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Wasserstein Dictionaries
of Persistence Diagrams

Keanu Sisouk, Julie Delon, Julien Tierny

Abstract—This paper presents a computational framework for the concise encoding of an ensemble of persistence diagrams, in the form
of weighted Wasserstein barycenters [100], [102] of a dictionary of atom diagrams. We introduce a multi-scale gradient descent approach
for the efficient resolution of the corresponding minimization problem, which interleaves the optimization of the barycenter weights with
the optimization of the atom diagrams. Our approach leverages the analytic expressions for the gradient of both sub-problems to ensure
fast iterations and it additionally exploits shared-memory parallelism. Extensive experiments on public ensembles demonstrate the
efficiency of our approach, with Wasserstein dictionary computations in the orders of minutes for the largest examples. We show the utility
of our contributions in two applications. First, we apply Wassserstein dictionaries to data reduction and reliably compress persistence
diagrams by concisely representing them with their weights in the dictionary. Second, we present a dimensionality reduction framework
based on a Wasserstein dictionary defined with a small number of atoms (typically three) and encode the dictionary as a low dimensional
simplex embedded in a visual space (typically in 2D). In both applications, quantitative experiments assess the relevance of our
framework. Finally, we provide a C++ implementation that can be used to reproduce our results.

Index Terms—Topological data analysis, ensemble data, persistence diagrams.

✦

1 INTRODUCTION

A S measurement devices and numerical techniques are becom-
ing more and more advanced, datasets are becoming more and

more complex geometrically. This geometrical complexity makes
interactive exploration and analysis difficult, which challenges the
interpretation of the data by the users. This motivates the creation
of expressive data abstractions, capable of encapsulating the main
features of interest of the data into simple representations, visually
conveying the main information to the user.

Topological Data Analysis (TDA) [29] is a family of techniques
which precisely addresses this issue. It provides concise topological
descriptors of the main structural features hidden in a dataset. The
relevance of TDA for analyzing scalar data, its efficiency and
robustness have been documented in a number of visualization
tasks [47]. Examples of successful applications include turbulent
combustion [16], [43], [56], material sciences [34], [45], [46], [94],
nuclear energy [61], fluid dynamics [51], [65], bioimaging [3], [13],
[20], chemistry [9], [38], [66], [67] or astrophysics [92], [95].

Among the different topological descriptors studied in TDA
(such as the merge and contour trees [2], [18], [19], [39], [59], [97],
the Reeb graph [11], [28], [40], [72], [73], [99] , or the Morse-
Smale complex [15], [26], [30], [31], [37], [44], [87], [91]), the
Persistence Diagram (Fig. 1) is a particularly prominent example.
As described in Sec. 2.1, it is a concise topological descriptor
which captures the main structural features in a dataset and which
assesses their individual importance.

In addition to the challenge of increased geometrical complexity
(discussed above), a new difficulty has recently emerged in
many applications, with the notion of ensemble dataset. These
representations describe a given phenomenon not only with a single
dataset, but with a collection of datasets, called ensemble members.
In that context, the topological analysis of an ensemble dataset
consequently results in an ensemble of corresponding topological
descriptors (e.g. one persistence diagram per ensemble member).

Then, a major challenge consists in developing practical tools
for such an ensemble of topological descriptors, to facilitate
its processing, analysis and visualization. Such tools include
compression approaches (to facilitate the manipulation of the
ensemble of descriptors) or visualization methods (for instance,
with planar layouts, where each point encodes a descriptor and the
distance between a pair of points encodes the intrinsic differences
between the corresponding descriptors).

To enable the above tools, a key research question deals with the
definition of a concise, yet informative, encoding of the ensemble
of descriptors. A promising research direction consists in defining
a dictionary (i.e. a set of reference descriptors, or atoms), such
that the topological descriptors of the ensemble can be concisely
encoded by expressing them as a specific function of the atoms
(e.g. a linear combination). At a technical level, this requires to
accurately capture and model the implicit relations (i.e. the possible
functions) which link the different descriptors of the ensemble.

A series of recent works started the exploration of this overall
direction, in particular with the notion of average topological
representation [55], [79], [100], [102], [106]. These techniques
can produce a topological descriptor which nicely summarizes
the ensemble. However, they do not capture the implicit relations
between the different topological descriptors.

This paper addresses this issue by introducing a simple and
efficient approach for the estimation of linear relations between
persistence diagrams on their associated Wasserstein metric space.
Inspired by previous work on histograms [90], our approach
provides a linear encoding of the input ensemble, where each
diagram is represented as a weighted Wasserstein barycenter [100],
[102] of a dictionary of automatically optimized diagrams called
atom diagrams. We introduce a novel multi-scale gradient descent
algorithm (Sec. 4) for the efficient resolution of the corresponding
minimization problem (Sec. 3), for which we interleave the opti-
mization of the barycenter weights (Sec. 3.2) with the optimization
of the atom diagrams (Sec. 3.3). Extensive experiments (Sec. 6) on
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public ensembles demonstrate the efficiency of our approach, with
Wasserstein dictionary computations in the orders of minutes for the
largest examples. We illustrate the relevance of our contributions
for the visual analysis of ensemble data with two applications, data
reduction (Sec. 5.1) and dimensionality reduction (Sec. 5.2).

1.1 Related Work

The literature related to our work can be classified into three main
classes: (i) uncertainty visualization, (ii) ensemble visualization,
and (iii) topological methods for ensembles.
(i) Uncertainty visualization: Data variability can be represented
in the form of uncertain datasets, by considering the data at each
point of the domain as a random variable, associated with an explicit
probability density function (PDF). The analysis and visualization
of uncertain data has been recognized as a major challenge in the
visualization community [1], [14], [49], [60], [71], [85]. Several
techniques have been proposed either dealing with the entropy of
the random variables [84], or their correlation [77] or gradient
variation [75]. The effect of data uncertainty on feature extraction
has also been studied (for instance for level set extraction [4],
[5], [76], [81]–[83], [89]), for various interpolation schemes and
PDF models (e.g. Gaussian [58], [69], [70], [74] or uniform [10],
[42], [96] distributions). In general, a central limitation of existing
methods for uncertain data is their design dependence on a specific
PDF model (Gaussian, uniform, etc). This challenges their usability
for ensemble data, where the PDFs estimated from the ensemble
can follow an arbitrary, unknown model. Moreover, most of these
techniques do not consider multi-modal PDFs, which are however
essential when multiple trends appear in the ensemble.
(ii) Ensemble visualization: Another approach to model data
variability consists in using ensemble datasets. In this context, the
variability is encoded by a sequence of empirical observations (i.e
the members of the ensemble). Established techniques typically
compute geometrical objects, such as level sets or streamlines,
thereby capturing the main features for each member of the
ensemble. From there, a representative of the resulting ensemble of
geometrical objects can be computed. For this task, a few methods
have been introduced. For instance spaghetti plots [27] are used in
the case of level-set variability, more particularly for weather data
[86], [88], and box-plots [62], [103] for the variability of contours
and curves. In the case of trend variability, Hummel et al. [48]
conceived a Lagrangian framework for classification purposes in
flow ensembles. More specifically, clustering techniques have been
used to identify the main trends in ensemble of streamlines [35] and
isocontours [36]. However, only few techniques have applied this
strategy to topological objects. Favelier et al. [33] and Athawale et
al. [6] respectively introduced techniques to analyze the geometrical
variability of critical points and gradient separatrices. Overlap-
based heuristics have been studied for estimating a representative
contour tree from an ensemble [53], [105]. In the context of
ensembles of histograms, Schmitz et al. [90] introduced a dictionary
encoding approach based on optimal transport [24]. However,
this method is not directly applicable to persistence diagrams. It
focuses on a fundamentally different object (histograms). Thus,
the employed distances, geodesics and barycenters are defined
differently (in particular in an entropic form [24], [25]) and the
algorithms for their computations are drastically different (based
on Sinkhorn matrix scaling [93]). In contrast, our work focuses on
Persistence diagrams (Sec. 2.1), whose associated metric space is
also inspired from optimal transport, but with various formal and

