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Wireless communication technologies are undergoing intensive study and are
experiencing accelerated progress which leads to a large increase in the number
of end-users. Because of this, the radio spectrumhas becomemore crowded than
ever. These previously mentioned aspects lead to the urgent need for more
reliable and intelligent communication systems that can improve the spectrum
efficiency. Specifically, modulation scheme recognition occupies a crucial
position in the civil and military application, especially with the emergence of
Software Defined Radio (SDR). The modulation recognition is an indispensable
task while performing spectrum sensing in Cognitive Radio (CR). Spread spectrum
(SS) techniques represent the foundation for the design of Cognitive Radio
systems. In this work, we propose a new method of characterization of Spread
spectrum modulations capable of providing relevant information for the process
of recognition of this type of modulations. Using the proposed approach, results
higher than 90% are obtained in the modulation classification process, thus
bringing an advantage over the classical methods, whose performance is
below 75%.
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1 Introduction

Modulation recognition is increasingly important in civilian, commercial and military
applications. It is used for cognitive radio, spectrum surveillance and management, software
defined radio, source identification, and for many other applications (Iglesias et al., 2015;
Ravi Kishore and Rao, 2017; Gacanin, 2019; Gui et al., 2019). The recognition accuracy has
been a challenging issue because of the noise effect and multipath fading, as well as the
increasing number of advanced modulation types. Considering these aspects, the automatic
modulation recognition (AMR) would seem the most appropriate approach to extract
representative features for the modulation in order to characterize them (Wu et al., 2008).

AMR methods can be classified into two categories: The likelihood-based (LB) methods
and feature-based (FB) methods. The LB methods are based on decision theory, where the
AMR is made by comparing the likelihood ratio with an appropriate theoretical threshold
(Yang et al., 2004; Dobre et al., 2007). FB methods are based on the identification of defining
features capable of discriminating between the analyzed signals. Themost used features in FB
scenarios are given by instantaneous features (Yu et al., 2019), high-order statistical features
(Xiao-Ming and Zhong-Zhao, 2006), wavelet features (Huang et al., 2010) and time-
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frequency representations (Lee et al., 2020; Khan et al., 2022). But
the performance of these FB methods largely depends on empirical
feature extraction.

For the multipath interference and the low SNR ratio in CR
communications, a commonly used technique is the spread
spectrum communication (Reynders and Pollin, 2016; Qian et al.,
2018). The spread spectrum method is a type of transmission in
which the bandwidth occupied by the signal exceeds the minimum
bandwidth required to transmit information. Spread spectrum
transmissions are now widely used for secure communications, as
well as for multiple access. Due to their low probability of
interception, these signals increase the difficulty of spectrum
surveillance. The most used modulations in spread spectrum
communications include Chirp Spread Spectrum (CSS), Direct
Sequence Spread Spectrum (DSSS) and Frequency Hopping
Spread Spectrum (FHSS).

For AMR to be usable in most information interception
scenarios, modulation recognition has to be completed in a blind
manner, that is, the algorithm should be applied directly to the
modulated signal with no prior knowledge (such as its phase,
frequency, amplitude, etc.).

In (Yu et al., 2019) the authors used the instantaneous features,
such as instantaneous amplitude, phase and frequency parameters
on a Long Short-Term Memory (LSTM) network in order to
differentiate between real DSSS and OFDM signals. For DSSS
and OFDM signals, LSTM classifier has a good classification and
recognition effect, but DSSS signals may be misclassified in OFDM
signals. In general, the recognition accuracy using this approach can
exceed 80%. In (Xiao-Ming and Zhong-Zhao, 2006) the authors
used high order statistics to identify the DSSS modulations for low
SNR values, obtaining good accuracy. They propose a new adaptive
algorithm for the estimation of the fourth-order cumulant of
stationary and non-stationary stochastic process based on an
adaptive gain coefficient which offers very good results.

