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I. INTRODUCTION

T HE control of multi-legged humanoid robots is a re- cent research topic that combines balancing, flexible mobility and precise manipulation. Only few examples of these advanced research platforms are currently available, e.g. the Momaro robot [START_REF] Schwarz | Nimbro rescue: Solving disaster-response tasks with the mobile manipulation robot momaro[END_REF], RoboMantis by Motiv Robotics, and CENTAURO [START_REF] Baccelliere | Development of a human size and strength compliant bi-manual platform for realistic heavy manipulation tasks[END_REF] a hybrid wheeled-legged quadruped equipped with a bimanual upper-body developed at Istituto Italiano di Tecnologia (IIT). A distinctive feature of this type of platforms is their redundancy with respect to the number of end-effectors required to perform balancing and/or manipulation tasks. We hereafter refer to this feature as end-effector redundancy, in contrast to the common kinematic redundancy. Consider for example the balancing problem for a bipedal humanoid. As a consequence of end-effector redundancy for this task, a stable balance can be accomplished not only with two feet on the ground, but also with a single foot on the ground, or even combining foot and hand contacts. This applies even Fig. 1. The left sketch shows a possible use of multiple end-effectors and retargeting of the foot for a pushing task. The right sketch shows an example of singularity avoidance for the leg: one leg is lifted, instead of being stretched, during a balancing task. more to a multi-legged humanoid as CENTAURO, which can establish up to six independent contacts with the environment. Indeed, end-effectors redundancy opens up several possibilities of application, see Fig. 1, spanning:

end-effector re-targeting, e.g. think of a bipedal humanoid standing on one foot while the other foot is re-targeted to help the arms pushing an heavy object; -use of multiple end-effectors, e.g. push an object with one hand and additionally with another hand or a foot, if actuation constraints are reached; -singularity avoidance, see the right sketch in Fig. 1.

Although these possibilities seem attractive, in order to be able to exploit end-effector redundancy, it is crucial to find the smallest set of end-effectors required to perform a given primary task. For the balancing control of a torque-controlled humanoid, as the CENTAURO robot, this is equivalent to finding a sparse solution of a contact force distribution problem, i.e. a solution in which most of the contact forces are zero, thus minimizing the number of employed end-effectors. As for the authors' knowledge, this is the first work that exploits the concept of sparsity for realtime control purposes, whereas approaches employing sparse optimization with highly redundant robots can be found in the context of inverse kinematics [START_REF] Ho | Computing inverse kinematics with linear programming[END_REF], [START_REF] Gonc ¸alves | Parsimonious kinematic control of highly redundant robots[END_REF], and planning [START_REF] Ponton | A convex model of humanoid momentum dynamics for multi-contact motion generation[END_REF]. Two different methodologies are presented and discussed in this paper to achieve a sparse optimization of contact forces for the balancing control of a multi-legged humanoid robot. The proposed optimization methods are formulated and discussed as a general regularization approach to a Least Squares (LS) estimation problem and consequently extended to the balancing control. An extensive analysis performed on a simplified case study complements the discussion on the impact of the proposed approaches on the degree of sparsity of the solution.

Finally, the effectiveness of the proposed approaches has been validated in simulation using the CENTAURO robot.

The paper is organized as follows. Existing control approaches to humanoid balancing are reported in Sec. II, while background knowledge on sparse regularization methods is provided in Sec. III. The proposed sparse optimization methods are presented in Sec. IV and compared on a simplified case study. Gazebo simulation results performed on the CENTAURO robot are presented in Sec. V. Finally, concluding remarks and future work directions can be found in Sec. VI.

