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2Université Côte d’Azur, CNRS, Inria, Institut de Physique de Nice, France
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Abstract. In 1981, Frisch and Morf [1] postulated the existence of complex

singularities in solutions of Navier-Stokes equations. Present progress on this

conjecture is hindered by the computational burden involved in simulations of the Euler

equations or the Navier-Stokes equations at high Reynolds numbers. We investigate

this conjecture in the case of fluid dynamics on log-lattices, where the computational

burden is logarithmic concerning ordinary fluid simulations. We analyze properties of

potential complex singularities in both 1D and 3D models for lattices of different

spacings. Dominant complex singularities are tracked using the singularity strip

method to obtain new scalings regarding the approach to the real axis and the influence

of normal, hypo and hyper dissipation.
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1. Introduction

Viscous fluids dissipate mechanical energy into heat due to the first law of

thermodynamics. Observations and numerical simulations reveal that this dissipation

is not homogeneous within the flow but occurs via spatially or temporally intermittent

bursts, a phenomenon classically referred to as intermittency. Moreover, after spatial

and temporal averaging, the mean energy dissipation becomes independent of the

viscosity in the inviscid limit, according to the empirical “zeroth law of turbulence”.

Onsager explained these observations in 1949 [2], conjecturing that strong enough

singularities in the inviscid flow could provide an anomalous dissipation. While

this conjecture has been proven mathematically [3], its application to fluids is still

debated. In fact, the developement of finite-time singularities in Euler flows is until now

an unsolved problem [4], while the same question formulated for the Navier-Stokes

equations is among the open Millennium Prize Problems of the Clay Mathematics

Institute [5]. This debate concerns the existence of singularities in real space. In 1981,

Frisch and Morf [1] paved the way to another possibility based on the existence of

complex singularities. They proved on a simple one-dimensional non-linear Langevin

system that the dynamics of such complex singularities could be directly connected to

intermittency, as dissipation bursts occur whenever a complex singularity approaches

the real axis.

Since then, this scenario was also confirmed in the one-dimensional Burgers equation

– a 1D surrogate of the Navier-Stokes equation. In this system, real singularities can be

observed in the inviscid limit and manifest as shocks, i.e. finite jumps in the velocity.

Shocks dissipate energy in agreement with the dissipation anomaly [6]. They correspond

to the collapse of two complex conjugate singularities onto the real axis [7, 8]. When a

viscosity ν is added, the singularities are repelled from the real axis, the closest one being

constantly at a distance greater than O(ν3/4) to the real axis. The complex singularities

follow Calogero-Moser (CM) dynamics [9], with long-range interactions (decaying in

1/r). There is an exact mapping between such CM dynamics and the solution of the

PDE, which can be described exactly via pole decomposition coupled to the integration

of the CM equations [8].

The generalization of these findings to 3D is challenging [10]. The computational

burden to resolve the Navier-Stokes equation for a fluid with typical velocity U and

length L scales like Re3, where Re ∼ UL/ν is the Reynolds number. Most of the earlier

attempts to track complex singularities in the inviscid limit were performed using the

“singularity strip” method [11], which is based on the observation that the behaviour

of the energy spectrum at large wavenumber k is dominated by the position of the

singularity closest to the real axis, and decays like exp(−2δk), where δ is the imaginary

part of corresponding singularity. Fitting the large wavenumber tail of the energy

spectrum as a function of time, one then gets an estimate of δ(t), and a real singularity

occurs when δ(t) = 0. So far, studies have only identified exponentially decaying regimes

for δ(t) [12] which suggests the absence of finite time blow-up. However, we cannot
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guarantee that this extrapolation is correct due to numerical limitations.

New perspectives on these issues were opened recently by Campolina and

Mailybaev [13], exploring fluid dynamics on log-lattices. This technique may be viewed

as a generalization of the so-called “shell models” [14, 15] and solves the equations

of motion in Fourier space using a sparse set of Fourier modes. The modes are evenly

spaced points in log space (“logarithmic lattices”). They interact via nonlinear equations

derived from the fluid equations by substituting for the convolution product a new

operator, which can be seen as a convolution on the log-lattice, while preserving most

symmetries of the original equation. The model is valid for all dimensions. In 1D, it was

shown to encompass [13] the dyaic and Sabra shell models of turbulence [14, 15]. In 3D,

its solutions have the same behaviour as the Navier-Stokes equation in Fourier space

(energy spectrum, energy transfers), over an unprecedented wide range of scales [13]. In

the inviscid equations, a finite-time blow-up is observed [16] in connection with a chaotic

attractor that propagates at a constant average speed in a renormalized Fourier space,

like a wave. However, Campolina and Mailybaev did not attempt to track possible

complex singularities in connection with such a blow-up.

This is the purpose of the present paper. In the first part, we validate the close

connection between fluid dynamics on log-lattice and real fluid dynamics by focusing on

the 1D Burgers equation, where dominant complex singularities are tracked using the

singularity strip method. In the second part, we extend this technique to 3D to obtain

new scalings regarding the approach to the real axis and the influence of normal, hypo

and hyper dissipation.