The second-generation wavelet kernel is applied from a Support
VectorMachine (SVM) perspective in (Huang et al., 2010) to classify
the individual transmitters from FHSS modulation, obtaining an
average classification rate of 83.36%. The feasibility of this approach
has been demonstrated for high values of SNR; the recognition rate
is increased with increasing SNR. For values below SNR � 10dB this
approach does not offer favorable results. To improve the
discrimination of traditional ML algorithms for modeling visual-
based time-frequency representations, the authors of (Khan et al.,
2022) proposed linear discriminant analysis based on distance
classifiers for classification of five types of FHSS modulation
signals. This approach resulted in obtaining an accuracy of 90%
for SNR � 3.5dB. The thresholds used in this approach can be an
impediment, because the choice of values is not automatic. The CSS
signal recognition was improved in (Lee et al., 2020) by using the
matched filter method on the spectrogram approach. The authors
showed that the size of the matched filter can be doubled by applying
a differential coding method and the performance is improved even
if the SNR value is SNR � 0dB.

In general, as we have seen previously, the large and similar
number of modulations and the low level of SNR lead to a decrease in
the accuracy of the classification due to the impossibility of identifying
unique characteristics for each type of modulation. For example, in
(Yu et al., 2019), under the condition of high SNR, the characteristics

of the DSSS signal are more learnable and categorizable for the LSTM
network. However, at low SNR, the characteristics of the DSSS signal
are affected by noise, which directly affects the learning and
classification of the LSTM network. In (Xiao-Ming and Zhong-
Zhao, 2006) the adaptive algorithm is more useful to enhance the
SNR of non-stationary stochastic process than the classical one, which
contributes to an increase in the accuracy of the recognition process.
As SNR decreases from zero, the adaptive algorithm changes less than
the classical algorithm as well. It is shown in (Huang et al., 2010) that
at high SNR values (SNR � 10dB), the classification rate of the FHSS
signals can be satisfactory. The results demonstrate that SNR has little
influence on second-generation wavelet kernel function in classifying.
In other words, this method has certain stability. But this is no longer
valid for SNR below this value, the identification and recognition
capacity falling to an unsatisfactory value. Also, the performance of
the linear discriminant analysis method in (Khan et al., 2022)
degraded for the FHSS signals at low SNR value because the
frequencies of the signals are overlapping with the background
noise. The visual method analyzed in (Lee et al., 2020) is the most
susceptible to noise. At low SNR values, the spectrograms of CSS
signals lose their interpretability and advanced processing techniques
are needed to be able to eliminate the effects of noise. Although
spectrograms are useful for highlighting frequency variations,
depending on the type of analyzed signal and the amount of noise,
they cannot always provide a satisfactory result of the signal
recognition process.

That is why, in this paper, we propose a way to recognize the
types of modulations specific to the spread spectrum using a data
driven approach, independent of any model, namely, the phase
diagram-based entropy (PDE). Considering the complexity of the
used modulations, the phase diagram-based entropy brings out
some hidden characteristics, this leading to the increase of the
accuracy of the recognition process of the modulations.

The rest of this paper is organized as follows. In Section 2, we
provide the basic information related to spread spectrum modulations.
Section 3 details two theoretical approaches for modulation recognition
that provide the comparative support in this paper. We present the
approach of the phase diagram based entropy in Section 4. In Section 5
we detail the results of the signal characterization using our approach
and the results of the modulation recognition process. We conclude our
paper in Section 6.

2 Spread spectrum modulations

In this section, some theoretical notions about the three types of
modulations analyzed in this paper will be presented.

2.1 Chirp Spread Spectrum (CSS)

CSS communication system uses linear frequency-modulated
chirps to represent the message symbols. It is known for its
flexibility in providing tradeoffs between throughput and reception
sensitivity. Due to its robustness against narrow-band interference
and resistance against multi-path fading, CSS modulation has been
adopted in various long-range wireless applications (Karapistoli et al.,
2010; Raza et al., 2017). The chirp waveform can be described by:
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s t( ) � exp j2π fct + rt2( )[ ], 0≤ t≤Tsym (1)
where fc is center frequency, r is the chirp rate and Tsym is the
symbol duration. If r> 0 the chirp waveform is an up chirp called
su(t) and if r< 0 the chirp waveform is a down chirp called sd(t).We
can express Eq. 1 using the maximum and the minimum
frequency as:

su t( ) � exp j2πt f min + f max − f min

T
t( )[ ] (2)

sd t( ) � exp j2πt f max + f min − f max

T
t( )[ ] (3)

where fmax is maximum frequency and f min is minimum
frequency. The simplest form for a CSS signal is obtained
according to the bit information and it is expressed as:

sCSS t( ) � su t( ), if bn � 1
sd t( ), if bn � 0

{ (4)

where bn is the bit sequence and n is the bit index. In Figure 1 it is
shown a representation for the up chirp su(t) and the down chirp
sd(t) in time and frequency domain.

