
HAL Id: hal-04317506
https://hal.science/hal-04317506v1

Preprint submitted on 1 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Algorithms to Measure User Influence in Social
Networks

Nouamane Arhachoui, Esteban Bautista, Maximilien Danisch, Anastasios
Giovanidis, Lionel Tabourier

To cite this version:
Nouamane Arhachoui, Esteban Bautista, Maximilien Danisch, Anastasios Giovanidis, Lionel
Tabourier. Scalable Algorithms to Measure User Influence in Social Networks. 2023. �hal-04317506�

https://hal.science/hal-04317506v1
https://hal.archives-ouvertes.fr


Scalable Algorithms to Measure User Influence
in Social Networks

Nouamane Arhachoui, Esteban Bautista, Maximilien Danisch, Anastasios
Giovanidis, and Lionel Tabourier
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Abstract. Measuring user influence in social networks is crucial for a va-
riety of applications. While traditional centrality metrics evaluate struc-
tural graph importance, a more recent metric known as the ψ-score takes
into account users’ posting and re-posting activities to provide richer in-
formation. The ψ-score is a powerful tool that generalizes PageRank
for non-homogeneous node activity. However, for large datasets with N
users, it becomes computationally expensive, requiring solving N linear
systems of N equations.
To tackle this issue, we propose three new scalable algorithms that can
quickly approximate the ψ-score. The Power-ψ and Push-ψ algorithms
are based on a novel equation that shows it is sufficient to solve one
system of equations of size N to calculate the ψ-score. These algorithms
take advantage of the fact that the solution of such a system can be
recursively and distributedly approximated. Consequently, the ψ-score,
which summarizes the nodes’ structural and behavioral information, can
be computed as quickly as PageRank.
The third proposed algorithm is Push-NF. Despite aiming to solve all N
systems to extract additional information on the information dynamics,
it still manages to converge to the accurate user ranking faster than the
current state-of-the-art alternative.
To validate the effectiveness of our proposed algorithms, we release them
as an open-source Python library and test them on various real-world
datasets.

Keywords: Social Networks · PsiScore · Ranking · Algorithms · Influ-
ence.
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1 Introduction

1.1 Context

Measuring the importance of an individual in a network has been a focus of in-
terest in Social Network Analysis for long. Indeed, a wealth of metrics have been
developed to quantify this idea, including the well-known closeness centrality in
the 1950s [6] or the betweenness centrality in the 1970s [16].

Nowadays, the ubiquitous nature of Online Social Platforms (OSPs) makes
it all the more important to have relevant measurements available. For instance,
it is essential for social scientists to identify the main leaders of opinion in a
network in order to gain a better understanding of the dynamics that determine
the roots of political polarization [1]. Also, it is crucial for companies to identify
the so-called influencers that are believed to play a key role in the emergence
of new trends [20] and thus are targeted to develop effective marketing strate-
gies [7]. From a technical perspective, machine learning algorithms also rely on
the identification of a reduced set of users with features present throughout the
network, which is critical in reducing the number of parameters and avoiding
the curse of dimensionality [28,11].

In this context, many OSPs may be described using a comparable structure:
users have access to a wall and a news feed, they can publish messages (posts)
on their wall, while their news feed shows the messages posted by other specific
users, known as their leaders (or followees). This archetype is well illustrated
by Twitter, Facebook or Weibo among others. Users can also re-post messages
from their news feed to their wall, which is the main mechanism allowing posts to
spread around the network [18]. A crucial issue is to quantify the extent to which
their posts and re-posts circulate throughout the network and are accessible to
others, as this process can be understood as the measure of their influence.

To address the aforementioned challenge, a variety of centrality metrics have
been proposed to rank network nodes according to their structural relevance [33].
But given the potentially massive size of these networks, it is crucial that these
measures remain scalable. For instance, betweenness centrality measures to what
extent a node falls on shortest paths between others and thus its potential to
control communication, however the most efficient algorithms have a temporal
complexity in O(NM) [9] (where N is the number of nodes and M the number
of edges) which makes it inappropriate for large OSPs. In addition to that, most
centralities are unsuitable for assessing influence in OSPs, as they rely on a static
description of the social network, while these are known to be dynamic platforms,
where the activity of users is typically bursty. Nonetheless, these scores do not
include user posting and sharing activity. The importance of this information
is emphasized in [12], which demonstrates that people with the most followers
(in-degree) may not necessarily create the most retweets or views. Therefore,
influence is not solely based on the number of followers, which is mainly related to
a user’s popularity. In the same line of inquiry, the authors in [35] ask th question:
“Are social links valid indicators of real user interaction?” and underline the
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difference between these two ideas by examining a significant user trace from
Facebook. It is thus essential to get past simple structural measures.

A new metric, coined as ψ-score, has been recently introduced in [17] to
overcome this limitation. The diffusion of information model presented in [17]
takes into account users behaviors by including activity features for each user.
The ψ-score results from this model and provides a more accurate ranking metric
of user influence in OSPs by integrating both structural information related to
the graph and user activity. For instance, if users post and re-post content at
different frequencies, the model incorporates this variation in the users’ activity,
thus yielding a more meaningful ranking metric. Furthermore, it was shown in
[17, Theorem 5] that the ψ-score is equivalent to PageRank when user activity is
homogeneous, i.e., when all users create the same number of posts within a given
time interval and share at the same rate within that interval. As a consequence,
the ψ-score can be seen as a generalization of the PageRank, which is designed
to situations where we have access to the nodes activity in the network.

1.2 Goal and contributions

A limitation of the ψ-score calculation as described in [17] is that it does not
scale to large graphs. Indeed, it requires the resolution of N linear systems of
N equations each, where N denotes the number of users in the network. In
contrast, PageRank only requires finding the solution of a single system with
N variables. This paper addresses this shortcoming by proposing new ψ-score
calculation algorithms that solve this issue.

For that purpose, we reorganize these N systems into a single one whose
solution can be used to easily derive the ψ-score for all users. Then, we propose
two different algorithms to solve this new system:

– Power-ψ which is based on power-iteration rules in order to approximate the
solution (see also the conference version of this work [3]). This process allows
approximating the sum of a geometric series for vectors without computing
any matrix inversion.