2. Log-lattice framework

2.1. Definitions and notations

We consider a d-dimensional complex vector field u(t, k) = (u1, . . . , ud) depending on

time t ∈ R and on the wave vector k = (k1, . . . , kd). We shall interpret u as the

Fourier components of the velocity field. For this reason, we require them to satisfy

the Hermitian symmetry u(t,−k) = u(t, k) with respect to k, which is the Fourier

property of a real-valued function in physical space. The wave vector k is embedded

on a logarithmic lattice (in short, log-lattice), which means that its components follow

geometric progressions k = k0(±λm1 , . . . ,±λmd) for integers m1, . . . ,md, where k0 = 2π

is a fixed positive reference scale, and λ > 1 is the spacing factor of the lattice. The

dependence of u on t and k is henceforth implicit and specified only when ambiguity

prevails.

Fluid dynamics on log-lattice [13] is the set of vector fields u which are solutions of
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the equations

kβuβ = 0, (1a)

∂tuα + ikβ(uα ∗ uβ) = −ikαp− νk2γuα + fα, (1b)

(uα ∗ uβ)(k) =
∑
q+r=k

uα(q)uβ(r), (1c)

where p is the complex pressure field that enforces incompressibility (1a), f is a vectorial

forcing, and ν is a non-negative viscosity parameter. When ν > 0, the exponent γ

measures the dissipation degree: we say the flow has viscous (or usual) dissipation if

γ = 1, it has hypo-dissipation if γ < 1, and it has hyper-dissipation if γ > 1. Similarly

to the dynamics of continuous media, system (1) is the incompressible Navier-Stokes

equations on the log-lattice. When ν = 0, the flow is inviscid, and the system reduces

to the incompressible Euler equations on the log-lattice.

The convolution in eq. (1c) defines triadic interactions on the logarithmic lattice,

which are nontrivial only if the equation λm = ±λq ± λr has integer solutions m, q, r.

As shown in [13], this is possible only for particular values of λ, which determine the

number of possible interactions on the grid. In this paper, we consider the following

three values: λ = 2, with 3 interactions per direction; λ = φ ≈ 1.618 (the golden

number), with 6 interactions per direction; and λ = σ ≈ 1.325 (the plastic number),

with 12 interactions per direction. As λ decreases from 2 to σ, the density of nodes and

the number of interactions on the grid increase. We recall, however, that the interactions

for these log-lattices are all local.

2.2. Global quantities

By analogy with the Fourier representation of classical fluid flows, we define the global

quantities representing the total energy E and the helicity H as

E =
∑
k

|u|2, (2)

H =
∑
k

uαωα, (3)

where ωα = εαβγikβuγ is the vorticity field; here, εαβγ is the Levi-Civita symbol. Regular

solutions of the unforced three-dimensional inviscid system (1) conserve these quantities

in time [13].

Moreover, we define the energy spectrum E(k) as

E(k) = 〈|u|2〉Sk , (4)

where the average 〈 · 〉Sk is taken over the wave vectors in the shell Sk delimited by

spheres of radii k and λk. More explicitly,

〈|u|2〉Sk =
1

Nk(λk − k)

∑
k≤|q|<λk

|u(q)|2, (5)

where Nk ∼ (log k)d−1 is the number of wave vectors in the shell Sk.
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2.3. Regularity

The solutions of fluid dynamics equations on log-lattices (1) share some regularity

properties with the original models. The main mathematical results are for the inviscid

Euler equations [13]. For this system, the local-in-time existence of strong solutions

and a Beale-Kato-Majda blow-up criterion were proved. Exploiting the conservation

of enstrophy, one proves the global regularity of two-dimensional flows. In the three-

dimensional case, high-resolution numerical log-lattice simulations disclosed a finite-time

blow-up, characterized by a chaotic wave travelling with constant average speed along

a renormalized set of variables [16]. Such blow-up scenario was confirmed for λ = φ

and λ = σ, presenting the same asymptotic blow-up scalings [13]. In the viscous case,

numerical simulations suggest the expected global regularity of solutions.

2.4. Singularity strip method for log-lattices

If a potential singularity is due to an imaginary pole crossing the real axis, one can track

its distance to the real axis via the singularity strip method [11]. This method considers

the analytic continuation u(z) of the physical-space velocity field and is based on the

following property: if

u(z) ∼ 1/(z − z∗)ξ, for z → z∗ (6)

in a neighborhood of the complex singularity z∗ = a+ iδ, then its Fourier transform ûk
satisfies

ûk ∼ k−d−ξeikae−δk, as k →∞. (7)

Asymptotics of (7) provide the corresponding exponential decay E(k) ∼ e−2δk for the

energy spectrum over a typical length 2δ. Therefore, one can measure the distance of

the dominant pole to the real axis by monitoring the decay of the energy spectrum in

Fourier space. A finite-time singularity at instant tb would occur if δ → 0 as t→ tb.

Extension of this notion to the log-lattice framework is natural. It relies on the

observation that if a flow (1) on log-lattice satisfies u(k) ∼ k−d−ξe−δk, then its inverse

Fourier transform obeys a relation similar to (6). Therefore, we can generalize the

singularity strip method to log-lattices, where 2δ is estimated from the slope of logE(k)

as a function of k.