The CSS modulation order is defined as M � 2SF, which means
that each CSS symbol carries SF (spreading factor) bits per encoded
symbol. At baseband, each CSS symbol contains M complex
samples, which are sent at a rate equal to the B of the signal
(Wang et al., 2008). Thus, the CSS symbol duration is given as
Tsym � M/B. The chirp rate is the rate at which the frequency of a
CSS signal changes over time and can be defined as:

r � B

Tsym
� B2

M
(5)

The bandwidth B is an important parameter in CSS modulation.
Using a larger B enhances the data rate and, at the same time,
provides better immunity to narrow-band perturbations. The
spreading factor, SF is another important parameter. The range
of communication may be greatly increased by increasing SF, but
this comes at the expense of a lower transmission rate.

The CSS technique allows the symbol generation based on the
SF parameter, for a specific bandwidth, B. For example, if only chirp
slope variation is used to encode digital data, only two different

symbols are generated (SF � 1). This would be the case described by
Figure 1. If SF increases, in order to distinguish between each
symbol, a cyclic shift (cs) is used according to Eq. 6.

cs � sv

2SF
Tsym (6)

where sv corresponds to the symbol value (0 to 2SF − 1). The
reference symbol is sv � 0. Hence, the cs parameter correspond
to a time delay referenced to Tsym.

2.2 Direct Sequence Spread Spectrum
(DSSS)

DSSS technology is a widebandmodulation in which the original
bit sequence is converted into a pseudo-random spreading sequence
(Yue et al., 2003; Tsai, 2009). The direct-sequence modulation
makes the transmitted signal wider in bandwidth than the
information bandwidth. The pseudo-random code is modulated
onto the information signal using several modulation techniques
such as binary phase-shift keying (BPSK), quadrature phase-shift
keying (QPSK) and so on. A transmission DSSS signal using BPSK
modulation can be written as:

s t( ) � Ad t( )c t( ) cos 2πf0t + θ0( ) (7)
where A denotes the amplitude of the signal, d(t) is the data signal
which will be transmitted, c(t) is the spreading sequence, f0 is the
carrier frequency, and θ0 is the carrier phase. In Figure 2 we can see a
representation of the DSSS signal generation.

DSSS significantly improves protection against interfering and
jamming signals, especially narrowband and makes the signal less
noticeable. In the DSSS systems, each user is assigned a unique code
sequence that allows the user to spread the information signal across
the assigned frequency band (Javed et al., 2020).

2.3 Frequency Hopping Spread Spectrum
(FHSS)

FHSS is a transmission technology used in wireless networks to
generate spread spectrum by hopping the carrier frequency in a

FIGURE 1
The up chirp and the down chirp in time domain (left) and frequency domain (right).
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pseudo-random manner (Liu et al., 2017; Lei et al., 2018). For
example, in a FHSS system, the transmitted signal is spread
across multiple channels, as shown in Figure 3. The full
bandwidth is divided into 6 channels, centred at f1 through f6.
The signal hops between them in the following sequence: f3, f5, f1,
f4, f6 and f2.

Figure 4 shows the block diagram of a typical FHSS transmitter.
First, digital data is modulated usually using some digital-to-
analogue scheme. This baseband signal is then modulated onto a
carrier c(t). The frequency of the carrier c(t) that is the sequence of
channels, depends on the spreading code, which is generated by a
pseudo-random source.

The transmitted FHSS signal can be expressed as:

s t( ) � Ad t( ) cos 2πfit + θi( ), iTh ≤ t< i + 1( )Th (8)
where A denotes the amplitude of the signal, d(t) is the data signal,
fi is the carrier frequency, θi is the carrier phase and Th is frequency
hopping rate.

