k for k ̸= j, we can minimize Li′ with respect to each τ i

j separately.

Thus, optimization boils down to finding, for each source j ∈ {1, . . . , p} separately, the integer τ i
j

that maximizes ⟨yi
j ,y

−i
j ⟩, where y−i

j = 1
m−1

∑
k ̸=i y

k
j . This step is simply done by cross-correlation.

Stacking the results in a vector gives τ i = {τ i
1, . . . , τ

i
p} and concludes the delay optimization step of

subject i.
Note that we have to set a maximum delay parameter τmax in MVICAD. This parameter represents

the maximum delay possible, in absolute value, for each source and each subject, that our algorithm
will test. In the neuroscience application, there are natural choices for τmax (see Section 4.2).
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Figure 2: Left: true generated shared sources. Middle: sources estimated by MVICA. Right: sources
estimated by MVICAD.

Furthermore, we compared on simulations our method with an exhaustive search that includes the
last term of Equation 2 in delay optimization. We observed that ignoring this term does not affect
performance.

4 EXPERIMENTS

All the code is written in Python and is available on our GitHub repo.

4.1 Simulation study

To evaluate the performance of the MVICAD algorithm, we conducted a number of simulations allowing
us to quantify the error in parameter estimation.

In synthetic experiments, we simulate data according to our model (1). We use 5 subjects, 3
sources, and 700 samples, as this number of samples is comparable to the one available for MEG data
(See below).

In Figure 2, we also use a maximum delay parameter of 40, as this number corresponds to 40 ms if
the sampling rate is 1000 Hz, which is the typical maximum amount of delay in the context of MEG
signals used in real data experiments [Price et al., 2017]. This figure (left) shows the true simulated
shared sources. In the middle, we observe that sources found by MVICA do not fit these true sources,
contrary to the sources found by MVICAD (right).

4.1.1 Amari distance

As classically done for ICA algorithms, we use the Amari distance [Moreau and Macchi, 1998] to
quantify the error on mixing matrices. The benefit of this metric is that it is scale and permutation
invariant. Figure 3 represents the Amari distance of both MVICA and MVICAD for several levels
of delay introduced in the model. We see that our algorithm outperforms MVICA in this particular
setup, as soon as there is some delay. In fact, the curves seem to be approximately linear. They start
from the same point when there is no delay, and when there is a delay of 40, MVICA’s Amari distance
is 1.18, whereas the one of MVICAD is equal to 0.68.

Note that, for each level of delay in the x-axis, the maximum delay parameter of MVICAD is set
to this level of delay precisely. Consequently, both algorithms have the same Amari distance when
the delay equals 0. Indeed, when the maximum delay parameter is set to 0, our algorithm strictly
corresponds to MVICA.

4.1.2 Artificial delays

Our next experiment illustrates the ability of the model to recover delays. We used 40 subjects, 5
sources, 700 samples, a maximum delay parameter of 40, and a quantity of noise that gave a signal-
to-noise ratio approximately equal to 5.
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Figure 3: Amari distance of both MVICA and MVICAD for several levels of delay. We observe that
our algorithm outperforms MVICA as soon as some delay is introduced in the model.

Figure 4 shows the results of this experiment. In total, there are 40 × 5 = 200 estimated delays.
We observe that estimated delays are strongly correlated with artificial delays: the slope of the fit
function is almost 1, and so does the R2 score.

Note that not having a slope of exactly 1 can be partially explained by the presence of the noise.
Searching a delay for each source of each subject means having mp delay parameters and is thus
sensitive to noise. Also, it can be explained by the fact that the number of samples is rather low (700).
Nevertheless, this experiment shows the ability of MVICAD to retrieve the true delays.

4.2 Real data experiments

In order to test MVICAD on real data, we use the Cam-CAN dataset. In this dataset delays usually do
not exceed 60 ms for visual tasks and 20 ms for auditory tasks [Price et al., 2017]. Since the sampling
rate is equal to 1000 Hz in the data, we set τmax to 60 (number of samples).