– Push-ψ, an algorithm inspired by the push-flow algorithm for PageRank[34,2].
It uses an approximation vector and a residual representing the difference
between the exact solution and the approximation. During each push itera-
tion, the approximated score of a node is updated and its residual is pushed
to the residual of its neighbors in order to be minimized.

In addition to this contribution, we also propose to use the push method
to make a tool to analyze the influence mechanisms at a finer grain. For this
purpose, we describe another push-based algorithm, named Push-NF, that aims
to solve the original N linear systems presented in [17] instead of using the new
system. While it does not allow to avoid the scalability issue aforementioned,
by solving all N systems, Push-NF can not only extract the influence of each
user on the entire network but also their influence on a specified individual. This
feature provides valuable information for various applications, such as identifying
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opinion leaders or understanding information flow dynamics between specific
users.

Finally, we provide an open-source software library1 to facilitate the imple-
mentation of the ψ-score. This comprehensive library includes its initial baseline
implementation as well as implementations of each of the improved algorithms
proposed in this paper. By making this library available to the community, we
aim to encourage the widespread use of the ψ-score in various fields and its adap-
tation to each developer’s specific needs. In particular, the psi-score library
can be used to compare the metric with PageRank, since they are equivalent
when the network activity is homogeneous.

1.3 Related Works

Centrality measures have been largely used in various fields of network science,
including of course social network analysis [23,14,27], but also transportation net-
works for example to improve traffic monitoring [30], communication networks
to design routing protocols [19] or to improve network control [31], or even in
biology, where they allow for instance to point out critical proteins in metabolic
networks [4]. Another essential application of centrality measures is information
retrieval: with the expansion of the web, there is an ever-increasing need for
algorithms that allow to look for precise information in a very large database.
Among those, the most famous example is certainly the PageRank [29,24]. Al-
though these metrics are commonly used to rank nodes of a network [33], they
only consider the network structure. For instance, PageRank can be described
in non-technical terms as a random walk on a graph with a probability of tele-
porting on a random node at each step, so it does not take into account aspects
such as node activity.

A standard way to compute the PageRank in a graph is to rely on a power
iteration method [24, Chapter 4]. Various existing algorithms, such as Push [34]
or methods using Chebyshev polynomials [5], exploit the random walk interpre-
tation of PageRank to speed up its calculation. The Push method [34] iterates
through nodes by allowing each of them to update the approximation of its
own PageRank value and its neighbors values. The method proposed in [5] uses
Chebyshev polynomials to approximate the PageRank vector more efficiently
than the known power-method introduced with the metric [29].

In a short version of this work [3], we have investigated the algebraic limita-
tions of the ψ-score and proposed a novel approach to have it as scalable as the
PageRank is. However, we acknowledge that other strategies to accelerate graph
eigenvalue-based measures have the potential to further improve the performance
of our method. Moreover, they can also give us insight into the mechanisms of
social influence from an individual to another. Therefore, in this study, we aim
to build upon this work by considering the Push method and integrating it with
our approach. Our goal is to create a novel algorithm that not only addresses

1 https://github.com/NouamaneA/psi-score

https://github.com/NouamaneA/psi-score
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the limitations of the ψ-score but also surpasses the existing methods in terms
of speed.

1.4 Outline of the paper

In Section 2, we describe the principles underlying the definition of the ψ-score
and to what extent it measures the spread of influence on a social platform, as
well as the baseline algorithm to compute it. Section 3 introduces the Power-ψ
algorithm, which improves upon the baseline by reducing the number of equa-
tions to solve. In section 4, we present the Push-* approach, which provides an
alternative way to compute the ψ-score and also allows to compute the influ-
ence between nodes at the individual scale. Finally, in Section 5, we evaluate
numerically the different algorithms under study in terms both of accuracy to
approximate the result and in terms of time efficiency of the process.
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2 Measuring the Influence of OSP Users

The authors of [17] proposed a model to describe the diffusion of posts on a
generic social platform. Within this model, each user is not only a node of the
social graph, but is also characterized by his or her own Wall and Newsfeed,
as well as his or her own posting and re-posting activities. Using this spreading
model, they compute in closed form the probabilities that a particular user’s
posts will appear on the Wall and Newsfeed of any other user. This allows them
to derive a measure of influence in the network, that they name the ψ-score of
a node.

In this section, we first give some basic elements of description of the OSP
and the notations, summarized in Table 1, that will be used afterwards. Then,
we detail the spreading model proposed in [17] and describe how the ψ-score
is defined in this context. Note however that this score is not restricted to the
specifics of this model and can be defined on any network where nodes can be
characterized with their activity rate.

Table 1. Notations used in the paper

Notation Description

ψi ψ-score of user i

ψ ψ-score column-vector

p
(n)
i impressions of i on the Newsfeed of n

q
(n)
i (influence) impressions of i on the Wall of n

pi vector with every p
(n)
i

qi vector with every q
(n)
i

P matrix with pi as column i

Q matrix with qi as column i

bi input vector of normalized posting activity

di vector with the posting ratio of a user i

B matrix with bi as column i

D diagonal matrix with di as column i

1 column-vector of RN full of ones, i.e. (1 1 · · · 1)T

2.1 Network user model and notations

Network structure. The platform is represented as a directed and unweighted
graph denoted G = (N , E). Its vertices represent the users in the OSP and its
edges represent the follower-leader relations: (i, j) ∈ E means that user i follows
user j. The cardinalities of N and E are denoted |N | = N and |E| = M . Note
that a social platform where the relationships between users are reciprocal (as for
instance, friendships on Facebook) can also be described by this representation,
by connecting users with edges in both directions.
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Posting activity. As mentioned above, users are also characterized by their post-
ing and re-posting activities. Let λ represent the vector of posting activity over
the vertex set. Thus, λ(n) represents the number of wall posts per unit of time
(posting frequency) created by user n. Similarly, let µ represent the vector of
re-posting activity of the vertices. Then, µ(n) refers to the frequency with which
user n checks their Newsfeed and selects one of the current posts uniformly at
random for re-posting on their Wall.