computational specificities (Sec. 2.2). Moreover, our approach is
based on gradient descent which, from our experience, provides
better practical convergence for this kind of problems than quasi-
Newton techniques. Finally, we contribute a multi-scale progressive
optimization algorithm, which provides improved solutions in
comparison to a naive optimization.
(iii) Topological methods for ensembles: To analyze the relations
between the persistence diagrams of an ensemble, several key
low level notions are required, such as the notion of distance
and barycenters between diagrams, for which we review the
literature here. Inspired by optimal transport [50], [63], the
Wasserstein distance between persistence diagrams [29] (Sec. 2.2)
has been extensively studied [22], [23]. It relies on a bipartite
assignment problem, for which exact [64] and approximate [8],
[52] implementations are available in open-source [98]. Based
on this distance, several approaches have explored the possibility
to define a representative diagram of an ensemble of persistence
diagrams, with the notion of Wasserstein barycenter. Turner et
al. [100] introduced the first approach for the computation of
such a barycenter. Lacombe et al. [55] presented an approach
based on entropic transport [24], [25]. However, it requires a
pre-vectorization step which is subject to several parameters, and
which is not conducive to visualization tasks (features can no
longer be individually tracked beyond the pre-vectorization step). In
contrast, Vidal et al. [102] introduced a vectorization-free approach
which maintains the feature assignments explicitly. It is based on
a progressive scheme, which greatly accelerates computation in
practice. These concepts have been recently investigated for other
topological descriptors, such as merge trees [79], [106]. Recently,
several authors have investigated another compact representation of
ensembles of topological descriptors, via a basis of representative
descriptors. For instance, Li et al. [57] introduce a vectorization
for merge trees, which was subsequently used by matrix sketching
procedures [104] to create a basis of representative merge trees.
In contrast, our work focuses on persistence diagrams (which
can encode different features). Also, it directly operates on the
Wasserstein metric space of persistence diagrams, thereby avoiding
the typical technical difficulties associated with vectorizations (e.g.
quantization and/or linearization artifacts, potential stability issues,
possible inaccuracies in vectorization reversal, etc.). Pont et al.
[80] introduced the notion of principal geodesic analysis of merge
trees (and persistence diagrams), with the same overall goal of
characterizing the relations between the topological descriptors of
an ensemble. In this work, we introduce a different formulation of
the problem, which is both simpler (based on the construction
of weighted Wasserstein barycenters) and more flexible (our
optimization is not subject to complicated constraints such as
geodesic orthogonality). This results in a simpler implementation
and slightly faster computations (Sec. 6).

1.2 Contributions

This paper makes the following new contributions:
1) A simple approach for the linear encoding of Persistence

Diagrams: We formulate the linear encoding of an ensemble
of persistence diagrams on their associated Wasserstein
metric space as a dictionary optimization (Sec. 3), which
simply optimizes, simultaneously, (i) the barycentric weights
(Sec. 3.2) and (ii) the atoms of the dictionary (Sec. 3.3).

2) A multi-scale algorithm for the computation of a Wasserstein
dictionary of Persistence Diagrams: We introduce a novel,
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Fig. 1. Persistence diagrams of a clean (left) and noisy (right) terrain
(dark blue spheres: minima, dark yellow: maxima, other: saddles). The
three main hills are clearly represented with long bars in the persistence
diagrams. In the noisy persistence diagram, small bars encode noise.

Fig. 2. Optimal matching (green dashes, right) with regard to W between
the two persistence diagrams (center) of two terrains (left).

efficient algorithm for the optimization of the above dictionary
encoding problem. Our algorithm leverages the analytic
expressions of the gradient of both of the above sub-problems,
to ensure fast iterations. Moreover, in comparison to a naive
optimization, our algorithm reaches solutions of improved
energy thanks to a multi-scale strategy. Finally, we leverage
shared-memory parallelism to further improve performances.

3) An application to data reduction: We present an application
to data reduction (Sec. 5.1), where the persistence diagrams
of the input ensemble are significantly compressed, by solely
storing their barycentric weights as well as the atom diagrams.

4) An application to dimensionality reduction: We present
an application to dimensionality reduction (Sec. 5.2), by
embedding each input diagram as a point within a 2D view,
based on its weights relative to a Wasserstein dictionary
composed of three atoms (thereby defining a 2-simplex).

5) Implementation: We provide a C++ implementation of our
algorithms that can be used for reproducibility purposes.

2 PRELIMINARIES

This section presents the theoretical elements needed for the
formalization of our work. We introduce the topological data
representation that we use - the persistence diagram (Sec. 2.1) -
and its associated metric (Sec. 2.2). Then we define the notion of
Wasserstein barycenter of persistence diagrams (Sec. 2.3), which is
a core component of our approach (Sec. 3).

2.1 Persistence diagrams
Each input ensemble member is given in the form of a piecewise
linear (PL) scalar field f : M →R defined on a PL (dM )-manifold
M , with dM ≤ 3 for our applications. Given an isovalue w ∈ R,
we denote f−1

−∞(w) = f−1
(
(−∞,w]

)
the sub-level set of f at w. As

Fig. 3. Wasserstein barycenter (cyan, uniform weights) of 3 persistence
diagrams (center) of 3 terrains (left). Each barycenter point (cyan sphere)
is the barycenter of its matched points in the inputs (cyan triangle).

w increases, the topology of f−1
−∞ changes at specific points of M ,

called “critical points”. Critical points are classified by their index
I : 0 for minima, 1 for 1-saddles, dM −1 for (dM −1)-saddles,
and dM for maxima (in practice, f is enforced to contain only
isolated, non-degenerate critical points [31], [32]). According to
the Elder rule [29], each topological feature of f−1

−∞(w) (e.g. a
connected component, a cycle, a void) can be associated with a
pair of critical points (c,c′) (with f (c)< f (c′) and Ic = Ic′ −1),
corresponding to its birth and death during the sweep of the data by
w (from −∞ to +∞). Such a pair (c,c′) is called a persistence pair.
For instance, when two connected components of f−1

−∞(w) meet
at a critical point c′, the younger one (created last) dies, letting
the oldest one (created first) survive. Then, the critical points are
represented visually as 2D bar codes where the horizontal axis
encodes the birth of a feature

(
noted b = f (c)

)
and where the

vertical axis encodes its lifespan and death
(
noted d = f (c′)

)
. This

representation is called the Persistence Diagram, noted X . In the
diagram, salient features stand out from the diagonal and small-
amplitude noise is typically located near the diagonal, as shown in
Fig. 1. In the remainder, we enumerate the points of X with indices
such that X = {x1, . . . ,xK} and we note iX = {1, . . . ,K} the set of
indices (i.e. the set of all integers going from 1 to K) .

2.2 Wasserstein distance
To evaluate the distance between two diagrams, a typical pre-
processing step consists in augmenting each diagram, by including
the diagonal projection of all the off-diagonal points of the other
diagram. To illustrate that, let us consider X1 = {x1

1, . . . ,x
K1
1 } and

X2 = {x1
2, . . . ,x

K2
2 }. Given an off-diagonal point x (i.e. b < d), let

∆x be its diagonal projection, specifically: ∆x = ( b+d
2 , b+d

2 ). Let P1
and P2 be the sets of the diagonal projections of the points of X1
and X2 respectively. Then, X1 and X2 are augmented into X1

′ and
X2

′ by considering X1
′ = X1 ∪P2 and X2

′ = X2 ∪P1. This ensures
that |X ′

1|= |X ′
2|= K (which eases distance evaluation). Specifically,

we consider in the remainder that the notations X1 and X2 refer to
augmented diagrams (i.e. |X1|= |X2|= K).

Then, given two persistence diagrams X1 and X2 the L2-
Wasserstein distance between them is defined as:

W (X1,X2) = min
ψ:iX

bi j−→iX

√√√√ K

∑
j=1

c(x j
1,x

ψ( j)
2 ), (1)

where ψ , the matching, is a bijection of the index set iX towards
itself (i.e. ψ is a permutation of iX ). This bijection matches one
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persistence pair x1 of X1 (i.e. a pair of critical points of index I
and I +1 respectively) to one persistence pair x2 in X2 (another
pair of critical points, with the same indices I and I +1) whether
x1 and x2 are on the diagonal or not (Fig. 2). Given the cost c in
the definition of W , ψ is the optimal way to transport X1 onto X2.
In our work, we consider the cost c(x,y) = 0 when x and y are both
diagonal points, and c(x,y) = ∥x− y∥2 otherwise (∥x− y∥ denotes
the Euclidean distance between x and y in the birth/death space).

2.3 Wasserstein barycenter
Given a set of persistence diagrams D = {a1, . . . ,am} (which we
will call in the remainder dictionary), a Wasserstein barycenter
(Fig. 3) – or Fréchet mean – of the dictionary D with barycentric
weights λλλ = (λ1, . . . ,λm) is a diagram, which we note Y (λλλ ,D) in
the following, which minimizes the Fréchet energy EF(B):

EF(B) =
m

∑
i=1

λiW 2(ai,B).

λλλ is such that λi ≥ 0 and
m

∑
i=1

λi = 1. We denote Σm the simplex of

such vectors. Intuitively, Y (λλλ ,D) is a diagram which minimizes
the above linear combination, given λλλ , of its squared Wasserstein
distances to the diagrams of the dictionary D .

