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Abstract. The goal of this paper is to give a converse to the main result of
my previous paper [12], so to prove the existence of a pole with an hypothesis on
the Bernstein polynomial of the (a,b)-module generated by the germ ω ∈ Ωn+1

0 . A
difficulty to prove such a result comes from the use of the formal completion in f
of the Brieskorn module of the holomorphic germ f : (Cn+1, 0) → (C, 0) which does
not give access to the cohomology of the Milnor’s fiber of f , which by definition, is
outside {f = 0}. This leads to introduce convergent (a,b)-modules which allow this
passage. In order to take in account Jordan blocs of the monodromy in our result we
introduce the semi-simple filtration of a (convergent) geometric (a,b)-module and
define the higher order Bernstein polynomials in this context which corresponds
to a decomposition of the “standard” Bernstein polynomial in the case of frescos.
Our main result is to show that the existence of a root in −α − N for the p-th
Bernstein polynomial of the fresco generated by a holomorphic form ω ∈ Ωn+1

0 in
the (convergent) Brieskorn (a,b)-module Hn+1

0 associated to f , under the hypothesis
that f has an isolated singularity at the origin relative to the eigenvalue exp(2iπα)
of the monodromy, produces poles of order at least p for the meromorphic extension
of the (conjugate) analytic functional, for some h ∈ Z:

ω′ ∈ Ωn+1
0 7→ 1

Γ(λ)

∫
Cn+1

|f |2λf̄−hρω ∧ ω̄′

at points −α − N for N and h well chosen integers. This result is new, even for
p = 1. As a corollary, this implies that in this situation the existence of a root in
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−α−N for the p-th Bernstein polynomial of the fresco generated by a holomorphic
form ω ∈ Ωn+1

0 implies the existence of at least p roots (counting multiplicities) for
the usual reduced Bernstein polynomial of the germ (f, 0).
In the case of an isolated singularity we obtain that for each α ∈]0, 1]∩Q the biggest
root −α −m of the reduced Bernstein polynomial of f in −α − N produces a pole
at −α−m for some h ∈ Z for the meromorphic extension of the distribution

□ −→ 1

Γ(λ)
|f |2λf̄−h□.
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1 Introduction

The roots of the reduced Bernstein polynomial bf,0 of the germ of holomorphic
function at the origin in Cn+1 control the poles of the meromorphic extension of the
distribution

□ −→ 1

Γ(λ)

∫
Cn+1

|f |2λf̄−h□

which is defined in a neighborhood of 0 ∈ Cn+1 (see for instance [2] or [15]).
The first goal of this article is to show that, assuming that 0 is an isolated singularity
for the eigenvalue exp(2iπα) of the monodromy (this corresponds to our hypothesis
H(α, 1)), the roots of the Bernstein polynomial of the (a,b)-module generated by
the germ ω of holomorphic (n+1)-form at the origin in the Brieskorn (a,b)-module
Hn+1

0 of f at 0, control the poles of the (conjugate) analytic functional defined on
Ωn+1

0 by polar parts of poles in −α− N of the meromorphic functions

ω′ 7→ 1

Γ(λ)

∫
X

|f |2λf̄−hρω ∧ ω̄′

where ρ ∈ C ∞
c (Cn+1) is identically 1 near 0 and with a sufficiently small support

(note that the polar parts of these meromorphic extensions at points in −α−N are
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independent of the choices of ρ thanks to our hypothesis H(α, 1)).

Our second goal is to give a sufficient condition, still on the (a,b)-module generated
by the germ ω, to obtain higher order poles for such integrals.
The difficulty commes now from the fact that it is not clear when, for instance, two
roots, −α − m and −α − m′ with m,m′ ∈ N, of the Bernstein polynomial give a
simple pole or a double pole for such a meromorphic extension at points −α − N ,
for some choice of ω′ and for some integers N and h well chosen.
So we try to understand when such a pair of roots are “linked”, so produces a double
pole for some choice of ω′, h and N , or are “independent”, so produces at most a
simple pole for any choices of ω′, h and N .
As it is known that the nilpotent part of the monodromy is related to this phe-
nomenon (see [3] and [4]) we consider the action of the monodromy on geometric1

(a,b)-modules and show that the natural semi-simple filtration of a geometric (a,b)-
module E is related to the filtration induced by the nilpotent part of the action of
the monodromy on its saturation E ♯ by b−1a.
This allows to show that, in the case of a fresco F (see Section 5 for the definition),
the Bernstein polynomial is a product of the Bernstein polynomials (with suitable
shifts for the roots) of the graduate pieces of its semi-simple filtration (which are
semi-simple frescos) and these Bernstein polynomials define the “higher order Bern-
stein polynomials” of the fresco F .
Then we show that, under our hypothesis H(α, 1), the existence of a root in −α−N
for the j-th Bernstein polynomial of the fresco generated by ω, produces a pole of
order at least j at some point −α−N for the meromorphic extension of the integral

1

Γ(λ)

∫
Cn+1

|f |2λf̄−hρω ∧ ω̄′ (⋆)

for some ω′ ∈ Ωn+1
0 and some integers N and h well chosen, where ρ is as above.

An interesting consequence of this result is the fact that under our hypothesis that
the origin is an isolated singularity of f for the eigenvalue exp(2iπα) of the mon-
odromy, the existence of a root −α−m for Bj(f, ω), the j-th Bernstein polynomial
of the fresco Ff,ω associated to the pair (f, ω), implies the existence of at least j
roots in −α−N (counting multiplicities) for the (usual) reduced Bernstein polyno-
mial bf,0 of the germ of f at the origin. This means that at least j such roots of bf,0
and “linked” in the sense that they contribute to increase the order of the poles of
the integral (⋆) at points in −α − N for N and h large enough for some choice of
ω′ ∈ Ωn+1

0 .
We obtain also that, in the isolated singularity case (for each exp(2iπα)), the biggest
root −α−m in −α−N of b̃f,0, the reduced Bernstein polynomial of f , always pro-
duces a pole at the point −α−m for the meromorphic extension of the distribution
1

Γ(λ)
|f |2λf̄−h for some h ∈ Z.

1The (a,b)-modules deduced from the Gauss-Manin connection which appear here are always
geometric. See section 5
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Description of the content.

• In section 2 we establish several basic estimates to work with the algebra
B := C{{b}] which is a closed sub-algebra of the algebra of continuous C-
linear endomorphisms of the algebra A := C{s} of holomorphic germs at the
origin in C.
Then we introduce the algebra Ãconv. which contains A and B with the com-
mutation relation ab − ba = b2. We show that Ãconv. is local and we prove
the Division Theorem which allows to show the equivalence of considering
a geometric (convergent) (a,b)-module as a left module on the sub-algebra
B[a] ⊂ Ãconv. or as a left Ãconv.-module (see Theorem 7.1.1).

• Section 3 is devoted to extend the standard properties of regular (formal)
(a,b)-modules (see [6]) to the convergent case.

• The purpose of Section 4 is to define the semi-simple filtration of a regular
convergent (a,b)-module and to establish the basic properties of this filtration.

• In Section 5 we show that convergent geometric (a,b)-modules are simply con-
vergent sub-(a,b)-modules of classical asymptotic expansions modules. The
Embedding Theorem shows that the geometric (a,b)-modules are exactly reg-
ular (a,b)-modules such that the roots of their Bernstein polynomial are nega-
tive and rational (compare with with the positivity Theorem of B. Malgrange
[19] and the Rationality Theorem of M. Kashiwara [18]).

• Section 6 explains the relation between the semi-simple filtration and the nilpo-
tent part of the logarithm of the monodromy, logarithm which is naturally
defined on a simple pole geometric (a,b)-module.

• After some general results on convergent frescos (these are geometric (a,b)-
modules with one generator as left B[a]-module) extending to the convergent
case some results in [9], we are able in Section 7 to define the higher order Bern-
stein polynomials for a fresco and we obtain a precise link with the standard
Bernstein polynomial.

• The first part of Section 8, after explaining how to use the tools introduced
above, gives an improvement of the results in [12] which links the existence,
for some choices of ω′ ∈ Ωn+1

0 and some integer h, of an order p pole at a

point in −α − N of the meromorphic function F ω,ω′

h (λ) to the existence of a
root for the p-th Bernstein polynomial of the fresco Ff,ω associated to the pair
(f, ω) when f has an isolated singularity for the eigenvalue exp(−2iπα) of the
monodromy.
The rest of Section 8 is devoted to the proof of our main result which gives
the link (in the other direction) between existence of roots for the higher or-
der Bernstein polynomials of the fresco associated to a given form ω ∈ Ωn+1

0

and the higher order poles of the hermitian periods associated to ω under our
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hypothesis H(α, 1). We also give, in the case of an isolated singularity for f ,
some precise links to the reduced Bernstein polynomial of f at the origin.

Notations. In the sequel we shall use the following complex unitary algebras:

1. The algebra A := C{a} ≃ C{s} of germs of holomorphic functions at the
origin of C. The letter a represent the multiplication by s.

2. The algebra B := C{{b}} which is the closed sub-algebra of continuous linear
operators on A generated by b, the primitive without constant in C{s}.

3. The algebra A which is the algebra of polynomials in a and b inside the algebra
of continuous linear operators on A. So they satisfy ab− ba = b2.

4. The algebra B[a] of polynomials in a with coefficients in B, with the commu-
tation relations aS(b)− S(b)a = b2S ′(b) for each S ∈ B.

5. The algebra Ãconv. is defined in Section 2.4.

6. The algebra Â := C[[a]]

7. The algebra B̂ := C[[b]]

8. The algebra Ã := B̂[a] of polynomials in a with coefficients in B̂, with the

commutation relations aS(b)− S(b)a = b2S ′(b) for each S ∈ B̂.

9. The algebra Â which the algebra of formal power series in a and b with the
commutation relation ab− ba = b2.

2 Convergent (a,b)-modules

2.1 The algebra Cr{{b}}
For each real number r ∈]0, 1[ let Cr{{b}} the sub-vector space of C[[b]] defined by

Cr{{b}} := {S =
∞∑
j=0

sjb
j / ∃R ∈]1, 1/r[ ∃CR s. t. ∀j ∈ N |sj| ≤ CRR

jj!}. (1)

Remarks.

1. If the condition above holds for some R0 ∈]1, 1/r[ then it holds for any R in
[R0, 1/r[ and with the constant CR = CR0 .
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2. If for some positive integer q and for some S =
∑∞

j=0 sjb
j we have:

∃R ∈]1, 1/r[ ∃CR such that ∀j ∈ N |sj| ≤ CRR
j(j + q)!

then S is in Cr{{b}} because

(j + q)!

j!
≤ (1 + q)qjq

and for ρ ∈]R, 1/r[ the sequence j 7→ (R/ρ)jjq is bounded for a given q.

3. The vector space Cr{{b}} is stable by derivation because if S =
∑∞

j=0 sjb
j is

in Cr{{b}} then S ′ :=
∑∞

j=0(j + 1)sj+1b
j satisfies

∃R ∈]1, 1/r[ s. t. |(j + 1)sj+1| ≤ (j + 1)CRR
j+1(j + 1)! ≤ RCRR

j(j + 2)!

and we may apply the previous remark with q = 2 to S ′.

We have a vector spaces isomorphism

Cr{{b}} → Cr{z} := {
∞∑
j=0

cjz
j / ∃R ∈]1, 1/r[ ∃CR s. t. ∀j ∈ N |cj| ≤ CRR

j}

which is given by sj 7→ cj = sj/j!. As Cr{z} is the algebra of germs of holomor-
phic functions around the closed disc D̄r in C, it is a dual Fréchet (in short DF)
topological vector space and we shall define the topology on Cr{{b}} via this iso-
morphism.

Lemma 2.1.1 For each r ∈]0, 1[, Cr{{b}} is a dual Fréchet sub-algebra of C[[b]]
which is stable by derivation.

proof. Let S :=
∑∞

j=0 sjb
j and T :=

∑∞
j=0 tjb

j be in Cr{{b}}. The product ST
in C[[b]] is given by

ST =
∞∑
j=0

ujb
j where uj :=

j∑
p=0

sj−ptp.

For some R ∈]1, 1/r[ there exists CR > 0 and DR > 0 such that |sj| ≤ CRR
jj! and

|tj| ≤ DRR
jj! by definition. This implies

|uj| ≤ CRDRR
jj!

( j∑
p=0

(j − p)!p!

j!

)
.

The following easy lemma will be used several times in the sequel.

Lemma 2.1.2 For any j ≥ 0 we have
∑j

p=0(j − p)!p! ≤ 3(j!).
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Proof. For j ≥ 2 and p ∈ [1, j − 1] we have the estimates (j − p)!p! ≤ (j − 1)!
which implies for j ≥ 2:

j∑
p=0

(j − p)!p! ≤ 2(j!) +

j−1∑
p=1

(j − p)!p! ≤ 2(j!) + (j − 1)((j − 1)!) ≤ 3(j!).

As the cases j = 0, 1 are obvious, so the proof is complete. ■

End of proof of Lemma 2.1.1. So we obtain that |uj| ≤ 3CRDRR
jj! showing

that ST is in Cr{{b}}.
The countable family given by

||S||R := sup
j

|sj|
/
(Rjj!)

for R ∈ Q∩]1, 1/r[ defines the dual Fréchet topology on Cr{{b}} and the previous
computation shows that ||ST ||R ≤ 3||S||R||T ||R for each R]1, 1/r[.
The stability by derivation is explained in Remark 3 above. ■

For each real number r ∈ [0, 1[ define the operator b on the algebra Cr{z} of germs
of holomorphic functions around the closed disc D̄r with center 0 and radius r in
C, as the linear continuous operator given by the primitive vanishing at the origin,
that is to say:

b(f)(z) :=

∫ z

0

f(t)dt = z

∫ 1

0

f(tz)dt;

Proposition 2.1.3 This action of C[b] on Cr{z} extends to a continuous action of
Cr{{b}} on Cr{z}. It induces an isomorphism of DF-algebras between Cr{{b}} and
the commutant of b in the algebra of continuous endomorphism of Cr{z}.

Note that this commutant is a closed sub-algebra of the algebra of continuous en-
domorphism of Cr{z}.

proof. Let S :=
∑∞

j=0 sjb
j and f(z) :=

∑∞
ν=0 γνz

ν where we may assume that
there exists R ∈]1, 1/r[ such that the following estimates hold:

|sj| ≤ CRR
jj! and |γν | ≤ ΓRR

ν .

Since bj[zν ] = ν!zν+j

(ν+j)!
we obtain if we write S[f ](z) =

∑∞
q=0 δqz

q

|δq| = |
q∑
j=0

sjγq−j
(q − j)!j!

q!
| ≤ CRΓRR

q

q!

q∑
j=0

j!(q − j)!.

We obtain, thanks to estimates given in Lemma 2.1.2

|δq| ≤ 3CRΓRR
q

8



This shows that S[f ] is in Cr{z} and that S acts continuously on this DF space.
Then it is clear that the image of Cr{{b}} is a commutative sub-algebra of the
commutant of b in the algebra of continuous endomorphisms of Cr{z}.
Let us show the converse. If Φ is a continuous endomorphisms of Cr{z} commuting
with b, put Φ(1) =

∑∞
j=0 γjz

j and define S :=
∑∞

j=0 j!γjb
j. Then S is in Cr{{b}}.

We shall compare Φ[zp] and S[zp] for p ∈ N:

Φ[zp] = Φ[p!bp(1)] = p!bp[Φ(1)] =
∞∑
j=0

p!γjz
p+j j!

(p+ j)!

and

S[zp] =
∞∑
j=0

j!γjb
j(zp) =

∞∑
j=0

j!γj
p!zp+j

(p+ j)!
.

As the linear combinations of the zp, p ∈ N, are dense in Cr{z} we conclude that Φ
coincides with the image of S in the algebra of continuous endomorphisms of Cr{z}.
So the image of Cr{{b}} is the commutant sub-algebra of b. ■

Note that the action of Cr{{b}} extends to the Banach algebra of continuous func-
tions on D̄r using the formula

b(f)(z) := z

∫ 1

0

f(tz)dt :

iI is easy to see that for a continuous function defined on D̄r we have the estimate

||bj(f)||r ≤ ||f ||rj/j!.

It is not difficult to extend the result above to this action using the density of poly-
nomial in z and z̄ in the Banach algebra of continuous functions on D̄r.