II. RELATED WORKS ON BALANCING CONTROL

State-of-the-art control approaches to the humanoid balancing problem are generally classified in two categories. A first category of methods performs a pre-optimization of contact forces with respect to the robot centroidal dynamics, and subsequently maps the computed contact forces to the actuated joint torques, see [START_REF] Ott | Posture and balance control for biped robots based on contact force optimization[END_REF]- [START_REF] Stephens | Dynamic balance force control for compliant humanoid robots[END_REF]. In contrast, the second category entirely exploits the full-body inverse dynamics, see e.g. [START_REF] Sentis | Synthesis of whole-body behaviors through hierarchical control of behavioral primitives[END_REF], [START_REF] Righetti | Optimal distribution of contact forces with inverse-dynamics control[END_REF] and the methods based on a hierarchical Quadratic Programming (QP) formulation of the inverse dynamics [START_REF] Saab | Dynamic whole-body motion generation under rigid contacts and other unilateral constraints[END_REF], [START_REF] Herzog | Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid[END_REF].

As an alternative approach, see [START_REF] Koolen | Design of a momentum-based control framework and application to the humanoid robot atlas[END_REF], [START_REF] Kim | Computationally-robust and efficient prioritized whole-body controller with contact constraints[END_REF] and the authors' work in [START_REF] Laurenzi | Balancing control through post-optimization of contact forces[END_REF], the balancing problem for torque-controlled legged robots can be addressed through a post-optimization of contact forces. This way the the tricky specification of a desired momentum of rotation inherent in the first category of methods is circumvented, additionally reducing the number of decision variables and thus the computational load compared to the second category.

Regardless of the specific methodology, the aforementioned approaches share the common drawback (from the perspective of the present work) to employ the total number of endeffectors in contact with the environment to perform the balancing task. This is done, see e.g. [START_REF] Ott | Posture and balance control for biped robots based on contact force optimization[END_REF], by computing the Least Squares (LS) solution of the force distribution problem through pseudo-inversion. As it will be shown in the following Section, this solution minimizes the Euclidean norm of the contact forces, although resulting in non-zero contact forces associated to each end-effector, i.e. it is inherently not sparse. In contrast, our main objective is to propose a methodology to automatically find the sparsest solution to the force distribution problem.

III. BACKGROUND ON SPARSE REGULARIZATION

This Section provides background knowledge on sparse regression approaches to Least Squares (LS) estimation.

A. Problem statement

Consider the Least Squares (LS) estimation problem:

min x∈R n Ax -b 2 2
(1) where x ∈ R n is the vector of optimization variables, A ∈ R m×n is the design matrix, b ∈ R m is the target vector. In order to give preference to solutions with smaller norm, the l 2 -regularization of (1) is given by: min

x∈R n Ax -b 2 2 + λ x 2 2 (2)
where • 2 is the Euclidean norm and λ ∈ R + is a weighting parameter. In this respect, the Moore-Penrose inverse (also known as left pseudo-inverse, or simply pseudo-inverse) of the design matrix is probably the most widely adopted method ensuring the minimization of the Euclidean norm of the optimization variables, i.e.: min

x∈R n x 2 2 s.t. Ax = b. (3) 
Nevertheless note that l 2 -regularization and pseudo-inversion do not encourage sparsity, and the resulting solution typically has non-zero values associated with all the variables.

B. LASSO regression

The Least Absolute Shrinkage and Selection Operator (LASSO) is a well known linear regression technique obtained by adding a l 1 -regularization term to a LS estimation [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. LASSO regression has the tendency of yielding a sparse solution, in which some optimization variables are equal to zero, and it can be formulated as the following unconstrained optimization problem:

min x∈R n Ax -b 2 2 + λ x 1 (4)
where • 1 is the l 1 -norm. Despite the continuous but nondifferentiable nature of (4), the LASSO can be converted to a tractable constrained Quadratic Programming (QP) problem by introducing additional variables t ∈ R n , e.g. as in [START_REF] Stellato | Osqp: An operator splitting solver for quadratic programs[END_REF]:

min x,t∈R n Ax -b 2 2 + λ n i=1 t i s.t. -t ≤ x ≤ t (5) 
It can be finally proved that any optimal solution of (5) satisfies:

t * i = |x * i | ∀i = 1, . . . , n
hence showing the equivalence of (4) and [START_REF] Ponton | A convex model of humanoid momentum dynamics for multi-contact motion generation[END_REF].