2.2 The ψ-score: metric of influence

Here we present the ψ-score following the way it was introduced in [17]. It
measures the nodes’ influence in the OSP, not only based on the graph structure
but also on the nodes activity, as a user who shares information more frequently
is bound to have more influence than users who don’t. Similarly, a user whose
posts are shared often by their followers is also bound to have higher influence.
The score can be computed from the graph structure and the activity vectors λ
and µ only, however it is helpful to describe the information spreading process
that inspired it in order to have a better understanding of its meaning.

Information spreading model. In [17], the authors present the ψ-score as a natu-
ral way to evaluate influence within the context of a specific information spread-
ing model on the OSP. In short, the model can be described as follows: a user
in the network posts at a constant rate on his or her wall while messages from
their leaders appear on their news feed, replacing a random older post. Regu-
larly, this user selects randomly a post from his or her news feed to re-post it
on the wall. This process is summarized in Figure 1. Again, we underline that
this is not necessarily a lifelike description of information spreading on an OSP,
nonetheless it is realistic enough to give a good intuition of the interpretation of
the ψ-score and other intermediary quantities that are defined further.

Precisely, this model is a continuous-time Markov chain relying on the fol-
lowing set of assumptions:

– Poisson arrivals: any user n posts on his/her wall according to a Poisson
process with rate λ(n), and re-posts from the news feed to the wall according
to a Poisson process with rate µ(n).

– Random selection policy: we suppose that when a user checks his/her news
feed, he/she randomly selects one of the listed posts to re-post on their wall.

– Random eviction policy: a new entry on the wall or on the news feed list
replaces an older entry chosen at random.

Influence quantification. Now that the hypotheses of the model are set, we focus
on how to quantify the influence of a user. The authors of [17] introduce two
vectors related to the influence of user i in N , which can be computed from the
activity attributes of the nodes:

– pi = (p
(1)
i p

(2)
i · · · p(N)

i )T where, for n ∈ N , p
(n)
i represents the expected

proportion of posts from user i on the news feed of user n.
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Fig. 1. A small example of the Online Social Platform from the point of view of user i.

– qi = (q
(1)
i q

(2)
i · · · q(N)

i )T where, for all n ∈ N , q
(n)
i represents the expected

proportion of posts from user i on the wall of user n.

So, q
(n)
i can be understood as the influence of user i on user n, which means

that the more posts from i appear on the wall of n, the greater is i’s influence
on n. This is used to define the influence of user i throughout the whole network
as the average influence of i has on all other users. This concept is formalized
by the ψ-score of user i, which is defined as

ψi =
1

N

∑
n∈N

q
(n)
i . (1)

ψ-score computation. In order to calculate the influence score ψi of user i, we
have to compute all entries of vector qi as they appear in its definition (1).
However, qi is not directly available: a system of equations must be solved to

determine the complete vector qi. Precisely, each q
(n)
i can be obtained from

p
(n)
i , so we have to compute the vector pi. pi is the solution to a fixed-point

problem, which is determined in [17, Section III]. This fixed-point problem and
the derivation of the qi vector are summarized in the following linear system,
that we present in a matrix form:

pi = A.pi + bi (2)

qi = C.pi + di (3)
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where



A ∈ RN×N
+ , aji =

µ(i)∑
ℓ∈L(j)

(λ(ℓ)+µ(ℓ))
1{i∈L(j)},

bi ∈ RN
+ , bji =

λ(i)∑
ℓ∈L(j)

(λ(ℓ)+µ(ℓ))
1{i∈L(j)},

C ∈ RN×N
+ , cji =

µ(j)

λ(j)+µ(j)1{j=i},

di ∈ RN
+ , dji =

λ(i)

λ(i)+µ(i)1{j=i}.

As shown in [17, Theorem 4], it is possible to solve (2) using a power itera-
tion method as what is typically done to compute the PageRank. It consists in
applying iteratively the following equation:

pi(t) = Api(t− 1) + bi (4)

t being the current iteration. As t → ∞, the algorithm converges towards the
solution pi(t) independently of the initialization pi(0) because A is a sub-
stochastic matrix2. The algorithm 1 given in [17] uses this equation to compute
the vector pi.

Algorithm 1: Power-NF: Power method to compute the news feed
probabilities pi related to user i.

input : origin user i, N ×N matrix A, vector bi, p-tolerance ε
output: vector pi

pi ← bi;
t← 0;
gap← 1;
while (gap > ε) do

pold
i ← pi;

pi ← Apold
i + bi;

gap←
∥∥pi − pold

i

∥∥;
t← t+ 1;

end
return p;

Now, ranking the N users requires to compute ψi for each i ∈ N , i.e., the
complete vector ψ = (ψ1, ψ2, · · · , ψN )T ∈ RN

+ . To solve the linear system (2),
the iterative approach in (4) must be used N times for each origin i ∈ N . Then,
mapping each vector pi to qi thanks to (3) and finally using (1) gives the vector
ψ with all the ψ-score values.

As a side note, which will be useful for comparison purposes, the paper [17]
also establishes a relationship between the ψ-score and the PageRank. Indeed,the
vector ψ equals the PageRank vector π in the scenario of homogeneous activ-
ity, meaning that ∀n ∈ N , λ(n) = λ and µ(n) = µ. In that specific case, the
PageRank damping coefficient α is given by α = µ

λ+µ [17, Theorem 5].

2 A sub-stochastic matrix is a real square matrix having each row summing to a value
strictly lower than 1.
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Problem Statement. The algorithm 1 for the ψ-score vector computation – which
we are going to refer to as Power-NF in this paper – is highly time-consuming.
By contrast with PageRank, which demands solving 1 system of N equations,
we need to solve N systems of N equations separately. This is particularly chal-
lenging when attempting to calculate the ψ-score in large real-world networks
in a reasonable time.