For each real number s ∈]0, r[ we have a continuous inclusion Cs{{b}} ⊂ Cr{{b}}
of DF-algebras and we define B as the algebra C0{{b}} which is the union for all
positive r of the algebras Cr{{b}}.
Note that the algebra B is defined by

B := {S =
∞∑
j=0

sjb
j / ∃R > 1 and ∃CR > 0 such that ∀j ∈ N |sj| ≤ CRR

jj!}

and that B acts on A := C0{z} the algebra of holomorphic germs at the origin
which is the union for all r ∈]0, 1[ of the algebra Cr{z} and is defined by

A := {f =
∞∑
j=0

γjz
j / ∃R > 1 and ∃CR > 0 such that ∀j ∈ N |γj| ≤ CRR

j}.

Proposition 2.1.4 The algebra B is local.
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This result is a consequence of the following lemma. ■.

Lemma 2.1.5 Let S be in Cr{{b}} such that S(0) ̸= 0. Then there exists t ∈]0, r[
such that S is invertible in Ct{{b}}. So the algebra B := C0{{b}} has a unique
maximal ideal which is generated by b.

proof. The inverse of S in C[[b]] is given by T :=
∑∞

j=0 tjb
j with t0 := 1/s0 and

tq := −(1/s0)(
∑q

j=1 sjtq−j) for q ≥ 1. For some R ∈]1, 1/r[ there exists CR > 0 such

that |sj| ≤ CRR
jj! ∀j ≥ 0. Now assume that for some

ρ > sup{R, 3RCR
|s0|

},

some Dρ and some q ∈ N∗ we have for each integer h ∈ [0, q − 1] the estimates

|th| ≤ Dρρ
hh!.

Then we obtain

|tq| ≤
1

|s0|
CRDρ

q∑
j=1

Rjρq−jj!(q − j)!

|tq| ≤
1

|s0|
CRDρρ

qq!

q∑
j=1

(
R

ρ
)j
j!(q − j)!

q!

|tq| ≤
1

|s0|
CRDρρ

qq!
3R

ρ
≤ Dρρ

qq!

So the estimates |th| ≤ Dρρ
hh! will be valid ∀h ≥ 0 as soon as it is true for h = 0.

We conclude the proof by defining Dρ := 1/|s0| and by choosing t < 1/ρ. ■

2.2 The r-convergent (a,b)-modules

Fix a real number r ∈ [0, 1[.

Definition 2.2.1 A free finite rank Cr{{b}}-module Er endowed with a continuous
C-linear endomorphism a which satisfies

ab− ba = b2

will be called a r-convergent (a,b)-module. In the case r = 0 we simply call
E := E0 a convergent (a,b)-module.
We say that Er has a simple pole when it satisfies aEr ⊂ bEr.
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Remark. The dual Fréchet topology on a free finite rank Cr{{b}}-module Er
given by the choice of a Cr{{b}}-basis e of Er is independent of this choice because
if ε :=M(b)e is an other basis the linear bijective map corresponding to the change
of basis is continuous, thanks to the continuity of the product in the C-algebra
Cr{{b}}. Then it is an isomorphism of dual Fréchet spaces.

Note that the continuity of a for the natural dual Fréchet topology deduced from
any Cr{{b}}-basis of Er implies that for any S(b) :=

∑+∞
j=0 sjb

j in Cr{{b}} and for
any x ∈ Er we have

a(S(b)x) = lim
N→∞

N∑
j=0

sja(b
jx) = lim

N→∞

N∑
j=0

sj(b
ja+ jbj+1)x = S(b)ax+ b2S ′(b)x.

Of course, to each r-convergent (a,b)-module we can associate a s-convergent (a,b)-
module for any s ∈ [0, r] and so a convergent (a,b)-module in the case s = 0, via
the correspondence:

Er 7→ Er ⊗Cr{{b}} Cs{{b}}

where the action of a is defined by

a(x⊗ S) = ax⊗ S + x⊗ b2S ′

for x ∈ Er.

Lemma 2.2.2 For any convergent (a,b)-module with a simple pole E there exists
r > 0 and a r-convergent (a,b)-module Er ⊂ E such that E = Er ⊗Cr{{b}} B as a
B-module and such that the equality

a(x⊗ S(b)) = ax⊗ S(b) + x⊗ b2S ′(b)

holds for each S ∈ B and each x ∈ Er.

proof. Let e := (e1, . . . , ek) be a B-basis of E and write ae = M(b)e where M is
in B ⊗C EndC(Ck) satisfies M(0) = 0. Choose now r > 0 such that M is in fact
in Cr{{b}} ⊗C EndC(Ck) and define Er := ⊕k

j=1Cr{{b}}ej ⊂ E . Now the C-linear
endomorphism of Er induced by a is clearly continuous for the dual Fréchet topology
of Er, thanks to the continuity of the product in Cr{{b}}, and satisfies ab− ba = b2.
It is easy to verify that the r-convergent (a,b)-module Er satisfies the lemma. ■

2.3 Construction of E(Θ)

We shall construct now an important family of examples of simple poles convergent
(a,b)-modules.
We begin by a very simple but useful lemma:
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Lemma 2.3.1 For x ∈ [1,+∞[ and any integer k ≥ 0 we have

x(x+ 1) . . . (x+ k)

(k + 1)!
≤ xk+1.

Proof. Obvious because for x ≥ 1 we have x+ j ≤ x(j + 1) for each j ≥ 0. ■

Note that for x ∈ [0, 1] we have x(x+1)...(x+k)
(k+1)!

≤ 1.

As an easy consequence, we obtain that for any endomorphism Θ ∈ L(Cp,Cp) we
have the estimates

||Θ ◦ (Θ + 1) ◦ · · · ◦ (Θ + k)|| ≤ (k + 1)! θk+1

where θ := sup{1, ||Θ||}. where the norm || || satisfies ||x ◦ y|| ≤ ||x||.||y|| for all
x, y ∈ L(Cp,Cp).

Then if we have a basis e of a rank p convergent (a,b)-module which satisfies

ae = Θbe

where Θ is in L(Cp,Cp) we shall have, by an easy induction on k ≥ 1:

ake = Θ ◦ (Θ + 1) ◦ · · · ◦ (Θ + k)bke

because abk = bka+ kbk+1.

Then assume now that we have T ∈ C{a} ⊗C L(Cp,Cp) and x = Te, write
T :=

∑∞
k=0 Tka

k with a positive radius of convergence. We obtain that

x =
∞∑
k=0

TkΘ ◦ (Θ + 1) ◦ · · · ◦ (Θ + k)bke

and the estimates above implies that x lies inside the B-module generated by e,
because the series 1

k!
TkΘ◦(Θ+1)◦· · ·◦(Θ+k)bk has a positive radius of convergence.

Proposition 2.3.2 Let Θ be an invertible (k, k)−matrix with complex entries such
that the spectrum of Θ is disjoint from −N. Then we define the convergent (a,b)-
module E(Θ) as follows:

1. E(Θ) is the free, rank k, B-module with basis e := (e1, . . . , ek), the standard
basis of Ck.

2. The C-linear continuous endomorphism a : E(Θ) → E(Θ) is defined by

ae = Θbe and ab− ba = b2.

Then E is a simple pole convergent (a,b)-module.
Moreover, the action of C[a] on E(Θ) extends to a continuous action of A = C{a}
on E(Θ) and under this action E(Θ) is a free, rank k, A-module with basis e.
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proof. In fact we shall begin by proving that for any r ∈]0, 1[ the Cr{{b}}−sub-
module Er(Θ) := ⊕k

j=1Cr{{b}}ej ⊂ E(Θ) which is clearly stable by a, is a r-
convergent (a,b)-module with a simple pole. The continuity of a for the dual Fréchet
topology of Er follows from the continuity of the derivation in Cr{{b}} and the for-
mula a(S(b)e) = S(b)Θe+ b2S ′(b)e for any matrix S ∈ Cr{{b}} ⊗C EndC(Ck) .
The last assertion is an easy consequence of the following equality, valid for all j
and p in N:

ajbpe = (Θ + pId) ◦ · · · ◦ (Θ + (p+ j − 1)Id)b(j+p)e. (2)

As this equality is clear for j = 0, 1 and any p ∈ N, thanks to the commutation
relation abp = bpa + pbp+1, assume that it is true for j and compute aj+1bpe. The
matrix Θ has complex entries so commutes with the action of a, so the commutation
relation above is enough to conclude.
Now if U :=

∑+∞
j=0 uja

j is in Cr{a}, for some R ∈]1, 1/r[ we may find a constant

CR > 0 such that |uj| ≤ CRR
j ∀j ≥ 0.

Also if S :=
∑+∞

j=0 sjb
j is in Cr{{b}}k we may find, choosing a bigger R ∈]1, 1/r[ if

necessary, a constant DR such that

||sj|| ≤ DRR
jj!.

Then we have

U(S(b)e) =
+∞∑
p=0

Xpb
pe

where Xp in Ck is given by

Xp =

p∑
j=0

sjup−j.

So we obtain the estimates, for some R ∈]1, 1/r[, where θ := sup{1, ||Θ||}, assuming
that || || is a multiplicative norm on the complex (k, k)-matrices and that q is a
positive integer bigger than θ

||Xp|| ≤ CRDRR
p
( p∑
j=0

(p+ q − 1))!

(q + j − 1)!

)
≤ (1/(q − 1)!)CRDRR

p(p+ q)!

since we have
p∑
j=0

(q + p− 1)!/(q + j − 1)! ≤ (p+ q)!/(q − 1)!

for each integer p ≥ 0. So U(S(b)e) is in Er(Θ). This implies that Er(Θ) is a Cr{a}-
module.
To show that E(Θ) is free A-module with basis e, since it has no a-torsion thanks
to our hypothesis that Spec(Θ)∩−N = ∅, it is enough to show that, for any S ∈ B,

13



S(b)e is in the A-module generated by e1, . . . , ek. Using the formula above with
p = 0 we obtain, with the notation (Θ + qId)−1 := Hq

bje = Hj−1 ◦ · · · ◦H0a
je

for each j ≥ 0 and then S(b)e =
∑+∞

p=0 Ypa
pe with Yp := spHp−1 ◦ · · · ◦H0.

But since the sequence (Θ/q) converges to 0 when q → +∞, there exists a constant
Γ > 1 such that (Θ+qId)−1 = (1/q)(1+Θ/q)−1 has its norm bounded by Γ/(q+1) for
each q ≥ 0. This implies ||Hp−1◦· · ·◦H0|| ≤ Γp/p! and we obtain the estimates, since
for some R ∈]1, 1/r[ there exists a constant CR such that ||sp|| ≤ CRR

pp! ∀p ≥ 0,

|Yp| ≤ CRR
pΓp

which implies that
∑+∞

p=0 Ypa
p is in Cs{a} ⊂ A with s = r/Γ. ■

Example. For α ∈]0, 1] ∩ Q, the convergent (a,b)-module Ξ
(N)
α of asymptotic

expansions (see section 5 below) is equal to E(Θα) where the matrix Θα is the
following (N + 1, N + 1) matrix:

Jα,N+1 :=


α 0 0 0 . . . 0
1 α 0 0 . . . 0
0 1 α 0 0 0
. . . . . . . . . . . . . . . 0
0 . . . . . . 1 α 0
0 . . . 0 0 1 α

 .

2.4 The algebra Ãconv.

Recall that the algebra A is the unitary C-algebra generated by the two variables a
and b with the commutation relation ab− ba = b2.
For each S ∈ C[b] we have in A the relation aS(b) = S(b)a+ b2S ′(b) where S ′ is the
derivative of the polynomial S.

Exercise.

1. Verify that the vector space of homogenous polynomials in a, b) of degree d in
A admits either ad−jbj, j ∈ [0, d] or bjad−j, j ∈ [0, d] as a basis.

2. Show that each homogeneous polynomial of degree d and monic in a in A may
be written

P = (a− λ1b) . . . (a− λdb)

where λ1, . . . , λd are complex numbers (but such an expression in not unique,
in general).
(Hint: Show that b−dP is a degree d monic polynomial in b−1a). □
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Let define the numbers Γjp,q for p, q ∈ N and for j ∈ [0, p] by the equation in A

apbq =

p∑
j=0

Γjp,qb
q+jap−j (3)

It will be convenient to define Γjp,q = 0 for j > p.

Lemma 2.4.1 We have the following recursion relations:

Γjp+1,q = Γjp,q + (q + j − 1)Γj−1
p,q ∀p, q ≥ 0 and ∀j ∈ [1, p]

Γjp,q = Γjp−1,q + qΓj−1
p−1,q+1 ∀p ≥ 1, q ≥ 0 and ∀j ∈ [1, p+ 1].

So Γjp+1,q = Γjp,q + qΓj−1
p,q+1 ∀p, q ≥ 0 and ∀j ∈ [1, p+ 1].

proof. To prove the first relation multiply on the left the equality (3) by a. This
gives that Γjp+1,q is the coefficient of bq+jap+1−j in the sum

p∑
h=0

Γhp,qab
q+hap−h =

p∑
h=0

Γhp,q(b
q+ha+ (q + h)bq+h+1)ap−h

=

p∑
h=0

Γhp,qb
q+hap−h+1 +

p∑
h=0

Γhp,q(q + h)bq+h+1)ap−h

and we obtain the first relation.
For the second relation, write if p ≥ 1 and q ≥ 1:

apbq = ap−1(ab)bq−1 = ap−1(ba+b2)bq−1 = ap−1b(bq−1a+(q−1)bq)+ap−1bq+1 = ap−1bqa+qap−1bq+1.

Then looking for the coefficient of bq+jap−j in the sum

p−1∑
h=0

Γhp−1,qb
q+hap−h + q

p−1∑
h=0

Γhp−1,q+1b
q+h+1ap−h−1

we obtain the second relation.
Now writing the second relation for p+ 1 gives the third relation. ■

Comparing the third relation with the first one gives:

qΓj−1
p,q+1 = (q + j − 1)Γj−1

p,q ∀p ≥ 1 ∀q ≥ 0 ∀j ∈ [1, p+ 1]

which leads to

Γjp,q+1 =
(q + j)!

j!q!
Γjp,1 ∀p ≥ 1 ∀q ≥ 0 ∀j ∈ [0, p].

As have
Γjp,0 = 1 for j = 0 and Γjp,0 = 0 for j ∈ [1, p]
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the first relation in the lemma above gives

Γjp,1 =
p!

(p− j)!

So we have proved the following formula:

Γjp,q =
(q + j − 1)!

j!(q − 1)!

p!

(p− j)!
∀q ≥ 1 ∀p ≥ 0 and ∀j ∈ [0, p] (4)

Remark. There is a C-linear anti-automorphism F of A defined by the following
conditions

1. F (xy) = F (y)F (x) ∀x, y ∈ A.

2. F (a) = a, F (b) = −b and F (1) = 1

Then apply F to the relation (3) gives

bqap =

p∑
j=0

(−1)jΓjp,qa
p−jbq+j (5)

which inverts the relation (3) when we consider it as the base change in the vec-
tor space of homogeneous polynomials of degree m in (a,b) inside A for the basis
(apbq)p+q=m to the basis (bqap)p+q=m.

Corollary 2.4.2 For each x ∈ C we have the equality

(a+ xb)p = ap +

p∑
j=1

γj(x)C
j
pb
jap−j (6)

in the algebra A, where γj(x) := (x+ j − 1)(x+ j − 2) . . . x for j ∈ [1, p].

proof. Since both sides are degree p polynomials in x with coefficients homoge-
neous of degree p in (a,b) in the C-algebra A, it is enough to prove this formula for
each x = q ∈ N. Let us show first that we have the identity bq(a+ qb)p = apbq in A:
This is an easy consequence of the fact that b(a+qb) = ab−b2+qb2 = (a+(q−1)b)b.
Then the formulas (4) and (5) imply (6) for x = q ∈ N, because b is not a zero divisor
in A. ■

Note that for x = q ∈ N∗ we have γj(q) = (q + j − 1)!/(q − 1)!.

An example. As γj(−1) = 0 for j ≥ 2 we obtain in A the relations:

(a− b)p = ap − pbap−1 ∀p ≥ 2

This equality is easy to prove directly by induction on p ∈ N, for instance using the
identities (a− b)pb = bap and apb = bap + pbap−1b.
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Exercise. Show that for each integers p, q ≥ 0 we have

(a+ xb)pbq = bq(a+ (x+ q)b)p.