Some of the advantages of using FHSS modulation are given by:
improved privacy, avoiding interference and multi path fading,

decreasing narrowband interference, increasing signal capacity,
increasing the efficiency of bandwidth and the difficulty of
interception. The transmission of a FHSS signal can share a
frequency band with many types of conventional transmissions
with minimal interference (Hong et al., 2013).

3 Classical approaches

In this section we detail two classic approaches used for
modulation recognition that also provide the comparative
support for the new proposed method based on the phase
diagram analysis.

3.1 Wavelet transform approach

The wavelet transform is used to decompose a signal s(t) into an
orthonormal basis consisting of a family of functions ψ(t) called
wavelets, which is generated by time and scale modification of ψ0(t):

FIGURE 2
DSSS transmitter block diagram.

FIGURE 3
Channel assignment and channel use in FHSS.
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ψm,n t( ) � 1��
m

√ ψ0

t − n

m
( ) (9)

where ψ0(t) represents the generator wavelet,m is the dilation factor
and n is the translation factor. A wavelet function is very
concentrated in time or frequency. The central idea is based on
the proposal of an orthonormal base elaborated from a mother
wavelet, of average zero and its dilated and delayed variants
(Eckmann et al., 1987). The signal is then projected into this
base as:

Wψ m, n( ) � ∫
∞

−∞
s t( )ψm,n* t( )dt (10)

As a result of this projection, we obtain a two-dimensional
function called continuous wavelet transform. From here the
scalogram, which renders the signal energy distribution for the
scale m and the position in time n, can be derived as:

SW m, n( ) � Wψ m, n( )∣∣∣∣ ∣∣∣∣2 (11)

As a general remark on the use of this technique, one can say that
the wavelet transform is able to quantify the time-frequency
variations, but depends on the scale provided by the wavelet
basis. That’s why in order to have a good wavelet representation,
it is essential to determine the best suitable mother function which
resembles as much as possible the analyzed transient signal.

3.2 Statistical approach

In the statistical approach are many sets of features that can be
used in the signal recognition discrimination process. In this paper
we use an approach based on the normalized central moments of the
modulated signals. A central moment is a statistical moment that

characterizes the probability distribution of a random variable with
respect to its mean. The central moments are useful because they
allow us to quantify properties of distributions in ways that are
location-invariant, as in Eq. 12:

cmk � E s − μ( )k
σk

, k≥ 3 (12)

where μ is the mean of the signal s, E(t) represents the expected
value of the quantity t and σ is the standard deviation of the signal s
(Mallat, 2009).

It is important to note that the central moments are valid only
for distributions that have well-defined first and second moments,
with the second moment being non-zero. Fortunately, this criterion
applies to the majority of distributions. By standardizing the
moments, they become invariant to both location and scale.

4 Phase diagram-based entropy
approach

The phase diagram representation method is derived from the
theory of nonlinear dynamical systems and it is a data–driven technique
that makes no a priori assumption about the system (Zbilut and
Webber, 1992; Davidson and Loughlin, 2000). Starting from a signal
expressed as a time series, as in (13), the strategy for the phase diagram
design is given by moving from the values of the signal to a new vector
that defines the representation space as shown in Eq. 14:

x � x 1[ ], x 2[ ], ..., x N[ ]{ } (13)

v i[ ]
�→ � ∑m

k�1
x i + k − 1( )d[ ] · ek→, i � 1, ...,M (14)

where v[i]
��→ are the vectors of the new representation space, m is the

embedding dimension, d is the delay between the samples, ek
→ are the

FIGURE 4
FHSS transmitter block diagram.
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axis unit vectors and M � N − (m − 1)d . As can be seen, two new
parameters appear in the new representation vectors: the delay,
which is usually determined with the mutual information method
(Marwan et al., 2007) and the embedding dimension, which is
usually determined with false nearest neighbor method (Webber
and Zbilut, 1994). In Figure 5, you can see a graphic example that
shows the transition from the time series to the phase diagram.