C. MILP regression

Mixed Integer Linear Programming (MILP) is a Linear Programming (LP) class of problems in which a subset of variables can assume only integer values. A generic MILP problem can be expressed as:

min x,δ c T x + d T δ s.t. Ax + Dδ ≤ b, (6) 
where x ∈ R n1 are continuous optimization variables, δ ∈ Z n2

+ are variables having integer non-negative components, c ∈ R n1 , d ∈ R n2 are the linear cost functions, A ∈ R m×n1 , D ∈ R m×n2 and b ∈ R m are the problem constraints.
In order to exploit MILP to perform sparse regression, it is necessary to introduce a set of n binary variables δ associated to each variable of x enforcing the following relation:

δ i = 0, x i = 0 1, x i = 0 , ∀i = 1, . . . , n (7) 
This way δ represents an indicator of which one of the variables x is used, i.e. it is not zero. By applying the socalled big-M method, (7) can be formulated as the following big-M or indicator constraint:

-M δ i ≤ x i ≤ M δ i , ∀i = 1, . . . , n (8) 
where M ∈ R + is a big enough value to guarantee that the constraint is not active when δ i = 1. Recalling that finding a sparse solution to the LS regression problem in (1) means to maximize the number of elements of x which are equal to zero, the resulting MILP optimization problem can be formulated as follows:

min x,δ n i=1 δ i s.t. Ax = b, -M δ ≤ x ≤ M δ, δ ∈ {0, 1} n (9) 
Compared to LASSO, MILP regression ensures the maximization of the sparsity of the solution. Although hybrid optimization models are more difficult to solve than continuous models, there exist methods e.g. Branch-and-Bound algorithms that, by combining a partial enumeration strategy with relaxation techniques, can obtain the global optimum with much fewer sub-problems solved than with the complete enumeration method.

D. Comparison on a simplified example

To better understand the differences between these approaches, we here consider the following simplified LS estimation problem:

min x∈R 2 a T x -b 2 2 (10) with a = 2 T , b = 1
This analysis has been performed in MATLAB. The l 2regularization has been performed according to (3) using pinv function, while LASSO regression has been performed using linprog to solve the following equivalent LP constrained problem:

min x,t∈R 2 x 1 s.t. a T x = b (11) 
Finally, the MILP problem in (9) has been solved using intlinprog. The solutions of the different optimization problems are geometrically illustrated in Fig. 2(a).

As it can be noticed, the solution of l 2 -regularization, i.e.

x * = 0.2 0.4 T , minimizes the Euclidean norm of all the variables, at the expense of resulting in non-zero values. On the contrary, both LASSO regression and MILP produce a sparse solution where one variable is equal to zero. Nevertheless, note that while LASSO solution is unique, two optimal solutions exist for the MILP problem. As a final comment, notice that, in case box constraints are further introduced so that the LASSO solution of ( 11) is ruled out, e.g.:

-0.25 ≤ x 2 ≤ 0.25 LASSO regression is unable to provide a sparse solution, whereas MILP does, see Fig. 2(b). As a matter of fact, this example highlights how, unlike the LASSO, MILP regression always returns the sparsest solution compatible with the problem constraints.

IV. BALANCING CONTROL OF A LEGGED ROBOT

The focus of this work is the application of ideas from the sparse regression field to the balancing control of endeffector-redundant legged robots. In this section, we introduce the main concepts about balancing from two recent works by the authors [START_REF] Laurenzi | Balancing control through post-optimization of contact forces[END_REF], [START_REF] Hoffman | Multi-priority cartesian impedance control based on quadratic programming optimization[END_REF] that are later used in conjunction with sparse optimization techniques.