2.5. Numerical methods

Equations (1) are numerically integrated using a technique analogous to viscous

splitting. Considering a time step dt, we obtain u(t + dt) from u(t) employing the

following strategy. Using u(t) as initial condition, we first solve the inviscid equation

∂tuα = Pαβ [−ikσ(uβ ∗ uσ) + fβ] , (8)

where Pαβ = δαβ − kαkβ
k2

accounts for the pressure term under the incompressibility

hypothesis (1a). For that, we use an explicit 4th order Runge-Kutta method. This
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yields u(t + dt)ν=0. Then, the viscosity is taken into account through u(t + dt) =

u(t+ dt)ν=0e
−νk2γdt. In this whole process, we adapt dynamically the time step dt.

3. 1D Burgers equation

Before going to the full three-dimensional Navier-Stokes system on log-lattices, we take

an intermediate step by studying the simpler one-dimensional Burgers equation. For

this system, several exact mathematical results are available. This allows us to probe

the singularity strip method on log-lattices, by comparing our numerical computations

with the exact expected results.

The one-dimensional Burgers equation on log-lattices is obtained from system (1)

as follows. We consider a compressible pressureless flow on a one-dimensional log-lattice.

Mathematically, this translates into setting p = 0 and dropping eq. (1a) from the system,

which reduces to

∂tu+ u ∗ ∂xu = −νk2γu+ f, (9a)

(u ∗ ∂xu)(k) =
∑
q+r=k

ir u(q)u(r). (9b)

It was shown [17] that, up to a prefactor in the convolution (9b), the Burgers

equation on log-lattices is equivalent to well-known shell models of turbulence for specific

choices of parameters. Particularly, when λ = 2, system (9) (but with a factor 2 added

in the convolution and restricting to imaginary solutions) is the dyadic model [18], while

for λ = φ (but with a factor −φ2 added in the convolution) it is the Sabra model [19] in

a three-dimensional parameter regime (second invariant is not sign defined). Because

of this relation with shell models of turbulence, the Burgers equation on the one-

dimensional log-lattice inherits several results concerning the regularity of its solutions,

which we briefly review now.

For the dyadic model (λ = 2) with ν > 0, there are theorems [20] for global

existence of weak solutions (satisfying the energy inequality at almost all time), local

regularity when γ > 1/3, global regularity when γ ≥ 1/2, and finite-time blow-up

when γ < 1/3 for sufficiently large initial conditions. Note that for the continuous

version of the 1D Burgers equations, global existence and analycity holds whenever

γ ≥ 1/2, while finite-time blow-ups are present whenever γ < 1/2 [21]. In contrast,

we have presently no rigorous statements about the dyadic model for the parameter

range 1/3 ≤ γ < 1/2. This means that the mathematical techniques used in the

currently available theorems are not sharp enough to separate the finite-time blow-up

and the global regularity regimes. The finite-time singularity in the inviscid case was

also rigorously established [22].

For the viscous Sabra model (λ = φ) with usual dissipation γ = 1, there are

proofs [23] of global regularity of strong solutions. Like the Navier-Stokes equations,

the dynamics of the Sabra model develops within finite degrees of freedom. Indeed, the

finite dimensionality of the global attractor and the existence of a finite-dimensional
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Table 1: Exponents of the inviscid scalings of various quantities measured for the 1D Burgers and

the 3D Euler equations within different values of the grid spacing λ. The scalings are with respect to

τ = 1−t/tb, where tb is the blow-up time. By definition, the energy spectrum scales like E(k) ∼ k−1−2α,

the maximum value of the vorticity scales like ωmax ∼ τ−β , and the width of the singularity strip scales

like δ ∼ τµ. The (0) superscript indicates a simulation performed with no forcing. The ∗ superscript

indicates a simulation made with a different initial condition.

λ tb α β µ

1D Burgers

2 0.3898 0.37 1 1.55

φ 0.5193 0.37 1 1.55

σ 0.4300 0.37 1 1.55

2(0) 0.2687 0.37 1 1.55

φ(0) 0.1460 0.37 1 1.55

3D Euler

2 0.8481 0.67 1 2.81

φ 5.8005 0.67 1 2.83

φ∗ 0.1542 0.67 1 2.82

σ∗ 0.8430 0.67 1 2.67

inertial manifold were proved [23]. On the other hand, the inviscid model has [24]

global-in-time existence of weak solutions with finite energy, local-in-time regularity,

and a Beale-Kato-Majda blow-up criterion. Despite the absence of rigorous proofs, it is

well-known [25] that Sabra (in the three-dimensional parameter regime) develops a self-

similar finite-time blow-up, characterized as a travelling wave in a renormalized system

of variables (cf. [26]). Following the dynamical systems approach, such blow-up can be

seen as a fixed-point attractor of the associated Poincaré map [27].

To our knowledge, there are no systematic results about the development of

singularities in Sabra with general dissipation exponents γ, nor in the case of our third

lattice parameter λ = σ.