Then for x = −q this gives (a− qb)pbq = bqap. □

Theorem 2.4.3 Let Ãconv. be the C−vector space

Ãconv. := {
∑
p,q

γp,qa
pbq ∃R > 1, ∃CR s. t. |γp,q| ≤ CRR

p+qq!}.

Assume that the variables a and b satisfies the commutation relation ab − ba = b2.
Then Ãconv. is a sub-algebra of Â of formal power series in the variables (a, b) with
the relation ab− ba = b2. Moreover Ãconv. is also described as the vector space:

Ãconv. := {
∑
p,q

δp,qb
qap ∃R > 1, ∃DR s. t. |δp,q| ≤ DRR

p+qq!}.

Proof. Let X :=
∑

p,q γp,qa
pbq and Y :=

∑
p′,q′ δp′,q′a

p′bq
′
be in Ãconv.. Then the

product XY in Â is given by

XY =
∑
m,n

εm,na
mbn

where
εm,n =

∑
p+p′−j=m,q+q′+j=n

(−1)jΓjp′,qγp,qδp′,q′

using Formula (5) to compute bqap
′
.

There exists positive constants R and CR large enough such that the following
estimates hold true

|γp,q| ≤ CRR
p+qq! and |δp,q| ≤ C ′

RR
p+qq!

and then we obtain

|εm,n| ≤ CRC
′
RR

m+nn!
∑

p+p′−j=m,q+q′+j=n

(q + j − 1)!p′!q!q′!

n!(q − 1)!j!(p′ − j)!

In order to estimates the sum above, first note that q, q′, j are at most equal to n
so that the triple (q, q′, j) takes at most (n+ 1)2 values. Then p and p′ are at most
equal to m+ n and so the sum has at most (n+ 1)2(m+ n+ 1) terms. Each term
is now bounded by

q
Cj
p′

nCq′

n−1

≤ Cj
p′ ≤ 2m+n
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using the fact that q + j − 1 = n− q′ − 1. So there exists a constant D3R such that

CRC
′
R(2R)

m+n(n+ 1)2(m+ n+ 1) ≤ D3R(3R)
m+n ∀m,n ∈ N

which implies
|εm,n| ≤ D3R(3R)

m+nn!

showing that XY is in Ãconv..
In order to write X =

∑
m,n cm,nb

nam in Â we use the formula (4) and we obtain

cm,n =
∑

p−j=m,q+j=n

(−1)qΓjp,qγp,q.

The sum has at most (n+ 1)2(m+ n+ 1) terms and we have

|Γjp,qγp,q| ≤ CR.R
p+qq!

(q + j − 1)!p!

(q − 1)!j!(p− j)!
≤ CRR

m+nn!Cj
p ≤ CR(2R)

m+nn!

and we conclude as above that there exists a constant DR such that the following
estimates hold true |cm,n| ≤ DR(3R)

m+nn! ∀(m,n) ∈ N2. ■

Remark. For 1 < S < R and any positive integers m and n there is a positive
constant Cm,n such that

(
S

R
)p+q

(q +m)!

q!
(1 + p)n ≤ Cm,n ∀(p, q) ∈ N2.

So if X :=
∑

p,q xp,qa
pbq satisfies, for some given integers m and n, the estimates

|xp,q| ≤ CRR
p+q(q +m)!(1 + p)n ∀(p, q) ∈ N2

then X is in Ãconv..
In particular, if some X ∈ Â is such that Xbm is in Ãconv. then X is also in Ãconv..
Moreover we may find Y ∈ Ãconv. such that Xbm = bmY . And the same is true if
bmX is in Ãconv., then X is also in Ãconv. and we may find Z ∈ Ãconv. such that
bmX = Zbm.
The proof of the previous assertions is easy as it is enough to treat the case m = 1,
using the second part of the previous theorem.
Also, if some X ∈ Â is such that Xa or aX is in Ãconv. then X is also in Ãconv..
But contrary to bÃconv. = Ãconv.b the left and right ideals aÃconv. and Ãconv.a are
different. □

Lemma 2.4.4 For any X :=
∑

p,q xp,qa
pbq ∈ Ãconv. define for f(z) :=

∑∞
m=0 tmz

m

in C{z}

X(f) :=
∞∑
m=0

umz
m where um :=

∑
p+q+r=m

r!

(q + r)!
xp,qtr.

Then X(f) is in C{z}.
The corresponding map of C-algebras which sends Ãconv. to the algebra of continuous
endomorphisms of C{z}, is continuous and injective.
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proof. For R > 1 large enough there exists CR > 0 and DR > 0 such that

|tr| ≤ CRR
r and |xp,q| ≤ DRR

p+qq!.

Then we obtain

|um| ≤ CRDRR
m

∑
p+q+r=m

r!q!

(q + r)!
.

The sum above has at most (m + 1)2 terms and each one is bounded by 1 so for
any ρ > R there exists a constant Cρ such that |um| ≤ Cρρ

m, and this allows to
conclude that X(f) is in C{z}.
The continuity of this map follows from the estimates above.
Consider now X such that X(zr) = 0 for each r ∈ N. The coefficient of zm+r in
X(zr) is given by Pm(z

r) where Pm :=
∑

p+q=m γp,qa
pbq is the homogeneous part

of degree m in (a,b) in X. We know that a non zero homogeneous degree m in
(a,b) element in A may be written bj(a−λ1b) . . . (a−λm−jb) where λ1, . . . , λm−j are
complex numbers (see exercise 2 at the beginning of this section). Also b is injective
on C{z}, and we have

(a− λb)(zr) = (1− λ/(r + 1))zr+1

which vanishes only when r+1 = λ. So, for any given m there exists r large enough
such that Pm(z

r) ̸= 0. Then, for X ̸= 0 there exists m ∈ N such that Pm ̸= 0 and
for r large enough the coefficient of zr+m in X(zr) is not zero, and the conclusion
follows. ■

Lemma 2.4.5 For each non negative integer N the vector space defined as the sub-
set of series X :=

∑
(p,q)≥0 xp,qa

pbq in Â satisfying

∃R > 1, ∃CR s. t. |xp,q| ≤ CRR
p+q (p+ q)!

p!
(1 + p)N ∀p, q ≥ 0

is equal to the algebra Ãconv..

Proof. The inclusion in Ãconv. is clear because p!q! ≤ (p + q)!(1 + p)N for any
integers p, q,N ≥ 0. Conversely, if X is in S we have

|xp,q| ≤ CRR
p+qCq

p+qq!(1 + p)N ≤ ΓNCR(4R)
p+qq!

because Cq
p+q ≤ 2p+q and for each N there exists ΓN large enough such that

(1 + p)N ≤ ΓN2
p for any p ≥ 0. ■

Proposition 2.4.6 Let X be in Ãconv. and assume that x0,0 = 1. Then X is in-
vertible in the algebra Ãconv..
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Proof. Using the formula for the product in Ãconv. obtained in the proof of The-
orem 2.4.3 we see that, if Y :=

∑
p′,q′≥0 yp′,q′a

p′bq
′
is a formal inverse of X, then Y

is given by y0,0 = 1 and for (m,n) ̸= (0, 0) by

ym,n =
∑

(j,p,q)∈A(m,n)

(−1)jΓjp′,qxp,qyp′,q′

where we define

A(m,n) = {(p, q, j) ∈ N3 / ∃(p′, q′) ̸= (m,n) such that p+p′−j = m, q+q′+j = n}.

We shall note by Bm,n the set of (p′, q′) such that there exists (p, q, j) ∈ Am,n such
that p′ = m+ j − p, q′ = n− q − j. Choose R > 1 and CR such that

|xp,q| ≤ CRR
p+q (p+ q)!

p!
∀p, q ≥ 0

and assume that S > R is large enough to satisfy satisfies

CRR/(S −R) ≤ 1.

We shall prove by induction on p′ + q′ ≥ 0 the estimates

|yp′,q′| ≤ DSS
p′+q′ (p

′ + q′)!

p′!
.

So assume that this estimates has been obtained for p′ + q′ ≤ d− 1 with d ≥ 1 (for
d = 0 we have only to ask that DS ≥ 1) and fix any (m,n) such that m+ n = d.
We shall describe Am,n by fixing j, q and r := p+ q so we have p = r − q,
p′ = m+ j − (r − q) and q′ = n− j − q, and∑

p,q,j∈Am,n

=
m+n∑
r=1

n∑
q=0

n−q∑
j=0

.

Then remark that, as (p′, q′) ∈ Bm,n implies that p + q + p′ + q′ = m + n = d with
(p, q) ̸= (0, 0) we have p′ + q′ ≤ d− 1 for (p′, q′) ∈ Bm,n; so for (p′, q′) ∈ Bm,n, βp′,q′
satisfies our inductive estimates.
Then we obtain the estimates:

|ym,n| ≤ DSS
m+n (m+ n)!

m!

∑
p,q,j∈Am,n

CR(R/S)
p+q (p+ q)!(p′ + q′)!

p!p′!

m!

(m+ n)!
Γjp′,q

≤ DSS
m+n (m+ n)!

m!

[m+n∑
r=1

CR(R/S)
r

Cr
m+n

Φ(r)
]

where, fixing r ∈ [1,m + n], we have to estimate, using that Γjp′,q = Cq−1
q+j−1

p′!
(p′−j)! ,

the quantity

Φ(r) :=
n∑
q=0

n−q∑
j=0

m!

p!p′!
Γjp′,q =

n∑
q=0

n−q∑
j=0

m!

p!p′!
Cq−1
q+j−1

p′!

(p′ − j)!
.
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Using the equality m = p+ p′ − j we obtain

Φ(r) =
n∑
q=0

n−q∑
j=0

m!

p!(p′ − j)!
Cq−1
q+j−1 =

n∑
q=0

n−q∑
j=0

Cr−q
m Cq−1

q+j−1. (@)

Now we shall use the following elementary lemma.

Lemma 2.4.7 For any positive integers x, y we have

y∑
j=0

Cj
x+j = Cx+1

x+y+1.

Proof. As Cj
x+j = Cx

x+j we are computing the coefficient of ax in the polynomial∑y
j=0(1 + a)x+j which is equal to

(1 + a)x
(1 + a)y+1 − 1

a
.

So our sum is equal to the coefficient of ax+1 in the polynomial

(1 + a)x+y+1 − (1 + a)x

and it is equal to Cx+1
x+y+1. ■

End of proof of Proposition 2.4.6. So, thanks to the equality above, for
x := q − 1 and y := n − q, which gives

∑n−q
j=0 C

q−1
q+j−1 = Cq

n, the sum in (@) admit
the estimates

Φ(r) ≤
n∑
q=0

Cr−q
m Cq

n ≤ Cr
m+n

because
∑r

p=0C
p
mC

r−p
n = Cr

m+n. Then the estimates (@) gives

|ym,n| ≤ CRDSS
m+n(m+ n)!

1

m!

m+n∑
r=1

CR(R/S)
r

Cr
m+n

Φ(r) ≤ DSS
m+n(m+ n)!

1

m!

as we choose S in order that

CR

m+n∑
r=1

(R/S)r ≤ CR
R

S −R
≤ 1

we obtain that Y is in Ãconv.. ■

Of course this proposition implies that anyX ∈ Ãconv. such that x0,0 ̸= 0 is invertible
in Ãconv. because writing such an element as X = S(b)(1 + aZ) where S is in B is
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invertible (because S(0) = x0,0 ̸= 0) and we may apply the previous proposition to
T := S−1X = 1 + aZ which is in Ãconv. and satisfies t0,0 = 1. Then X−1 = T−1S−1

is in Ãconv..
As a consequence, we see that aÃconv. + bÃconv. = Ãconv.b + Ãconv.a is the unique
two sided maximal ideal in Ãconv. which is closed and with quotient

Ãconv.

/
aÃconv. + bÃconv. ≃ C.

Corollary 2.4.8 Let Θ be a (k, k)-matrix such that its spectrum is disjoint from −N
and consider the simple pole convergent (a,b)-module E(Θ) introduced in section 2.3.
Then the continuous actions of the algebras A and B on E(Θ) are the restriction of
a continuous action of Ãconv. on E(Θ).

Proof. Since the rigth multiplication by an element of B is a continuous endo-
morphism of left Ãconv.-module on Ãconv., it is enough to define the (left) action of
Ãconv. on the B-basis ej, j ∈ [1, k] of E(Θ):
Indeed, if X ∈ Ãconv. and Z ∈ Bk the action of X on Ze is, by definition, the action
of XZ ∈ Ãk

conv. on e where XZ is defined by the left action of Ãconv. on Ãk
conv. by

left multiplication (using the fact that B ⊂ Ãconv.) and then we use the action of
Ãk
conv. on each e defined below.

So, using the second assertion of Theorem 2.4.3, let X =
∑

p,q xp,qb
qap ∈ Ãk

conv.;

there exists constants R > 1 and CR > 0 with |xp,q| ≤ CRR
p+qq! ∀(p, q) ∈ N2.

Since we have ape = (Θ + (p− 1)Id) ◦ · · · ◦Θbpe we obtain

Xe =
∑
p,q

xp,qb
qape =

∞∑
j=0

zjb
je

where zj =
∑

p+q=j xp,q(Θ + (p − 1)Id) ◦ · · · ◦ Θ. We have the estimate, for τ an
integer larger than ||Θ||

|zj| ≤ CRR
jj!

j∑
p=0

(j − p)!(τ + p− 1)!

j!(τ − 1)!
.

For S > R and τ ∈ N given there exists a constant D > 0 such that

Rj(τ + p− 1)! ≤ DSj(1 + p)τ (τ − 1)!

for each integers j and p so we obtain, using Lemma 2.1.2

|zj| ≤ 3CRDS
jj!(1 + j)τ ∀j ∈ N

and then Z :=
∑∞

j=0 zjb
j is in Bk and Xe := Ze is well defined in the B-module

with basis e.
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Remark. The special case where, for α ∈]0, 1] ∩ Q and k ∈ N∗, we consider the

(k, k)-matrix Θα which gives E(Θα) = Ξ
(k−1)
α will be important since it shows, using

the Embedding Theorem 5.1.3, that geometric (a,b)-modules are canonically left
Ãconv.-modules.

2.5 The Division Theorem

First we shall work inside the algebra A of polynomials in the variables a and b with
the commutation relation ab− ba = b2.
Note that this algebra is integral and that any homogeneous element in (a, b) of
degree m ≥ 1 monic in a may be factorized as

Pm := (a− λ1b)(a− λ2b) . . . (a− λmb)

and that the polynomial π(x) := (x− (λ1 −m) . . . (x− λm) satisfies the relation

(−b)mπ(−b−1a) = Pm

where the computation is made in the algebra A[b−1].

Lemma 2.5.1 For each complex number λ and each integer m ∈ N∗ we have the
equality

am = Qm−1(λ)(a− λb) +Rm(λ)

where
Qm−1(λ) = am−1 + λam−2b · · ·+ λ(λ+ 1) . . . (λ+m− 2)bm−1

and
Rm(λ) = λ(λ+ 1) . . . (λ+m− 1)bm.

Proof. For m = 1 the relation a = (a− λb) + λb is clear and give Q0(λ) ≡ 1 and
R1(λ) = λb. So assume that the lemma is proved for m ≥ 1 and multiply on the
left by a. We obtain:

am+1 = aQm−1(λ) + aRm(λ) = aQm−1(λ) +Rm(λ)(a+mb).

Writing Rm(λ)(a+mb) = Rm(λ)
(
(a− λb) + (m+ λ)b

)
we obtain

Qm(λ) = aQm−1(λ) +Rm(λ) and Rm+1(λ) = (λ+m)bRm(λ)

completing the proof. ■

Proposition 2.5.2 Let X :=
∑

(p,q)∈N2 xp,qb
qap be an element in the algebra Ãconv..