Consequently, the problem discussed in this work is the following: given a
directed social graph G = (N , E) and the vectors λ and µ which contain the
information about the nodes posting and sharing activities, can we design an
algorithm that computes the ψ-score of all nodes in the graph with a comparable
speed to PageRank?
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3 The Power-ψ Algorithm

In this section, we provide a first algorithm to compute the ψ-score which is faster
than the baseline algorithm 1. The principle here is to reformulate the equations
as presented in Section 2.2 to reduce the computational cost from solving N
linear systems of sizeN to solving a single linear system of sizeN that includes all
users. It will allow to use the power iteration method to approximate the solution
of the new linear system, which can also benefit from distributed computing. We
call this process Power-ψ: an algorithm for the derivation of the ψ-score that
is comparable to the PageRank in terms of computational complexity, while
benefiting from the score expressiveness because of the addition of the node
activity information.

3.1 Expressing the ψ-score with a single linear system

We describe the ψ-score of the network in terms of the matricesP,Q,B,D, which
are defined in Table 1. This matrix notation enables a vectorized expression of
the ψ-score vector:

ψT =
1

N
1TQ (5)

We remind that the matrix Q contains the qi = (q
(1)
i q

(2)
i · · · q(N)

i )T vectors,

which components q
(n)
i represent the influence of user i on user n. So, the task

of obtaining the ψ-score is equivalent to computing a matrix Q, the columns of
which require having the vectors pi, according to Eq. 3.

Now, finding each pi is equivalent to solving a linear system, as can be seen
in Eq.(2). The equations (2) and (3) call to the matrices A and C, which are
themselves derived from the adjacency matrix of the graph and the posting and
re-posting activities of the users (λ and µ). Using [17, Lemma 2] each system
solution can be written as

pi = (I−A)−1bi =

∞∑
t=0

Atbi (6)

Eq. (6) is a linear equation in bi, which implies that the solution in matrix form
for all users is

P = (I−A)−1B =

∞∑
t=0

AtB (7)
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Thus, by using Eq. (3) in its matrix form and the series in eq. (7), we can develop
Eq. (5):

ψT =
1

N
1TQ =

1

N
1T (CP+D)

=
1

N
1T
[
C(I−A)−1B+D

]
=

1

N
1T

[
C

( ∞∑
t=0

At

)
B+D

]

=
1

N

[( ∞∑
t=0

1TCAt

)
B+ 1TD

]

Let us define cT := 1TC and dT := 1TD. c and d are vectors in RN
+ (the

diagonals of the matrices C and D). This allows to formulate the following
equation to compute the ψ-score:

ψT =
1

N

[( ∞∑
t=0

cTAt

)
B+ dT

]
(8)

Eq. (8) demonstrates that it is not essential to solve N linear systems of size N
to calculate the ψ-score. Instead, it is sufficient to solve a single N -dimensional
linear system, which is written as the infinite sum of matrix-vector multiplica-
tions.

There is a drawback to this new approach, which is the fact that we do
not compute explicitly the values of pi and qi, which quantify the influence
at the individual level. As (8) demonstrates, these are not required any longer
to calculate the ψ-score, however they include valuable information for practi-
cal applications, where evaluating the influence of a specific user on others is
important.

3.2 Convergence and truncation of the sum

We state here that the infinite sum in Eq. (8) may be evaluated using a power
iteration method. To show this, let us define:

sTt =

t∑
τ=0

cTAτ , s = lim
t→∞

st, (9)

where T denotes the matrix transpose and t is the iteration index. We emphasize
that Eq. (9) converges if A’s spectral radius is strictly lower than 1 (which is a
standard property of geometric series). Lemmas 1 and 2 in [17] guarantee this
convergence, using the fact that A is a sub-stochastic matrix. Consequently,
the sum in 8 may be truncated to a finite number of terms to approximate the
ψ-score.
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Now, let us evaluate the approximation error made when truncating the sum.
The recursive expression associated with the truncated sum is

sTt = sTt−1A+ cT (10)

where s0 = c. This allows us to define the following gap parameter

εt =
∥∥sTt − sTt−1

∥∥ (11)

which is used to stop the algorithm. Any norm can be used, we opt for us-
ing the L1-norm because it is standard when approximating series with power
iterations [29]. So practically, we terminate the iterations when the following
condition is met:

εt ≤ ε (12)

A key question here is to evaluate how the tolerance ε impacts the approximation
of the ψ-score. To answer this question, we define ψt to approximate ψ by
substituting (10) with (8) in t terms. Then, we define the difference δt between
two ψ-score approximations truncated at consecutive steps:

δt =
∥∥ψT

t −ψT
t−1

∥∥ (13)

Now, we describe δt as a function of εt and identify an upper-bound relation
between the two to deduce a convergence condition on the vector ψt from the
one on st. Indeed, we know from (8) that

ψT
t −ψT

t−1 =
1

N
(sTt B+ dT )− 1

N
(sTt−1B+ dT )

=
1

N
(sTt − sTt−1)B (14)

Eq. (14) then allows to deduce that:

δt =
1

N

∥∥(sTt − sTt−1)B
∥∥ ≤ 1

N

∥∥sTt − sTt−1

∥∥ ∥B∥
⇒ δt ≤

εt ∥B∥
N

(15)

Using this upper bound, we can choose a tolerance ε that ensures the ψ-score evo-
lution does not deviate by more than δ. Precisely, if the algorithm is terminated
by the condition εt ∥B∥ ≤ ε, then δt is smaller than ε

N . The corresponding power
iteration algorithm is designated as Power-ψ and described in Algorithm 2.

3.3 Relationship between ψ-score and PageRank

In this section, we discuss the relationship between the ψ-score in the homo-
geneous activity scenario and PageRank, which highlights the contrast between
our proposed method and the usual power-iteration algorithm for PageRank.
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Algorithm 2: Power-ψ: Power method to compute the ψ-score vector.

input : N ×N matrices A and B, size N vectors c and d, s-tolerance ε
output: vector ψ with the ψ-score of all users
s← c;
B norm← ∥B∥;
t← 0;
gap← 1;
while (gap > ε) do

sold ← s;

sT ← sToldA+ c;
gap← B norm ∥sold − s∥;
t← t+ 1;

end

ψT ← 1
N

(
sTB+ dT

)
;

return ψ;

Let π denotes the PageRank vector and W = D−1
outL is the random walk

transition matrix, where L is the adjacency matrix of the graph that points to
the leaders and Dout is the diagonal matrix whose entries (i, i) are the out-degree
of node i. Theorem 5 in [17] ensures that, in the homogeneous activity scenario,
where ∀i, λ(i) = λ and µ(i) = µ, ψ = π with α = µ

λ+µ as the PageRank damping
factor.