The computation of the barycenter Y (λλλ ,D) requires generaliz-
ing the pairwise augmentation described in Sec. 2.2. Specifically,
each non-diagonal point of each dictionary diagram ai is projected
to the diagonal of all the other dictionary diagrams a j (with
i ̸= j). After this first augmentation, each dictionary diagram ai
contains K = ∑

m
i=1 |ai| points (where |ai| is the number of non-

diagonal points in ai). Then Y (λλλ ,D) is typically initialized on
the dictionary diagram a∗ which initially minimizes the Fréchet
energy EF . Let |Y (λλλ ,D)| = |a∗| be the number of non-diagonal
points of a∗. Then, all the non-diagonal points of all the atoms
are projected on the diagonal of Y (λλλ ,D), and reciprocally, all the
non-diagonal points of Y (λλλ ,D) are projected on the diagonal of
each atom. Thus, at this stage, after this second augmentation,
each dictionary diagram ai and the candidate barycenter Y (λλλ ,D)
contains K = ∑

m
i=1 |ai|+ |Y (λλλ ,D)| points (mostly on the diagonal).

Next, we optimize Y (λλλ ,D) in practice with the approach by
Vidal et al. [102], which provides a time-efficient approximation
of the original algorithm by Turner et al. [100]. Similar to
Turner et al., it is based on an iterative optimization, where each
iteration includes an Assignment step, followed by an Update step.
Specifically, the Assignment step computes the optimal assignments
ψi between the candidate Y (λλλ ,D) and each dictionary diagram
ai. Next, the Update step minimizes the Fréchet energy EF under
the current assignments ψi. Since the L2-Wasserstein distance
considers the Euclidean distance as a cost function (Sec. 2.2), this
minimization is achieved by simply placing each point of Y (λλλ ,D)
at the arithmetic mean in the birth/death space of its assigned
points in the dictionary diagrams. This can be done since the
arithmetic mean minimizes the Fréchet energy defined respectively
to Euclidean distances (more sophisticated Update procedures, e.g.
based on an optimization routine, would need to be derived for
other distances in the birth/death space). After this Update step, the
subsequent Assignment further improves the assignments ψi, hence
decreasing the Fréchet energy constructively at each iteration.

The approach by Vidal et al. [102] revisits this framework by
integrating tailored approximations throughout the computation.
Specifically, it approximates the optimal assignments ψi with the

fast Auction optimization [8] (instead of the traditional, yet pro-
hibitive, Munkres algorithm [64]). Further, it improves performance
with a mechanism called price memorization, which enables the
initialization of the Auction optimization with the assignments
ψi computed in the previous Assignment step. This allows the
barycenter optimization to resume the assignment optimization
instead of re-computing it from scratch at each iteration. This
approach also includes a strategy for the adaptive increase of the
accuracy parameter of the Auction optimization, allowing for fast
assignments in the early iterations of the barycenter algorithm, and
slower but more accurate assignments towards its convergence.

3 WASSERSTEIN DICTIONARY ENCODING

This section formalizes our approach for the Wasserstein dictionary
encoding of an ensemble of persistence diagrams. Sec. 3.1 provides
an overview of our approach, which interleaves barycentric weight
optimization (λλλ ) with atom optimization (D). Finally, Secs. 3.2
and 3.3 detail the gradient estimation for both sub-problems.

3.1 Overview
Let {X1, . . . ,XN} be the input ensemble of N persistence diagrams.
The goal of our approach is to jointly optimize two sub-problems:

• Optimize a set D of m reference persistence diagrams, called
the atoms of the Wasserstein dictionary D ;

• Optimize for each input diagram Xn a vector of m barycentric
weights λλλ n ∈ Σm, in order to accurately approximate Xn with
a Wasserstein barycenter Y (λλλ n,D) (Sec. 2.3).

This can be formalized as a joint optimization, where one
wishes to find the optimal barycentric weights Λ∗ = λλλ

∗
1, . . . ,λλλ

∗
N

and the optimal Wasserstein dictionary D∗ = {a∗1, . . . ,a
∗
m} (with

m ≪ N), in order to minimize the following dictionary energy:

ED(Λ,D) =
N

∑
n=1

W 2(Y (λλλ n,D),Xn
)
. (2)

Our overall strategy for optimizing Eq. 2 consists in iteratively
interleaving two sub-optimizations:

1) For a fixed dictionary D , the set of barycentric weights Λ is
optimized with one step of gradient descent (Sec. 3.2);

2) For a fixed set of barycentric weights Λ, the dictionary D is
optimized with one step of gradient descent (Sec. 3.3).

Then, this sequence of two sub-procedures is iterated until a pre-
defined stopping condition is reached (Sec. 4.2).

Finally, the output of our approach is the optimized Wasserstein
dictionary D∗ (a set of m atom diagrams) and, for each input
diagram Xn, a vector of weights λλλ

∗
n ∈ Σm, which can be interpreted

as the barycentric coordinates of Xn in D∗ (thus capturing linear
relations between the input diagrams on the Wasserstein dictionary).

3.2 Weight optimization
This section details the optimization of the barycentric weights
Λ = λλλ 1, . . . ,λλλ N . Let D = {a1, . . . ,am} be a fixed dictionary of
atom diagrams, with m > 0. Let X be a diagram of the input
ensemble. For a given set of weights λλλ =

(
λ1, . . . ,λm

)
, let Y (λλλ ) ={

y1(λλλ ), . . . ,yK(λλλ )
}

be its barycentric approximation, relative to
D (i.e. each point y j(λλλ ) of Y (λλλ ) approximates a point in X).

We recall that after augmentation (Sec. 2.3), Y (λλλ ) and the atoms
contain ∑

m
i=1 |ai|+ |Y (λλλ )| points each, where |ai| and |Y (λλλ )| denote

the number of non-diagonal points in ai and Y (λλλ ) respectively.
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Fig. 4. Optimizing the weights of the barycenter Y (λλλ ) (cyan diagram) to
improve its approximation of X (grey diagram), given a fixed Wasserstein
dictionary D of 3 atoms (dark blue, yellow, green). At a given iteration t
(center), a step ρλλλ is made along the gradient of the weight energy EW
(cyan arrows), resulting in an improved estimation at iteration t +1 (right).

Then, in order to compare it to X , Y (λλλ ) is further augmented
by projecting on its diagonal the |X | non-diagonal points of X .
Then, at this stage, the size K of Y (λλλ ) is given by K = ∑

m
i=1 |ai|+

|Y (λλλ )|+ |X |. We augment similarly X (i.e. by projecting the non-
diagonal points of Y (λλλ ) to its diagonal) and the m atoms (i.e. by
projecting the non-diagonal points of X to their diagonals). Then,
at this point, Y (λλλ ), X , and the m atoms ai all have the same size
K = ∑

m
i=1 |ai|+ |Y (λλλ )|+ |X |.

In this section, we describe a gradient descent on λλλ to minimize
the weight energy:

EW (λλλ ) =W 2(Y (λλλ ),X). (3)

A step of the corresponding gradient descent is illustrated in Fig. 4.
Given the set of optimal matchings φ1, . . . ,φm between Y (λλλ )

and the m atoms, the jth point of Y (λλλ ), noted y j(λλλ ), is given by:

∀ j ∈ {1, . . . ,K}, y j(λλλ ) =
m

∑
i=1

λia
φi( j)
i . (4)

In other words, the jth point y j(λλλ ) of the diagram Y (λλλ ) is
a linear combination (with the weights λλλ ) of the m points it
matches to in the atoms (one point per atom ai), under the optimal
assignments φi (i.e. minimizing Eq. 1).

For a fixed set of assignments φ1, . . . ,φm, the Wasserstein
distance (Eq. 1) between X and its approximation Y (λλλ ) is then:

EW (λλλ ) =W 2(Y (λλλ ),X)= K

∑
j=1

c
(
y j(λλλ ),xψ( j)),

where ψ denotes the optimal assignment (Eq. 1) between X and its
approximation Y (λλλ ). When y j(λλλ ) and xψ( j) are not both diagonal
points, the cost c

(
y j(λλλ ),xψ( j)

)
is given by their squared Euclidean

distance in the birth/death space (it is zero otherwise, see Sec. 2.2).
Then, by exploiting Eq. 4, EW (λλλ ) can be re-written as:

EW (λλλ ) =W 2(Y (λλλ ),X) =
K

∑
j=1

∥y j(λλλ )− xψ( j)∥2

=
K

∑
j=1

∥
( m

∑
i=1

λia
φi( j)
i

)
− xψ( j)∥2.