This new resulting representation space can provide several
ways of quantifying the information of the analyzed signal. One
of the things of interest that can be quantified from the phase
diagram is the distances between the phase diagram vectors because
this establishes the shape of the trajectory. Based on this, we have the
possibility to quantify the distribution of the phase diagram vectors
(Stanescu et al., 2021). In the quantification process we use a
probabilistic approach and we are interested in determining the
probability of the signal to pass through a specific region of the phase
diagram.Mathematically, we determine the number of points, which
are close within a distance σ for each vector and then we compute the
ratio of number of close points to the total number of vectors as in
Eq. 15:

Tj d,m, σ( ) � 1
N − m − 1( )d ∑N− m−1( )d

j�1,j ≠ i

Θ v i[ ]
�→− v j[ ]���→����� ����� − σ( ) (15)

whereΘ is the Heaviside function, σ is the threshold distance used to
determine the range between vectors and ‖ · ‖ is the operator of the
Euclidean distance. In this quantification, the choice of the distance
threshold must be considered. We define it as the ratio between the
product and the sum of the two semi-axes of the ellipse in which the
phase diagram representation can be included, as shown in Figure 5,
using Eq. 16:

σ � ab

a + b( ) (16)

where a is the major semi-axis of the ellipse and b is the minor semi-
axis of the ellipse.

Next, we determine the entropy information in the
representation dimension of the phase diagram based on the

number of total points, which satisfy the mentioned criterion, as
described in Eq. 17.

P d,m, σ( ) � 1
N − m − 1( )d ∑N− m−1( )d

i�1
log Ti d,m, σ( )( ) (17)

It is interesting to see how the entropy information change form
one dimension to another, that’s why we define the phase diagram-
based entropy as a gradient of entropy from one dimension to
another as in Eq. 18. This approach is used to study the behavior of
the signal by measuring the changes that occur as an increase of the
embedding dimension (Stanescu et al., 2021).

PDE d,m, σ( ) � P d,m, σ( ) − P d,m + 1, σ( ) (18)
Thus, using this approach, we can successfully characterize the

modulation signals in order to realize their recognition process. The
advantages of the characterization of single carrier modulations
based on the phase diagram approach were already shown in
(Scripcaru et al., 2020; Stanescu et al., 2022; Stanescu et al.,
2023). In order to address the characterization of different
modulation, the sliding windows are used and the PDE is
computed on each window.

5 Results

In this section we detail the results obtained in the characterization
process of each type of modulation, then we discuss the accuracy of the
recognition process by comparing our approach with other approaches
used at themoment. The characterization of the signals will be done first
in the noise-free scenario, after which the use of the approach in the
presence of noise is studied.

5.1 CSS characterization

First, we analyze the CSS modulation. For this, we generate a
CSS waveform, with the following parameters: the center frequency

FIGURE 5
Example of a time series and its phase diagram representation.
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fc � 35kHz, the sweep bandwidth B � 70kHz, the spreading factor
SF � 10, the symbol duration Tsym � 4ms and the sample frequency
fs � 1MHz. In Figure 6 we can see the spectrogram of the generated
CSS signal and the phase diagram entropy variation. In determining
the spectrogram, the following parameters were used: a Hamming
window of 128 samples size, the number of overlapped samples
120 and the number of Fast Fourier Transform points 128. To
determine the phase diagram entropy variation, the following values
were used for the necessary parameters: a sliding window of
50 samples, m � 3, d � 2 and σ � 0.66.

As shown, the PDE variation highlights the cyclic shift of each
symbol. Moreover, the symbols are delimited by global minima
and maxima values of the PDE and sudden entropy drops as it
can be seen marked with the red dashed line. These proprieties
are also present in the case of the signal with SNR � 5dB, where

the PDE variation is a little more disturbed, as displayed in
Figure 7.

After showing the potential of the PDE for the
characterization of the CSS signal, we want to see what the
PDE variation distribution looks like. The phase diagram
entropy distribution is shown in their corresponding
histograms. In Figure 8, are displayed the histograms of the
PDE of the CSS signal in the two cases.

As we can see, the linear sweep of the signal quantified through
the PDE values is grouped on the left side of the representation. We
propose to quantify the transitions between CSS symbols based on
the extremity bins of the histograms. Thus, we define the parameter
Left Side Ratio (LSR) as the ratio between frequency of occurrence of
the entropy values in extremity bins and frequency of occurrence of
the remaining bins, as in Eq. 19:

FIGURE 6
The CSS spectrogram and the PDE variation for SNR → ∞.