4.2.1 Cam-CAN dataset

The Cam-CAN dataset [Taylor et al., 2017] is a large and comprehensive dataset of neuroimaging,
cognitive, and demographic data collected from a group of healthy adults. The dataset includes data
from 661 participants, ranging in age from 18 to 88 years old, with equal numbers of participants in each
10-year age range. The participants were recruited from the general population in the Cambridgeshire
area of the UK, with the aim of recruiting a sample that was representative of the local population in
terms of age, sex, and education level.

This dataset is freely available to researchers and has become a resource for investigating the
neurobiological mechanisms underlying healthy aging and age-related cognitive decline.

The Cam-CAN Stage 2 repository contains a subset of data from the larger Cam-CAN dataset,
focused on the second wave of assessments conducted approximately two years after the initial assess-
ment. The MEG data in the Stage 2 repository includes recordings of brain activity using a whole-head
306 channel Elekta Neuromag Vectorview system. It contains data from several cognitive tasks, includ-
ing visual and auditory tasks. For each of these tasks, participants were presented a series of stimuli,
and averaging the obtained signals give what is called evoked data.

In our experiments, we focus on evoked data of both tasks. We had to preprocess data and remove
subjects with unusual signals, which reduced the number of subjects for the visual and auditory
tasks. Also, these data last 0.7 second at a sampling rate of 1000 Hz, thus giving datasets of shape
(477, 306, 701) for the visual task and (501, 306, 701) for the auditory one.

4.2.2 Delay and age correlation

The next experiment consists in studying age-delay correlation, as Cam-CAN data are often used to
investigate mechanisms underlying healthy aging and age-related cognitive decline.

Figure 5 shows the scatter plot of age and delay of the 477 subjects of the visual task. This scatter
plot shows a significant correlation between the age of subjects and estimated delays. To produce it,
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timated delay.

we first applied a PCA with 10 components on the dataset, whose shape became (477, 10, 701), and
then used MVICAD to get estimated delays of shape (477, 10). We report here the source whose delays
are most linearly related to age (using R2 score, and p-value of Pearson correlation). From a biological
point of view, having relevant and non-relevant sources in terms of age-delay correlation makes sense
because some of the 10 obtained sources represent noise, whereas others are closer to the actual neural
signals affected by aging.

However, we can also investigate the model with only one delay per subject. In other words, we
force estimated delays to be equal across sources in our algorithm, i.e. we only estimate one delay
per subject. This method reveals some aging effects without having to visually explore delays of each
source, yet it is not source-specific. The obtained results are: slope = 0.08 ; R2 = 0.08 ; p-value
= 9.69 × 10−11. The drawback of having one delay per subject is that it produces a higher negative
log-likelihood and poorer source reconstruction.

Finally, note that this experiment produces lower results for the auditory task. It was expected
since auditive stimuli are known to present “cumulative delays” instead of “constant delays” [Roberts
et al., 2010].

5 CONCLUSION

We have proposed an improvement of the algorithm MVICA which aims to retrieve latent sources
from multiple views and can be used in various domains. To do so, we estimated delays that appear
in each source of each subject and use them to correct our source reconstruction during optimization.
We presented the likelihood of our model in closed form and proposed a way of minimizing it with
respect to both unmixing matrices and delays. In the context of MEG signals, we showed that our
estimated delays were significantly correlated to age and demonstrated on a synthetic experiment that
our method outperforms MVICA in terms of Amari distance.
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A Appendix

Let us prove the identifiability of our model. We consider multiple i.i.d. r.v. sk ∈ Rp, k = 1, . . . , τmax,
that model sources, instead of only one r.v. s, as is often the case. Having multiple variables allows
us to delay them with operator T . For simplicity, we define s := s1. Recall that our model is:

xi = Ai(Tτ i(s) + ni) , i = 1, . . . ,m ,

with τ i ∈ Rp. Note that, compared to Equation (1), we used vectors instead of matrices. Assume that
we also have:

xi = A′i(Tτ ′i(s′) + n′i) , i = 1, . . . ,m ,

for some A′i, τ ′i, s′ and n′i. Note that we also define s′ := s′1 where s′k ∈ Rp, k = 1, . . . , τmax, are i.i.d.
r.v.