A. Floating-base dynamics

Fixed-base and floating-base robots differ in terms of two major aspects, namely under-actuation and, as a consequence, the prominent role played by contact forces for their control. Indeed, legged robots must always interact with the environment in order to be controlled in their full (6+n)-dimensional coordinate space. The dynamics of a floating-base robot is explained by the following equation:

B(q)q + h(q, q) = Sτ + J T C F C + J T F x , (12) 
which highlights two major differences w.r.t. the fixed-base case. First, an actuation matrix S ∈ R (n+6)×n models the system under-actuation. Second, task dynamics becomes coupled with contact forces, which are taken into account by considering the Jacobian of all support links J C ∈ R k×(n+6) and the corresponding overall contact wrench F C ∈ R k , with k equal to the contact constraint dimension (e.g. k = 12 for a humanoid in double support).

In [START_REF] Laurenzi | Balancing control through post-optimization of contact forces[END_REF], the authors have shown that it is possible to deal with such a coupling by separating the inverse-dynamics problem into two independent stages. The first stage consists in a fixed-base hierarchical force control problem, as introduced by the authors in [START_REF] Hoffman | Multi-priority cartesian impedance control based on quadratic programming optimization[END_REF]; subsequently in the second stage, the system under-actuation is tackled by a post-optimization of the contact forces. While some details about this procedure are given in the following Section, the reader can refer to [START_REF] Laurenzi | Balancing control through post-optimization of contact forces[END_REF] for a detailed description.

B. Post-optimization of contact forces

First and foremost, an equivalent fully-actuated torque vector τ is defined as follows:

τ = Sτ + J T C F C , (13) 
such that the floating-base dynamics formally resembles the fixed-base one:

B(q)q + h(q, q) = τ + J T F x . (14) 
Consequently, our algorithm in [START_REF] Hoffman | Multi-priority cartesian impedance control based on quadratic programming optimization[END_REF] can be applied without any modification, yielding some optimized value τ * for the fullyactuated torque vector (13) that permits to achieve the desired hierarchical motion and interaction. Then, the contact force information is recovered by solving the system of equations ( 13) for τ and F C . Furthermore, the structure of the actuation matrix S can by exploited in order to improve efficiency by reducing the number of unknowns. Indeed, considering the topmost six rows, the following formula is obtained:

τu = J T C,u F C , (15) 
where the subscript "u" indicates the sub-matrix corresponding to the unactuated virtual joints. Equation ( 15) is torqueindependent, and contains only the contact forces as variables.

Once that these have been determined, joint torques can be recovered by looking at the bottom n rows of (13) and solving for τ . The transpose of the unactuated part of the contact Jacobian acts as a grasp matrix G ∈ R 6×k :

G = J T C,u (16) 
hence, a force distribution problem can be formulated according to several possible criteria. Assuming n C point contacts, i.e. no torque is exchanged, the following inequalityconstrained LS optimization has been explored in [START_REF] Laurenzi | Balancing control through post-optimization of contact forces[END_REF]:

min FC GF C -τu 2 2 s.t. b l ≤ D F C ≤ b u u l ≤ F C ≤ u u . (17) 
whereas in the present work we aim to find a sparse solution.

Pyramidal linearized friction cones have been considered as inequality constraints in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], i.e.:

F C,n ≥ 0, |F C,t | ≤ √ 2 2 µ F C,n (18) 
where µ ∈ R is the friction coefficient. Note that the contact forces, and the corresponding Jacobians, are expressed with respect to a local reference frame such that the z-axis represents the normal component of the contact force.