Then for any real number λ there exists a unique Q in Ãconv. and an unique R in
B such that the following equality holds in Ãconv.:

X = Q(a− λb) +R
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Proof. To prove the uniqueness we have to show that Q(a − λb) + R = 0 with
Q ∈ Ãconv. and R ∈ B implies Q = 0 and R = 0.
Assume that Q is not 0 and consider the minimal integer m ≥ 1 such that there
is a non zero homogeneous term of degree m− 1 in (a, b) inside Q, denote it qm−1.
Then the assumption implies we have qm−1(a − λb) + rmb

m = 0 for some complex
number rm which is the coefficient of bm in R. For each integer d the vector space
of homogeneous elements of degree d in (a, b) admits the basis

(a− λb)d, b(a− λb)d−1, . . . , bd−1(a− λb), bd

and the relation above gives a non trivial linear relation between these linearly
independent elements. This contradicts the assumption that qm−1 ̸= 0. Then Q = 0
and so R = 0.
To prove the existence, write X =

∑∞
p=0Xp(b)a

p =
∑

p,q xp,qb
qap where Xp is in B

for each p ≥ 0. Then at the formal level2 we have, thanks to Lemma 2.5.1, the
equality

X =
( ∞∑
p=0

Xp(b)Qp

)
(a− λb) +R

To complete the proof, we have to show that the formal solution obtained above

(
Q :=

( ∞∑
p=0

Xp(b)Qp

)
, R

)
defines a Q in Ãconv. and a R in B. The real number λ will be fixed in the sequel
and we put R =

∑∞
p=0 rpb

p.
Fix positive constants S > 1 and C such that

|xp,q| ≤ CS(p+q)q!

The coefficient rj of bj in R comes only from the products of xp,j−p−1b
j−p−1ap by

−λb for p ∈ [0, j − 1]. This gives

rj = −λ
j−1∑
p=0

xp,j−p−1Γ
p
p,1 = −λ

j−1∑
p=0

xp,j−p−1p!

so using the estimate
∑j−1

p=0(j − p− 1)!p! ≤ 3(j!) and defining C1 := 3|λ|CS−1 give

|rj| ≤ C1S
jj!

showing that R is in B.
So Q(a− λb) is in Ãconv. and we shall prove now that this implies that Q is also in
Ãconv..

2So in the algebra Â[λ] the formal completion in (a,b) of A[λ].
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The real number λ is fixed and and define the complex numbers γp,q and δp,q by

Q :=
∑
p,q

γp,qa
pbq and Q(a− λb) :=

∑
p,q

δp,qa
pbq.

The relation between the δp,q and γp,q are given by

δp+1,q+1 = γp,q+1 − (q + λ)γp+1,q ∀(p, q) ∈ N2 (R)

and with δ0,0 = 0, δ0,q+1 = −(q + λ)γ0,q and δp+1,0 = γp,0.
The following two lemmas allow to reduced to find the estimates we are looking for
in the case where λ is in ]0, 1[ (recall that the case λ = 0 is trivial; see the remark
following Theorem 2.4.3).

Lemma 2.5.3 Fix X ∈ Ãconv. and the complex number λ. Assume that there exists
a positive integer m for which the quotient in the right division of Xbm by a− (λ−
m)b) lies in Ãconv.. Then the quotient in the right division of X by (a− λb) is also
in Ãconv..

Proof. The identity bm(a− (λ−m)b) = (a−λb)bm allows to obtain at the formal
level, using the uniqueness of the ”formal” division, that if

X = Q(a− λb) +R then Xbm = Qbm(a− (λ−m)b) +Rbm.

As we assume that Qbm is in Ãconv. we conclude that Q is in Ãconv. thanks to the
remark following Theorem 2.4.3.

Lemma 2.5.4 Fix the complex number λ. Assume that there exists a positive in-
teger m such that for any X ∈ Ãconv. the quotient in the right division of X by
a− (λ+m)b lies in Ãconv.. Then, for any X ∈ Ãconv. the quotient of X in the right
division by (a− λb) is also in Ãconv..

Proof. First take any X ∈ Ãconv. and write bmX = Y bm with Y in Ãconv. (see
the remark following Theorem 2.4.3). Then write Y = Q(a − (λ +m)b) + R with
Q ∈ Ãconv. and R ∈ B thanks to our hypothesis. Multiply this equality on the right
by bm gives

Y bm = bmX = Q(a− (λ+m)b)bm +Rbm.

But we have (a − (λ +m)b)bm = bm(a − λb) and,using again the remark following
Theorem 2.4.3, we may write Qbm = bmQ1 where Q1 is Ãconv.. So we obtain

bmX = bmQ1(a− λb) + bmR

which allows to conclude as left product by b is injective in Ãconv.. ■
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End of proof of Proposition 2.5.2. From now on, the number λ will be real,
and thanks to the previous lemmas we may assume that λ is in ]0, 1[.

We fix some positive constants C and R > 1 such that |δp,q| ≤ CR(p+q)q! ∀(p, q) ∈
N2.
We fix also some S := kR with k > 1.

For q = 0 and any p ≥ 0 we have

|γp,0| = |δp+1,0| ≤ CR(p+1) ≤ ΓSp

because we shall choose the constant Γ larger than CR.

Let q ≥ 1 and assume that we have already proved that for any p ∈ N

|γp,q−1| ≤ ΓS(p+q−1)(q − 1)! ∀p ≥ 0

where we shall choose the constant Γ ≥ CR later on (but independent on q ∈ N).
Then, as γp,q = δp+1,q + (q + λ− 1)γp+1,q−1 we obtain

|γp,q| ≤ CR(p+q+1)q! + (q + λ− 1)ΓS(p+q)(q − 1)!

and then

|γp,q| ≤ ΓS(p+q)q!
[CR

Γ
k−(p+q) +

q + λ− 1

q

]
.

Now we shall choose the constant Γ in order that it satisfies

CR

Γ
k−(p+q) +

q + λ− 1

q
≤ 1

for any p ≥ 0 and any q ≥ 1:
First we shall choose a constant α := CR/Γ (by choosing Γ big enough ) in order
that

CR

Γ
k−(p+q) +

λ− 1

q
≤ 0

for any p ≥ 0 and q ≥ 1. Because qk−q converges to 0 when q goes to +∞ and
λ − 1 < 0, there exists a positive integer q0 such that qk−(p+q) + λ − 1 < 0 for all
q ≥ q0 and all p ≥ 0. This is possible since k > 1 and λ < 1.
Then, for any given q, as αqk−(p+q) + λ − 1 goes to λ − 1 < 0 when α goes to
0+, there exists α0 ∈]0, 1[ such that for any α ∈]0, α0[ and any q ≤ q0 we have
αqk−(p+q) + λ− 1 < 0. Now taking Γ big enough to have CR/Γ < α0 < 1 we obtain
that

CR

Γ
k−(p+q) + 1 + (λ− 1)/q ≤ 1

for any p ≥ 0 and any q ≥ 1. Then

|γp,q| ≤ ΓS(p+q)q!

concluding the proof of the proposition 2.5.2. ■
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Remarks.

1. For the estimates in the previous proposition, we use in a crucial way that λ
is real and in ]0, 1[, the case λ = 0 is simple and the reduction of λ in [0, 1[
has been obtained by the lemmas 2.5.3 and 2.5.4.
The reader will see that, in the sequel, the number λ will be mainly a pos-
itive rational number in relation with the theorem of M. Kashiwara [18] on
rationality and negativity of the roots of the Bernstein polynomials.

2. For λ ∈ C \ R it is not clear that the result is true. For the algebras A, B[a]

and also Ã = B̂[a] and Â there is for each λ ∈ C an automorphism τλ which
send 1 to 1, b to b and a to a− λb. But this is not the case for Ãconv.:
Take x ∈]0, 1] and X :=

∑
p,q≥0 q!a

pbq which is Ãconv.. Then, by replacing a

by a+xb inside X we obtain the element
∑

p′,q′≥0 ξp′,q′a
p′bq

′
in Â where, using

Corollary 2.4.2, we find

ξp′,q′ = q′! +

p′∑
j=1

(q′ + j)!γj(x)C
j
q′+j ≥ x

p′∑
j=1

(j − 1)!((q′ + j)!)2

q′!j!
≥ x

((q′ + p′)!)2

q′!p′

at least for p′ ≥ 1. Then for p′ = q′ we find that ξq′,q′ ≥ x((2q′)!)2/q′!q′ and
for any R > 1 there does not exist CR such that ((2q′)!)2 ≤ q′((q′)!)2CRR

2q′ .

So for each x ∈]0, 1] the image of X in Â by the automorphism τ−x is not in
Ãconv.. So, even for x ∈]0, 1[ we cannot reduce the proof of Proposition 2.5.2
to the trivial cas λ = 0 as in the formal case.

3. Assume in the situation of Proposition 2.5.2 that X is in B[a]. So Q(a− λb)
is a polynomial in a. Then Q is also a polynomial in a and its degree in a is
the degree of X minus 1.
It is easy to give a direct proof in this case of the fact that Q is in B[a]
(so without using Proposition 2.5.2 and then for any complex λ), using the
automorphism τλ which reduces to the trivial case λ = 0.

Theorem 2.5.5 Let λ1, . . . , λk be real numbers and S1, . . . , Sk be invertible elements
in B. Then define P ∈ B[a] by

P := (a− λ1b)S1(a− λ2b)S2 . . . (a− λkb)Sk.

Then for any X in Ãconv. there exists unique Q ∈ Ãconv. and R ∈ B[a] with
dega(R) ≤ k − 1 such that

X = QP +R.

Proof. The uniqueness is clear from the uniqueness statement in Proposition
2.5.2 by an easy induction on k.
We shall prove the existence also by induction on k ≥ 1. For k = 1 it is enough to
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apply Proposition 2.5.2 to XS−1
1 . So assume the proposition proved for k − 1 and

then write
X = Q0(a− λ2b)S2 . . . (a− λkb)Sk +R0

where R0 has degree in a at most k − 2. Now apply Proposition 2.5.2 for (a− λ1b)
to Q0S

−1
1 . We obtain

Q0S
−1
1 = Q1(a− λ1b) +R1

where R1 has degree 0 in a. Then replacing Q0 by Q1(a − λ1b)S1 + R1S1 in the
previous division we obtain

X = Q1(A−λ1b)S1(a−λ2b)S2 . . . (a−λkb)Sk+R0+R1S1(a−λ2b)S2 . . . (a−λkb)Sk

this concludes the proof because

R := R0 +R1S1(a− λ2b)S2 . . . (a− λkb)Sk

has degree in a at most equal to k − 1. ■

Remark. As a direct consequence, we obtain that the quotient of Ãconv. by the
(closed) left ideal Ãconv.P for such a P , coincides with the quotient B[a]/B[a]P and
is a free B-module with basis 1, a, . . . , ak−1. We shall see that this is the general
form of a convergent frescos with rank k when the numbers λj+j−k are rational
and positive (see Theorem 7.1.1).
So it will be equivalent, thanks to the previous results to consider geometric (a,b)-
modules as left Ãconv.-modules or as left B[a]-modules and any B[a]-linear maps
between two geometric (a,b)-modules is Ãconv.-linear.

3 Regular convergent (a,b)-modules

3.1 Basic properties

Notation. Recall that we note B and B̂ respectively the algebras B := C{{b}}
and B̂ := C[[b]] in the sequel.

For S in B (or in B̂) we shall note S ′ the usual derivative of S; we mean that

S ′(b) =
∑∞

j=1 jsjb
j−1 if S :=

∑∞
j=0 sjb

j. The algebras B and B̂ are stable by this
derivation.
Recall that we note B[a] the unitary B-algebra generated by 1 and a over B with
the commutation relation ab − ba = b2. It is the free left B-module with basis
1, a, . . . , an, . . . . Its product is defined by the commutation relation aS − Sa = b2S ′

for S ∈ B. Recall also that Ã = B̂[a] is the unitary B̂-algebra generated by 1 and

a with the same commutation relation for S ∈ B̂.
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Definition 3.1.1 We define a convergent (a,b)-module as a free, finite rank B-
module E endowed with a continuous3 C-action of a : E → E such that ab− ba = b2.
Then we define its formal completion (in b) of E as E := E ⊗B B̂ on which the
action of a on it is defined by

a(x⊗ S) = ax⊗ S + x⊗ b2S ′

for x ∈ E and S ∈ B̂. It is a (formal) (a,b)-module (see [6]).

Remarks.

1. The continuity of a implies that for any S ∈ B we have aS − Sa = b2S ′ as an
equality between C-linear continuous endomorphisms of E .
Then a convergent (a,b)-module is a left B[a]-module.

2. A sub-module of a convergent (a,b)-module E is, by definition, a sub-B-module
of E which is stable by a. So a sub-module is simply a left sub-B[a]-module.
As any sub-B-module of a free finite rankB-module is again free and finite rank
B-module, a sub-module of a convergent (a,b)-module E is itself a convergent
(a,b)-module.

3. Remark that if F is a sub-module of the convergent (a,b)-module E the quo-
tient E/F is not, in general, a free B-module, because it may have b-torsion.
This is the reason to introduce the notion of normal sub-module.

Definition 3.1.2 Let F ⊂ E be a sub-module of the convergent (a,b)-module E. We
say that F is normal when it satisfies F ∩ bE = bF .

This condition is necessary and sufficient in order that the quotient E/F has no
b-torsion and so that E/F is a convergent (a,b)-module.

Lemma 3.1.3 Let F ⊂ E be a sub-module of the convergent (a,b)-module E. Then
define the normalization F̃ of F by the equality:

F̃ := {x ∈ E/ /∃n ∈ N such that bnx ∈ F}.

Then F̃ is a normal sub-module of E and it is the smallest normal sub-module in E
which contains F . The quotient F̃/F is a finite dimensional complex vector space.

Proof. It clear that F̃ is a B-sub-module (so it is free finite rank over B) and its
stability by the action of a is consequence the formula bNa = abN −NbN+1 in B[a].
It is clearly normal. Let G be a normal sub-module of E containing F . Now if x is
in F̃ there exists an integer n such that bnx ∈ F ⊂ G. Since G is normal, we have
x ∈ G and so F̃ ⊂ G. Then F̃ is the smallest normal sub-module in E containing F .

3for the natural topology of B.

29



Also F̃ is a free finite rank B-module. Then let e1, . . . , ek be a B-basis of F̃ . For each
j ∈ [1, k] there exists Nj ∈ N such that bNjej is F . Then for N := sup{Nj, j ∈ [1, k]}
we have bN F̃ ⊂ F . So F̃/F is a quotient of the finite dimensional complex vector
space F̃/bN F̃ , concluding the proof. ■

Definition 3.1.4 A convergent (a,b)-module E has a simple pole when it satisfies
aE ⊂ bE.
A convergent (a,b)-module E is regular when it is a sub-module of some simple pole
convergent (a,b)-module.

Lemma 3.1.5 Let E be a regular convergent (a,b)-module. Then there exists a
natural injective B[a]-linear map j : E → E ♯ where E ♯ is a simple pole convergent
(a,b)-module such that any injective B[a]-linear map h : E → E1 into a simple pole
convergent (a,b)-module E1 factorizes (uniquely) by a B[a]-linear map H : E ♯ → E1.
Moreover, the quotient E ♯/j(E) is a finite dimensional complex space.

Proof. Let K := B[b−1] and consider on the B-module E ⊗B K the C-linear
action of a defined by

a(x⊗ b−p) := ax⊗ b−p − px⊗ b−p+1

for each p ∈ N. Then it is a B[a]-module and j0 : E → E⊗BK given by j0(x) := x⊗1
is B[a]-linear and injective. Define

E ♯ :=
∞∑
p=0

(b−1a)pj0(E) ⊂ E ⊗B K

and define j as the induced map. First we want to prove that E ♯ is a finitely
generated B-module (obviously stable by b−1a so by a).
For this purpose consider an injective B[a]-linear map h : E → E1 into a simple pole
convergent (a,b)-module E1. The regularity of E insures that there exists at least
one such map. Now the simple pole assumption on E1 implies that b−1a acts on E1.
So for each q ∈ N we may extend the B[a]-linear map h to an injective B[a]-linear
map hq :

∑q
p=0(b

−1a)pj0(E) → E1 commuting with b−1a. This defines an increasing
sequence of B-sub-modules in E1. So it is stationary for q ≥ q0 for some integer q0.
Since hq is still injective for any q, this implies that

E ♯ :=
q0∑
p=0

(b−1a)pj0(E)

and E ♯ is a simple pole convergent (a,b)-module containing E via the map j induced
by j0. The previous argument shows the universal property of the inclusion map
constructed above, j : E → E ♯, relative to any injective B[a]-linear map of E into a
simple pole convergent (a,b)-module.
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The only point to conclude the proof if to show the finite dimension of the complex
vector space E ♯/j(E). But we already know that bq0E ♯ ⊂ j(E) and this is enough to
conclude, as E ♯ is a finite B-module and E ♯/j(E) is a quotient of E ♯/bq0E ♯. ■

Remark. Consider a short exact sequence of regular convergent (a,b)-modules
0 → F → E → G → 0. It gives a surjective map E ♯ → G♯ thanks to the minimality4

of G♯. But the kernel of this map is, in general, bigger than F ♯ although is has
a simple pole, because a normal sub-module of a simple pole module has again a
simple pole.