3.1. Inviscid flow

We start with the inviscid (ν = 0) Burgers equation with and without forcing. When

forcing, initial conditions are equal to zero, and the forcing is equal to the imaginary

unit i on the first mode (k0) for λ = 2, the first two modes when λ = φ, and the first

three modes when λ = σ. Without forcing, initial conditions are taken such that total

energy E = 1, and first mode, two first modes or three first modes have positive uniform

real value, depending on λ = 2, φ or σ, while initial smaller scales are zero. We observe

finite-time blow-up for all three values of λ in the two cases. Numerical results are

plotted in fig. 1, and scaling exponents are summarized in table 1.

The maximum of the gradient ωmax(t) = maxk |ku(k)| blows up in finite time,
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Figure 1: Inviscid blow-up for the 1D Burgers equation for λ = 2 (yellow), λ = φ (red) and λ = σ

(blue). Continuous lines and filled symbols indicate simulations with constant forcing, while dotted

lines and open symbols indicate simulations without forcing. (1a) Spectra at different renormalized

relative time τ = 1 − t/tb. The black dotted line has a slope of −1.733. (1b) Maximum value of the

derivative 1/tbωmax as a function of τ ; The black dotted line is the theoretical value from eq. (10).

(1c) Width of the analyticity strip 2δ as a function of τ . The black dotted line has a slope given in

table 1. (1d) Renormalized width kmaxδ as a function of τ . The black dotted line has a slope of 0.

following the self-similar law

tbωmax ∼
1

τ
, τ = 1− t

tb
, (10)

displayed in fig. 1b. While the blow-up time depends on the forcing and the value of

λ, the self-similar law (10) is independent of these variables. This law also holds for

the original continuous model. Indeed, differentiating the classical Burgers equation

∂tu + u∂xu = 0 with respect to x, we get that the space derivative ω = −∂xu obeys
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dω/dt = ∂tω + u∂xω = ω2, whose solution is exactly eq. (10) with tb = 1/ω(t = 0).

We also check that the energy spectrum evolution is universal, in the sense that it

only depends on τ . This is illustrated in fig. 1a, where spectra for different λ but similar

τ are shown to overlap. As τ approaches zero, the energy spectrum gradually widens

towards larger values of k, developing a power-law E(k) ∼ k−2α−1 with 1 + 2α = 1.733,

which corresponds to the scaling law u(k) ∼ k−α with α = 0.367. Such asymptotics

agrees with exact results from the renormalization group formalism applied to the Sabra

shell model [28].

Finally, we compute the analyticity strip width δ as the solutions approach the

blow-up. This is done using the formula (7) with ξ + 1 = α. The result is shown in

fig. 1c. We verify that δ decays to zero in finite time, following a power law δ ∼ τµ,

with µ = 1.546. This decay is also universal and does not depend on the value of λ or

the forcing. The width of the analyticity strip is closely associated with kmax, defined

as the wavenumber at which ω attains its maximum value. Indeed, we see in fig. 1d

that kmaxδ is approximately constant in time. This is in agreement with the asymptotic

eq. (7), which implies that ωmax is achieved at kmax ∼ 1/δ.

The self-similar law (10) is valid for all λ in average only. The figures show that the

blow-up looks truly self-similar only for the values λ = 2 and λ = φ. The oscillations in

the case λ = σ suggest a different blow-up scenario (e.g. quasi-periodic or chaotic). A

detailed analysis of this is left for future work.

3.2. Viscous dissipation

We now introduce viscous dissipation (γ = 1) and study how the dynamical behaviour

depends upon the viscosity parameter ν. This section restricts the analysis to the value

λ = 2. We introduce a force at the large scale, whose amplitude is adapted dynamically

so that the total power input is constant in time (fk=k0 = Puk=k0/|u|2k=k0 , where P = 1).

In this setup, the dissipative term is strong enough to prevent the blow-up, and

the solution reaches stationarity. The energy spectrum develops a power law in the

intermediate scales (called the inertial range) followed by an exponential decay at larger

k – see fig. 2a. In the inertial range, E(k) ∝ k−5/3, corresponding to u(k) ∝ k−1/3.

The maximum value of the derivative ωmax is inversely proportional to the viscosity,

following the power law ωmax ∼ ν−β with β = 0.5, as shown in fig. 2b. This scaling law

can be derived when assuming a viscosity-independent anomalous dissipation ε > 0 in

the inviscid limit ν → 0. Under this assumption, we have the balance νω2 ∼ ε, which

provides ω ∼ (ε/ν)1/2.

Accordingly, the width of the analyticity strip does not decline to zero. However,

it stabilizes at a finite value that depends on the viscosity – see fig. 2c – and follows the

power-law scaling δ ∼ νµ, with exponent µ = 0.7067. This is smaller than expected from

a dimensional argument “a la Kolmogorov”, in which ε = νu2/δ2, with u ∼ δ1/3, would

instead predict δ ∼ ν3/4. The strip width follows approximately the scaling δ ∼ 1/kmax,

as shown in fig. 2d.
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Figure 2: Influence of the type of viscosity on the stationary dynamics of the viscous 1D Burgers

equation for λ = 2 and γ = 0.5 (hypo-viscous case, blue circle), γ = 1 (viscous case, red squares)

and γ = 2 (hyperviscous case, yellow diamond). (2a) Energy spectrum. The black dotted line has a

slope −5/3; (2b) Maximum value of the derivative 1/ωmax as a function of viscosity. The black dotted

line has a slope given in table 2 for each case. (2c) Width of the analyticity strip 2δ as a function of

viscosity. The black dotted line has a slope given in table 2 for each case. (2d) Renormalized width

kmaxδ as a function of viscosity.