C. Block-symmetrical structure of the grasp matrix

We now discuss the structure of the grasp matrix G in ( 16), again assuming n c point contacts. To this aim, recall that the un-actuated part of the contact Jacobian J C,u encodes the relationship between the linear velocity of the contact points and the virtual joint velocities qu ∈ R 6 . Considering the i-th contact point velocity v C,i , the following equation expresses the relation between the linear and angular velocity of the robot floating-base, v fb ∈ R 3 and ω fb ∈ R 3 , respectively, and v C,i :

v C,i = v fb + ω fb × r C,i , (19) 
where the vector r C,i ∈ R 3 points from the floatingbase origin to the i-th contact point. Let us further denote T (q u ) ∈ R 6×6 the floating-base Jacobian matrix realizing the linear mapping:

v fb ω fb = T (q u ) qu (20) 
By now combining ( 19), ( 20) and ( 16), the resulting expression for the grasp matrix is given by:

G = T (q u ) T I 3 • • • I 3 S(r C,1 ) • • • S(r C,nC ) , ( 21 
)
where S is a skew-symmetric matrix such that S(a) b = a × b.

At this point, it is important to highlight the blocksymmetric nature of G. In fact, if the contact points r C,i are located symmetrically w.r.t. one or more axis of the floatingbase local reference frame (a particularly recurrent situation on a multi-legged humanoid, like the quadruped CENTAURO), this eventually reflects on a block-symmetrical pattern of the last three rows of the grasp matrix, in addition to the inherently block-symmetric first three rows. As it will be shown in the following Section, this peculiar feature of G, i.e. the design matrix for the LS force distribution problem in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], directly affects the degree of sparsity of the solution.

D. Impact of symmetry of the design matrix on sparsity

In order to understand the impact of a symmetrical structure of the design matrix on the solution produced by sparse regression approaches, we hereafter resume the simplified example previously introduced in Sec. III-D. By now choosing:

a = 1 1 T , b = 1
the simplest symmetrical structure of the design vector a is considered; note that both optimization variables now contribute equally to the target value. The l 2 -regularization has been performed according to (3) using pinv function, while LASSO regression has been performed using linprog to solve the LP constrained problem in [START_REF] Righetti | Optimal distribution of contact forces with inverse-dynamics control[END_REF]. Finally, the MILP problem in (9) has been solved using intlinprog. The solutions of the different optimization problems are geometrically illustrated in Fig. 3. Once again, the solution of the l 2 -regularization, i.e.

x * = 0.5 0.5 T , tends to minimize the Euclidean norm of all the variables at the expense of sparsity, while two equally Fig. 3. Graphical interpretation for a = 1 1 T . Due to the parallelism between the line representing the equality constraint a T x = b and the contours of the l 1 -norm cost function in [START_REF] Righetti | Optimal distribution of contact forces with inverse-dynamics control[END_REF], an infinite number of optimal solution exist for the LASSO approach, of which only two are sparse.

optimal sparse solutions exist for the MILP regression. Particularly interesting in this case, is the behaviour of the LASSO, which now has an infinite number of optimal solutions, only two of which are sparse. As it can be noticed from Fig. 3, this is due to the fact that the line representing the equality constraint a T x = b is now parallel to the contours of the l 1 -norm cost function.

Following from this example, it can be inferred that, due to the block-symmetrical nature of G, multiple sparse solution to the force distribution problem can arise using LASSO and MILP regression. As a matter of fact, considering for instance the balancing problem for a biped, this is perfectly coherent with the fact that a stable balancing can be equivalently achieved by standing on the left or on the right foot. Although acceptable, this could result in high-frequency switches between supporting legs, thus affecting the applicability of the proposed approach for control purposes.

In order to improve this behaviour aiming at ensuring the uniqueness of a sparse solution, we propose to introduce a weighted penalty formulation. For the considered simplified example, being γ ∈ R 2 a weighting vector, the resulting weighted LASSO optimization problem can be expressed as:

min x,t∈R 2 γ T t s.t. a T x = b, -t ≤ x ≤ t ( 22 
)
while the weighted MILP regression is given by: min

x,δ γ T δ s.t. a T x = b, -M δ ≤ x ≤ M δ (23)
where δ ∈ {0, 1} 2 . The solutions of the different optimization methods are geometrically illustrated in Fig. 4 for a different choice of the weighting vector. Thanks to the proposed weighted penalty formulation both LASSO and MILP now return a unique sparse solution, consistent with the chosen weighting vector. In particular, thanks to the weighted formulation of the LASSO, the squareshaped l 1 -norm contour lines are stretched in one direction, hence braking the parallelism with the line representing the equality constraint and thus effectively restoring the sparsity property of the LASSO.