Since
m
∑

i=1
λi = 1, EW (λλλ ) can finally be re-written as:

EW (λλλ ) =W 2(Y (λλλ ),X)= K

∑
j=1

∥
m

∑
i=1

λi(a
φi( j)
i − xψ( j))∥2. (5)

Fig. 5. Optimizing the atoms of the Wasserstein dictionary D (dark blue,
yellow and green diagrams). At a given iteration t (center), a step ρD

is made along the gradient of the pointwise atom energy eA (arrows on
each triangle), resulting in a dictionary (right) that enables an improved
barycentric approximation (Y (D), cyan) of the input diagram X (grey).

Intuitively, this energy measures the error (in terms of Wasser-
stein distance) induced by approximating the input diagram X
with its barycentric approximation Y (λλλ ). In Eq. 5, it is computed
for each jth point y j(λλλ ) of the diagram Y (λλλ ), by considering the
birth/death distances between the points y j(λλλ ) maps to, in the
atoms on one hand and in the input diagram X on the other.

Then, by applying the chain rule on Eq. 5, the gradient of the
weight energy (Eq. 3) is given by:

∇EW (λλλ ) = 2
m

∑
i=1

K

∑
j=1


(aφ1( j)

1 − xψ( j))T

...
(aφm( j)

m − xψ( j))T

(λi(a
φi( j)
i − xψ( j))

)
. (6)

Now that the gradient of the weight energy is available (Eq. 6),
we can proceed to gradient descent. Specifically, the barycentric
weights at the iteration t +1 (noted λλλ

t+1) are obtained by a step
ρλλλ from the weights at the iteration t (noted λλλ

t ) along the gradient:

λλλ
t+1 = ΠΣm

(
λλλ

t −ρλλλ ∇EW (λλλ t)
)
, (7)

where ΠΣm is the projection onto the simplex of admissible
barycentric weights (i.e. positive and summing to 1, c.f. Sec. 2.3).
Since ∇EW is L-Lipschitz (see the computation details in Appendix
A), a gradient step will guarantee an energy decrease as long as:

ρλλλ ≤

2
K

∑
j=1

∥∥∥∥∥∥∥∥
(aφ1( j)

1 − xψ( j))T

...
(aφm( j)

m − xψ( j))T

∥∥∥∥∥∥∥∥
2

−1

<
1
L
.

Overall, for a given input diagram X , each iteration t of gradient
descent for the optimization of EW consists in the following steps:

1) Computing the Wasserstein barycenter Y (λλλ t) (Sec. 2.3);
2) Computing the Wasserstein distance W 2

(
Y (λλλ t),X

)
(Eq. 3);

3) Estimating the gradient ∇EW (λλλ ) (Eq. 6);
4) Applying one step ρλλλ of gradient descent (Eq. 7).

3.3 Atom optimization
This section details the optimization of the atoms of the dictionary
D = {a1, . . . ,am}. Similarly to Sec. 3.2, let X be a diagram of the
input ensemble and let λλλ ∈ Σm be its – fixed – vector of barycentric
weights. For a given dictionary D , let Y (D) =

{
y1(D), . . . ,yK(D)

}
be the barycentric approximation of X , relative to λλλ . In this section,
we describe a step of gradient descent on D to minimize the
following atom energy:

EA(D) =W 2(Y (D),X
)
.



6

A step of the corresponding gradient descent is illustrated in Fig. 5.

Given the set of optimal matchings φ1, . . . ,φm between Y (D)
and the m atoms, the jth point of Y (D), noted y j(D), is given by:

∀ j ∈ {1, . . . ,K}, y j(D) =
m

∑
i=1

λia
φi( j)
i .

This expression is identical to Eq. 4 (Sec. 3.2). However, y j now
depends on D , which is the variable of the current optimization.
Then, the gradient of y j(D) with regard to D is simply given by:

∇y j(D) =
[
λ1 · · · λm

]T
. (8)

For a fixed set of assignments φ1, . . . ,φm, the Wasserstein
distance (Eq. 1) between X and its approximation Y (λλλ ) is then:

EA(D) =W 2(Y (D),X
)
=

K

∑
j=1

c
(
y j(D),xψ( j)),

where ψ( j) denotes the optimal assignment between X and its
barycentric approximation Y (D). Similarly to Eq. 5 (Sec. 3.2), the
above equation can be re-written as:

EA(D) =W 2(Y (D),X
)
=

K

∑
j=1

∥
m

∑
i=1

λi(a
φi( j)
i − xψ( j))∥2.

Let D j = [aφ1( j)
1 , . . . ,aφm( j)

m ]T be the (m×2)-matrix formed by
the atom points matching to a given point y j(D) of Y (D), via the
fixed assignments φ1, . . . ,φm. Specifically, the ith line of this matrix
refers to the point aφi( j)

i in the atom ai where y j(D) maps to (via
the optimal assignment φi). For this line, the two columns of the
matrix encode the birth/death coordinates of the point aφi( j)

i . Then,
the pointwise atom energy of y j(D), noted eA(D

j), is given by:

eA(D
j) =

∥∥∥∥∥ m

∑
i=1

λi(a
φi( j)
i − xψ( j))

∥∥∥∥∥
2

. (9)

Then, by applying the chain rule on Eq. 9 (using Eq. 8), the
gradient of the pointwise atom energy is given by:

∇eA(D
j) = 2

[
λ1 · · · λm

]T ( m

∑
i=1

λi(a
φi( j)
i − xψ( j))T ). (10)

Now that the gradient of the pointwise atom energy is available
(Eq. 10), we can proceed to a step of gradient descent. Specifically,
the matrix of atom points matched to y j(D) at the iteration t +1
(noted D j

t+1) is obtained by a step ρD from the same matrix at the
iteration t (noted D j

t ) along the gradient:

D j
t+1 = ΠX

(
D j

t −ρD∇eA(D
j

t )
)
, (11)

where ΠX projects each atom point to an admissible region of the
2D birth/death space (i.e. above the diagonal and within the global
scalar field range). Since ∇eA is L-Lipschitz (see the computation
details in Appendix B), a gradient step will guarantee an energy
decrease as long as: ρD < (4m)−1 < L−1.

Note that, in order to control the final size Sm of the dictionary
D , after each iteration of atom optimization, each atom ai is
thresholded by removing its K = (mK − Sm)/m least persistent
points (at the subsequent optimization iteration, all diagrams will
be re-augmented again in a pre-preprocess, as detailed in Sec. 3.2).

Overall, for a given input diagram X , each iteration t of gradient
descent for the optimization of EA consists in the following steps:

Fig. 6. Illustration of our initialization strategy on a toy 2D point set (top
left). First, the entries of the distance matrix of the input (middle) are
summed on a per-line basis. The line maximizing this sum (cyan), noted
l1, identifies the first atom, noted a1, as the point which is the furthest
away from all the others (cyan sphere, top right). Next, the atom a2 (grey
sphere, top right) is selected as the point which maximizes its distance to
a1. At this point, the line l2 (grey, corresponding to the point a2) is added
to the line l1, to encode the distances to these two atoms (a1 and a2).
Then, the point a3 is selected as the maximizer of l1 + l2: it is the point
which is the furthest away from all the previously selected atoms. Then,
the corresponding line, l3, is added to l1 + l2 and the process is iterated
until the target number of atoms has been achieved.

1) Computing the Wasserstein barycenter Y (Dt) (Sec. 2.3);
2) Computing the Wasserstein distance W 2

(
Y (Dt),X

)
(Eq. 3);

3) For each point y j(D) of Y (D):
a) Estimating the gradient ∇eA(D

j) (Eq. 10);
b) Applying one step ρD of gradient descent on D j (Eq. 11);

4) Remove the K least persistent points from each atom ai.

4 ALGORITHM

This section presents our overall algorithm for the resolution of the
optimization formulated in Sec. 3. Sec. 4.1 details our initialization
strategy. Our overall multi-scale scheme is presented in Sec. 4.2.
Finally, shared-memory parallelism is discussed in Sec. 4.3.

4.1 Initialization
Our strategy for the initialization of the Wasserstein dictionary
D , illustrated in Fig. 6, is inspired by the celebrated k-means++
strategy [21]. Specifically, we iteratively select the m atoms among
the N input diagrams. At the first iteration, we select as first atom
the diagram which maximizes the sum of its Wasserstein distances
(Eq. 1) to all the input diagrams (cyan point in Fig. 6). Next, each
iteration selects as the next atom the diagram which maximizes
the sum of its Wasserstein distances to all the previously selected
atoms. This process stops when the desired number of atoms, m,
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Fig. 7. Multi-resolution representation of an input persistence diagram
(taken from the Isabel ensemble). At a given resolution (from left to right),
only the persistence pairs above a given persistence threshold (red dash
line) are considered in the optimization.

has been selected. As illustrated in Fig. 6 in the case of a toy 2D
point set, this initialization strategy has the nice property that it
tends to select atoms on the convex hull of the input point set,
which ensures that the non-atom points can indeed be expressed
as a convex combination of the atoms, hence leading to accurate
initial barycentric approximations. As for the barycentric weights,
these are uniformly initialized (i.e. to 1/m).