In the homogeneous activity case, the vectors and matrices in the ψ-score
equation of Eq. (8) are as follows:

A = αW
B = (1− α)W
c = α1
d = (1− α)1

So, after replacing A and c by their expression in Eq. (10), we obtain

sTt = αsTt−1W + α1T (16)

By substituting the above expression in Eq. (8) and using the homogeneous
values for B and d we get

ψT
t =

1

N

(
sTt (1− α)W + (1− α)1T

)
=

1

N

(
(αsTt−1W + α1T )(1− α)W + (1− α)1T

)
= α

(
1

N
(sTt−1(1− α)W + (1− α)1T )

)
W +

(1− α)
N

1T

= αψT
t−1W +

(1− α)
N

1T (17)
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The power method for PageRank computation translates as

πT
t = απT

t−1W +
1− α
N

1T . (18)

so, we can see that we find similar expressions, consistently with the result
from [17, Theorem 5].

Now, the proposed Power-ψ algorithm in the general case uses a power it-
eration to first estimate the series s up to a truncation based on the desired
tolerance. Following convergence, the product by B and addition of d at the end
of Algo. 2 prevent superfluous matrix-vector multiplications. This is the main
implementation difference compared to PageRank power iteration. As shown
above, both approaches converge to the same result in the homogeneous situa-
tion; however, the tolerance for ψ-score is defined on the s-vector, whereas for
PageRank, it is defined on π itself.

3.4 Computational complexity

We analyze the computational complexity of the Power-ψ algorithm. The main
computational cost of the algorithm is the power iteration, which is performed
until the convergence condition is met. Let us denote k(ε) the number of it-
erations required to reach convergence. Each iteration requires a matrix-vector
multiplication, which is of complexity O(M) whereM is the number of non-zero
entries in the matrix, i.e. the number of edges in G. There is also a vector addi-
tion, which is of complexity O(N), and a scalar-vector multiplication, which is in
O(N). So the total complexity of each iteration is in O(M +N). The total com-
plexity of the algorithm is then O(k(ε)(M+N)). This result is comparable to the
complexity of the PageRank power iteration, which is also in O(k(ε)(M +N)).
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4 Push approach for influence quantification

In this section, we design a push-based algorithm approach to our problem of
influence quantification on a social network. This approach can be applied to
two different sets of equations with two distinct purposes. On the one hand,
we can use it on Equation (10) in a similar manner as what has been done for
PageRank [34,2]. In this case, the goal is to find more efficiently the vector s,
which in turn allows for the direct calculation of the ψ-score of each node. On the
other hand, the push method can also be employed to solve Equation (2), and
the purpose here is to compute faster the ψ-score of a single user; by providing
pi and qi, it gives much more details about the mechanism of influence on the
network at an individual level. Note that the application of the push approach
to our problem is the main theoretical addition to the shorter version of this
work [3].

4.1 Intuition behind the push approach

The push method can be thought of as a message-passing algorithm. The in-
tuitive general idea is to iteratively propagate information across the graph, in
order to calculate the importance of each node based on its connections to other
nodes.

Practically, it works by initializing a residual value for each node and its
approximate score, where the residual represents the amount of information that
still needs to be propagated from that node to its neighbors. The algorithm then
iteratively updates the approximate score for each node based on the residual
that it gets from its neighbors. At each iteration, a node “pushes” its residual
to its neighbors, proportionally to the strength of the connection between the
two nodes (encoded by the matrix A in the case of ψ-score and the propagation
matrix for PageRank). The node then updates its own approximate score based
on the residuals that it received from its neighbors. This process continues until
the residuals converge towards 0, indicating that the approximate score vector
has converged to the actual score.

Note that the push method can be implemented in a distributed way since
each node updates its own score, making it very efficient at solving linear systems
of a large number of equations.

4.2 General formulation of the approach Push-*

Let us first rewrite equation (10) as follows:

s = AT .s+ c (19)

so that it has exactly the same form as Eq. (2). Now, while they contain and
return different quantities, Eq. (2) on pi and (19) on s, they allow us to describe
the application of the push method on both of them with some generic notations:

x = M.x+ r (20)
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where x ∈ RN is the unknown vector, r ∈ RN and M ∈ RN×N . In the case of
Eq. (2), x = pi, M = A and r = bi and in the case of Eq. (19), x = s, M = AT

and r = c. Taking advantage of this formal similarity, from now on we refer
to the method and algorithm that we develop as Push-*, then we will describe
them as Push-NF for Eq. (2) and Push-ψ for Eq. (19) when necessary.

It is important here to notice that Equation (20) does not have the same
form as the one that computes the PageRank since r has different components
while the second term of the PageRank equation is homogeneous. Consequently,
we cannot use the push-based algorithm described in [34] or [2]. Thus we adapt
the method to the specific case under consideration.