FIGURE 7
The CSS spectrogram and the PDE variation for SNR � 5dB.
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LSR � size bin1( ) + size binNbins( )
∑Nbins−1

i�2
size bini( )

(19)

where Nbins is the number of bins which contain at least one phase
diagram entropy value. After the tests carried out, we conclude that
this parameter is less than 10% regardless of the analyzed case
(i.e., SF values) and we decide to use it as an identifier for the
analyzed phase diagram entropy variation which corresponds to a
CSS signal.

5.2 DSSS characterization

In the analysis of the DSSS signal, we start from generating the
20 bits pattern with each bit, having a duration of Tb � 2ms. Then we
generate the pseudo-random bit pattern for spreading, which is the
same for each transmitted bit. In our case the pseudorandom sequence
for each bit is “01”. After that, we modulated the signal using a BPSK
carrier with the following parameters: A � 1, f � 100KHz and

θ1,2 � 0, π{ }. In Figure 9 we can see the data encoding signal, the
pseudorandom sequence and the DSSS signal.

In Figure 10 are displayed the DSSS signals and their PDE
variation for the two cases. Each phase change of the DSSS signal
leads to the appearance of a spike in the PDE variation. This is valid
both in the noise free case and in the case of SNR � 5dB, as can be
seen on the right side of the figure. The phase diagram entropy
follows the same principle, except that it is slightly disturbed.

In order to increase the characterization capacity of the DSSS
modulation, we analyze the PDE variation distribution. The
histograms of the DSSS signal are displayed in Figure 11.

We see that the transition between DSSS symbols, related to an
increased value of PDE, is highlighted by the bins on the right side of
the representation. In order to quantify this aspect, we define the
Right-Side Proportion (RSP) as the ratio between the frequency of
occurrence of the entropy values in the right half of the histogram
representation and the total number of occurrences, as in Eq. 20:

RSP � 1
N

∑Nbins

i�Nbins/2
size bini( ) (20)

FIGURE 8
CSS signal phase diagram entropy histogram in the noise free case (left) and in the noisy case (right).

FIGURE 9
The data encoding signal (up), the pseudo-random sequence (middle) and the resulted DSSS signal.
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where N is the total number of samples and Nbins is the number of
bins which contain at least one phase diagram entropy value. After
tests are performed, we found that the DSSS signal has an RSP >5%.
Thus, the combination of the phase diagram-based entropy and the
RSP parameter can be used to characterize the DSSS signal.

5.3 FHSS characterization

In the analysis of the FHSS signal, we start from generating the
25 bits pattern with each bit, having a duration of Tb � 1ms. Then,
we modulate the signal using a BPSK carrier with the following
parameters: A � 1, f � 100KHz and θ1,2 � 0, π{ }. After that, we
generate the six random frequency hops to form the spread signal.
This is how the FHSS signal is formed. In Figure 12 we can see the
data encoded signal, the BPSK modulated signal, the spread signal
with 6 frequencies and the FHSS signal.

As can be seen in Figure 13, depending on the frequency of the
signal we have a certain law of variation for the phase diagram
entropy, each law being different from the other. Also, through the
existence of more or less pronounced spikes, the transition from one
frequency to another is captured. These observations are valid both
in the noise free case and in the case of SNR � 5dB, as shown in
Figure 14.

In order to strengthen the recognition of the modulation with
the help of the phase diagram entropy, we also use the histogram to
be able to help us in the noisier cases. Analyzing the histograms in
Figure 15, we can see the tendency of the frequency of occurrence to
decrease, starting with the maximum bin based on an exponential
law with a subunit basis.

Thus, we define the percentage of decreasing values (PDV) as the
ratio between the frequency of occurrence of bins smaller than the
bin with the most entropy values and the total number of values as in
Eq. 21:

FIGURE 10
The DSSS signal and the phase diagram entropy variation for SNR → ∞ (left) and the DSSS signal and the phase diagram entropy variation for
SNR � 5dB.