Warning. From now on we omit “convergent” when we consider an (a,b)-module,
and we use “script characters” (like E) for these. If we want to consider a “for-
mal” (a,b)-module we shall use “roman characters” (like E) and say “formal (a,b)-
module” if we want more precision.

3.2 The Bernstein polynomial of a regular (a,b)-module.

We introduce now a fundamental (numerical) invariant of a regular (a,b)-module.

Definition 3.2.1 Let E be a regular (a,b)-module. The Bernstein polynomial of E
is the minimal polynomial of the action of −b−1a on the finite dimensional complex
vector space E ♯/bE ♯.

Remarks.

1. If E is the formal b-completion of the regular (a,b)-module E , so E := E ⊗B B̂;
then E♯ is the formal completion of E ♯ and there is a natural isomorphism
E ♯/bE ♯ ≃ E♯/bE♯ which commutes with the respective actions of b−1a.
So the Bernstein polynomial of E , E ♯, E♯ and of E are the same.

2. Let m be a non negative integer. When E is a simple pole (a,b)-module,
the sub-module bmE which has finite complex co-dimension in E is again a
simple pole (a,b)-module since abmE = bm(a+mb)E ⊂ b(bmE). The Bernstein
polynomial of bmE is then given by

BbmE(x) = BE(x−m)

since (b−1a)qbm = bm(b−1a+m)q.

3. Let π : E → G a surjective B[a]-linear map. The map E ♯ → G♯ is surjective
(see the remark at the end of section 3.1). Since this map commutes with the
respective actions of b−1a, the Bernstein polynomial of G divides the Bernstein
polynomial of E .

4The image of E♯ in G[b−1] has a simple pole and contains G.
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4. Despite the previous remark, there are, in general, two difficulties to compute
the Bernstein polynomial of a regular (a,b)-module E :
The first one comes from the non left exactness of the functor “ ♯ ” (see the
remark following Lemma 3.1.5).
The second difficulty comes from the fact that the minimal polynomial of a
pair (V, T ) of a vector space V with an endomorphism of V also does not
behave nicely under injective maps compatible with T .
This is the reason to introduce below the notion of fresco, which is stable by
short exact sequences and for which we shall dispose of a nice behavior of their
Bernstein polynomials in short exact sequences and for which we may avoid
to compute their saturation by b−1a, using only any Jordan-Hölder sequence
(see Section 7.1) to obtain the Bernstein polynomial.

Let A a subset of C/Z.

Definition 3.2.2 We say that a regular (a,b)-module E is A -primitive when all
roots of its Bernstein polynomial BE are in −A + Z.
In the case where A = {α} where α is an element of C/Z we say that E is [α]-
primitive.

We shall now prove the following important key for the Decomposition Theorem
and also for for existence of Jordan-Hölder sequences (see Section 3.4).

Proposition 3.2.3 Let 0 → F → E → G → 0 be an exact sequence of simple pole
(a,b)-modules. Assume that for each root −λ of BF and each root −µ of BG we
have µ − λ ̸∈ N∗. Then this short exact sequence splits and there exists a normal
sub-module G0 in E such that E = F ⊕ G0.

The proof of this proposition uses the following lemma

Lemma 3.2.4 Let F and G two matrices with complex entries of size (l, l) and
(k, k) respectively having no common eigenvalue. Then consider the endomorphisms
f and g on the vector space of matrices Z with complex entries and size (k, l) given
by left and write multiplication by F and G respectively. Then f − g is bijective.

proof. Since the endomorphisms f and g commute we may find a basis Z1, . . . , Zkl
of the vector space of the (k, l) matrices which makes the matrices of f and g lower
triangular. So for each i ∈ [1, kl] we have FZi = λiZi modulo Vi+1 and ZiG = µiZi
modulo Vi+1 where Vi+1 is the subspace generated by Zi+1, . . . , Zkl.
Let Z :=

∑kl
i=1 αiZi such that FZ = ZG and assume that Z ̸= 0. Let i0 be the

smallest integer in [1, kl] such that αi0 ̸= 0. Then we have

FZ = αi0λi0Zi0 + Vi0+1 and ZG = αi0µi0Zi0 + Vi0+1

which implies that λi0 = µi0 . But the eigenvalues of f (resp. of g) are eigenvalues of
F (resp. of G) because FZ = λZ implies that each column of Z is an eigenvector of
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F (or 0) and if Z is not zero, at least one column of Z is not zero (resp. if ZG = µZ
and Z is not zero, at least one line of Z is a non zero eigenvector for the transpose
of G and µ is an eigenvalue for G). So we obtain a contradiction assuming that a
non zero Z satisfies FZ = ZG. ■

Proof of Proposition 3.2.3. Let e := (e1, . . . , ek) be a B-basis of F and let
(e1, . . . , ek, ε1, . . . , εl) be a B-basis of E such we have (with matrix notations):

a

(
e
ε

)
= b

(
F 0
bX G

)(
e
ε

)
where F,G and X are respectively (k, k), (l, l) and (l, k) matrices with entries in B.
This possible because we have a direct sum decomposition of E/bE compatible with
the spectral decomposition of the action of b−1a on this finite dimensional vector
space. Then write:

F :=
∞∑
j=0

Fjb
j G :=

∞∑
j=0

Gjb
j X :=

∞∑
j=0

Xjb
j

where Fj, Gj, Xj are matrices with complex coefficients. Choose on the vector spaces
of matrices with complex entries and size (k, k), (l, l), (l, k) norms such that when
the product is defined we have |XY | ≤ |X|× |Y |. Choose also a norm on the vector
space of endomorphism of (l, k)-matrices such that |H(Z)| ≤ ||H|| × |Z|.
Note that the endomorphism H defined by H(Z) = ZF0 − G0Z has no eigenvalue
in −N∗ thanks to our hypothesis and the lemma above applied to H + jId, j ∈ N∗.
Now we look for a (l, k) matrix Z with entries in B such that we have

a(ε+ Ze) = bG(ε+ Ze).

Put Z :=
∑∞

j=1 Zjb
j. Then to find Z with entries in B̂ is equivalent to solve the

equation
a(ε+ Ze) = b2Xe+ bGε+ bZFe+ b2Z ′e = bGε+ bGZe

which is equivalent to
ZF −GZ + bZ ′ = −bX

and then is equivalent to the system of equations

ZjF0 −G0Zj + jZj = −Xj−1 +

j∑
p=1

(
GpZj−p − Zj−pFp

)
∀j ∈ N∗. (S)

Since the endomorphism H + jId is bijective for each j ≥ 1, an induction shows
that there exists a unique solution Z with entries in B̂.
We want now to show that Z has its entries in B. So fix R > 1 and choose a positive
constant CR such that we have the estimates:

|Fj| ≤ CRR
jj! |Gj| ≤ CRR

jj! |Xj| ≤ CRR
jj! (7)
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Let ρ := ||H||. Then for j > ρ we have

(H + jId)−1 = j−1(Id+H/j)−1 = j−1

∞∑
h=0

(−H/j)h (8)

and this gives the estimates

||(H + j.Id)−1|| ≤ 1

j − ρ
∀j > ρ. (9)

Then choose a positive constant DR ≥ 1 large enough such that the estimate
|Zj| ≤ DRR

jj! is valid for any j ≤ ρ+ 5CR.
Now assume that for some j0 ≥ ρ+5CR we have proved that |Zj| ≤ DRR

jj! for any
j ≤ j0 − 1. We shall prove that this estimate is also valid for j0.
We have

H(Zj0) + j0Zj0 = −Xj0−1 +

j0∑
p=1

GpZj0−p − Zj0−pFp

and so, using the estimate (9) for the norm of (H + jId)−1:

|Zj0| ≤
1

j0 − ρ

(
CRR

j0−1(j0 − 1)! + 2CRDRR
j0(j0)!

j0∑
p=1

(j0 − p)!p!

j0!

)
We obtain, using j0 ≥ ρ+ 5CR, DR ≥ 1/R and Lemma 2.1.2:

|Zj0| ≤
1

j0 − ρ
CRR

j0j0!
( 1

Rj0
+ 4DR

)
≤ DRR

j0j0!

since
1

j0 − ρ

( 1

Rj0
+ 4DR

)
≤ 5DR/5CR.

This completes the proof that Z has its entries in B.
The conclusion follows immediately defining G0 as the sub-module generated by
ε+ Ze. ■

Remark. The uniqueness of the matrix Z in the proposition above implies that
the splitting of the exact sequence is unique in this situation. This means that
the complement G0 constructed in the proof is unique and that the decomposition
E ≃ F ⊕ G0 is “natural”.

Corollary 3.2.5 Let E be a simple pole convergent (a, b)–module with basis the
column e := t(e1, . . . , ek) with ae = bF (b)e where F is a (k, k)-matrix with entries
in the algebra B = C{{b}}. Write F (b) :=

∑+∞
j=0 Fjb

j and assume that, for a given
complex number λ, the spectrum of F0 does not meet {λ− N}. Then for any y ∈ E
there exists a unique x ∈ E such that

(a− λb)x = by in E (10)
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Proof. Let e be a B-basis of E which satisfies ae = bFe with F :=
∑∞

j=0 Fjb
j is

a (k, k)-matrix with entries in B. Then for a given = Y e, Y ∈ Bk, we to look for
Z ∈ Bk such that x := Ze, satisfies (a− λb)x = by. This leads to the equation

ZbFe+ b2Z ′e− λbZe = bY e

which is equivalent to the system of equations, writng Z =
∑∞

j=0 Zjbj:

ZjF0 − λZj + jZj = Yj −
j∑

p=1

Zj−pFp ∀j ≥ 0

For j ≥ 1 this is the same system as the system (S) in the previous proof by letting
G = G0 = λId. As the equation for j = 0 has a unique solution, since our hypothesis
implies that F0 − λ is bijective on E/bE , we find a unique solution Z with entries in
B for each y ∈ E thanks to the estimates given in the proof of Proposition 3.2.3. ■

Remark. The case λ = 0 of the previous corollary shows that a simple pole (a,b)-
module E such that its Bernstein polynomial has no root in −N satisfies aE = bE ,
so b−1a is bijective.

Corollary 3.2.6 Let E be a simple pole convergent (a,b)-module and let λ be an
eigenvalue of b−1a acting on E/bE and having the following properties:

1. λ− p is not an eigenvalue of b−1a acting on E/bE for each p ∈ N∗.

2. There exists a rank k Jordan bloc for the eigenvalue λ acting on E/bE

Then there exists elements ε1, . . . , εk in E which are independent over B and satisfies
the relations

aεj = λbεj + bεj+1 for each j ∈ [1, k] with the convention εk+1 = 0. (11)

Proof. Thanks to Corollary 3.2.5 we can solve, for any y ∈ E , the equation
(a− (λ− 1)b)x = by.
Then consider elements e1, . . . , ek in E such that they induce a k-Jordan bloc for
the eigenvalue λ of b−1a acting on E/bE . Then there exist y1, . . . , yk in E such the
following relations holds

ae1 = λbe1 + be2 + b2y1

ae2 = λbe2 + be3 + b2y2

. . . . . .

aek = λbek + b2yk
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We look now for x1, . . . , xk in E such that εj := ej − bxj satisfy the equations (11).
We shall argue by a descending induction on j. Assume that we have already found
xj+1, . . . , xk+1 := 0 for some j ∈ [1, k]. Then to find xj we have to solve the equation

(a− λb)(ej − bxj) = b(ej+1 − bxj+1)

which is equivalent, thanks to the relation (a − λb)b = b(a − (λ − 1)b and the
injectivity of b, to

(a− (λ− 1)b)xj = b(yj − xj+1).

This is enough to conclude the proof. ■

The following corollary is immediate.

Corollary 3.2.7 A rank 1 regular convergent (a,b)-module is isomorphic to a quo-
tient B[a]/B[a].(a− λb). So it has a B-basis eλ, and Eλ := Beλ where aeλ = λbeλ.
It has a simple pole, the action of b−1a on the 1-dimensional vector space E/bE is
given by λ and its Bernstein polynomial is x+ λ. ■

Note that the previous proposition gives also that if E is a simple pole rank k (a,b)-
module such that E/bE has an unique Jordan block of rank k for the eigenvalue λ
then E is isomorphic to the (a,b)-module with B-basis ε1, . . . , εk where the action
of a is defined by the relations (11) above.

The following application of Corollary 3.2.6 is rather useful.

Lemma 3.2.8 Let F be a submodule of a regular (a,b)-module E. If −β is a root
of the Bernstein polynomial of F there exists an integer m ∈ N such that −β +m
is a root of the Bernstein polynomial of E.

Proof. It is enough to prove the result for the inclusion of F ♯ in E ♯. Moreover, we
may assume that −β is the biggest root of the Bernstein polynomial of F ♯ in −β+Z.
So β is an eigenvalue of the action of b−1a on F ♯

/
bF ♯ which is minimal in β+Z. Then

Corollary 3.2.6 gives the existence of an x in F ♯ \ bF ♯ which satisfies (a− βb)x = 0.
Let p ∈ N be the maximal integer such that x is in bpE ♯ and write x = bpy with
y ∈ E ♯. Then y satisfies (a − (β − p)b)y = 0 and y ̸∈ bE ♯ by definition of p. So
we see that −β+p is a root of the Bernstein polynomial of E concluding the proof.■

3.3 The Decomposition Theorem

Definition 3.3.1 For any subset A ∈ Q/Z we say that a regular (a,b)-module E
is A -primitive when the image of all the roots of its Bernstein polynomial in Q/Z
are in −A .

The next lemma is a useful tool to discuss A -primitive (a,b)-modules.
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Lemma 3.3.2 Let E be a regular (a,b)-module and assume that −λ is a root of its
Bernstein polynomial. Then there exists m ∈ N and a non zero x in E such that
(a− (λ+m)b)x = 0.

Proof. Let −λ1 := −λ + m1 be biggest root of BE which is in −λ + N and let
y ∈ E ♯ \ bE ♯ which satisfies (a − λ1b)y ∈ b2E ♯. Then put (a − λ1b)y = b2z. Since
there is no root of BE in −λ1 + 1 + N, we know that b−1a − (λ1 − 1) is bijective
on E ♯. Then there exists x ∈ E ♯ satisfying (b−1a − (λ1 − 1))x = z and so we have
b(a − (λ1 − 1)b)x = (a − λ1b)bx = b2z = (a − λ1b)y and (a − λ1b)(y − bx) = 0.
Moreover, as y is not in bE ♯, y − bx is also not in bE ♯ and then y − bx ̸= 0.
Let n ∈ N such that bnE ♯ ⊂ E and n ≥ m1. Then t := bn(y − bx) is in E \ {0} and
satisfies (a− (λ−m1 + n)b)t = 0 with n−m1 ∈ N. ■

We give an interesting, but obvious consequence of Corollary 3.2.5.

Corollary 3.3.3 Let E be a A -primitive simple pole (a,b)-module. If µ is a com-
plex number such that [µ] is not in A then b−1a− µ is bijective on E.
So, for any regular (a,b)-module F such that −µ + Z does not contain any root of
its Bernstein polynomial, the only solution of (a− µb)x = 0 is x = 0. ■

The next proposition is a first step to the Decomposition Theorem 3.3.7.

Proposition 3.3.4 Let A be a subset in C/Z and let E be a regular (a,b)-module.
Then there exists a maximal sub-module E[A ] in E which is A -primitive. Moreover,
this sub-module is normal and the quotient E/E[A ] is a A c-primitive, where A c is
the complement of A in C/Z.

The proof of this result needs some lemmas.

Lemma 3.3.5 Fix any subset A in C/Z. Let 0 → F → E → G → 0 be a short
exact sequence of regular (a,b)-modules. Then E is A -primitive if and only if both
F and G are A -primitive.