E. Sparse post-optimization of contact forces

In the following, the proposed sparse optimization methods in ( 22) and ( 23), accounting for the block-symmetry of G, are extended to the balancing control.

In order to guarantee feasibility of the resulting optimization problem, we introduce two prioritized post-optimization stages: the one with higher priority is represented by the Quadratic Programming (QP) problem in [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], while the second stage, i.e. the proposed spare regression methodology, acts in the null-space of the previous one. To this end, the equality constraint:

GF C = GF * C (24)
needs to be considered in the second stage, being F * C the optimal solution produced by the first stage [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

It is worth noticing that, thanks to the friction cone constraints in [START_REF] Stellato | Osqp: An operator splitting solver for quadratic programs[END_REF], it is inherently ensured that both the x and y components of the contact force for each contact point are simultaneously equal to zero, whenever the z-component is null. Following from this, it is sufficient to minimize the number of contact forces along the z Cartesian direction, aggregated in the vector F C,z ∈ R nC , in order to produce a solution which is sparse in all directions. As a matter of fact, this has the nice computational advantage of requiring a number of optimization variables equal to 4 n C instead of 6 n C . By now introducing the auxiliary variables t ∈ R nC , the binary variables δ ∈ {0, 1} nC and the weighting vector γ ∈ R nC , the resulting weighted LASSO formulation of the force distribution problem is given by: min

FC,t γ T t s.t. GF C = GF * C -t ≤ F C,z ≤ t b l ≤ D F C ≤ b u u l ≤ F C ≤ u u . (25) 
while the weighted MILP formulation is given by:

min FC,δ γ T δ s.t. GF C = GF * C -M δ ≤ F C,z ≤ M δ, b l ≤ D F C ≤ b u u l ≤ F C ≤ u u (26) 
respectively, where δ ∈ {0, 1} nC and M ∈ R + is a big enough value to guarantee that the box constraint is not active when δ i = 1.

As an additional technique to reduce the possibility of highfrequency switches in the solution of the force distribution problem, let us further introduce the following first order discrete-time dynamics:

F k+1 C = F k C + T s Ḟ k C ( 27 
)
where superscript k refers to the value of the related vector at discrete time instant t k , while T s is the controller sampling time. By plugging ( 27) in ( 25) and ( 26), it is possible to obtain an equivalent formulation for the weighted LASSO and the weighted MILP force distribution problem, respectively, being now Ḟ k C the optimization vector.

V. SIMULATION RESULTS

In order to validate the proposed sparse optimization approaches to the balancing control problem, we set up a simulation scenario in Gazebo using the legged platform CENTAURO [START_REF] Baccelliere | Development of a human size and strength compliant bi-manual platform for realistic heavy manipulation tasks[END_REF], a 39 degrees-of-freedom (DoF) hybrid wheeled-legged quadruped equipped with a humanoid upper-body. The robot is fully torque-controlled by feeding back the measured linkside joint torques. The controller is written in C++ within the OpenSoT control library [START_REF] Hoffman | Robot control for dummies: Insights and examples using opensot[END_REF], and executed under the XBotCore framework [START_REF] Muratore | Xbotcore: A real-time cross-robot software platform[END_REF], within a control loop running at 1 kHz.