FIGURE 11
DSSS signal phase diagram entropy histogram in the noise free case (left) and in the noisy case (right).
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PDV � 1
N

∑Nbins

i�binmax

size bini( ) (21)

where N is the total number of samples, binmax is the bin with the
most frequency of occurrence andNbins is the number of bins which
contain at least one phase diagram entropy value. After the tests
carrier out, we found out that in order for the analyzed signal to be
classified as FHSS, this parameter must be >75%. Thus, the
combination of the phase diagram-based entropy and the PDV
parameter can be used to characterize the FHSS signal.

5.4 Modulation recognition accuracy

Based on the previous section, the approach that exploits
the phase diagram-based entropy highlights unique
characteristics for each type of spread spectrum modulation.
Moreover, based on three statistical parameters derived from
the PDE variation histograms, each modulation can be
highlighted. Thus, Figure 16 presents the block diagram that
we use to classify the spread spectrum modulations in totally
blind conditions.

FIGURE 12
The data encoded signal, the BPSK modulated signal, the spread signal with 6 frequencies and the FHSS signal.

FIGURE 13
The FHSS signal and the phase diagram entropy variation for SNR → ∞.
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In order to see the accuracy of the proposed approach, we will
further see how the recognition algorithm behaves in the presence of
noise. Thus, in Figure 17 we see the recognition accuracy for the
three types of signals. The accuracy was calculated for a set of
100 synthetic signals from each type of modulation. In the process of
determining the accuracy, we used the algorithm described in the
block diagram, for each modulated signal, analyzing the variation of
the three statistical parameters extracted from the PDE. This
procedure was repeated for a wide range of SNRs to be able to
see the behavior of the algorithms in low SNR cases.

The three graphs highlight a high accuracy for positive SNR values.
For example, at SNR � 5dB the phase diagram entropy distribution for
CSS signal recognition has an accuracy of 86%, for DSSS it has an
accuracy of 90% and for FHSS signal 82%. To these accuracy values we
add the advantages of the data-driven processing method which can
highlight the particularities of each signal.

We turn our attention to some feature-based classic approaches
for signal recognition in order to be able to compare the classical
approaches with our proposal. We have as reference the spread
spectrum signals for SNR � 5dB. We start with a statistical

approach based on the normalized central moments (Madhavan
et al., 2013; Abu-Romoh et al., 2018) of the spread spectrum signals,
shown in Figure 18:

As can be seen, this approach does not present a desirable
procedure to be used because the information provided is not
sufficient to recognize the modulation. Most of the moments
have identical values for the three types of signals and cannot
offer even a possibility to recognize them. Also, the values of
these parameters do not highlight anything specific for each signal.

Another approach used in modulation recognition is that given
by the use of the wavelet transform (Li et al., 2019; Al-Makhlasawy
et al., 2021). Figure 19 shows the scalograms of the three signals, in
the determination of which a 10th order Daubechies wavelet
generator is used.

Analyzing the figure above, we notice that the analysis based on
the wavelet transform has as a disadvantage the existence of a large
number of representation scales and it is difficult to differentiate
between scalograms based on these representations. One piece of
information that we can quantify from these representations are the
detection curves, shown in Figure 20.

FIGURE 14
The FHSS signal and the phase diagram entropy variation for SNR � 5dB.

FIGURE 15
FHSS signal phase diagram entropy histogram in the noise free case (left) and in the noisy case (right).
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The detection curve of the CSS signal highlights the five pulses,
but for the other two signals, the information provided is not
relevant and does not highlight anything specific.

From the scalograms we can also extracts the detail
coefficients at the coarsest scale from the wavelet

decomposition (Park et al., 2008; Kumar et al., 2017) of the
three signals. Figure 21 shows these coefficients for three levels of
the signals.

The type of signal analyzed is too complicated to be
characterized with these coefficients. Only the CSS signal

FIGURE 16
The block diagram for the classification of spread spectrum modulations.

FIGURE 17
The recognition accuracy for the proposed approach for the spread spectrum signals.
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FIGURE 18
The first eight normalized central moments of the spread spectrum signals.

FIGURE 19
The scalograms of the three spread spectrum signals.