Let us first observe that the solution x is a function of the vector r, so that
we can re-write Eq. (20) as

x(r) = M.x(r) + r (21)

Rearranging this equation, it becomes

x(r) = (I−M)−1r =

∞∑
n=0

Mnr (22)

The next step is key and specific to the push method. Let χu be the unit
vector with only the u-th entry equal to 1 and all the other components equal
to 0. Also, we denote r(u) the u-th entry of r. Using only Eq. (21) and Eq. (22)
(which is linear), we have the following expressions:

x(r) = x (r− r(u)χu + r(u)χu)

= x (r(u)χu) + x (r− r(u)χu)

= M.x(r(u)χu) + r(u)χu + x (r− r(u)χu)

= M

∞∑
n=0

Mnr(u)χu + r(u)χu + x (r− r(u)χu)

=

∞∑
n=0

MnMr(u)χu + r(u)χu + x (r− r(u)χu)

= x (Mr(u)χu) + x (r− r(u)χu) + r(u)χu

= x (r− r(u)χu +Mr(u)χu) + r(u)χu

= r(u)χu + x(r′), (23)

where we define the vector r′ as

r′ := r− r(u)χu +Mr(u)χu. (24)

So, we have derived a new expression of the solution as the sum of two compo-
nents:

x(r) = r(u)χu + x(r′) (25)

where the first part is an approximation of the solution x(r) and the second,
x(r′) can be interpreted as a residual and denoted x′.
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4.3 Convergence of the residual

Following the above approach, we can put (24) and (25) in an iterative algorithm
to derive the solution of (20) with a convergence criterion related to the residual.
The problem is that the exact expression of the residual x(r′) is not available.
However, we know its argument r′ from (24). In addition, r 7→ x(r) is a linear
map, as shown by Eq. (22), so that x(0) = 0, where 0 is a vector of 0. Thus, we
set a convergence criterion related to the infinite norm of the residual argument
of the form ∥r′∥∞ < ε.

Now, we investigate if we can bound the volume of the residuals. As long as
∥M∥ < 1, we have that

∥x(r′)∥ =
∥∥∥∥∥

∞∑
n=0

Mnx′

∥∥∥∥∥ ≤
∥∥∥∥∥

∞∑
n=0

Mn

∥∥∥∥∥ · ∥x′∥

≤ ε ·
∞∑

n=0

∥M∥n =
ε

1− ∥M∥ , (26)

Note that this inequality is true for the L1 norm of a right sub-stochastic matrix,
such as A, and for the L∞ norm of a left sub-stochastic matrix. In the case of
Eq. (2) (Push-NF), M = A and in the case of Eq. (19) M = AT (Push-ψ). So,
we have the following cases of induced norms

– in the case of Push-NF:

∥x(r′)∥1 ≤
ε

1− ∥A∥1
=

ε

1−max1≤u≤N

∑
v∈F(u) A(v, u)

, (27)

– in the case of Push-ψ:

∥x(r′)∥∞ ≤
ε

1− ∥AT ∥∞
=

ε

1−max1≤u≤N

∑
v∈L(v) A

T (u, v)
(28)

Where F(u) designates the set of followers of user u while L(v) is the set of
leaders of user v.

As a consequence, we can choose the tolerance ε to be an upper bound of
ε

1−∥M∥ as a convergence criterion by taking the appropriate norm for M.

4.4 The Push-* algorithm

We propose our Push-* algorithm following this expression to derive the solution
x(r) of the generic equation. Each iteration of Push-* works as follows: the u-th
entry of the approximation vector is incremented by r(u) > ε, which will be
then set to 0 as indicated by the first part of (24). Next, for every v follower
(respectively leader) of u for (2) (respectively for (19)), the value M(v, u).r(u) >
0 is added to r(v) (second part of (24)). The algorithm stops when the value of
the residual is small enough according to what has been discussed in Section 4.3.
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Algorithm 3: Push-*: the Push algorithm for x

input : N × 1 vector r, N ×N matrix M, ε
output: Calculate the N × 1 vector x(r)
Initialization: x(v) = 0, for v = 1, . . . , N ;
FIFO ← CreateFIFO();
for user u with x(u) > ε do

FIFO.add(u);
Mark(u)

end
while FIFO not empty do

u← FIFO.pop() ;
x(u)← x(u) + r(u) ;
for user v in M(:, u) > 0 do

r(v)← r(v) +M(v, u) · r(u);
if r(v) > ε and (v not marked) then

FIFO.add(v);
Mark(v);

end

end
r(u)← 0;
Unmark(u);

end
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5 Numerical evaluation

In this section, we evaluate the performances of the three algorithms presented
in this work: Power-ψ, Push-ψ and Push-NF. We compare their performances
to the baseline algorithm Power-NF described in [17]. In the case where the
posting and re-posting activities of nodes are identical for all nodes, the ψ-score
is equivalent to the PageRank, it allows us to compare the results to the ones
obtained with the PageRank in this homogeneous scenario.

First, we briefly present the package which has been developed and released
for this project. Second, we describe the different datasets that are investigated in
the experiments. Then we precise some important elements of the experimental
protocol, before reporting the results of the performance evaluation.

5.1 The psi-score Python package

The psi-score project is a software library that we have developed in Python. It
is open source and licensed under the terms of the MIT license, allowing free us-
ability. It is currently available at the address https://github.com/NouamaneA/
psi-score.

This package is a practical tool for the community to easily use the ψ-score
metric in projects without the need to develop each algorithm individually. All
methods mentioned in this work are accessible: the baseline Power-NF as well as
the proposed algorithms Power-ψ, Push-ψ and Push-NF. To simplify its usage,
the project has a similar Application Programming Interface (API) as the one
used in scikit-network [8] and scikit-learn [10].

5.2 Datasets

For the numerical evaluation of our methods, we choose four real-world datasets
which are listed in Table 2. Three of them are publicly available in the KONECT
project3 [22] which is a network dataset repository. These three datasets do not
include any information about the nodes activity in the network so we decided
to generate λ and µ uniformly at random. The last dataset has been downloaded
from Kaggle dataset repository4 [13]. It is a Twitter trace that contains a million
tweets and retweets from 181,621 users during the 2018 Russian elections, we
can therefore derive the actual posting and re-posting activities (respectively λ
and µ) of all users.

5.3 Experiments

Unit of comparison. The complexity of the methods is compared using the
number of messages required to reach a targeted tolerance ε, which is the number
of vector entries updated at each iteration during the process. We use the term

3 http://konect.cc/
4 https://www.kaggle.com

https://github.com/NouamaneA/psi-score
https://github.com/NouamaneA/psi-score
http://konect.cc/
https://www.kaggle.com
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Table 2. Datasets used for evaluation

Dataset name Type #Nodes #Edges Sources

DBLP Citation Network 12 590 49 759 [25]
Twitter-ICWSM Social Network 465 017 834 797 [15]
ego-Twitter Social Network 23 370 33 101 [26]
Russian Social Network 181 621 515 419 [13]

“messages” because we can interpret each update as a signal that propagates
across the network from a node to one of its neighbors. By contrast with the
computation time, this measure has the advantage of allowing the comparison
between sequential and distributed algorithms, regardless of the technology used
to implement them.

