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Abstract

The average portfolio structure of institutional investors is shown to have properties which
account for transaction costs in an optimal way. This implies that financial institutions un-
knowingly display collective rationality, or Wisdom of the Crowd. Individual deviations from
the rational benchmark are ample, which illustrates that system-wide rationality does not need
nearly rational individuals. Finally we discuss the importance of accounting for constraints
when assessing the presence of Wisdom of the Crowd.

1 Introduction
The collective ability of a crowd to accurately estimate an unknown quantity is known as the
“Wisdom of the Crowd” [1] (WoC thereafter). In many situations, the median estimate of a group
of unrelated individuals is surprisingly close to the true value, sometimes significantly better than
those of experts [2, 3, 4, 5]. WoC may only hold under some conditions [1, 6]: for example social
imitation is detrimental as herding may significantly bias the collective estimate [7, 8]. WoC is a
reminiscent of collective rationality without explicit individual rationality: when it applies, it is a
consistent aggregation of possibly inconsistent individual estimates [9]. This is to be contrasted with
the mainstream economic paradigm which takes a short-cut by assuming that collective rationality
reflects individual rationality, where only a “typical” decision maker – the representative agent –
is considered [10] or team reasoning where the individual agents explicitly optimize the collective
welfare [11]. Aggregation of quite diverse individual actions, especially in a dynamic context where
expectations are continuously revised, is still an open problem [12].

Although almost all known examples of WoC are about a single number or coordinate, there is no
reason why WoC could not be found for whole functional relationships between several quantities.
For example, Haerdle and Kirman analyse the prices and volume of many transactions in Marseille
fish market: while the relationship between these two quantities is rather noisy, the market self-
organises so that when more fish are sold, prices are lower, as revealed by a local average [13]. More
generically, many simple relationships found in Economics textbooks may only hold on average, but
not for each agent or each transaction.
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Asset price efficiency is an obvious instance of WoC in Finance: it states that current prices,
determined by the actions of many traders, are the best possible estimates and fully reflect all
available information [14, 15, 16]. Another WoC candidate is portfolios. While many market
participants, especially investment funds, strive to build optimal portfolios, each following its own
criteria and constraints (performance objective, risk, tracking error, etc.), the question here is
whether their collective behaviour may be related to a rational benchmark. Fortunately, this implies
that we do not need to understand the minute details of all the portfolios and can focus on average
quantities instead.

2 Wisdom of crowd
Let us define some necessary quantities to be more precise. At time t, fund i has capital Wi(t)
which is invested into ni(t) securities amongM(t) existing ones. As a result, each security α, whose
capitalization is denoted by Cα(t), is found in mα(t) portfolios. The explicit time dependence is
dropped hereafter.

The only quantity defined above which depends on asset allocation strategies of fund i is ni, the
number of securities it chooses to invest in. Our main hypothesis is thus that WoC is found in the
average relationship between ni and Wi. A simple rational benchmark is proposed by [17] : when
a fund with capital Wi is able to invest the same amount in each of the ni chosen securities and if
the transaction cost does not depend on the security, then the optimal ni is such that

Wi ∝ nµi . (1)

where the exponent µ is determined by the transaction costs fee structure; for example, propor-
tional transaction costs lead to µ = 1, while a fixed cost per transaction corresponds to µ = 2 (see
[17] for more details). Allowing for individual fluctuations, Eq. (1) becomes logWi = µ log ni + εi,
where εi has zero average. Denoting local average of xi by x, the local average of Eq. (1) yields

W ∝ nµ. (2)

Flat fee per transaction (µ = 2) is a popular request of large clients of broker. [17] find indeed
that for wealthy individual investors and asset managers, exponent µ = 2 within statistical uncer-
tainty. We will thus test the occurrence of WoC from the value of exponent µ. More precisely, our
hypothesis is that if (i) the effective transaction cost per transaction is the same for all assets and
(ii) funds are able to build equally weighted portfolios, then Eq. (2) holds and that µ = 2, which is
a sign of WoC.

Both conditions must cease to hold for larger investment funds. Indeed, condition (i) cannot
be true for them since large trades (even when split into meta-orders) have a price impact which
grows with their size and depends on volatility and average turnover [18]. Condition (ii) ceases to
hold for large funds which spread their investments on many securities: because the capitalization
of assets and their average daily turnover are very heterogeneous, large funds cannot invest enough
money in assets with a small capitalization so as to build an equally-weighted portfolio. As a result,
on average, the local average W is expected to increase more slowly as a function of n in the large
n region; equivalently, the exponent µ is expected to be smaller than 2. In summary, two different
regimes should emerge: one with µ< = 2 for small enough n and µ> < 2 for larger n.