3.3. Hyper- and hypo-dissipation

We have also studied the influence of the dissipation degree γ on the various scaling

laws. This is summarized in fig. 2 and table 2. The slope of the spectrum is insensitive

to γ and displays a E(k) ∼ k−5/3 law with no intermittency correction. On the other

hand, the slopes of both the inverse of the maximum gradient and the singularity width

increase in absolute value as γ is decreased towards 1/3. We defer the discussion about

those results to section 5.1.
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Table 2: Scaling exponents of various quantities as a function of γ measured for the 1D Burgers and

the 3D Navier-Stokes equations with grid spacing λ = 2. The scalings are with respect to the viscosity

ν. By definition, the energy spectrum scales like E(k) ∼−1−2α, the maximum value of the vorticity

scales like ωmax ∼ ν−β and the width of the analyticity strip scales like δ ∼ νµ.

1D Burgers 3D Navier-Stokes

γ α β µ α β µ

1/3 − − − 2/3 1 2.81

1/2 1/3 1.80 2.78 0.5 0.78 1.53

1 1/3 0.50 0.71 0.40 0.39 0.65

2 1/3 0.20 0.28 0.37 0.19 0.27

8 1/3 0.045 0.06 1/3 0.05 0.06

Table 3: Exponents in the critical case γ = 1/3 of various quantities measured for the 1D Burgers

and the 3D Navier-Stokes equations with different values of the grid spacing λ. The scalings are with

respect to τ = 1 − t/tb, where tb is the blow-up time. By definition, the energy spectrum scales like

E(k) ∼ k−1−2α, the maximum value of the vorticity scales like ωmax ∼ τ−β and the width of the

analyticity strip scales like δ ∼ τµ.

1D Burgers 3D Navier-Stokes

λ tb α β µ tb α β µ

2 0.8497 0.37 1 1.55 7.8194 2/3 1 2.81

φ 0.5193 0.37 1 1.55 6.51 2/3 1 2.83

σ 0.4546 0.37 1 1.84 − − − −

3.4. Critical dissipation degree γ = 1/3

According to [20], there are finite time blow-up solutions for the Burgers equation (9)

with λ = 2 whenever γ < 1/3. However, the theorems say nothing about the limit case

γ = 1/3. For this reason, we call this value as being the critical dissipation degree. It is

natural to ask whether the blow-up might or might not occur in this specific situation.

Here we consider not only λ = 2, but also extend this question to the other two lattice

parameters.

We initialized the flow with the same data as in the inviscid case and set the small

viscosity ν = 10−7. We observed a finite time blow-up for all three λ, illustrated in

fig. 3. The blow-up time is larger than in the inviscid case, but the scaling laws are

the same – both the prefactor and the scaling exponents – as in the inviscid case. The

exponents are summarized in table 3. The only exception is for the scaling law of δ in

the case λ = σ. This might be due to the oscillations in the energy spectrum, making

it harder to fit the exponential decreasing, see fig. 3a.
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Figure 3: Blow-up for the critical (γ = 1/3) 1D Burgers equation, with ν = 10−7 and for λ = 2

(yellow), λ = φ (red) and λ = σ (blue). (3a) Spectra at different renormalized relative time τ = 1−t/tb;
(3b) Maximum value of the derivative 1/tbωmax as a function of τ (3c) Width of the analyticity strip

2δ as a function of τ . The insert shows the behaviour of the width of the analyticity strip at t = ∞
when the viscosity is increased, for γ = 1/3 (blue data points) (resp. γ = 1/4 (red data points)). The

dotted lines are fits of the type
√
ν − νc, with νc = 0.4 (resp. ν = 0.9). (3d) Renormalized width kmaxδ

as a function of τ . The dotted line has the same scaling and prefactor as in the inviscid blow-up case,

see fig. 1
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In this small-viscosity run, viscosity only delays the blow-up but does not influence

the development of the singularity. However, we observed a surprising behaviour change

when increasing the viscosity to larger values. There is a transition between a small-

viscosity regime, where finite time blow-up occurs, and a large-viscosity regime, where

the blow-up disappears, and the width of the analyticity strip saturates to a finite value

– see insert of fig. 3c. The amplitude of δ seems to follow a critical mean-field behaviour,

as it varies like δ ∼
√
ν − νc, with νc ∼ 0.4. A similar transition is observed at a lower

value of γ, with νc increasing as γ decreases.

This transition is in fact not contradicting the mathematical results by [20], since

they prove existence of blow-up only for initial conditions larger than a threshold that

depends linearly in the viscosity. In all our calculations, we start with the same initial

conditions. This means that for large enough values of viscosity, the initial condition

becomes smaller than the threshold, therefore invalidating the hypothesis of the theorem.