Proof. First assume that E is A -primitive. Let −µ a root of BF . Then thanks
to Lemma 3.3.2 there exists an integer m and a non zero element x ∈ F satisfying
(a − (µ + m)b)x = 0. Let k the maximal integer such that x is in bkE ♯ and put
x = bky where y ∈ E ♯. Then we have (a− (µ+m− k)b)y = 0 with y ̸∈ bE ♯ so [µ] is
in A . Then F is A -primitive.
The fact that G is also A -primitive is a consequence of Remark 3 following Defini-
tion 3.2.1.
Let assume now that F and G are A -primitive and let −µ be a root of BE .
Assume that [µ] ̸∈ A . There exists a non zero element x ∈ E which satisfies
(a − (µ − m)b)x = 0, where m is an integer, thanks to Corollary 3.3.3. Then the
same result implies that the image of x in G is zero. Then x is in F which contradicts
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the non vanishing of x. ■

Lemma 3.3.6 Let E ⊂ E ′ be an inclusion of two regular (a,b)-modules such that
E ′/E is a finite dimensional complex vector space. Then for any subset A in C/Z,
E ′ is A -primitive if and only if E is A -primitive.

Proof. Thanks to Lemma 3.3.2 and to Corollary 3.3.3 it is enough to prove the
equivalence of the existence in E or in E ′ for any [µ] ∈ C/Z of a non zero solution of
the equation (a−(µ+m)b)x = 0 for each m ∈ Z. But this is an obvious consequence
of the existence of an integer N such that bNE ′ ⊂ E . ■

Note that for any regular (a,b)-module the previous corollary apply to E ′ := E ♯.

Proof of Proposition 3.3.4. Then let us prove that the sum of two A -
primitive sub-modules is again A -primitive. This is obvious for a direct sum, and
in general, the sum is a quotient of the direct sum, so we conclude using Lemma
3.3.2. Let F be a maximal A -primitive sub-module of E . This exists thanks to
the Noether’s property of B. Since F has finite co-dimension in its normalization,
Lemma 3.3.6 implies that F is normal.
Assume that the Bernstein polynomial of E/F has a root −µ in −A , then Lemma
3.3.2 gives us a non zero z ∈ E/F such that (a−(µ+m)bz = 0 for an integer m ∈ Z.
Let G := Bz ⊂ E/F . It is a rank 1 A -primitive sub-module and its pull-back in E
is a A -primitive sub-module, thanks to Lemma 3.3.5, which is strictly bigger than
F . Contradiction. So E/F is A c-primitive. ■

Theorem 3.3.7 Let E be a simple pole (convergent) (a,b)-module and note −A the
image in C/Z of the roots of the Bernstein polynomial of E. Then we have a natural
isomorphism of (a,b)-modules(so of left B[a]-modules):

E ≃ ⊕α∈A E[α].

The proof is an obvious consequence of the following corollary of Proposition 3.2.3,
using an induction on the cardinal of the set A . ■

For the “naturality” of this decomposition, see the remark following Proposition
3.2.3.

Corollary 3.3.8 Let 0 → F → E → G → 0 be a short exact sequence of regular
(a,b)-modules. Assume that E has a simple pole and that F and G are respectively
A and B-primitive with A ∩ B = ∅ in C/Z. Then the exact sequence splits and
E ≃ F ⊕ G. ■
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Note that for a regular (a,b)-module E which is not a simple pole (a,b)-module, such
a short exact sequence does not split in general. For instance, consider the rank 2
(a,b)-module H with B-basis e1, e2 on which the action of a is defined by

ae1 = λbe1 + e2 ae2 = µbe2 with λ− µ ̸∈ Z.

It is easy to see that H[λ] ≃ Eλ+1 is the normal sub-module generated by the element
e2+(λ−µ+1)be1 in H and that H[µ] is generated by e2. But e1 is not in H[λ]⊕H[µ].
The decomposition Theorem implies the following obvious decomposition result for
any simple pole (a,b)-module.

Corollary 3.3.9 Let E a simple pole (a,b)-module and let −A be the image in Q
/
Z

of the set of roots of its Bernstein polynomial of E. Then we have

BE =
∏
α∈A

BE[α]
. ■

3.4 Existence of Jordan-Hölder sequences

Since rank 1 regular (a,b)-module are very easy to understand, we introduce now the
notion of Jordan-Hölder sequence which allows to describe a regular (a,b)-module
from their rank 1 sub-quotients.

Definition 3.4.1 Let E be a regular (convergent) (a,b)-module with rank k. We say
that a filtration 0 := F0 ⊊ F1 ⊊ · · · ⊊ Fk := E is a Jordan-Hölder sequence for
E if, for each j ∈ [0, k], Fj is a normal sub-module with rank j.
Then for each j ∈ [1, k] the quotient Fj/Fj−1 is a regular rank 1 convergent (a,b)-
module so there exists a unique complex number λj such that Fj/Fj−1 is isomorphic
to Eλj := B[a]/B[a](a− λjb).
In this situation we say that (λ1, . . . , λk) is the characteristic sequence of the
given J-H. sequence (Fj), j ∈ [1, k] of E.

Proposition 3.4.2 Any regular convergent (a,b)-module E admits a J-H. sequence.
If (λ1, . . . , λk) is the characteristic sequence of E then each root of the Bernstein
polynomial of E is the opposite modulo Z to some λj and conversely, for each λj there

is a root of BE in −λj + Z. Moreover the complex number
∑k

j=1 λj is independent
of the chosen J-H. sequence. If E ′ is a sub-module of E such that E/E ′ has finite
complex dimension p and if (λ′1, . . . , λ

′
k) is the characteristic sequence of the J-H.

sequence Fj ∩ E ′ of E ′ we have
∑k

j=1 λ
′
j =

∑k
j=1 λj + p.

Proof. We first consider the case of a simple pole (a,b)-module. We shall prove
the existence of a J-H. sequence by induction on the rank. So assume that E is a
simple pole of rank k ≥ 1 and that the existence of a J-H. sequence is proved for any
simple pole rank k−1 (a,b)-module. Let −λ1 be a root of the Bernstein polynomial
of E which is maximal in its class modulo Z among all the roots of BE . Then
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Corollary 3.2.6 shows the existence of an x ∈ E \ bE such that (a− λ1b)x = 0. The
sub-module B[a]x in E is normal with rank 1 and so isomorphic to B[a]/B[a](a−λ1b)
(see Corollary 3.2.7). Then the existence of a J-H. sequence of E/B[a]x implies the
existence of a J-H. sequence for E .
Now, as Fj has a quotient isomorphic to Eλj there exists, thanks to Remark 3
following Definition 3.2.1 and Corollary 3.2.6, a non zero x ∈ Fj and an integer
m ∈ Z such that (a − (λj + m)b)x = 0. If x = bky with y ∈ E ♯ \ bE ♯ we have
(a− (λj +m− k)b)y = 0 and λj +m− k is the opposite of a root of BE .
Consider now the situation of a sub-module E in a simple pole (a,b)-module E ′ such
that E ′/E is a finite dimensional complex vector space5. Let k be the common rank
of E and E ′ and let (F ′

j), j ∈ [1, k], be a J-H. sequence for E ′. Then Fj := E ∩F ′
j , for

j ∈ [1, k], is a J-H. sequence for E because for each j, Fj has finite co-dimension in
F ′
j so has rank equal to j. Moreover Fj is normal in E since F ′

j is normal in E ′.
Conversely, if Fj, j ∈ [1, k], is a J-H. sequence for E define F ′

j as the normalization
of Fj in E ′. It has also rank j and F ′

j , j ∈ [1, k], is a J-H. sequence for E ′. So we
see that, not only there exists a J-H. sequence for such an E but any J-H. sequence
of E is the trace of a J-H. sequence of E ′ in the this situation. Now, for any given
regular E we may choose E ′ := E ♯ and obtain a bijective correspondance between
J-H. sequences of E and E ♯ in this way.
Let (λ1, . . . , λk) be the characteristic sequence of the J-H. sequence G1, . . . , Gk of E ♯
and define Fj := Gj∩E for each j ∈ [1, k]. Then Fj/Fj−1 is a sub-module of Gj/Gj−1

which has finite codimension. So if (λ1, . . . , λk) is the characteristic sequence of the
J-H. sequence Fj, j ∈ [1, k], of E , there exists non negative integer pj, j ∈ [1, k], such
that λj = λ′j + pj. The exact sequence of finite dimensional vector spaces

0 → Gj−1/Fj−1 → Gj/Fj → Gj

/
(Gj−1 + Fj) → 0

gives for each j ∈ [1, k] the equality pj = pj−1+dimC(Gj

/
(Gj−1+Fj)) which implies

pj =
∑j−1

h=1 ph and then

k∑
j=1

λj =
k∑
j=1

λ′j + dimC(E ♯/E).

To complete the proof, we have to show that, if, for a simple pole (a,b)-module E ,
(λ1, . . . , λk) is the characteristic sequence of a J-H. sequence (Fj), j ∈ [1, k], of E ,
any root of BE is equal, modulo Z, to some −λj.
Let E be a simple pole (a,b)-module which is of minimal rank k ≥ 1 such that it
has a J-H. sequence F1, . . . , Fk with characteristic sequence (λ1, . . . , λk) and a root
−α of its Bernstein polynomial which is not in the union of the −λj + Z. Then
F := E/F1 has rank k − 1 and in the exact sequence

0 → F1/bF1 → E/bE → F/bF → 0

5Remark that E is regular.
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which is compatible with the respective actions of b−1a we see that −α is a root
of BF because α ̸= λ1. But since F admits the J-H. sequence F2/F1, . . . , Fk/F1

whose characteristic sequence is (λ2, . . . , λk) we contradict the minimality of E and
the proof is complete. ■
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4 The semi-simple filtration

In this section every (convergent) (a,b)-module is assumed to be regular.

4.1 Semi-simple regular (a,b)-modules

It is easy to see that a regular (a,b)-module E is simple (so by definition has no
non trivial normal sub-module) is either E = {0} or has rank 1.

Definition 4.1.1 Let E be a regular (a,b)-module. We say that E is semi-simple
if it is a sub-module of a finite direct sum of rank 1 regular (a,b)-modules.

Note that if E is a sub-module of a regular (a,b)-module it is necessary regular.
As a finite direct sum of regular (a,b)-modules is regular, our assumption that E
is regular is superfluous.
It is clear from this definition that a sub-module of a semi-simple (a,b)-module is
semi-simple and that a (finite) direct sum of semi-simple (a,b)-modules is again
semi-simple.

Remarks.

1. We have already seen that a rank 1 regular (a,b)-module is isomorphic to
Eλ := B[a]/B[a](a− λb), and then a convergent (a,b)-module is simple if and
only if its formal completion is simple. Then a semi-simple convergent (a,b)-
module has a formal completion which is also semi-simple, that is to say which
is embeddable in a finite direct sum of formal simple (a,b)-modules.

2. A rather easy consequence of the classification of formal rank 2 (a,b)-modules

given in [6] is that the rank 2 (a,b)-modules defined in the B̂ = C[[b]]−basis
x, y by the relations :

(a− (α + p− 1)b)x = y + bpy and (a− αb)y = 0

for any α ∈ C and any p ∈ N∗ are not semi-simple. We leave the verification
of this point to the reader.
So the analog rank 2 B-module with a defined by the same relations is also
not semi-simple.

Let us begin by a characterization of the semi-simple (a,b)-modules which have a
simple pole. First we shall prove that a quotient of a semi-simple (a,b)-module is
semi-simple. This will be deduced from the following lemma and its corollary.

Lemma 4.1.2 Let E be an (a,b)-module which is direct sum of regular rank 1
(a,b)-modules, and let F ⊂ E be a rank 1 normal sub-module. Then F is a direct
factor of E and we have E = F ⊕H where H is again a finite direct sum of regular
rank 1 (a,b)-modules.
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Corollary 4.1.3 If E is a semi-simple regular (a,b)-module and F a normal
sub-module of E, the quotient E

/
F is a (regular) semi-simple (a,b)-module.

Proof of the lemma. Let E = ⊕k
j=1 Eαj

and assume that F ≃ Eβ. Let ej
be a standard generator of Eαj

and e be a standard generator of Eβ. Write

e =
k∑
j=1

Sj(b)ej

and compute (a − βb)e = 0 using the fact that ej, j ∈ [1, k], is a B-basis of E
and the relations (a − αjb)ej = 0 for each j. We obtain, for each j ∈ [1, k], the
relation

bS ′
j − (β − αj)Sj = 0.

So, if β − αj is not in N, we have Sj = 0. When β = αj + pj with pj ∈ N we
obtain Sj(b) = ρjb

pj for some ρj ∈ C. As we assume that e is not in bE , there
exists at least one j0 ∈ [1, k] such that pj0 = 0 and ρj0 ̸= 0. In the case where
there exists only one j0 with pj0 = 0 and ρj0 it is clear that we have

E = F ⊕
(
⊕j ̸=j0 Eαj

)
.

If there are many such j0 then we are reduced to the case where E is the direct sum
of several copies of Eβ and where e is a (complex) linear combination of the standard
generators. This case is also obvious, concluding the proof. ■

Proof of the corollary. We argue by induction on the rank of F . In the
rank 1 case, we have F ⊂ E := ⊕k

j=1 Eαj
. Let F̃ the normalization of F in

⊕k
j=1 Eαj

. Then the lemma shows that there exists a j0 ∈ [1, k] such that

E = F̃ ⊕
(
⊕j ̸=j0 Eαj

)
.

Then, as F̃ ∩ E = F , the quotient map E → E
/
F̃ ≃ ⊕j ̸=j0Eαj

induces an injection
of E

/
F in a direct sum of regular rank 1 (a,b)-modules. So E

/
F is semi-simple.

Assume now that the result is proved for F with rank ≤ d− 1 and assume that
F has rank d. Then using a rank 1 normal sub-module G in F , we obtain that
F
/
G is a normal rank d− 1 sub-module of E

/
G. Using the rank 1 case we know

that E
/
G is semi-simple, and the induction hypothesis gives that

E
/
F = (E

/
G)

/
(F

/
G)

is semi-simple. ■

Proposition 4.1.4 Let E be a simple pole semi-simple (a,b)-module. Then E is a
direct sum of rank 1 simple pole (a,b)-modules.
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Proof. We shall prove the proposition by induction on the rank of E . The case
of rank 1 being clear, assume the result proved in rank k − 1 with k ≥ 2 and let E
be a simple pole semi-simple (a,b)-module with rank k. Now, thanks to Corollary
3.2.6 there exists a normal rank 1 sub-module F1 in E . Let j : E → G be an em-
bedding of E in a finite direct sum G of rank 1 regular (a,b)-modules. Let F̃1 be
the normalization of j(F1) in G. Then thanks to Lemma 4.1.2 we have a direct sum
decomposition G = F̃1 ⊕ H where H is again a finite direct sum of rank 1 regular
(a,b)-modules. Then, since j−1(F̃1) = F1 we have E = F1 ⊕ j−1(H) where j−1(H) is
a normal sub-module of E which is semi-simple of rank k − 1 and has a simple pole
(by normality). The induction hypothesis allows to conclude. ■

Remark. If a regular (a,b)-module is semi-simple, its Bernstein polynomial has
only simple roots.

Definition 4.1.5 Let E and F two (convergent) (a,b)-modules. Then, endowed with
the action of a given by a(x⊗ y) = ax⊗ y + x⊗ ay, the B-module E ⊗B F becomes
an (a,b)-module which will be noted E ⊗a,b F and called the tensor product of the
(a,b)-modules E and F .

Remarks.

1. As E and F are two free finite type B-modules, so is E ⊗B F . Then for any
S(b) ∈ B we have in E ⊗a,b F

aS(b)(x⊗ y) = aS(b)x⊗ y + S(b)x⊗ ay

= S(b)ax⊗ y + b2S ′(b)x⊗ y + S(b)x⊗ ay

= S(b)a(x⊗ y) + b2S ′(b)(x⊗ y)

and then E ⊗a,b F is an (a,b)-module.

2. For each λ ∈ C the (a,b)-module E ⊗a,bEλ is equal to the B-module E endowed
with the action of a given by x 7→ (a+λb)x. Note that this corresponds to the
action of B[a] on E via the unitary B-algebra automorphism of B[a] defined
by a 7→ a+ λb.