Figure 1 plots Wi versus ni in logarithmic scale: a cloud of point emerges, with a roughly
increasing trend. The large amount of noise confirms the great diversity of fund allocation strategies.
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Figure 1: Total mark-to-market value Wi as a function of the number of investments ni, with a
robust locally weighted regression fit (yellow line) and two linear fits (blue dashed lines) for two
different ranges of n. Robust locally weighted regression fit for the simulated data (in green).

WoC may only appear in some average behaviour. This is why we computed a locally weighted
polynomial regression [19]. As expected, two distinct regions appear. In each of them, the local
regression follows a roughly linear behaviour.

The cross-over point n∗ between the two regions is algorithmically determined for each quarterly
snapshot (see S.I.); it is stable as time goes on (see Fig. 11 in S.I.). The two exponents µ< and µ>
are quite stable as a function of time as well (see Fig. 11 in S.I.); their time-averages µ< ' 2.1±0.2
and µ> ' 0.3 ± 0.1 are markedly different, which points to distinct collective ways of building
portfolios in these two regions.

So far, µ< is compatible with the WoC hypothesis. Let us check the validity of conditions (i)
and (ii) above. When condition (ii) is not satisfied, then condition (i) also must cease to hold,
thus we can focus on the former. Condition (ii) says that the diversity of investment fractions
piα = Wiα/Wi for Wiα > 0 must be very small among α. This may be summarized in a single
number by the scaled Shannon Entropy Si = − 1

log2ni

∑
α piα log2 piα, which equals 1 and is maximal

when all the non-null piα are equal. Figure. 2 reports the scaled entropy Si of all the funds for a
given time snapshot, together with the local average S. The latter increases up to about n ' n∗

and then decreases. The fact that S < 1 is due in part to price fluctuations: even if fund i builds
an equally weighted portfolio at time t (thus Si,t = 1), Si,t+1 < 1 at a later date. The importance
of this mechanism is confirmed by Monte-Carlo simulations: the red line of Fig. 2 shows the effect
of natural asset price evolution on perfectly equally weighted portfolios after three months, using
asset price volatility measured in our dataset between the time of the snapshot and the three
previous months: the resulting scaled entropy SMC increases as a function of n, mirroring the local
average of Si in the same figure for n < n∗. Thus, the decrease for n > n∗ is due to impossibility
for larger funds to build equally-weighted portfolios. A further argument supporting our claim
that investment funds strive to build equally weighted portfolios (on average) is provided by the
entropy measured on the set of common positions between two consecutive snapshots multiplied by
SMC(ni)/SMC(ni,restricted) in order to account for the dependence of S on n; the local average of
the resulting entropy corresponds to the dashed blue line: it is clearly smaller than the entropy of
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Figure 2: Scaled Shannon entropy Si as a function of the number of investments ni for all the funds
on 2013-03-31 (circles) and robust local weighted regression fit, for all positions (blue line), numerical
simulation of the effect of price fluctuations on the entropy on initially equally weighted portfolios
(red line) , where a volatility similar to the observed volatility in the real data, is applied; robust
local weighted regression fit restricted to the unchanged portfolio positions from the previous time
step, multiplied by the ratio between the simulated entropy for the full portfolio and the restricted
portfolio (dashed blue line);

the new portfolio, hence new positions purposefully bring Si closer to equally weighted portfolios.
Therefore, condition (ii) is valid when µ = 2; conversely, µ 6= 2 when condition (ii) ceases to hold.

Quite tellingly, the same exponent was found for large private investors and asset managers
(with much smaller amounts of money under management). Thus the collective behaviour of large
investment funds is essentially the same one. Since one finds the same exponent µ over many
decades of portfolio values for a wide spectrum of market participants, and since µ = 2 corresponds
to a realistic transaction cost per transaction, we argue that WoC is a plausible explanation of
the average portfolio structure. Note that µ = 2 does not imply that funds really face constant
transaction cost per transaction, only that their population acts as if it does. Finally, we stress
that WoC holds for a whole functional relationship over many decades of n and W , not only for a
single number, which considerably extends its reach.