More than that, our numerical results suggest that this hypothesis is actually essential

for the result of the theorem and might not be dropped in general.

4. 3D Euler and Navier-Stokes equations

4.1. Inviscid flow – Euler equations

We now turn to the full three-dimensional incompressible fluid dynamics on log-lattices,

starting with the inviscid Euler equations. We consider here the three lattice spacings

λ. In order to test universality, we ran the case λ = φ with two different incompressible

random initial conditions, differing by their range of scales. Default initial conditions

are defined at large scale |k| < 3k0, while the other (denoted by a star ∗) are defined

at scales |k| < k0λ
3. We observed a finite-time blow-up in all setups, in agreement

with previous results documented in [16, 13]. Here, we observe that while the blow-up

time depends on the initial conditions, the dynamics become universal when plotted in

non-dimensional variables, as illustrated in fig. 4. The spectra for distinct values of λ

overlap when plotted at the same non-dimensional times τ = 1 − t/tb, as evidenced in

fig. 4a. The slope of the power law in the inertial range is steeper than in 1D Burgers,

with a value very close to −7/3. This is the slope expected for a helicity cascade. Our

exponent is slightly smaller than those found in some direct numerical simulations of

the Euler equations, where a E(k) ∼ k−3 spectrum is observed [29, 30], but comparable

to the value 2.33 obtained in more recent simulations [31].

The maximum value of the vorticity ωmax diverges during the blow-up, as shown

in fig. 4b. Its asymptotic scaling is the same as for the maximum gradient in the 1D

Burgers equation, given by eq. (10). However, contrarily to the 1D case, the constant in

front of the power law varies as a function of λ and is not simply given by 1/tb. This is

not too surprising given the 3D nature of the flow, which prevents the application of the

simple blow-up argument used for 1D Burgers. However, as λ is decreased towards 1,

the non-dimensional curve becomes closer to the exact asymptotic law.
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Figure 4: Inviscid blow-up for the 3D Euler equations for λ = 2 (yellow), λ = φ (red) and λ = σ

(blue). (4a) Spectra at different renormalized relative time τ = 1 − t/tb, from 0.2542 to 0.00001 from

left to right. Spectra with continuous lines and dotted lines correspond to different initial conditions.

The black dotted line has a slope of −7/3; (4b) Maximum value of derivative 1/tbωmax as a function

of τ . The black dotted line has a slope of 1; (4c) Width of analyticity strip 2δ as a function of τ ; The

black dotted line has a slope 2.805. (4d) Renormalized width kmaxδ as a function of τ . In panels 4b,

4c and 4d, we used different symbols for different initial conditions: circles, and squares.

Approaching the blow-up, the width of the analyticity strip decays to zero with

a power law δ ∼ τµ with exponent µ ≈ 2.81 – see fig. 4c. This is larger than in 1D

Burgers. This decay is also universal, as it does not depend on λ. However, it does not

show a simple dependence with kmax as seen in fig. 4d. This might be related to the

chaotic nature of the blow-up attractor [13].
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4.2. Viscous dissipation – Navier-Stokes equations

We now add the viscous term with γ = 1 and a constant-power forcing. The solutions

achieve a statistically stationary state in this framework, whose average scalings are

depicted in fig. 5. Like in 1D Burgers, the energy spectra display a power law until

the solution reaches the viscous scale, with an inertial range widening as ν decreases.

The slope of the energy spectrum is slightly steeper than Kolmogorov’s −5/3, with

an intermittency correction of around 0.13. Accordingly, the scaling exponent α for

u(k) ∼ k−α is α = 0.40, slightly larger than 1/3. The maximum vorticity ωmax increases

with decreasing viscosity, following the power law ωmax ∼ ν−β with an exponent β = 0.39

lower than Kolmogorov’s 1/2.

The width of the analyticity strip decays with viscosity as δ ∼ νµ with an exponent

µ = 0.65 – see fig. 5c. Such decay is less intense than in the 1D Burgers equation.

Nevertheless, the dependence of δ on 1/kmax in the Navier-Stokes case is sharper, as one

verifies by comparing fig. 5d with fig. 2d.

4.3. Hyperviscous dissipation

We now consider what happens in the hyperviscous case γ > 1. We keep the constant-

power forcing to reach stationary states.

For γ = 2, we still observe a power-law energy spectrum followed by an exponential

cut-off at the viscous scales – see fig. 5a. The inertial range keeps widening as ν is

decreased. The slope of the energy spectrum is very close, but slightly steeper than−5/3.

The exact fitting provides us an intermittency correction around 0.07, corresponding to

α = 0.37, see table 2. The maximum vorticity ωmax increases with decreasing viscosity

like a power law, with an exponent β = 0.19 lower than usual (γ = 1) viscous case. The

width of the analyticity strip decays with viscosity with an exponent µ = 0.26. Like in

the viscous case, δ appears to scale simply like 1/kmax, as seen on fig. 5d.