4.2 Multi-scale optimization algorithm

In real-life data, persistence diagrams tend to contain many low-
persistence features, which essentially encode the noise in the
data (see Fig. 1, right). In this section, we present a multi-scale
optimization strategy which addresses this issue by prioritizing
the optimization on the most persistent pairs, which correspond to
the most salient features of the data. As detailed in Sec. 6.2, this
strategy leads the optimization to solutions of improved energy in
comparison to a naive (non-multi-scale) approach.

Our multi-scale strategy consists in iterating our optimization
procedure by progressively increasing the resolution (in terms
of persistence) of the input diagrams. This is inspired by the
progressive strategy by Vidal et al. [102] for the problem of
Wasserstein barycenter optimization. Specifically, given an input
diagram X , let ∆ f be the span in scalar values in the corresponding
ensemble member f (i.e. ∆ f = maxv∈M f (v)− minv∈M f (v)).
Given a threshold τ ∈ [0,1], we note Xτ = {x ∈ X | dx −bx ≥ τ∆ f}
the version of X at resolution τ . It is a subset of X which contains
persistence pairs whose relative persistence is above τ . Note
that the input diagrams are not normalized by persistence, which
would prevent the capture of variability in data ranges within the
ensemble. Instead, we normalize the above persistence threshold,
by expressing it as a fraction τ ∈ [0,1] of the scalar field range ∆ f .

Then, our multi-scale optimization will first consider the
input diagrams at a resolution τ0 and then will progressively
consider finer resolutions τ1, . . . ,τr until the full diagrams are
considered at τr = 0. This multi-resolution strategy, based on a
per-diagram normalized persistence threshold (τ ∈ [0,1]) prevents
diagrams from being empty in the early resolutions in case
of large variations in data range within the ensemble (which
would occur for instance with a per-ensemble normalization).
The multi-resolution is illustrated in Fig. 7. In our experiments,
we set τ0 = 0.2 and decrease τ by 0.05 at each resolution (i.e.
τ1 = 0.15,τ2 = 0.10,τ3 = 0.05,τ4 = 0). At each resolution, the
solution for the previous resolution is used as an initialization.
Note that alternative strategies were considered for decreasing τ

(for instance by dividing it by 2 at each resolution), but the best
experimental results were obtained for the above decrease strategy.

Algorithm 1: Multi-scale Wasserstein Dictionary Optimization.

Input: Set of persistence diagrams {X1, . . . ,XN};
Output 1: Wasserstein Dictionary D∗;
Output 2: Barycentric weights λλλ

∗
1, . . . ,λλλ

∗
N ;

for τ ∈ {τ0, . . . ,τr} do
if τ == τ0 then

Initialization (Sec. 4.1);
end
while ED (Eq. 2) decreases do

for n ∈ {1, . . . ,N} do
Perform a gradient step ρλλλ n along ∇EW relative to Xn (Sec. 3.2);

end
for n ∈ {1, . . . ,N} do

Perform a gradient step ρD along ∇EA relative to Xn (Sec. 3.3);
end

end
end

Alg. 1 summarizes our overall approach. For each sub-
optimization (i.e. weight and atom optimization), although each
gradient step is guaranteed to decrease the corresponding energy
(see the end of Secs. Sec. 3.2 and Sec. 3.3), this is only true
for fixed assignments (between a diagram X and its barycentric
approximation as well as between the barycentric approximation
and the atoms). Since the assignments can change along the
iterations of the optimization, the overall energy ED (Eq. 2)
may increase between consecutive iterations. Hence, pragmatic
stopping conditions need to be considered. In practice, if ED has
not decreased for more than 10 iterations, we return the solutions
λλλ
∗ and D∗ reached by the optimization with the lowest energy ED.

4.3 Parallelism
Our approach can be trivially parallelized with shared-memory
parallelism. First, its most computationally demanding task, the N
barycentric approximations of the input diagrams can be computed
independently. Thus, for each barycentric approximation, we use
one parallel task per input diagram. Next, the estimation of the
gradient of EW (Sec. 3.2) is done on a per input diagram basis,
independently. Thus, we use one parallel task per input diagram.
Regarding the estimation of the gradient of EA (Sec. 3.3), given a
barycentric approximation Y (D) of an input diagram X , each of
its points y j(D) defines independently a pointwise version of the
gradient of the atom energy (see the last paragraph of Sec. 3.3).
Thus, we use one parallel task per point y j(D) of a barycentric
approximation Y (D) of an input diagram X .

5 APPLICATIONS

This section illustrates the utility of our approach in concrete
visualization tasks: data reduction and dimensionality reduction.

5.1 Data reduction
Like any data representation, persistence diagrams can benefit from
lossy compression. This can be useful in in-situ [7] use-cases, where
time-steps are represented on permanent storage with topological
signatures [17]. In such scenarios, lossy compression is useful to
facilitate the manipulation (i.e. storage and transfer) of the resulting
ensemble of persistence diagrams. We present now an application
to data reduction where the input ensemble of persistence diagrams
is compressed, by only storing to disk:
(i) the Wasserstein dictionary of persistence diagrams D∗ and
(ii) the N barycentric weights λλλ

∗
1, . . . ,λλλ

∗
N .

The compression quality can be controlled with two input
parameters (i) the number of atoms m and (ii) the maximum Sm
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Fig. 8. Visual comparison (left) between the input persistence diagrams (top insets, saddle-maximum persistence pairs only) and our compressed
diagrams (bottom insets, Sec. 5.1, saddle-maximum persistence pairs only) for three members of the Isabel ensemble (one member per ground-truth
class). For each member, the sphere color encodes the matching between the input and the compressed diagrams (for the meaningful persistence
pairs, above 10% of the function range). This visual comparison shows that the main features of the diagrams (encoding the main hurricane wind
gusts in the data) are well preserved by the data reduction, especially for the members coming from the cluster 2, for which a lower relative
reconstruction error (Err ) can be observed. The planar overview of the ensemble (right) generated by our dimensionality reduction (Sec. 5.2) enables
the visualization of the relations between the different diagrams of the ensemble. Specifically, this illustration shows a larger disparity for two clusters.

Fig. 9. Visual comparison (left) between the input persistence diagrams (top insets) and our compressed diagrams (bottom insets, Sec. 5.1) for
four members of the Ionization front (3D) ensemble (one member per ground-truth class). The color encoding is the same as in Fig. 8. This visual
comparison shows that the main features of the diagrams (the extremities of the ionization front) are well preserved by the data reduction, especially
for the members coming from the clusters 2 and 3, for which a lower reconstruction error (Err ) can be observed. The planar overview of the
ensemble (right) generated by our dimensionality reduction (Sec. 5.2) enables the visualization of the relations between the diagrams of the ensemble.
Specifically, it shows a larger disparity for the clusters 0 and 1 (spread out purple and pink spheres), which are also the most difficult to reconstruct.

of the total size of the atoms (i.e. ∑
m
i=1 |ai|). The reconstruction

error (given by the energy ED, Eq. 2.) will be minimized for large
values of both parameters, while the compression factor will be
maximized for low values. In our data reduction experiments, we
set the number of atoms m to the number of ground-truth classes
of each ensemble, as documented in the ensemble descriptions
[79]. Moreover, we set Sm to c−1

f ∑
N
i=1 |Xn|, where c f is a target

compression factor and |Xn| is the number of non-diagonal points
in the input diagram Xn (see Sec. 6.2 for a quantitative evaluation).

Fig. 8 (left) provides a visual comparison between the diagram
compressed with this strategy (bottom insets) and the original
diagram (top insets), for three members of the Isabel ensemble. This
experiment shows that diagrams can be significantly compressed
(c f = 5.49), while still faithfully encoding the main features of
the data. Fig. 9 (left) provides a similar visual comparison for the
Ionization front (3D) ensemble (c f = 2.9).

We have applied our data reduction approach to topological
clustering [102], where the main trends within the ensemble are

identified by clustering the ensemble members based on their
persistence diagrams. For the large majority of our test ensembles,
the outcome of the clustering algorithm [102] was identical when
used with the input diagrams or our compressed diagrams (Sec. 6.3
documents a counter-example). This confirms the viability and
utility of our data reduction scheme.