A. Gazebo simulation setup

The first optimization stage, that according to [START_REF] Hoffman | Multi-priority cartesian impedance control based on quadratic programming optimization[END_REF] computes the fully actuated torque vector in [START_REF] Herzog | Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid[END_REF], can be written using the Math of Task (MoT) formalism [START_REF] Hoffman | Robot control for dummies: Insights and examples using opensot[END_REF] as follows:

         i World TFoot i / World TWaist/ World TLHand + World TRHand / T Posture          << CJoint Torque Limits , (28) 
where the symbol A T B denotes a Cartesian impedance task of the frame B relative to the frame A; such a task is implemented by commanding simple virtual wrenches as in the following expression:

F d = K d (x d -x) + D d (x d -ẋ) , (29) 
where x, x d , ẋ and ẋd represent the actual and desired Cartesian poses and twists, respectively, whereas K d and D d denote the desired Cartesian impedance. These are combined by means of the operators "+" and "/", which are used to set aggregation and null-space relations, respectively. Finally, the symbol "<<" denotes insertion of constraints into the problem. Note that the Cartesian impedance tasks on the feet are considered at the first level in order to constrain the contact locations, i.e. to guarantee that whatever motion is produced, the feet will stay in contact with the ground. Conversely, this behaviour cannot be ensured by using soft priorities among tasks. The corresponding hierarchical QP problem has been solved using the qpOASES [START_REF] Ferreau | qpOASES: a parametric active-set algorithm for quadratic programming[END_REF] solver. According to Sec. IV-E, the fully actuated torque vector ( 13) is then mapped to an under-actuated torque vector via the proposed sparse postoptimization of contact forces. OSQP solver [START_REF] Stellato | Osqp: An operator splitting solver for quadratic programs[END_REF] has been used to solve the weighted LASSO problem in (25), while the weighted MILP regression in (26) has been solved using GLPK (GNU Linear Programming Kit) package. Finally, in all the simulations the state of the floating-base link is directly taken from the simulator.

B. Balancing under external disturbances

The simulation scenario consists on a balancing task for the CENTAURO robot under the disturbance of external forces applied on the robot waist. A constant force of 200 N is first applied downward along the z-direction for 2 s, while a second constant force of 90 N is subsequently applied sideways along the y-direction, again for 2 s, see Fig. 5. I. In the initial phase, all the approaches produce the same sparse solution, which exploits three supporting legs and is consistent with the selected weighting vector, i.e. the contact force on the rear left leg is null. When the downward external force is applied (left shaded area) the weighted LASSO, see Fig. 7(a), employs three legs until the bound on the maximum contact force is reached. At this point, a contact force is exerted also on the rear left leg, subsequently restoring the initial sparse configuration once the external disturbance stops. Note that, according to [START_REF] Stellato | Osqp: An operator splitting solver for quadratic programs[END_REF], the x and y components of the contact force are driven to zero at once with the z-component. In contrast, during the same phase, high-frequency switches between supporting legs occur with the weighted MILP, see Fig. 7(b), despite the weighted penalty formulation. Nevertheless, it is worth noticing that, thanks to the proposed first order dynamics formulation of the weighted MILP, see Fig. 7(d), it is possible to effectively remove this chattering, while ensuring sparsity. Another interesting behaviour arises during the application of the sideways external force (right shaded area). As a matter of fact, both the weighted LASSO, see Fig. 7(a), and its first order dynamics formulation, see Fig. 7(c), cannot find a sparse solution. Instead, with the first order dynamics formulation of the weighted MILP, see Fig. 7(d), a sparse solution is returned which exploits three contacts, consequently involving a switching between the rear supporting legs.

Aiming at further showing a possible application of endeffector redundancy and sparse optimization methods to singularity avoidance, in a second simulation, involving the application of a 90 N sideways force along the y-direction, the binary variables vector δ has been used to relax the feet Cartesian impedance tasks as follows:

F d Ci = δ i K d x d Ci -x Ci + D d x d Ci -ẋCi (30) 
The first order dynamics formulation of the weighted MILP has been exploited for this purpose. As shown in Fig. 6, the rear right leg is automatically lifted (Fig. 6(b)), instead of being stretched (Fig. 6(a)), effectively preventing the leg from reaching a singular configuration. These results are also illustrated in the accompanying video. 