The above results suggest that the intermittency corrections in the energy spectra

are smaller for hyperdissipation. Indeed, as the dissipation degree γ increases, the

exponent α converges towards Kolmogorov’s 1/3, see table 2. We checked that for

the stronger degree γ = 8, they vanish completely, and the dependence of ωmax and

δ on ν become very weak. This is explained by the very sharp viscous cut-off due to

the hyperviscous dissipation. Indeed, the equivalent of the Kolmogorov scale kd in the

hyperviscous case relates to ν as kd ∼ ν1/(1−1/3−2γ), becoming independent of viscosity

in the limit γ → ∞. For γ = 2 the dependence is δ ∼ k−1d ∼ ν0.3, close to what is

observed for the scaling of the singularity strip width.

4.4. Hypoviscous dissipation

The case with hypoviscous dissipation 1/3 < γ < 1 is qualitatively similar to the viscous

and hypervisous cases – see fig. 5. Exponents, however, are steeper. The corresponding

values are reported in table 2. The energy spectrum develops a slope corresponding to
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Figure 5: Stationary dynamics for the 3D Navier-Stokes equations for λ = 2 and γ = 0.5 (hypo-viscous

case, blue circle), γ = 1 (viscous case, red squares) and γ = 2 (hyperviscous case, yellow diamond).

(5a) Energy spectrum. The black dotted line has a slope −5/3; (5b) Maximum value of the derivative

1/ωmax as a function of viscosity. The black dotted line has a slope given in table 2 for each case.

(5c) Width of the analyticity strip 2δ as a function of viscosity. The black dotted line has a slope given

in table 2 for each case. (5d) Renormalized width kmaxδ as a function of viscosity.

the exponent α = 0.5, which is steeper than Kolmogorov’s 1/3 but milder than Euler’s

2/3 on log-lattices. The singularity width appears again to be controlled by the wave

number corresponding to the maximum vorticity – see fig. 5d. On the other hand, the

maximum vorticity grows much more rapidly than in the viscous case, with an exponent

twice as big, as shown in fig. 5b. This may indicate that we are approaching a critical

dissipation degree, below which finite-time blow-up will occur.
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4.5. Critical dissipation degree γ = 1/3

The asymptotics of Kolmogorov’s length scale for a flow with a general dissipation degree

predicts the breakdown of the viscous cut-off when γ approaches the critical value 1/3.

Indeed, the dissipation scale kd is obtained from the dimensional balance between the

convective and the dissipative terms kdu
2
d ∼ νk2γd ud. On the other hand, Kolmogorov’s

theory states that ud ∼ ε1/3k
−1/3
d for the energy dissipation rate ε, which has a finite

positive value in the inviscid limit. Together, these expressions yield

kd ∼ ε
1

6(γ−1/3)ν
1

2(1/3−γ) , (11)

which, for sufficiently small ν, provides kd → +∞ when γ ↘ 1/3. For this reason,

we call γ = 1/3 the critical dissipation exponent, the value at which we expect that

the dissipative term is no longer strong enough to prevent a finite-time singularity. We

recall this was the case for the 1D Burgers equation on log-lattices.

Motivated by the above arguments, we investigate the critical hypo-diffusive degree

in the full 3D system on log-lattices. The following analysis considers the spacings λ = 2

and λ = φ. The initial data is the same as we used in the inviscid simulations, and

viscosity is the same ν = 10−7.

In this regime, we observed a finite time blow-up for the two values of λ, illustrated

in fig. 6. Like in 1D Burgers, the blow-up time is larger than in the inviscid case, but

the scaling laws are the same. This is summarized in table 3. The slope of the energy

spectrum remains −7/3. For λ = 2 and ν = 10−3, the dynamics becomes stationary,

meaning there is as in 1D a phase transition, but between ν = 10−3 and 10−7, smaller

than νc ∼ 0.4 in 1D.

5. Discussion

5.1. Scaling laws

The variations of the scaling exponents with respect to the diffusion exponent γ are

shown in fig. 7.

Predictions for the scaling laws are possible using simple dimensional arguments if

we impose δ ∼ 1/kmax, as empirically observed. Indeed, from u ∼ k−α and ω ∼ ku, we

get ωmax ∼ k1−αmax ∼ δα−1 so that we get:

β = µ(1− α). (12)

This fixes a link between the 3 exponents that is well satisfied – see fig. 7b. On the other

hand, one can connect µ and α by extending the argument fixing the Kolmogorov scale

to hypo and hyper-viscous cases: we impose that kmax is fixed by the condition that the

viscous term balances the non-linear term νk2γmaxumax ∼ kmaxu
2
max. Using umax ∼ k−αmax

and δ ∼ 1/kmax we then get:

µ = − 1

1− α− 2γ
, (13)
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Figure 6: Blow-up for the critical (γ = 1/3) 3D Navier-Stokes equations, for λ = 2 (yellow) and

λ = φ (red). (6a) Spectra at different renormalized relative time τ = 1 − t/tb; (6b) Maximum value

of the derivative 1/tbωmax as a function of τ (6c) Width of the analyticity strip 2δ as a function of τ