3 Asset selection model
So far, bringing to light WoC in the µ = 2 region only required to focus on the number of securities
in a portfolio, not on how funds select securities. This implicitly assumed that funds could invest in
all securities they wished, which is clearly not the case in the large diversification region: the fact
that the exponent µ is much smaller in this region implies that funds need on average to split their
investments into many more securities. This is most likely due to liquidity constraints: large funds
cannot invest as much as they wish in some assets because there are simply not enough shares to
build a position larger than a certain size without impacting too much their prices. Each fund has
its own way to determine the maximal amount to invest in a given security α; a common criterion
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is to limit the fractionWiα/Cα. Fig. 8 in S.I. strongly suggests that each fund fixes its upper bound

f
(max)
i ≥ max

α
fiα where fiα =

Wiα

Cα
. (3)

It turns out that fmax
i is highly heterogeneous among funds log 10 (fmax

i ) ' −3.0± 1.0 (see Fig. 9),
which reflects both the heterogeneous ways of portfolio construction and also the confidence of a
fund in its abilities to execute large trades without too much price impact. The existence of such
limits implies that portfolios are less likely to be equally weighted in the large diversification region,
as seen indeed in the decrease of the average portfolio weights scaled entropy for n ≥ 70 (blue line
in Fig. 2).

Funds, however, do not invest in a randomly chosen security, even in the low diversification
region. Figure 3 displays a scatter plot of the capitalization Cα of each security α versus mα, the
number of funds which have invested in this security, together with a local non-linear fit. Similarly
to W vs n, one finds a power-law relationship

logCα = γ logmα + εα (4)

for large enough m (see S.I.). Hence in local average notations, C ∝ mγ . Exponent γ is stable
during the period 2007-2014 (see Fig. 11 in S.I.) and its average γ̄ ' 2.2± 0.1.

In short, one needs to introduce a model of how funds choose to invest in securities to reproduce
the average behaviour of both Eqs (4) and (1). Since one sees a cross-over between two types of
behaviour rather than an abrupt change, we create logarithmic bins of the axis ni and denote the
bin number of fund i by [ni]. Two mechanisms must be specified: how a fund selects security α and
how much it invests in it. The latter point is dictated by Fig. 8 in the large ni region where fund
i invests Wiα = f

(max)
i Cα; for the sake of simplicity, we approximate f (max)

i by the median value
of f (max)

i in the bin [ni], denoted by f (max)
[ni]

. In the small diversification region, we assume that
ni = nopt

i , thus Wiα = Wi/n
opt
i to be consistent with our previous results. We choose a security

selection mechanism that rests on the market capitalization Cα of a security α (see S.I.) which is
a good proxy of the liquidity (Fig. 10). We perform Monte-Carlo simulations from the empirical
selection probabilities and f

(max)
[ni]

and display the resulting W vs n and C vs m in Figs 1 and 3
(continuous green lines), in good agreement with the local averages (continuous orange lines). One
notices a discrepancy in the relationship C vs m for large n, which mainly comes from funds in the
large diversification region. (See Fig 12 S.I).

The large diversification region illustrates how constraints may considerably modify the rational
benchmark. While the above mechanism of security selection is able to reproduce adequately the
behaviour of well diversified funds, we could not find a rational benchmark for the dependence of
fmax and ni. Thus, the case for WoC in the large diversification region is not entirely closed.

Data
Our dataset consists of an aggregation of the following publicly available reports (in order of reli-
ability): the SEC Form 13F, the SEC’s EDGAR system forms N-Q and N-CSR and (occasionally)
the form 485BPOS. Our work focuses on the period starting from the first quarter of 2005 to the
last quarter of 2013.
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Figure 3: Market capitalization of securities as a function of the number of investors in logarithmic
scale. From the local non-linear robust fit (yellow line) we observe a linear relationship for assets
with more than about 100 investors. The blue dashed line corresponds to a linear fit on that group
of asset. Hence Wα ∝ mγ

α, with γ ' 2.1. Robust locally weighted regression fit for the simulated
data (in green).

These forms are filled manually and are thus error prone. We partially solve this issue by cross-
checking different sources (which often contains overlapping information) and by filtering data
before processing (see details in S.I.).

The main limitation of this dataset is that it provides accurate figures for long positions only.
The other positions (short, bonds, ...) are most of the time only partially known. The frequency
of the dataset is also inhomogeneous: data for most of the funds are quarterly updated (depending
on regulations), hence we decided to restrict ourselves to 4 points in a year only. Such frequency
is probably too low for investigating the dynamics of individual behaviour but is not a problem for
we focus on an aggregate and static representation of the investment structure.