Since we assume that sk has non-Gaussian independent components (whose densities are not re-
duced to a point-like mass) and that the r.v. sk are i.i.d. and that ni is Gaussian decorrelated, then
Tτ i(s) + ni also has non-Gaussian independent components. And so does Tτ ′i(s′) + n′i. Following
[Comon, 1994], Theorem 11, there exists a scale-permutation matrix P i such that A′i = AiP i. As a
consequence, and since Ai is invertible, we have, for all i:

Tτ i(s) + ni = P i(Tτ ′i(s′) + n′i)

⇒ s+ T−τ i(ni) = T−τ i

(
P i(Tτ ′i(s′) + n′i)

)
= P i(Tτ ′i−(P i)⊤τ i(s′)− T−(P i)⊤τ i(n′i)).

The last line comes from the equality TτP = PTP⊤τ for a scale-permutation matrix P and a vector τ .
We focus on subject 1 and subject i ̸= 1:

s+ T−τ1(n1)− (s+ T−τ i(ni))

= P 1(Tτ ′1−(P 1)⊤τ1(s′) + T−(P 1)⊤τ1(n′1))

− P i(Tτ ′i−(P i)⊤τ i(s′) + T−(P i)⊤τ i(n′i)).

Consequently,

P 1Tτ ′1−(P 1)⊤τ1(s′)− P iTτ ′i−(P i)⊤τ i(s′)

= T−τ1(n1)− T−τ i(ni)

+ P iT−(P i)⊤τ i(n′i)− P 1T−(P 1)⊤τ1(n′1). (3)

Since the right-hand side of the last equality is a linear combination of Gaussian random variables,
this implies that P 1Tτ ′1−(P 1)⊤τ1(s′)− P iTτ ′i−(P i)⊤τ i(s′) is also Gaussian.

Let us show that there exists a vector τ ∈ Rp such that, for all i, τ ′1−(P 1)⊤τ 1 = τ ′i−(P i)⊤τ i =: τ .
Note that this is an equality modulo τmax. Indeed, delaying sources by τ and by τ + qτmax, q ∈ Z,
is equivalent, according to our definition of the shift operator T . For simplicity, we omit the modulo
part in equalities about delays.

By contradiction, let us suppose that τ ′1−(P 1)⊤τ 1 ̸= τ ′i−(P i)⊤τ i. Let us call C ⊂ {1, . . . , p} the
set of indices such that (τ ′1−(P 1)⊤τ 1)C = (τ ′i−(P i)⊤τ i)C and let C̄ = {1, . . . , p}\C. By assumption,
C̄ ̸= ∅. By definition of C,

(
Tτ ′1−(P 1)⊤τ1(s′)

)
C

=
(
Tτ ′i−(P i)⊤τ i(s′)

)
C
, and

(
Tτ ′1−(P 1)⊤τ1(s′)

)
C̄

and(
Tτ ′i−(P i)⊤τ i(s′)

)
C̄

are independent.

Thus, the left-hand side of Equation (3) only depends on three terms:
(
Tτ ′1−(P 1)⊤τ1(s′)

)
C
,(

Tτ ′1−(P 1)⊤τ1(s′)
)
C̄

and
(
Tτ ′i−(P i)⊤τ i(s′)

)
C̄
, which are all three independent from each others.

The left-hand side of Equation (3) is thus a linear combination of independent random variables
and is Gaussian. So, by Cramér’s lemma, we should have that Tτ ′1−(P 1)⊤τ1(s′) and Tτ ′i−(P i)⊤τ i(s′)
are Gaussian too, which is absurd, given that s′ is assumed to be non-Gaussian. So, there exists a
vector τ such that τ ′1 − (P 1)⊤τ 1 = τ ′i − (P i)⊤τ i =: τ .

Let us define s̃ := Tτ ′1−(P 1)⊤τ1(s′) = Tτ ′i−(P i)⊤τ i(s′). Since the right-hand side of Equation (3)

is Gaussian, it follows that (P 1 − P i) s̃ is Gaussian too. Thus, the equality holds only if P 1 = P i.
Therefore, the matrices P i are all equal, and there exists a scale-permutation matrix P such that
A′i = AiP .

In conclusion, we proved that there exists a scale and permutation matrix P and a vector τ ∈ Rp

such that, for all i, A′i = AiP and τ ′i = P⊤τ i + τ .
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