Note here that each one of the algorithms (Power-ψ, Power-NF, Push-* and
PageRank) have a different notion of tolerance, depending on the criterion of
convergence. Specifically, for Push-* we name it r-tolerance because the con-
vergence is based on the norm of the residual vector, as expressed by the equa-
tion ∥x′∥∞ < ε. For Power-NF we name it p-tolerance because the convergence
is based on the norm of the news-feed p-values. For Power-ψ we refer to s-
tolerance because the convergence is based on the norm of the series s-values.
For PageRank we consider π-tolerance because the convergence is based on the
norm of the PageRank vector. Also, we underline that further processing is
needed after convergence to eventually derive the resulting ψ-scores. So, when
we set some value ε for the x-tolerance according to a specific method, we obtain
some approximation of the ψ-score ψε, however we are interested in evaluating
the relative error of this method compared to the exact value ψtrue, defined as
follows:

error =
∥ψtrue −ψε∥2
∥ψtrue∥2

(29)

Note that to compute the ψtrue vector, we use the solver from the sparse

module of the SciPy Python library [32] which employs matrix factorization to
solve the system (10).

Design of the experiments. We conducted three series of experiments to eval-
uate the performance of our proposed algorithms. The first series of experiments
aims to validate their ability to approximate the exact ψ-score by comparing
the approximation error of the algorithms to the exact ψ-score value. In the sec-
ond series, we aim at validating the algorithms ability to return the actual user
ranking based on the ψ-score. In the third series, we compare the algorithms’
performance with that of Power-NF, in terms of messages, which is the unit of
comparison previously defined. To do this, we used the Kendall τ correlation
coefficient to compare the rankings returned by each algorithm to the rankings
returned by the true ψ-score values.
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Scenarios. For each series of experiments, we consider two scenarios:

(i) In the heterogeneous scenario, we set the activity parameters λ and µ to
be heterogeneous. It means that in the cases of ego-Twitter, DBLP and
Twitter-ICWSM, where no temporal activity data is available, we draw λ
and µ uniformly at random in the interval [0, 1]. In the case of Russian, we
use the actual activities measured on the dataset.

(ii) In the homogeneous scenario, we set the activity parameters λ and µ to be
homogeneous, i.e., we set λ = 0.15 and µ = 0.85 for all nodes. According
to Section 3.3, this corresponds to the case where the ψ-score is equivalent
to the PageRank with a damping factor α = 0.85 (which is a typical value
for the damping factor). Besides, we run in this scenario the experiments on
the giant connected component of the graph, as the equivalence between the
ψ-score and the PageRank is ensured only within these settings, as stated
in [17].

Series 1: quality of the ψ-score approximation. In the first series of exper-
iments, we evaluate the accuracy of our proposed algorithms in approximating
the ψ-score vector by measuring the error and comparing them to Power-NF in
both scenarios and to PageRank in the homogeneous scenario only.

The corresponding results for the heterogeneous and homogeneous activity
scenarios are respectively presented in Figure 2 and Figure 3. The x-axis of
the figure represents the fixed p-, s-, r- and π-tolerance for each algorithm,
while the y-axis represents the computed error from equation (29). Notably,
the Power-ψ method exhibits significantly lower approximation error than the
other algorithms, which can be attributed to the fact that the measured gap
at each iteration is multiplied by ∥B∥ to ensure that the gap in the ψ-score
approximation is below the chosen tolerance when the algorithm converges. We
also notice that the power method is systematically more accurate than the
corresponding push method: the error committed with Power-ψ is lower than
the one of Push-ψ and similarly, the error with Power-NF is lower than with
Push-NF. It is expected, as the tolerance is more directly related to the quantity
targeted with a power method than it is with a push method, since the latter
bases its convergence on the norm of the residual. In the homogeneous scenario,
Figure 3 shows that Power-ψ is more accurate than PageRank in the sense that
a similar tolerance implies a lower error.

Series 2: quality of the ranking approximation. When using centrality
measures, we are in general less concerned by the absolute value of the score than
we are by the ordering of the nodes. Thus, to evaluate how the error presented
in the first series of experiments translates in terms of ranking, we investigate
in this series the quality of the approximations in view of the ranking that they
produce.

To assess this, we compute the correlation between the rankings produced
by each algorithm to the one generated by the exact ψ-score using Kendall’s
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Fig. 2. (i) Heterogeneous scenario. Experiment 1 with a) DBLP, b) ego-Twitter, c)
Twitter-ICWSM and d) Russian: Precision assessment of the proposed algorithms com-
pared to the baseline.
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Fig. 3. (ii) Homogeneous scenario. Experiment 1 with a) DBLP, b) ego-Twitter, c)
Twitter-ICWSM and d) Russian: Precision assessment of the proposed algorithms com-
pared to the baseline.
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τ correlation coefficient. Introduced in [21], this metric is used to measure the
similarity between two rankings. It involves counting the number of concordant
and discordant pairs (resp. nC and nD) between the two rankings x and y, as
well as the number of ties tx and ty within each ranking. Then, the coefficient
is computed as follows:

τ(x, y) =
nC − nD√

(nC + nD + tx)(nC + nD + ty)

The results of this series of experiments in the heterogeneous and homoge-
neous scenarios are respectively displayed in Figure 4 and Figure 5. We represent
Kendall’s τ scores as a function of the tolerance on all four datasets and for each
algorithm. As can be seen, all three proposed algorithms (Push-ψ, Push-NF,
and Power-ψ) perform very well in terms of user ranking, in the sense that the
Kendall τ scores are very close to 1, even with relatively high tolerance values.
This means that the algorithms are able to effectively rank users in the same way
as the actual ψ-score does. In the homogeneous activity scenario, we notice a de-
crease in the ranking quality of Push-NF when increasing the tolerance: a signif-
icant drop occurs around a tolerance of 10−2 in the cases of DBLP, ego-Twitter
and Russian and around a tolerance of 10−3 concerning Twitter-ICWSM.