3. So we have Eλ ⊗ Eµ ≃ Eλ+µ.

4. The tensor product of two simple poles (a,b)-module has a simple pole, because
if ax = bx′ and ay = by′ we have a(x⊗y) = b(x′⊗y+x⊗y′). Then the tensor
product of two regular (a,b)-modules is regular.

5. The tensor product of two semi-simple (a,b)-modules is again semi-simple.
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4.2 The semi-simple filtration

Definition 4.2.1 Let E be a regular (a,b)-module and x an element in E. We
shall say that x is semi-simple if B[a]x is a semi-simple (a,b)-module.

It is clear that any element in a semi-simple (a,b)-module is semi-simple. The next
lemma shows that the converse is true.

Lemma 4.2.2 Let E be a regular (a,b)-module such that any x ∈ E is semi-
simple. Then E is semi-simple.

proof. Let e1, . . . , ek be a B-basis of E . Then each B[a]ej is semi-simple, and
the map ⊕k

j=1B[a]ej → E is surjective. So E is semi-simple thanks to Corollary
4.1.3 and the comment following Definition 4.1.1. ■

Lemma 4.2.3 Let E be a regular (a,b)-module. The subset S1(E) of semi-simple
elements in E is a normal sub-module in E.

proof. As a finite direct sum of semi-simple (a,b)-modules and also a quotient of
a semi-simple (a,b)-module by a normal sub-module is semi-simple, it is clear that
for x and y semi-simple the sum B[a]x + B[a]y is semi-simple. So x + y is
semi-simple. This implies that S1(E) is a sub-module of E . If bx is in S1(E),
then B[a]bx is semi-simple. Then

B[a]bx⊗a,b E−1 = bB[a]x⊗a,b E−1 ≃ B[a]x⊗a,b bE−1 ≃ B[a]x⊗a,b E0 ≃ B[a]x

is also semi-simple, and then S1(E) is normal in E . ■

Definition 4.2.4 Let E be a regular (a,b)-module. Then the sub-module S1(E)
of semi-simple elements in E will be called the semi-simple part of E.
Defining inductively Sj(E) as the pull-back in E of the semi-simple part of
E
/
Sj−1(E) for j ≥ 1 with the initial condition S0(E) = {0}, we obtain an increas-

ing sequence of normal sub-modules in E such that Sj(E)
/
Sj−1(E) = S1(E

/
Sj−1(E))

is semi-simple. We shall call it the semi-simple filtration of E. The smallest
integer d such we have Sd(E) = E will be called the nilpotent order of E and
we shall denote it d(E).

Exemple. If T is a [α]-primitive theme, then its semi-simple filtration coincides
with the filtration giving its unique Jordan-Hölder sequence □

This filtration has the following properties

Lemma 4.2.5 Let E be a regular (a,b)-module and let F be any sub-module. Then
Sj(F) = Sj(E) ∩ F for any j ∈ N∗ with the convention that, for j ≥ d(E) + 1 we
define Sj(E) = E. In particular d(F) ≤ d(E).
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If F is normal in E, the quotient map E → E/F sends Sj(E) into Sj(E/F). This
implies that d(E/F) ≤ d(E).
For any subset A ∈ C/Z and any j we have Sj(E)[A ] = Sj(E[A ]).

Proof. The inlusion S1(F) ⊂ S1(E) is obvious, so S1(F) = F ∩ S1(E) holds true.
Assume that we have already proved that Sj(F) = Sj(E)∩F for some j ≥ 1. Then
we have

Sj+1(F)/Sj(F) = S1(F/Sj(F)) = S1(F/(Sj(E) ∩ F)) =(
F/(Sj(E) ∩ F)

)
∩ S1(E/Sj(E)) =

(
F/(Sj(E) ∩ F)

)
∩ (Sj+1(E)/Sj(E))

and this gives the equality Sj+1(F) = Sj+1(E) ∩ F thanks to inductive assumption.
If F is normal the image of S1(E) by the quotient map E → E/F is a semi-simple
sub-module in E/F so is contained in S1(E/F).
Assume that we have already proved that for each h ∈ [1, j] the quotient map sends
Sh(E) → Sh(E/F). Then it sends Sj(E)/Sj−1(E) into Sj(E/F)/Sj−1(E/F) and
so S1(E/Sj(E)) = Sj+1(E)/Sj(E)) into S1(E/F)/Sj(E/F)) = Sj+1(E/F)/Sj(E/F).
The conclusion follows.
Now if d := d(E) we have E = Sd(E) and the quotient map sends Sd(E) = E into
Sd(E/F). Then Sd(E/F) = E/F .
To complete the proof, remark that the equalities, for any sub-module F of a regular
(a,b)-module E , Sj(E) ∩ F = Sj(F) and EA ∩ F = FA we have

Sj(EA ) = Sj(E) ∩ EA = Sj(E)A . ■

Remarks.

i) As S1(E) is the maximal semi-simple sub-module of E it contains any rank
1 sub-module of E . So S1(E) = {0} happens if and only if E = {0}.

ii) Let F be a sub-module of the regular (a,b)-module E such that Sj(F) = F .
Then F is contained in Sj(E) thanks to the previous lemma.

iii) The semi-simple filtration of E is strictly increasing for j ∈ [0, d(E)].

The next lemma will help to compute the ranks of the various Sj(E) and the nilpotent
order in the case of geometric (a,b)-modules (see Section 5 for the definition of
“geometric”).

Lemma 4.2.6 Let E ′ be a sub-module of a regular (a,b)-module E such that E/E ′

is a finite dimensional complex space. Then, for each j the quotient Sj(E)/Sj(E ′) is
also a finite dimensional complex vector space. So Sj(E) and Sj(E ′) have the same
rank on B and E ′ and E have the same nilpotent order.
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Proof. As we know that Sj(E ′) = Sj(E) ∩ E ′ the quotient Sj(E)/Sj(E ′) is a sub-
vector space of E/E ′ and then has finite dimension.
So for each j Sj(E ′) has finite co-dimension in Sj(E) so has the same rank as a
B-module. This implies that Sj(E ′) = Sj(E) ∩ E ′ since Sj(E ′) is normal in E ′. In
particular d(E ′) ≤ d(E).
Conversely, if Sδ(E ′) = E ′, it has the same rank that E ′, then Sδ(E) has the same
rank than E and must be equal to E . ■

Corollary 4.2.7 Let E be a regular (a,b)-module. If the (a,b)-module E is semi-
simple, then EA is semi-simple for any subset A ⊂ C/Z.
Conversely, if for any α ∈ C/Z, E[α] is semi-simple, then E is semi-simple.

Proof. The direct part is clear.
Since E is semi-simple if and only if E ♯ is semi-simple, the converse follows from the
finite co-dimension in E ♯ of the sub-module

∑
α∈A E[α] and the previous lemma. ■

The next result shows that the ranks of the successive quotients of the semi-simple
filtration is non increasing.

Proposition 4.2.8 Let E be a regular (a,b)-module and note d := d(E) its nilpotent
order. Then for each j ∈ [1, d] we have

rk(Sj(E)/Sj−1(E)) ≥ rk(Sj+1(E)/Sj(E)).

Proof. Remark that it is enough to prove the result when E has a simple pole,
because Sj(E ♯) = Sj(E)♯ for each j and thanks to Lemma 4.2.6 above.
Note also that for d(E) = 1 there is nothing to prove.
We shall begin by the case where d(E) = 2. Then consider the exact sequence of
(a,b)-modules 0 → S1(E) → E → E/S1(E) → 0 which give the exact sequence of
finite dimensional vector spaces

0 → S1(E)/bS1(E) → E/bE → E/(S1(E) + bE) → 0

which is compatible with the respective actions of b−1a on these quotients. But
as S1(E) and E/S1(E) are semi-simple, the action of b−1a on S1(E)/bS1(E) and on
E/(S1(E) + bE) are semi-simple and the action of b−1a on E/bE has a nilpotent part
N which satisfies N2 = 0. So we have ImN ⊂ KerN and dim E/bE ≤ 2 dimKerN .
Since KerN = S1(E)/bS1(E) because the (a,b)-module generated by a diagonal
basis of KerN for b−1a generates a semi-simple sub-module of E (see Lemma 4.2.2),
so it is equal to S1(E), the conclusion follows for d(E) = 2.
To prove the general case, consider a geometric (a,b)-module E with d(E) ≥ 3 and
an integer j ∈ [2, d(E)− 1]. Then let F := Sj+1(E)/Sj−1(E). We have d(F) = 2 and
so

rk(F) ≤ 2rk(S1(F)).
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Note sh := rk(Sh(E)) for each h. The inequality proved above gives sj + sj+1 ≤ 2sj
because S1(F) = Sj(E)/Sj−1(E) as F is a sub-module of E/Sj−1(E) which implies
S1(F) = F ∩ S1(E/Sj−1(E)) = Sj(E)/Sj−1(E). This concludes the proof of the in-
equality sj+1 ≤ sj for each j. ■

The following corollary will be useful later on

Corollary 4.2.9 Let E be a regular (a,b)-module which has a unique rank 1 normal
sub-module. Then, for any j ≥ 2, E cannot have two distinct normal rank j sub-
modules.

Proof. We begin by the case j = 2. We shall argue by contradiction. So let
G1 and G2 be two distinct normal sub-modules with rank 2. By uniqueness of the
normal rank 1 sub-module H of E we have H ⊂ G1∩G2 since each Gi must contain
H := S1(E), and moreover the intersection cannot be of rank 2 since it is also a
normal sub-module. Then G1/H and G2/H are two distinct normal rank 1 sub-
modules of S2(E)/H. Then S2(E/S1(E)) has rank at least two while S1(E) = H has
rank 1. This contradicts Proposition 4.2.8.
Now we shall argue by induction on j ≥ 3. So assume that j ≥ 2 and the result
proved for the rank at most equal j−1. We shall argue again by contradiction. Then
the quotient E/Fj−2, where Fj−2 is the unique normal sub-module of rank j − 2 in
E thanks to our inductive assumption, has a unique rank 1 normal sub-module and
then has a unique normal rank 2 normal submodule. If G1 and G2 are distinct
normal sub-modules of rank j in E then G1∩G2 is equal to Fj−1, the unique normal
rank j − 1 sub-module of E6 and Fj−1 contains Fj−2.
Then Gi/Fj−1, i = 1, 2 are two distinct rank 1 normal sub-modules of E/Fj−1. Con-
tradiction. ■

Remark. Note that under the hypothesis of the previous corollary the rank of
S1(E) is 1 (if E ̸= {0}). Then, the rank of S2(E) is 1 or 2. In the first case
S2(E) = S1(E) and E = S1(E) has rank 1. If the rank of S2(E) is 2, then the rank
of S3(E) is 2 or 3. If the rank of S3(E) is 2, then S2(E) = E and the rank of E is 2.
And so on . . . . So if k is the rank of E we have Sk(E) = E and d(E) = k.
Conversely, if E is regular with rank k and such that d(E) = k, the inclusions
Sj(E) ⊂ Sj+1(E) are strict for j ∈ [0, k − 1] and each quotient Sj+1(E)/Sj(E) has
rank 1. In particular S1(E) has rank 1 and so it is the unique normal rank 1 sub-
module in E .

We leave the proof of the following corollary as an exercise for the reader :

6The existence of J-H. sequence shows that any rank j ≥ 1 normal sub-module of a regular
(a,b)-module contains a rank j − 1 normal sub-module.
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Corollary 4.2.10 For any non zero regular (a,b)-module E we have the equivalence
between the conditions:

• rank(S1(E)) = 1 and

• d(E) = rank(E)

• E is a [α]-primitive theme.

• E has a unique Jordan-Hölder sequence. ■

5 Asymptotic expansions and geometric (a,b)-modules

5.1 The Embedding Theorem

Fix α ∈]0, 1] ∩ Q and N ∈ N. We shall consider convergent asymptotic expansions
of the type

Ξ(N)
α := {

N∑
j=0

∞∑
m=0

cjms
α+m−1 (Log s)

j

j!
} (12)

where we ask that exists R > 0 and a positive constant CR such that the following
estimates hold

|cjm| ≤ CRR
m ∀j ∈ [0, N ] ∀m ∈ N. (13)

Of course, Ξ
(N)
α is a free C{s}-module with rank (N + 1) and basis

ej := sα−1 (Log s)
j

j!
, j ∈ [0, N ]. (14)

We shall consider the dual Fréchet topology on Ξ
(N)
α deduced from the natural

topology of C{s} (which is independent of the choice of the basis) and we define on

Ξ
(N)
α the C-linear continuous endomorphism7 defined inductively on j ∈ [0, N ] by

the following rules:

1. For j = 0 and m ∈ N we put b(sα+m−1) := sα+m/(α +m).

2. For j ≥ 1 and m ∈ N we put

b(smej) =
sm+1

α +m
ej −

b(smej−1)

α +m
. (E)

Of course this endomorphism corresponds to the term-wise integration (without
constant) of these series.

7The continuity is an easy consequence of the formula

b(smej) =

j∑
h=0

(−1)j−h

(α+m)j−h+1
sm+1eh

since j ∈ [0, N ],m ∈ N and α > 0.
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Notation (rappel). We shall note A := C{a} and B := C{{b}}, and a will be
the multiplication by s on A-modules.

Proposition 5.1.1 The C[b]-action on Ξ
(N)
α defined above extends to a B-action

and Ξ
(N)
α is a free B-module of rank N + 1 with basis ej, j ∈ [0, N ]. Moreover, we

have aΞ
(N)
α = bΞ

(N)
α , and the action of b−1a on Ξ

(N)
α may be written as

b−1a = ∆+N with N (e0) = 0 and N (ej) = ej−1 ∀j ∈ [1, N ]

where N is A-linear and B-linear, where ∆(smej) = (α+m)smej, ∀m ∀j and where
b−1a, ∆ and N commute.

Proof. The formula (E) gives for each integers m and j

asmej = (α +m)bsmej + bsmej−1

so ∆(smej) = (α +m)smej +N (smej) if we define the A-linear map N by putting
N (ej) = ej−1 with the convention N (e0) = 0.
Then it is clear that satisfies NN+1 = 0. The fact that ∆ is C-linear continuous and
bijective gives aΞ

(N)
α = bΞ

(N)
α .

We want to check now that N is b-linear.
Then first remark that we have b−1ab− bb−1a = b−1b(a+ b)− a = b.
We shall prove by induction on j ≥ 0 that ∆b− b∆ = b.
For j = 0 we have

(α +m)∆bsme0 = ∆(sm+1e0) = (α +m+ 1)sm+1e0

and
(α +m)b∆sme0 = (α +m)2bsme0 = (α +m)sm+1e0

and so
(α +m)(∆b− b∆)(sme0) = sm+1e0 = (α +m)b(sme0).

Assume now j ≥ 1 and the relation ∆b− b∆ = b proved for smej−1.
Then we have, using the induction hypothesis:

∆(bsmej) =
1

α +m
∆
(
sm+1ej − b(smej−1

)
=
α +m+ 1

α +m
sm+1ej −

1

α +m
∆(bsmej−1)

∆(bsmej) =
α +m+ 1

α +m
sm+1ej − bsmej−1 −

1

α +m
bsmej−1 and also

b∆(smej) = b(α +m)smej = sm+1ej − bsmej−1 so we obtain

(∆b− b∆)(smej) =
1

α +m

(
sm+1ej − bsmej−1

)
= bsmej.

This gives the b-linearity of N = b−1a−∆, and then the B-linearity by continuity.
Note that [b−1a, b] = a and the A-linearity of N gives [∆, a] = a which is easy to
check directly.

50



Using the fact that B acts on Ξ
(N)
α

8 and that b is injective on Ξ
(N)
α , we conclude,

as (ej, j ∈ [0, N ]) induces a basis of the vector space Ξ
(N)
α /bΞ

(N)
α = Ξ

(N)
α /aΞ

(N)
α , and

then Ξ
(N)
α is a free B-module with basis (ej, j ∈ [0, N ]). ■

Let A be a finite subset of ]0, 1] ∩ Q and let V be a finite dimensional complex
space, we define the free finite type B-module

Ξ
(N)
A := ⊕α∈A Ξ(N)

α (15)

which is also a free finite type A-module. Then, defining the action of B and of A as
the identity on V , the tensor product Ξ

(N)
A ⊗C V is again a free finite type B-module

which is also a free finite type A-module. Of course this implies that it is a (simple
pole) convergent (a,b)-module.