5.2 Dimensionality reduction
Our framework can also be used to generate low-dimensional
layouts of the ensemble, for its global visual inspection. Specifically,
we generate 2D planar layouts by using m = 3 atoms and by
embedding our Wasserstein dictionary D∗ as a triangle in the plane,
such that its edge lengths are equal to the Wasserstein distances
between the corresponding atoms. Next, each diagram X of the
input ensemble is embedded as a point in this triangle by using its
barycentric weights λλλ

∗ as barycentric coordinates.
As illustrated in Figs. 8 (right) and 9 (right), our dimensionality

reduction provides a planar overview of the ensemble which groups
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together diagrams which are close in terms of Wasserstein distances.
Specifically, in both examples, the ground-truth classification of the
ensemble is visually respected: the points of a given class (same
color) indeed form a distinct cluster in the planar view.

6 RESULTS

This section presents experimental results obtained on a computer
with two Xeon CPUs (3.2 GHz, 2x10 cores, 96GB of RAM). The
input persistence diagrams were computed with the Discrete Morse
Sandwich algorithm [41]. We implemented our approach in C++
(with OpenMP), as modules for TTK [98], [12]. Experiments were
ran on the benchmark of public ensembles [78] described in [79],
which includes simulated and acquired 2D and 3D ensembles from
previous work and past SciVis contests [68]. The considered type
of persistence pairs (i.e. the index of the corresponding critical
points, Sec. 2.1) was selected on a per-ensemble basis, depending
on the features of interest present in the ensemble. All types of
pairs (i.e. minimum-saddle pairs, saddle-saddle pairs and saddle-
maximum pairs) were considered for the following ensembles:
Cloud processes, Isabel, Starting Vortex, Sea Surface Height,
Vortex Street. Only the persistence pairs including extrema were
considered for the ensembles Ionization front (2D) and Ionization
front (3D). Finally, only the persistence pairs containing maxima
were considered for the remaining ensembles: Asteroid Impact,
Dark Matter, Earthquake, Viscous Fingering, Volcanic Eruptions.

6.1 Time performance
The most computationally expensive part of our approach is the
computation of the N Wasserstein barycenters, for which we use
the algorithm by Vidal et al. [102]. Each iteration of barycenter
optimization approximatively requires O(mK2) steps in practice
(where K is the size of the augmented diagrams, cf. Sec. 2.2). As
discussed in Sec. 4.3, each barycenter is computed in parallel. The
evaluations of the gradient of the weight energy (Sec. 3.2) and the
atom energy (Sec. 3.3) both require O(NmK) steps. As described
in Secs. 3.2 and 3.3, both evaluations can be run in parallel.

Tab. 1 evaluates the practical time performance of our multi-
scale algorithm for the optimization of the Wasserstein dictionary.
In sequential, the runtime is roughly a function of the number
of input diagrams (N) as well as their average size (|X |). The
parallelization of our algorithm (with 20 cores) induces a significant
speedup (up to 18 for the largest ensembles), resulting in an average
computation time below 5 minutes, which we consider to be an
acceptable pre-processing time, prior to interactive exploration.
In comparison to the principal geodesic analysis of persistence
diagrams (Tab. 1 of [80]), on a per ensemble basis, our approach is
1.56 times faster on average (on the same hardware).

6.2 Framework quality
Tab. 2 reports compression factors and average relative reconstruc-
tion errors for our application to data reduction (Sec. 5.1). For
each ensemble, the compression factor is the ratio between the
storage size of the input diagrams and that of the Wasserstein
dictionary D∗ (the m atoms, of average size |a|, plus the N
sets of barycentric weights). The relative reconstruction error
is obtained by considering the Wasserstein distance between an
input diagram and its barycentric approximation, divided by the
maximum pairwise Wasserstein distance observed in the input
ensemble. Then this relative reconstruction error is averaged over all

TABLE 1
Running times (in seconds) of our multi-scale algorithm (1 and 20 cores).

Dataset N |X | 1 core 20 cores Speedup
Asteroid Impact (3D) 20 220 259 35 7.50
Dark matter (3D) 40 216 1,323 188 7.04
Earthquake (3D) 12 97 113 92 1.23
Ionization front (3D) 16 757 4,230 595 7.11
Isabel (3D) 12 1,310 1,609 270 5.96
Viscous Fingering (3D) 15 158 252 49 5.14
Cloud processes (2D) 12 1,176 914 64 14.28
Ionization front (2D) 16 186 145 45 3.22
Sea surface height (2D) 48 1,567 14,587 792 18.42
Starting vortex (2D) 12 125 140 24 5.83
Vortex street (2D) 45 43 1,061 241 4.40
Volcanic eruptions (2D) 12 860 2,798 706 3.96

TABLE 2
Comparison of the average relative reconstruction error (for a common
target compression factor), between a naive optimization (Sec. 3) and
our multi-scale strategy (Sec. 4.2). Our multi-scale algorithm improves

the error by 30% on average over the naive approach.

Dataset N |X | m |a| Factor Error (Naive) Error (Multi-Scale)
Asteroid Impact (3D) 20 220 4 493 2.20 0.09 0.06
Dark matter (3D) 40 216 4 215 10.87 0.15 0.12
Earthquake (3D) 12 98 3 120 3.05 0.16 0.04
Ionization front (3D) 16 757 4 1,044 2.90 0.29 0.20
Isabel (3D) 12 1,310 3 1,049 5.49 0.34 0.37
Viscous Fingering (3D) 15 158 3 41 2.78 0.15 0.11
Cloud processes (2D) 12 1,176 3 381 5.97 0.38 0.41
Ionization front (2D) 16 186 4 300 2.68 0.38 0.17
Sea surface height (2D) 48 1,567 4 534 20.98 0.54 0.61
Starting vortex (2D) 12 125 2 379 1.98 0.22 0.09
Vortex street (2D) 45 43 5 75 5.08 0.18 0.04
Volcanic eruptions (2D) 12 860 3 345 9.97 0.20 0.20

the diagrams of the ensemble. Tab. 2 compares a naive optimization
(Sec. 3) to our multi-scale strategy (Sec. 4.2). Specifically, for a
given ensemble, the same target compression factor was used for
both approaches (by imposing the same upper boundary on the
total size of the atoms, Sec. 5.1). Tab. 2 shows that our multi-scale
strategy (Sec. 4.2) enables the optimization to progress towards
better solutions, as assessed by the improvement in reconstruction
error of 30% on average. In comparison to the principal geodesic
analysis of persistence diagrams (Appendix D of [80]), for the
same compression factors, the error induced by our approach is on
average 1.79 times larger. However, our approach is simpler, more
flexible (our optimization is not subject to restrictive constraints,
such as geodesic orthogonality) and slightly faster (Sec. 6.1).

Fig. 10 provides a visual comparison between the 2D layouts
obtained with our approach on the Isabel ensemble and those
obtained with two typical dimensionality reduction techniques,
namely MDS [54] and tSNE [101], directly applied on the distance
matrix obtained by computing the Wasserstein distance between
all the pairs of input diagrams. For a given technique, to quantify

Fig. 10. Comparison between the 2D layouts obtained with our approach
(W2-Dict) and these obtained with typical dimensionality reduction
approaches (W2-MDS [54], W2-tSNE [101]) on the Isabel ensemble (all
persistence pairs are considered). Here, the three approaches preserve
well the clusters of the ensemble (NMI/ARI). As expected, W2-MDS
provides (by design) the best metric preservation (SIM, bold). Our
approach constitutes a trade-off between W2-MDS and W2-tSNE.
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Fig. 11. Comparison between the 2D layouts obtained with our approach (W2-Dict) and these obtained with typical dimensionality reduction
approaches (W2-MDS [54], W2-tSNE [101]) on a challenging ensemble. In this example (Asteroid Impact), the presence of an outlier (time step of
the actual impact, red entry in the distance matrix, left) challenges cluster preservation. While W2-tSNE provides the best cluster preservation scores
(NMI/ARI), it fails at visually depicting the outlier (red circle) as being far away from the other ensemble members. In contrast, W2-MDS and W2-Dict
do a better job at isolating this outlier (red circle), with W2-Dict providing slightly improved cluster preservation scores (NMI/ARI).

TABLE 3
Detailed layout quality scores (i.e. bold: best values). On average (bottom row), our approach (W2-Dict) provides a trade-off between W2-MDS and

W2-tSNE : it preserves the clusters (NMI/ARI) slightly better than W2-MDS and the metric (SIM) clearly better than W2-tSNE.