Series 3: message complexity. In the third series of experiments, we focus on
the scalability of these algorithms by evaluating their performance in terms of
the number of messages required to achieve a given level of precision in approx-
imating the result. It is worth noticing that achieving the same precision for all
algorithms is not always possible. This is because, as discussed previously, the
tolerance is not equivalent for all algorithms, so the resulting approximation er-
ror on the exact score may vary. To compare the performances of the algorithms
to the baseline, we run them with various tolerance parameters (the same ones
used in the first series of experiments) and measure the number of messages
required to reach convergence. We then calculate the relative error using (29)
to compare the algorithms performance under a specific level of precision. Note
that the message-based complexity can be simply related to the number of it-
erations of a power method. Indeed, a complete iteration consists of sending M
messages through the network, where M is the number of edges in the network.
So the value k(ε) mentioned in 3.4 is related to the total number of messages
nmes sent by the relation k(ε) = nmes/M .

The results of this series of experiments are respectively reported in Figure 6
and 7 for the heterogeneous and homogeneous scenarios. Consistently with the
findings of the short version of this work [3], we observe that Power-ψ signifi-
cantly outperforms Power-NF due to the reduced number of equations to solve.
The Push-* algorithms also bring some very interesting results, as Push-NF re-
quires fewer messages than Power-NF, and Push-ψ requires fewer messages that
Power-ψ. The authors of [5] reported a specificity of push methods, which is that
they are not competitive to obtain very precise approximations as they require a
large number of messages to decrease the error. Such a trend is confirmed by the
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Fig. 4. (i) Heterogeneous scenario. Experiment 2 with a) DBLP, b) ego-Twitter, c)
Twitter-ICWSM and d) Russian: Evaluation of the algorithms ability to return an ac-
curate ranking compared to the one returned by the exact ψ-score. 1 means a perfect
correlation, 0 means no correlation at all and -1 means a full anti-correlation.
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Fig. 5. (ii) Homogeneous scenario. Experiment 2 with a) DBLP, b) ego-Twitter, c)
Twitter-ICWSM and d) Russian: Evaluation of the algorithms ability to return an ac-
curate ranking compared to the one returned by the exact ψ-score/PageRank. 1 means
a perfect correlation, 0 means no correlation at all and -1 means a full anti-correlation.
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DBLP and Russian datasets. We even notice a peculiar trend in Figure 6-d) with
Russian, for which we do not succeed in improving the approximation error even
when largely increasing the number of messages of the push methods. This might
be due to the fact that, unlike the other datasets, the activity parameters λ and
µ are measured from the dataset (see Section 5.2) itself and we noticed that
almost half of the nodes in this social network are inactive. However, we do not
notice such a dramatic trend with datasets ego-Twitter and Twitter-ICWSM.
An important observation in Figure 7 is that Power-ψ and Push-ψ converge
faster than PageRank in the homogeneous scenario. This makes the ψ-score a
very interesting alternative to PageRank for ranking users in social networks as
its complexity has been reduced to the same level as PageRank.

Finally, the overall picture that we draw from these experimental investiga-
tions is that push methods are steadily faster than power methods but allow
less control over the error committed on the ψ-score. Consequently, we suggest
that both methods will not be used for the same applications, depending on the
precision or speed required for the computation. Also, in the case of the datasets
investigated, the fact that the push methods are limited to larger error does not
significantly impact the algorithms performance at ranking users, as we have
seen in the previous series of experiments.
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Fig. 6. (i) Heterogeneous scenario. Experiment 3 with a) DBLP, b) ego-Twitter, c)
Twitter-ICWSM and d) Russian: Comparison of the proposed algorithms with the base-
line (Power-NF) in terms of the number of messages to reach convergence.
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Fig. 7. (ii) Homogeneous scenario. Experiment 3 with a) DBLP, b) ego-Twitter, c)
Twitter-ICWSM and d) Russian: Comparison of the proposed algorithms with the base-
lines Power-NF and PageRank in terms of the number of messages to reach convergence.
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6 Conclusion and future work

In conclusion, the ψ-score is a powerful metric that generalizes PageRank for non-
homogeneous node activities. It combines the structural information of the graph
with the temporal information of the users’ activities to rank their influence in
the social network. In this work, we have proposed three scalable algorithms for
approximating the ψ-score. The Power-ψ and Push-ψ algorithms take advantage
of a novel equation that reduces the system we need to solve for the ψ-score
calculation, while the Push-NF algorithm provides additional insights on the
information dynamics at the individual level. Through our experiments, we have
shown that these algorithms perform well on various real-world datasets both in
terms of precision of the approximation and in terms of speed; however, someone
interested in controlling the error committed will favor power methods while
someone interested in time efficiency will favor push-methods. We have released
them as an open-source Python package for the research community to use and
improve upon.

This score suits many real-world applications. It has been especially designed
to evaluate the notion of influence on online social platforms, typically micro-
blogging social networks. Indeed, while the PageRank only takes into account the
structural information, the ψ-score also considers nodes posting and re-posting
activities, which are known to be important features on these platforms. It could
thus help identify influential users on social networks. However, it could also be
an interesting score to evaluate influence in other contexts, such as scientific
citation networks, where an author posting corresponds to a new publication
and re-posting would be a citation. Here as well, we expect the users’ activity
to have a significant effect on their visibility and influence in the network.

This study opens several interesting avenues for future work. A possibility is
to investigate in what way the heterogeneous patterns of activities in real net-
works affect the spread of influence on the platform: for instance, does it allow
some specific posts to reach some distant users faster? Another one could be to
measure to what extent the idealized process underlying the ψ-score definition
differs from the actual diffusion process and possibly identify anomalous behav-
iors from these differences. For instance, we can think that if a post of a user is
largely re-posted while he or she has a relatively low ψ-score, it might convey a
specific message which is worthy of analysis.
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