FIGURE 20
The detection curves using the scalograms of the three spread spectrum signals.
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shows some specific features in the detail coefficients of level
2 and 3, but the detail coefficients of the DSSS and FHSS signals
cannot help in the recognition process of these modulations.

To highlight the capabilities of our approach, we use these
two classic approaches as comparisons. The statistical approach
uses the eight normalized central moments of the spread
spectrum signals as features and the wavelet-based approach
uses the three detail coefficients from the wavelet
decomposition as features. Our approach consists in using
the set consisting of the three statistical parameters derived

from the PDE, namely, LSR, RSP and PDV as input for the ML
classifiers. We use five Machine Learning classifiers: Support
Vector Machine (SVM), Naïve Bayes (NB), k-Nearest
Neighbors (kNN), Decision Tree (DT) and Quadratic
Discriminant Analysis (QDA) in order to see which one is
more appropriate for our classification process. The accuracy
of the classification process is given by the confusion matrices
obtained for the three sets of features. A visual representation of
the input sets, the ML classifiers and the output is shown in
Figure 22.

FIGURE 21
The detail coefficients for CSS signal (left), DSSS signal (middle) and FHSS signal (right).

FIGURE 22
The illustration of the set of input features, the ML algorithms used and the output.
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The classification result using the five ML classifiers is shown in
Figure 23.

The phase diagram-based approach offers the best results,
with results over 90% depending on the classifier. The statistical
approach provides poor results in terms of accuracy. Due to the
fact that many of these moments are identical for the three classes
of signals, the maximum accuracy we obtain is 74.7% using Naïve
Bayes algorithm. The wavelet-based approach offers the worst
results in the classification process of spread spectrum
modulation. The maximum obtained for this approach is
72.3% using Support Vector Machine algorithm. The classical
analysis methods, although they offer weaker results than the
proposed method, have some advantages that can be used in
certain contexts. For example, the statistical approach is simple to
implement, it does not require the knowledge of additional
information about the analyzed signal and the computational
time related to this method is low. Also, the scalograms generated
by the wavelet transform can be used with Deep Learning
elements to increase the classification accuracy based on image
classification algorithms.

From the perspective of ML algorithms, their functionality
depends on the features used in the training process. Due to the
particularities highlighted by the phase diagram entropy, DT
offer a result of 93.5%, which is the highest, and kNN 90.2%,
which is the lowest. The best results are obtained with DT because
it is a non-parametric algorithm and it does not depend on
probability distribution assumptions, working well on high-
dimensional data. In addition, it uses a boosting algorithm to
increase the performance. The worst results are obtained with
kNN because kNN is a distance-based algorithm, this meaning
that the cost of calculating the distance between a new point and
each existing point is very high if we have a large dataset. That is
why it does not work well with a high number of dimensions. In
addition, kNN is a lazy algorithm and it does not have a training
process in which the accuracy can be optimized.

6 Conclusion

Using the phase diagram entropy as a new alternative for the
analysis of communication signals, we show the potential to extract
important information about the analyzed signals and identify the
type of modulations used, without prior knowledge. In this paper, we
study the behavior in noisy backgrounds, of the parameters
extracted from the spread spectrum signals using the phase
diagram-based entropy and we propose some statistical
parameters derived from the entropy distribution to recognize
the signals. This approach proved to be very useful for the
characterization and recognition of spread spectrum modulations
being able to highlight defining characteristics for each type of
modulation, which led to an accuracy higher than 90% in the
classification process.

Three classes of spread spectrum modulations found in many
commercial and military systems have been analyzed and
characterized. The modulation recognition capability of the
implemented algorithm is very high. Using this approach, we
were able to highlight hidden features, invisible to other classical
methods. We compared the proposed method with two feature-
based classical methods based on high order statistical moments and
wavelet transform. The results obtain using our approach exceed by
more than 15% the results obtained using these classical approaches.

In our future work, we are planning to analyze a larger class of
communication signals and study the capability of presented
approach for higher orders of modulation. The robustness to the
noise will be also addressed and we plan to refine our method to
work at much lower SNR.
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FIGURE 23
The classification accuracy using different approach and different classifiers.
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