NMI ARI SIM
Dataset W2-MDS W2-tSNE W2-Dict W2-MDS W2-tSNE W2-Dict W2-MDS W2-tSNE W2-Dict
Asteroid Impact (3D) 0.44 0.86 0.49 0.15 0.76 0.20 0.91 0.89 0.83
Dark Matter (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.68 0.84
Earthquake (3D) 0.65 0.61 0.65 0.37 0.44 0.37 0.96 0.72 0.91
Ionization Front (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.71 0.71
Isabel (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.73 0.78
Viscous Fingering (3D) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.64 0.89
Cloud Processes (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.55 0.68
Ionization Front (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.74 0.83
Sea Surface Height (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.73 0.79
Starting Vortex (2D) 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.72 0.84
Street Vortex (2D) 1.00 0.14 1.00 1.00 -2e-4 1.00 0.89 0.96 0.81
Volcanic Eruption (2D) 0.66 1.00 0.66 0.41 1.00 0.41 0.81 0.74 0.74
Average 0.896 0.884 0.900 0.827 0.849 0.832 0.870 0.734 0.804

its ability to preserve the structure of the ensemble, we run k-
means in the 2D layouts and evaluate the quality of the resulting
clustering (given the ground-truth [79]) with the normalized mutual
information (NMI) and adjusted rand index (ARI). To quantify
its ability to preserve the geometry of the ensemble, we report
the metric similarity indicator SIM [80], which evaluates the
preservation of the Wasserstein metric in the 2D layout. All these
scores vary between 0 and 1, with 1 being optimal. In Fig. 10,
the three approaches preserve well the clusters of the ensemble
(NMI/ARI) and our approach provides a trade-off between MDS
and tSNE in terms of metric preservation (SIM). Fig. 11 provides
another visual comparison on a challenging ensemble (Asteroid
Impact). There, the presence of an outlier (time step of the actual
impact) challenges cluster preservation. While tSNE provides the
best cluster preservation (NMI/ARI), it fails at visually depicting
the outlier (red circle) as being far away from the other ensemble
members. In contrast, MDS and our approach do isolate this outlier
(red circle), with our approach providing slightly improved cluster
preservation (NMI/ARI) over MDS. This illustrates the viability
of our dimensionality reductions for outlier detection. Appendix C
extends this visual analysis to all our test ensembles.

Tab. 3 extends our quantitative analysis to all our ensembles.
MDS preserves well the metric (high SIM), at the expense of
mixing ground-truth classes (low NMI/ARI). tSNE behaves sym-
metrically (higher NMI/ARI, lower SIM). Our approach provides a
trade-off between the extreme behaviors of MDS and tSNE, with a
cluster preservation slightly improved over MDS (NMI/ARI), and
a clearly improved metric preservation over tSNE (SIM).

Fig. 12 reports the evolution of the normalized energy ED along
the optimization for all test ensembles, for the naive optimization
strategy (Sec. 3), by using a number of atoms equal to the number of
ground-truth classes (cf. our application to data reduction, Sec. 5.1).
In this figure, the energy is normalized on a per ensemble basis,
based on its initial value. This figure shows that the energy does
decrease for most ensembles, but still with large oscillations due to
the non-convex nature of the dictionary energy ED. In contrast, the
energy evolution with our multi-scale strategy (Fig. 13) results in
much less oscillations, which indicates the ability of this strategy to
help the optimization explore in a more stable manner the locally
convex areas of the energy (Appendix D discusses a counter-
example). Specifically, in Fig. 13, one can observe sequences of
discontinuous decrease patterns, characterized by an abrupt drop
followed by a plateau. Each of these patterns corresponds to one
persistence scale of our multi-scale strategy (this is particularly
apparent on the Cloud Processes ensemble).

Fig. 14 provides a closer comparison between the two strategies
on a selection of four ensembles. The Cloud Processes ensemble
is an example where the naive optimization reaches a solution
of slightly lower energy. For the other ensembles, our multi-
scale strategy leads to solutions of much lower energy, visually
confirming the conclusions of Tab. 2. In this figure, one can
also observe the characteristic decrease patterns discussed above,
particularly apparent on the Ionization Front (3D) ensemble, which
correspond to the distinct scales of our multi-scale strategy.
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Fig. 12. Evolution of the (normalized) energy ED along the optimization,
with a naive optimization (Sec. 3), for all our test ensembles.
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Fig. 13. Evolution of the (normalized) energy ED along the optimization,
with our multi-scale strategy (Sec. 4.2), for all our test ensembles.

6.3 Limitations

Similarly to other optimization problems based on topological
descriptors [79], [80], [100], [102], our energy is not convex.
Additionally, as shown in Fig. 12, the interleaving of the weight
optimization (Sec. 3.2) with atom optimization (Sec. 3.3) can
even lead to oscillations in the energy. As discussed in Sec. 6.2,
our multi-scale strategy (Sec. 4.2) greatly mitigates both issues,
with a more stable optimization than a naive approach (Sec. 3),
which leads to relevant solutions which are exploitable in the
applications (Sec. 5). However, we have found one example in
our test ensembles (the Sea Surface Height ensemble), where our
multi-scale strategy reached solutions which were arguably worse
than these obtained with a naive solution, as described in details
in Fig. 15. In this example, the most persistent features in the
diagrams are not particularly discriminative for the separation of
the ground-truth classes. On the contrary, the variations between
these classes seem mostly encoded by the low persistence features:
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Fig. 14. Comparison of the evolutions of the (normalized) energy ED
between the naive optimization (Sec. 3, N, dashed curves) and our multi-
scale strategy (Sec. 4.2, MS, solid curves) for four ensembles. For this
experiment, the energy has been normalized with regard to the initial
energy of the naive optimization. The Cloud Processes ensemble is an
example where the naive optimization reaches a solution of slightly lower
energy. For the other three ensembles, our multi-scale strategy leads to
solutions of much lower energy, through a sequence of characteristic,
discontinuous decrease patterns (abrupt drop followed by a plateau)
corresponding to the five persistence scales of our multi-scale strategy.

Fig. 15. Counter-example for our multi-scale strategy (Sea Surface
Height ensemble). Top: Wasserstein distance matrices for the first four
persistence scales of our multi-scale strategy. The ground-truth classes
only start to become visible in the distance matrix between the third
and fourth scale (dashed sub-matrices in the fourth scale). As a result,
our multi-scale strategy is attracted in the first scales towards a local
minimum of the energy which does not encode well the ground-truth
classes (dimensionality reduction, bottom left). In contrast, the naive
optimization manages to reach a solution which separates well the
ground-truth classes (dimensionality reduction, bottom right).

in Fig. 15 clear separations in the distance matrices between the
ground-truth classes only start to occur in the latest persistence
scales (dashed sub-matrices, top right inset). This counter-intuitive
observation goes against the rule of thumb traditionally used in
topological data analysis, which states that the most persistent pairs
encode the most important features in the data. For this example,
when applying our framework to dimensionality reduction, the non-
discriminative aspect of the early persistence scales eventually lead
our multi-scale strategy towards a local minium which does not
separate the ground-truth classes well (planar layout, bottom left) in
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comparison to the naive strategy (planar layout, bottom right). Thus,
for this ensemble, we reported dimensionality reduction results
(Tab. 3, Appendix C) obtained with the naive optimization. In
general, this means that when users are confronted with ensembles
where the most persistent pairs are not the most responsible for
data variability (hence class separation), the naive optimization may
need to be considered additionally as it might provide solutions
which better encode the ground-truth classes.

Finally, as detailed in Appendix D, the presence of clear outliers
can also challenge our optimization, especially when the selected
number of atoms equals the number of ground-truth classes. Then,
in this case, the best dictionary encoding will consequently be
obtained by increasing the number of atoms, specifically, by
considering that each outlier forms a singleton class.

7 CONCLUSION

In this paper, we presented an approach for the encoding of linear
relations between persistence diagrams, given the Wasserstein met-
ric. Specifically, we introduced a dictionary based representation
of an ensemble of persistence diagrams, inspired by previous work
on histograms [90]. We first documented a naive optimization,
which interleaves the optimization of the barycentric weights of the
input diagrams with the optimization of the atoms of the dictionary
(Sec. 3). Then, we presented a multi-scale strategy (Sec. 4.2) lead-
ing to more stable optimizations and relevant solutions (Sec. 6.2).
We demonstrated the utility of our contributions in applications
(Sec. 5) to data reduction and dimensionality reduction, where
the visualizations generated by our framework enable the visual
identification of the main trends in the ensembles (Figs. 8, 9), and
the quick identification of outliers (Fig. 11). In contrast to previous
work on persistence diagram encoding [80], our framework is
simpler, less constrained and slightly faster in practice.