VI. CONCLUSION AND FUTURE WORKS

In order to be able to exploit the inherent end-effector redundancy of a multi-legged humanoid platform, two sparse optimization approaches to the balancing control problem have been presented and discussed in this paper. The proposed optimization methods have been first formulated and compared as a general regularization approach to a Least Squares (LS) estimation problem and consequently extended to the balancing control. The discussion on the impact of the proposed approaches on the degree of sparsity of the solution has been carried out employing a simplified case study. Finally, the effectiveness of the proposed approaches has been finally validated on a simulated model of the CENTAURO robot, together with an example of a possible application of endeffector redundancy to a singularity avoidance situation.

The specification of the weighting vector γ deserve special attention and remains an important future work. The weighting vector has in fact the prominent role to bias the sparsity pattern towards a preferable one, e.g. think of a bipedal robot standing on the left foot instead of on the right one. Note also that the proposed sparse methodologies constitute a real-time reactive control layer. As such, they are meant to be used in conjunction with a high-level (not real-time) planner, which, based on tasks and environment knowledge, could be responsible for the specification of the weighting vector, as well as as for possible changes in the contact points' locations, e.g. in order to move a foot from the floor to a wall to help the arms pushing an heavy object. Finally, validation on the real robotic platform remains a forthcoming work. 
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 2 Fig. 2. The black solid line represents the constraint a T x = b, while red and black dashed contour lines refer to the l 2 -norm cost function (3) and to the l 1 -norm cost function (11), respectively. The possible solutions of the corresponding optimization problem (circle markers) are located at the intersection of the equality constraint line with the innermost contour line.

Fig. 4 .

 4 Fig. 4. Graphical interpretation for a different choice of the weighting vector: γ = 1 1.5 T and γ = 1.5 1 T for the left and right figure, respectively. The l 1 -norm contour lines are stretched along one axis according to γ, breaking the parallelism with the line representing the equality constraint and thus effectively restoring the sparsity of LASSO.

Fig. 5 .

 5 Fig. 5. Screen shots from CENTAURO simulations in Gazebo: applied external forces on the robot waist. The weighting vector has been set equal to: γ = 1 1 1 1.5 , i.e. penalizing the contact force applied on the rear left leg. The desired Cartesian impedance for the waist position task is given by: K d = 500 500 500 N m and D d = 200 200 200 N s m , while a friction coefficient µ = 0.3 has been selected for the linearized friction cones. The following upper and lower bounds have been considered for the contact forces: u u = 500 500 500 N and u l = -u u . Finally, M has been set equal to 1000. The time histories of the contact forces, obtained from the proposed sparse optimization methods, are shown in Fig. 7, while the corresponding computation times are reported in TableI. In the initial phase, all the approaches produce the same sparse solution, which exploits three supporting legs and is consistent with the selected weighting vector, i.e. the contact force on the rear left leg is null. When the downward external force is applied (left shaded area) the weighted LASSO, see Fig.7(a), employs three legs until the bound on the maximum contact force is reached. At this point, a contact force is exerted also

Fig. 6 .

 6 Fig. 6. Application of end-effector redundancy to singularity avoidance: the rear right leg is lifted during a balancing task under the disturbance of a sideways external forces on the robot waist.

Fig. 7 .

 7 Fig. 7. Comparison among the proposed sparse optimization methods: time histories from CENTAURO balancing simulations under the disturbance of external forces applied on the robot waist. A constant force of 200 N is first applied downward along the z-direction (left shaded area), while a second constant force of 90 N is subsequently applied sideways along the y-direction (right shaded area).

TABLE I COMPUTATION

 I TIME OF THE PROPOSED SPARSE OPTIMIZATION METHODS (MEAN, STANDARD DEVIATION AND MAXIMUM VALUE).

	Method Computation time [ms]	mean	std	max
	Weighted LASSO	3.79	0.83 14.84
	Weighted LASSO first order dynamics	4.05	1.12 30.81
	Weighted MILP	3.41	0.94 15.00
	Weighted MILP first order dynamics	2.82	0.76 13.03
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