(6d) Renormalized width kmaxδ as a function of τ . The dotted line has the same scaling and prefactor

as in the inviscid blow-up case, see fig. 4

This prediction is tested in fig. 7c and is well satisfied. Without loss of generality,

the only free parameter can be taken as α(γ). In the limit γ → 1/3, we can fix it by

imposing that β = 1, which is the scaling corresponding to conservation of the circulation

of u [32]. From eqs. (12) and (13), we then get α = 1 − γ = 2/3, corresponding to a

helicity cascade. In all other cases, we have no clear theories to predict the variations

of α with γ. Notably, when γ → ∞, we recover α = 1/3 corresponding to an energy

cascade.
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Figure 7: Variation of the scaling exponents as a function of the dissipation degree γ for the 1D

Burgers (blue circle) and the 3D Navier-Stokes (red square) equations with λ = 2. (7a) For the scaling

of the velocity u ∼ k−α. (7b) For the scaling of the maximum vorticity ωmax ∼ ν−β . The data points

are reported from tables 2 and 3, while the dotted lines correspond to eq. (12); (7c) For the scaling of

the singularity strip δ ∼ νµ. The data points are reported from tables 2 and 3. while the dotted lines

correspond to eq. (13).

5.2. Interest of the critical case

The critical case γ = 1/3 is more than purely academic: renormalization group (RNG)

analysis of NSE in Fourier space [33] indeed shows that the fixed point of the equations

corresponds to a Navier-Stokes equation with turbulent viscosity scaling like Aε1/3k−4/3,

where A is a constant with value A = 0.1447 in 1D and A = 0.4926 in 3D. This

corresponds exactly to eq. (1), with γ = 1/3 and ν = Aε1/3. This model is sometimes

used as a subgrid model of turbulence [34]. In that respect, it is interesting that the

transition viscosity found in sections 3.4 and 4.5 (at constant injected power, i.e. ε = 1)

is very close to the RNG value in 1D. On the one hand, this guarantees that the size

of the inertial range is very wide, in agreement with the RNG picture of scale invariant

solutions. On the other hand, this means that the solution is very close to a blow-up,

which could have implications regarding the stability of this subgrid scheme.

5.3. Implications for real Euler or Navier-Stokes?

The log-lattices simulations we performed cannot be seen as an exact model of the

Euler or Navier-Stokes equations because they remove by construction many non-linear

interactions of the original equations, especially the non-local one. Nevertheless, because

they obey the same conservation laws and symmetries, they may capture some scaling

laws of the original equation more accurately. Comparing our findings with the few

results on the topic is engaging.

Regarding the Euler equation, recent high-resolution numerical simulation in the

axisymmetric case by [35] explored the scaling of the singularity strip in the blowing

situation proposed by [36]. They found an exponent µ = 2.6± 0.5, which is compatible

with the value 2.8±0.1 that we get from table 2. Unfortunately, they do not provide an
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estimate of the slope of the energy spectrum. Previous older results in the Taylor-Green

vortex [37, 30] found a steeper spectrum corresponding α ∼ 1. However, spectra with

exponent matching our −7/3 value were observed in the early stage of recent simulations

at larger resolution [31]. Therefore, the main characteristics of blow-up in log-lattices

simulations agree with the most recent results observed in the traditional DNS of the

Euler equation.

Regarding the Navier-Stokes equations, we can look at two recent results. The

first one by [38] finds a value of µ = 0.89 using recent DNS of NSE. This value

is larger than the value we found in the present paper, corresponding to µ = 0.65.

Another recent result [39] estimates β in 3D NSE. They indeed found that the tail of

the PDF of enstrophy scales like ν0.77τ−2K , where τK ∼ ν1/2 is the Kolmogorov time.

Identifying such extreme events of enstrophy with ω2
max, we thus get βDNS ∼ 0.88,

which is also much larger than the value we observe in log-lattices βLL ∼ 0.39. Note,

however, that both DNS values are compatible with eqs. (12) and (13), provided we

choose α ∼ 0, hinting at the presence of multifractality. Log-lattices simulations

are generally much less intermittent than DNS [13], with one dominating exponent

(monofractal behaviour). Some time ago, [34] linked the intermittency properties of

NSE with non-local interactions, which is coherent with this observation. Therefore, the

difference between log-lattices simulations and DNS could be explained by differences

in the amount of non-local interactions.
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group approach to shell models of turbulence, 2022.

[29] P. Orlandi, S. Pirozzoli, and G. F. Carnevale. Vortex events in Euler and Navier-Stokes simulations

with smooth initial conditions. Journal of Fluid Mechanics, 690:288–320, 2012.

[30] Miguel D. Bustamante and Marc Brachet. Interplay between the beale-kato-majda theorem

and the analyticity-strip method to investigate numerically the incompressible euler singularity

problem. Phys. Rev. E, 86:066302, Dec 2012.

[31] Niklas Fehn, Martin Kronbichler, Peter Munch, and Wolfgang A. Wall. Numerical evidence of

anomalous energy dissipation in incompressible Euler flows: towards grid-converged results for

the inviscid Taylor-Green problem. Journal of Fluid Mechanics, 932:A40, 2022.

[32] Yves Pomeau. On the self-similar solution to the euler equations for an incompressible fluid in three



Tracking complex singularities of fluids on log-lattices 22
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