Discussion and conclusion
While WoC is commonly applied to a population collectively guessing a single number, we in-
vestigate here a fundamentally different situation and provide evidence for a collective functional
optimization of the asset ownership structure. What the reference function should be is dictated
by optimality arguments. In the case of financial markets, the rational benchmark was not related
to the efficient market hypothesis, but to the way a large population of professional fund managers
build their portfolios. Whereas each fund has its own benchmark with respect to which the fund
performance may be assessed, this, fortunately, has no discernible influence on the average structure
of their portfolio. In addition, WoC is often meant as a collective guessing of non-experts; one thus
may conclude that the population investigated here has decidedly more expertise than the subjects
of other WoC studies. What kind of expertise the typical fund manager has is not obvious, at least
when one looks at their pure performance (see e.g. [20]). In addition, the optimal relationship
between the number of assets in a portfolio and the value of the latter is clearly not broadly known
in these circles, as shown by the very large deviations from the ideal case in Fig. 1, and the collective
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expertise only appears when their decisions are suitably averaged. The presence of WoC when the
subjects face strong constraints, as those of highly diversified funds, is more conjectural, and more
work will be needed in that respect.

At a higher level, our results suggest that, while individuals may deviate much from the rational
expectation theory, standard economic theory may hold at a collective level, without need for
micro-founded individual decisions: the average decision may in some cases be approximated by
a rational, representative agent. Our results however only hold on a snapshot of the system, for
which individual fluctuations may be averaged out. In a dynamic setting, the very large deviations
from the rational benchmark may not be neglected in the presence of feedback loops [21]. In other
words, the dynamics of these fluctuations are worth investigating in their own right.
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Figure 4: Top: Market capitalization as a function of the number of investors for all securities.
Bottom: Temporal evolution of the aggregated market capitalization of US over the total market
capitalization.

Supporting Information (SI)

4 Filtering
In order to remove inconsistencies in the dataset, we applied the following filters

4.1 Country of origin
Our dataset is sparse and heterogeneous. Indeed, the quality of the sources of data is directly
related to each country’s disclosure regulations. For these reasons we decided to keep only the
entities which use an US based mail address.

About 60% of the total market capitalization of the dataset is concentrated in US based secur-
ities. Figure 4 shows two large clouds of dots, each of them corresponds to a different region of
origin: green (resp. orange) cloud corresponds to non-US (resp. US) based securities. The origin
of this large difference between these two regions are not clear: it could for example come from
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Figure 5: Temporal evolution of the number of funds Ni and securities Nα in the database. Un-
filtered in dashed lines and US based only in solid lines.

differences in regulations in non-US countries. It turns out that the ratio of the investment values
in US and non-US assets varies little as a function of time (see Fig. 4), which does not affect the
exponent µ in Eq. 1. As a consequence we focused on US securities.

4.2 Frequency
Large funds are requested to report their positions at a frequency which depends on the applicable
regulation. As a result, reporting frequency ranges from monthly to yearly, most funds filing
quarterly reports. We therefore focused of the latter.

4.3 Penny Stocks
The “penny stocks”, i.e., usually securities which trade below $5 per share in the USA, are not listed
on a national exchange. Since they are considered highly speculative investments and are subject
to different regulations, we filtered them out.

4.4 Size
We also filtered out small founds and securities and applied the following filters: fWi > 105 USD,
Cα > 105 USD, ni ≥ 5, mα ≥ 10.

4.5 Output
We restricted our study to 36 quarterly snapshots starting from the first quarter of 2005 and ending
with the last quarter of 2013. Figure 5 reports the evolution of the number of securities and funds
in the database before and after filtering.
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5 Asset selection modelling
The framework we introduce in this paper follows a series of a few elementary steps described below.
The aim is for the model to be sensitive to the different constraints which dominates the portfolio
selection of a fund.

5.1 Finding n∗

For date t, we define the cross-over point n∗ between the two regions which appear in the local
polynomial regression. We determine this point value with a likelihood maximization of the model

W = µ<n+ (µ> − µ<)(n− n∗)θ(n− n∗), (5)

where θ(x) is the Heaviside function. We use a recursive method to find parameters µ<, µ> and
n∗ [22]. Figure 11 shows that n∗ is stable as a function of time.