A natural direction for future work is the extension of our
framework to other topological descriptors such as Reeb graphs or
Morse-Smale complexes. However, this requires the definition of
key geometrical tools, such as geodesic or barycenter computation
algorithms, which is still an active research problem. We believe
our framework for the dictionary encoding of persistence diagrams
is an interesting practical step for the analysis of collections
of persistence diagrams. In the future, we will continue our
investigation of the adaptation of tools from optimal transport
to the analysis of ensembles of topological descriptors, as we
believe it can become a key solution in the long term for the
advanced analysis of large-scale ensembles.
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Distributions of Persistence Diagrams. DCG, 2014.

[101] L. P. van der Maaten and G. Hinton. Visualizing Data Using t-SNE.
JMLR, 2008.

[102] J. Vidal, J. Budin, and J. Tierny. Progressive Wasserstein Barycenters of
Persistence Diagrams. IEEE TVCG, 2020.

[103] R. T. Whitaker, M. Mirzargar, and R. M. Kirby. Contour boxplots: A
method for characterizing uncertainty in feature sets from simulation
ensembles. IEEE TVCG, 2013.

[104] D. P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Now
Publishers, 2014.

[105] K. Wu and S. Zhang. A contour tree based visualization for exploring
data with uncertainty. IJUQ, 2013.

[106] L. Yan, Y. Wang, E. Munch, E. Gasparovic, and B. Wang. A structural
average of labeled merge trees for uncertainty visualization. IEEE TVCG,
2019.

Keanu Sisouk is a Ph.D. student at Sorbonne
University. He received his master degree in
Mathematics from Sorbonne University in 2021.
His fields of interests lie on topological methods
for data analysis, optimal transport, optimization
methods, statistics and partial derivative equa-
tions.

Julie Delon received the Pd.D. degree in Math-
ematics from the Ecole Normale Supérieure
Cachan in 2004. She is currently a professor
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APPENDIX A
∇EW IS L-LIPSCHITZ

Proposition 1 : Let X be a persistence diagram and D =
(a1, . . . ,am) a Wasserstein dictionary of persistence diagrams. If
the optimal matchings are constant, then EW (λλλ ) =W 2

(
Y (λλλ ),X

)
is convex and ∇EW is L-Lipschitz on Σm.

Proof. Let λλλ = (λ1, . . . ,λm) ∈ Σm, Y (λλλ ) =
(
y1(λλλ ), . . . ,yK(λλλ )

)
the

barycenter computed and φλλλ ,1, . . . ,φλλλ ,m the matchings between
Y (λλλ ) and each atom (a1, . . . ,am):

∀ j ∈ {1, . . . ,K}, y j(λλλ ) =
m

∑
i=1

λia
φλλλ ,i( j)
i . (12)

We suppose the optimal matchings to be constant, thus we write
φi = φλλλ ,i. Like before we consider the following gradient:

∇y j(λλλ ) =
[
aφ1( j)

1 . . . aφm( j)
m

]
. (13)

Now recall the following expression for:

W 2(Y (λλλ ),X)= min
ψλλλ :iX

bi j−→iX

(
K

∑
j=1

∥y j(λλλ )− xψλλλ ( j)∥2

)
. (14)

This minimum is always attained, and with the hypothesis on the
optimal matchings we write ψ = ψλλλ . Thus we rewrite:

W 2(Y (λλλ ),X)= K

∑
j=1

∥y j(λλλ )−xψ( j)∥2 =
K

∑
j=1

∥
m

∑
i=1

λi(a
φi( j)
i −xψ( j))∥2.

(15)
W 2
(
Y (λλλ ),X

)
is convex with λλλ and the gradient follows naturally:

∇W 2(Y (λλλ ),X)= 2
K

∑
j=1


(aφ1( j)

1 − xψ( j))T

...
(aφm( j)

m − xψ( j))T

(y j(λλλ )− xψ( j)). (16)

For the following part we denote H j =[
aφ1( j)

1 − xψ( j) . . . aφm( j)
m − xψ( j)

]
. The Hessian then writes as

H = H(λλλ ) = 2
K
∑
j=1

(H j)T H j. This shows that λλλ 7→ W 2
(
Y (λλλ ),X

)
is convex. Indeed for u ∈ Rm we have:

uT Hu = 2
K

∑
j=1

uT (H j)T (H j)u = 2
K

∑
j=1

∥H ju∥2 ≥ 0 (17)

This also shows that ∇EW is L-Lipschitz with L = ∥H∥. For
numerical reasons, we bound L as follows:

L= ∥H∥= 2

∥∥∥∥∥ K

∑
j=1

(H j)T (H j)

∥∥∥∥∥≤ 2
K

∑
j=1

∥(H j)T (H j)∥= 2
K

∑
j=1

∥H j∥2.

(18)
Thus for our algorithm, we consider the following gradient step:

ρ ≤

[
2

K

∑
j=1

∥H j∥2

]−1

. (19)

APPENDIX B
∇eA IS L-LIPSCHITZ

Proposition 2 : Let X be a persistence diagrams and λλλ =
(λ1, . . . ,λm) ∈ Σm. If the optimal matchings are constant, the
functions eA are convex and ∇eA is L-Lipschitz.

Proof. Let U = (u1, . . . ,um) ∈ (R2)m, for j ∈ {1, . . . ,K} we have:

eA(U) =

∥∥∥∥∥ m

∑
i=1

λi(ui − xψ( j))

∥∥∥∥∥
2

(20)

The gradient follows naturally:

∇eA(U) = 2

λ1
...

λm

(ui − xψ( j))T (21)

Immediately we have the Hessian H j = Hg j (U) = 2λλλλλλ
T , giving

us the convexity of eA and the L-Lipschitzianity of ∇eA with
L = ∥H j∥ ≤ 2∥λλλ∥2 ≤ 2m. For numerical reasons, we consider the
larger upper bound: L ≤ 4m. Thus for our algorithm, we consider
the following gradient step ρ ≤ (4m)−1.

APPENDIX C
DIMENSIONALITY REDUCTION

Fig. 16 extends Figure 10 (main manuscript) to all our test
ensembles and it confirms visually the conclusions of the table of
quality scores (Table 3 of the main manuscript).

APPENDIX D
VOLCANIC ERUPTION ENSEMBLE

This appendix discusses the special case of the Volcanic eruption
ensemble (12 members), for which a consistent energy increase can
be observed in the Figure 13 of the main manuscript (normalized
energy of our multi-scale optimization as a function of computation
time), beyond 70% of the completion time (the optimization reaches
the stopping conditions at 100%).

The ground-truth classification of this ensemble contains 3
classes [79]. However, one of these classes contains a clear outlier
(light purple entry in the bottom views of Fig. 17), corresponding
to a peak of activity in the eruption (see the terrain views of
4 members, bottom left of Fig. 17, including the outlier, light
purple frame). The corresponding persistence diagram (light purple
diagram in the aggregated birth/death space, bottom middle of
Fig. 17) contains features which are significantly more persistent
than the other diagrams (taken from distinct ground-truth classes,
one color per class). Then, this outlier exhibits an excessively high
distance to the rest of the ensemble, as illustrated in the Wassertein
distance matrix (bottom right of Fig. 17, light purple entry).

The presence of this outlier challenges our optimization when
using a number of atoms equal to the number of ground-truth
classes (which is the default strategy documented in the main
manuscript). As shown in the energy plots (Fig. 17, top), a
consistent energy increase can be observed when using only 3
atoms (1 per ground-truth class, black curve). When removing
the outlier, the energy evolution exhibits a more characteristic
oscillating behavior (green curve). Finally, when initializing the
optimization with 4 atoms (1 per class, plus 1 for the outlier), the



16

Fig. 16. Comparison of the planar layouts for typical dimensionality reduction techniques on all our test ensembles. The color encodes the classification
ground-truth [79]. For each quality score, the best value appears bold. For the Sea Surface Height ensemble, the naive optimization procedure has
been used (cf. Sec. 6.3 of the main manuscript).

optimization results in few oscillations and a consistent energy
decrease (yellow curve). This indicates that the outlier member
(light purple) should be interpreted as a singleton class and that
the best dictionary encoding will consequently be obtained with 4
atoms.
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Fig. 17. Evolution of the (normalized) energy ED along the optimization
(top curves), with our multi-scale strategy, for the Volcanic eruption
ensemble, for distinct initializations. The ground-truth classification of this
ensemble contains 3 classes [79], including one outlier (light purple entry
in the bottom views, from left to right: terrain view of the data, aggregated
birth/death space, distance matrix). A clear energy increase can be
observed when considering the entire ensemble (black curve), while
a more characteristic oscillating behavior occurs when discarding the
outlier (green curve). When initializing the optimization with 4 atoms (1
per class, plus 1 for the outlier), the optimization results in few oscillations
and a consistent energy decrease (yellow curve).
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