5.2 Asset selection in the small diversification region ni < n∗

In this region, we consider the equally weighted portfolio hypothesis to be true. Each position
has a size Wi

nopt
i

, where nopt
i is the optimal number of position computed with eq 1. The funds

select their asset randomly with a probability proportional to Cα. Also, in order to construct an
equally-weighted portfolio, a position is valid only if it is of size Wi

nopt
i

.

5.3 Asset selection in the large diversification region ni ≥ n∗

In this region, the liquidity constraints make it harder for funds to keep an equally weighted portfolio
and portfolio values are thus spread on a larger number of assets. We propose here a stochastic
model of asset selection based on two main ingredients: first that the selection probability of asset
α by fund i depends on the diversification of a fund ni and on the scaled rank of the capitalization
of asset α, and that the investment is bounded by an hard constraint on the fraction of market
capitalization of asset α.

We chose a security selection mechanism which rests on the scaled rank of capitalization of
security α, defined as ρα = rα

M where rα is the rank of capitalization Cα and M the number of
securities at a given time. The selection probability P (Wiα > 0|ρα) is then obtained by parametric
fit to a beta distribution in each logarithmic bin. Note that we do not use the same rank-based
selection mechanism in the low-diversification region because in this case it is harder to have a
good fit with the beta distribution. This is however only a minor point since the capitalization
is approximately power-law distributed and the two selection mechanisms are basically equivalent
(the rank is proportional to a power of the capitalization) and indeed results are very similar in
both cases.

Figure 6 shows that the distribution of the ranks in which a fund is invested is sensitive to
its diversification ni for 2013-03-31. The Beta distribution, which is limited to a [0, 1] interval, is
flexible enough to describe the asset selection mechanism of a fund.

f(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, (6)

where a and b are the shape parameters of the distribution, and B is a normalization constant.
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Figure 6: Top: Empirical probability density function of investing in a security of scaled capital-
ization rank ρ given the diversification ni of the fund. Bottom: Probability density function of
investing in a security of scaled capitalization rank ρ given the diversification ni of the fund, given
by the model.

XII



Figure 7: Coefficients a and b of the Beta Distribution 6 as a function of ni . Linear fits are for
eye-guidance only.

Maximum investment ratio

The funds limit their investment in a given asset. They seem to follow a simple rule: defining the
investment ratio fi,α = Wiα

Cα
, one easily sees in Fig. 8 that each fund has a maximum investment

ratio
fmax
i = maxα

(
Wiα

Cα

)
(7)

Since the average exchanged dollar-volume of an asset is proportional to its capitalization
(Fig. 10), the existence of fmax

i is a way to account for the available liquidity.
Although that limit is clear for an individual fund, there is a large range of empirical values

fmax
i Fig. 9.

6 Simulation
The simulation is done in a few simple steps:

1. Compute n∗ using the segmented model Eq. 5.

2. Select a fund i, with a number of assets ni.

3. If ni < n∗:

(a) Compute its optimal portfolio value using Eq. 1. The fund will invest W opt
i

ni
for every

position.

(b) Select assets randomly with a probability proportional to Cα.

4. Else if ni ≥ n∗:

(a) Compute its fmax
i , so that the fund i will invest fmax

i in ni assets.
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Figure 8: Fraction of the market capitalization of a security held by a fund. Each color represent a
different fund. Top: Funds with a large diversification (ni > 800). We can clearly see a delimitation
for most of the funds, which correspond to the maximum fraction fmax

i . The value of fmax
i widely

differs from one fund to another. Bottom: Funds with a low diversification (ni<60), fmax
i doesn’t

appear.
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Figure 9: Empirical probability density function of fmax
i for all the funds.

(b) Select assets randomly following a Beta probability distribution Fig. 6 with the para-
meters found in Fig. 7.

By iterating those steps we obtain Fig. 1
Since the simulation outputs a portfolio for every fund, we can directly infer the number of

investors mα of every security.
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Figure 10: Market capitalization as a function of the daily exchanged volume dollar. We find a
slope close to 1 for all the dates in our database, confirming the hypothesis that the daily exchanged
volume dollar of an asset is proportional to its market capitalization.
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Figure 11: Top: Temporal evolution of the coefficients µ<, µ> and γ. Bottom: Temporal evolution
of the value of the cross-over point n∗ between the two regions as a function of time. It reaches a
global minimum after the 2008 crisis.
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Figure 12: We separate the contribution from the low and highly diversified region. The origin of
the discrepancy observed in Fig. 3 appears to be mainly due to the highly diversified region (Green
dots for the empirical data, and orange dots for the model).
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