Definition 5.1.2 We say that a left B[a] sub-module E of Ξ
(N)
A ⊗C V for some

N ∈ N and some finite dimensional complex vector space V is a geometric (a,b)-
module.
A geometric (a,b)-module E of the form B[a]φ for some φ in some Ξ

(N)
A ⊗C V is

called a fresco.
A fresco E will be called a theme when it may be written E = B[a]φ with φ ∈ Ξ

(N)
A

(so with V = C).

Remarks.

1. Of course a geometric (a,b)-module is a regular (a,b)-module because it is a
free finite rank B-module, stable by the action of a which is continuous, and
which is regular since any Ξ

(N)
A ⊗C V is a simple pole (a,b)-module.

2. The saturation of a geometric (a,b)-module E is again a geometric (a,b)-module

since the stability of Ξ
(N)
A ⊗CV by b−1a implies the inclusion of E ♯ in Ξ

(N)
A ⊗CV

when E is in Ξ
(N)
A ⊗C V .

3. It is easy to see that the Bernstein polynomial of Ξ
(N)
α is equal to (x+ α)N+1

and then to deduce that the roots of the Bernstein polynomial of a geometric
(a,b)-module are negative rational numbers.

4. For α = −1 the free rank 1 A-module A(1/s) is not stable by b, but the free
rank 2 A-module A(1/s)⊕A(Log s) is stable by b if we defined b(1/s) := Log s
and b(Log s) := sLog s− s which gives

ba(1/s) = ab(1/s)− b2(1/s) = sLog s− (sLog s− s) = s = b(1).

So it coincides with the free rank 2 B-module E with basis 1/s and 1.
But its saturation by b−1a inside E ⊗B B[b−1] contains the non zero element
b−1a(1/s) = b−1[1] which satisfies ab−1[1] = 0. So a is not injective on E ♯ which
is not a free A-module although it is a free B-module.

8The easy estimates corresponding to this assertion is left to the reader.
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Theorem 5.1.3 [The Embedding Theorem] Let E be a regular (a,b)-module
such that its Bernstein polynomial has negative rational roots. Then there exists a
finite subset A in Q∩]0, 1], a finite dimensional complex vector space V , an integer

N ∈ N and a B[a]-linear injective map f : E → Ξ
(N)
A ⊗ V .

Important remark. An obvious consequence of the previous theorem is the
following equivalent definition of a geometric (a,b)-module:

• A regular (a,b)-module is geometric if and only if the roots of its Bernstein
polynomial are negative rational numbers (compare with [19] and [18]).

In the section 5.2 we describe, for a given geometric (a,b)-module E , what are the

smallest N, V and A for which there exists an embedding of E in Ξ
(N)
A ⊗C V .

The proof of the Embedding Theorem will use the following lemmas9.

Lemma 5.1.4 Let γ be a positive rational number. Then for any element y in
Ξ
(N)
A ⊗ V there exists x ∈ Ξ

(N+1)
A ⊗ V such that (a− γb)x = by.

Proof. It is enough to consider the case V = C and A := {α}.
Assume first that γ ̸∈ α+ N. Since ∆− γ : Ξ

(N)
α → Ξ

(N)
α is bijective and NN+1 = 0

the map ∆− γ−N is also bijective and the formula a− γb = b(∆− γ−N ) implies
the result.
If γ = α+m0 for some m0 ∈ N let Z be the closed C-linear span of the vectors smej
for m ∈ N \ {m0} and j ∈ [0, N ]. Then ∆ − γ is continuous bijective on Z and N
satisfies N (Z) ⊂ Z and NN+1 = 0. Now the formula a−γb = b(∆−γ−N ) implies
the equality (a − (α +m0)b)Z = b(∆ − γ − N )Z. So, to complete the proof, it is

enough to shows that (a−(α+m0)b)(Ξ
(N+1)
α ) contains the vectors sm0+1ej, j ∈ [0, N ].

This is given by the formulas

(a− (α +m0)b)(s
m0ej) = b(sm0ej−1)

and an induction on j in [1, N + 1]. ■

Proof of the Embedding Theorem. Remark first that it is enough to prove
the existence of an embedding in the case where E has simple pole since E and E ♯
have the same Bernstein polynomial.
We shall make an induction on the rank of E assumed to have a simple pole.
In rank 1 we have E ≃ Eα with α ∈ Q+∗ and since Eα ≃ B[a]sα−1 is a sub-module of

Ξ
(0)
[α] , this gives the desired embedding, where [α] is the class of α in Q/Z ≃ Q∩]0, 1].

Assume that the existence of such an embedding has been proved when E has rank

9This easy lemma is missing in the proof of Theorem 4.2.12 in [9].
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(k−1) with k ≥ 2. Then consider a rank k simple pole (a,b)-module E and let F be a
rank (k−1) normal sub-module in E (the existence of such an F is consequence of the
existence of J-H sequence for E ; see section 3.4). Then E/F is isomorphic to Eα for
some α ∈ Q+∗ because it has rank 1 and the only root −α of its Bernstein polynomial
is a root of the Bernstein polynomial of E (see Remark 3 following Definition 3.2.1).
Let e be an element in E such that its image in E/F is the standard generator10 of
Eα. Then, since E has a simple pole and F is normal, we have z := (a − αb)e is in
F ∩ bE = bF . Then we may write z = by with y ∈ F .
Now our induction hypothesis gives us an injective B[a]-linear embedding

g : F → Ξ
(N)
A ⊗ V.

Then g(z) is in bΞ
(N)
A ⊗ V and the lemma 5.1.4 gives an x ∈ Ξ

(N+1)
A ⊗ V such that

(a− αb)x = g(z).

Define a B-linear map f : E → Ξ
(N+1)
A ⊗ (V ⊕ Cε) by

f(t) = g(t) when t ∈ F and f(e) = x⊕ sα−1ε,

using the direct sum decomposition (as B-module) E = F ⊕Be.
We shall verify the a-linearity of f and also its injectivity.
Let σ be in B and t in F . We have a(t⊕ σe) = (at+ σ(a− αb)e)⊕ ασbe. Then

f(a(t⊕ σe)) = g(at+ σ(a− αb)e) + ασb(x+ sα−1ε)

= ag(t) + σg(z) + σsαε− σ(a− αb)x+ σax

= af(t⊕ σe) since g(z) = (a− αb)(x).

So the a-linearity is proved.
As g is injective, f(t ⊕ σe) = 0 implies t + σx = 0 and σsα−1ε = 0. But since
W := V ⊕ Cε, this implies σ = 0 and then t = 0, concluding the existence of an
embedding for E . ■

Corollary 5.1.5 A [α]-primitive theme of rank ≥ 2 is not semi-simple. In fact its
semi-simple part has rank 1.

Proof. Let E := B[a]φ ⊂ Ξ
(N)
[α] a rank k [α]-primitive theme which is semi-simple.

Then E ♯ is isomorphic to a direct sum of Eβ for a finite set of β in α+N (may be with

repetitions), thanks to Proposition 4.1.4. Since Ξ
(N)
[α] has a simple pole, the inclusion

of E in Ξ
(N)
[α] extends to a B[a]-linear map j♯ : E ♯ → Ξ

(N)
[α] . But for any β ∈ α + N a

B[a]-linear map Eβ → Ξ
(N)
[α] has its image in Ξ

(0)
[α] because Csβ is the vector space of

solutions of the equation (a− βb)x = 0 for x ∈ Ξ
(N)
[α] . Then the image of j♯ has rank

at most 1 and k ≤ 1. ■

Corollary 5.1.6 Let E be an [α]-primitive theme of rank k. Then d(E) = k.
10a non zero element ε in Eα such that aε = αbε.
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Proof. Remark first that we have an isomorphism Ξ
(N)
[α]

/
Ξ
(N−p)
[α] ≃ Ξ

(p)
[α] which is

given by ej 7→ ej−p for j ∈ [N − p,N − 1] (and ej 7→ 0 for j ∈ [0, N − p− 1]), where
ej := sα−1(Log s)j/j! for j ∈ [0, N − 1].
Let E be an [α]-primitive theme of rank k ≥ 2. Then E/S1(E) is an [α]-primitive
theme of rank k−1 since the proof of the previous corollary shows that an embedding
of E in Ξ

(N)
[α] gives an embedding of E/S1(E) in Ξ

(N)
[α]

/
Ξ
(0)
[α] ≃ Ξ

(N−1)
[α] . Then

E/S1(E)
/
S1(E/S1(E)) ≃ E/S2(E)

is a rank k − 2 [α]-primitive theme. We obtain, continuing in this way, that for
any j ∈ [0, k − 1] that E/Sj(E) is a rank k − j [α]-primitive theme and then that
E = Sk(E) and d(E) = k. ■

Note that the proof above shows that the semi-simple filtration of an [α]-primitive
theme E is the unique J-H. sequence for E .

5.2 Complements to the Embedding Theorem

We give now some complements to the Embedding Theorem 5.1.3.

Proposition 5.2.1 Let A be a finite subset in Q∩]0, 1], V be a non zero finite

dimensional vector space and N be a non negative integer. Then Sj(Ξ
(N)
A ⊗ V ) =

Ξ
(j−1)
A ⊗ V for each j ∈ [1, N + 1], and the nilpotent order of this geometric (a,b)-

module is N + 1.

The proof of this proposition will use the following three lemmas.

Lemma 5.2.2 Fix α ∈ Q∩]0, 1] and β := α+m with m ∈ N. Let P be a degree M
polynomial. Then there exists a unique degree M +1 polynomial Q without constant
term such that (a− βb)(sβ−1Q(Log s)) = sβP (Log s).

Proof. An elementary computation shows that Q is the primitive vanishing at 0
of the polynomial βP + P ′ which has degree M since β > 0. So Q is a polynomial
of degree M + 1. ■

Lemma 5.2.3 We keep the notations of the previous lemma and assume M ≥ 1.
Let φ := sβ−1(Log s)M + ψ where ψ is in Ξ

(M−1)
[α] .

Then the degree in Log s of (a−γb)φ is equal to M for γ ̸= β and M − 1 for γ = β.

Proof. For γ ̸= β we have

(a− γb)sβ−1(Log s)M = (1− γ/β)sβ(Log s)M modulo Ξ
(M−1)
[α]

54



and the conclusion follows.
For γ = β we have

(a− βb)φ =Mb(sβ−1(Log s)M−1) + (a− βb)Ξ
(M−1)
[α] .

But as M ≥ 1 the Lemma 5.2.6 implies that sβ(Log s)M−1 is not in (a− βb)Ξ
(M−1)
[α]

since the kernel of a− βb is Csβ−1. Now the equality

b(sβ−1(Log s)M−1 =
1

β
sβ(Log s)M−1 − M − 1

β
b(sβ−1(Log s)M−2)

shows that the term sβ(Log s)M−1 has still a non zero coefficient in (a− βb)φ con-
cluding the proof. ■

Lemma 5.2.4 Fix α ∈ Q∩]0, 1] and M ∈ N. Let φ be in Ξ
(M)
[α] of the form

φ = sβ−1(Log s)M + ψ

with β > 0 in α + N and ψ ∈ Ξ
(M−1)
[α] . Then B[a]φ is a [α]-primitive theme of rank

M + 1.

Proof. By definition Ãconv.φ is a [α]-primitive theme. We shall argue by induction

on M ≥ 0. For M = 0 since Ξ
(0)
[α] ≃ Eα is rank 1, the point is to prove that B[a]φ is

not a finite dimensional complex space. As a is injective this is clear.
Assume thatM ≥ 1 and that the corollary is proved forM−1. Thanks to Corollary
5.2.3 and the induction hypothesis we know that B[a](a− βb)φ is a rank M theme.
Then the exact sequence

0 → B[a](a− βb)φ→ B[a]φ→ Q→ 0

where Q is a quotient of Eβ, shows that the rank of B[a]φ is either M + 1 or M . If
the rank is M , then there exists m ∈ N such that bmφ is in B[a](a − βb)φ which

is contained in Ξ
(M−1)
[α] . This is clearly impossible. Then the rank of B[a]φ isM+1.■

Remark. If, in the situation of the previous lemma, φ = S(b)sβ−1(Log s)M + ψ
for some S invertible in B, then φ also generates a [α]-primitive theme.

Proof of Proposition 5.2.1. As Ξ
(0)
A ≃ ⊕α∈A Eα it is clear that Ξ

(0)
A ⊗ V is

semi-simple as a finite direct sum of such Eα. So it is contained in S1(E).
Conversely, if φ ∈ Ξ

(N)
A ⊗ V has degree at least equal to 1 in Log s, then Corollary

5.2.4 implies (by choosing a convenient linear form on V ) that some [α]-primitive
sub-module B[a]φ has a [α]-primitive quotient theme of rank ≥ 2 for some [α] ∈ A ,

55



so is not semi-simple (see Corollary 5.1.5). So S1(E) = Ξ
(0)
A ⊗ V .

Assume that j ≥ 1 and that we have proved the equality Sj(Ξ
(N)
A ⊗V ) = Ξ

(j−1)
A ⊗V .

Now, as Ξ
(j)
A ⊗ V

/
Ξ
(j−1)
A ⊗ V is semi-simple, since it is isomorphic to Ξ

(0)
A ⊗ V , we

obtain that Ξ
(j)
A ⊗V ⊂ Sj+1(Ξ

(N)
A ⊗V ) by the definition of Sj+1(E). To complete our

induction it is enough to prove that if φ ∈ Ξ
(N)
A ⊗V has degree j+1 in Log s then φ

is not in Sj+1(Ξ
(N)
A ⊗ V ). But under this hypothesis B[a]φ, thanks to Lemma 5.2.4

admits a quotient which is a rank j + 2 theme.
Then thanks to Corollary 5.1.6 d(B[a]φ) = j + 2 and φ is not in Sj+1(Ξ

(N)
A ⊗ V ).■

As a consequence of the previous proposition, using Lemma 4.2.5, we obtain that
for any sub-module E ⊂ (Ξ

(N)
α ⊗ V ) the equality Sj(E) = E ∩ (Ξ

(j−1)
[α] ⊗ V ) for each

j ∈ [1, d(E)].

The next proposition is also a complement to the Embedding Theorem 5.1.3.

Proposition 5.2.5 Let E be a geometric (a,b)-module and assume that S1(E) may

be embedded in Ξ
(0)
A ⊗ V . Then we can extend this embedding to an embedding of E

in Ξ
(N)
A ⊗ V with N := d(E)− 1.

Proof. To simplify the notation, we shall write d := d(E) the nilpotent order of E .
Remark that it is enough to prove the result when E has a simple pole because any
embedding of a geometric (a,b)-module in some Ξ

(N)
A ⊗ V extends to an embedding

of E ♯, as any Ξ
(N)
A ⊗ V has a simple pole.

Now as a geometric simple pole (a,b)-module decomposes as a direct sum of its [α]-
primitive parts when α describes Q∩]0, 1], we may assume that E is [α]-primitive.
We shall prove the result by induction on d, assuming that E has a simple pole and
is [α]-primitive (see Theorem 3.3.7). The case d = 1 being trivial, assume d ≥ 2 and
that we have already proved the case d − 1. Then the inductive assumption gives
that we have already extend our embedding φ : Sd−1(E) → Ξ

(d−2)
[α] ⊗ V . Then we

shall now make an induction on the rank of E/Sd−1(E).
First assume that this rank is 1. Then let e ∈ E which is send to the the standard
generator of E/Sd−1(E) ≃ Eβ (so (a − βb)e is in Sd−1(E)) where β is in α + N.
Note that [α] is in A because −A contains the class modulo Z of any root of
the Bernstein polynomial of E . As we assume that E has simple pole, (a − βb)e
is in Sd−1(E) ∩ bE = bSd−1(E) since Sd−1(E) is normal in E . Then φ(a − βb)e) is

in bΞ
(d−2)
[α] ⊗ V and applying Lemma 5.1.4 we may find ε ∈ Ξ

(d−1)
[α] ⊗ V such that

(a− βb)ε = φ(e). Then we can extend φ to an embedding of E by sending e to ε as
in the proof of the Embedding Theorem.
To complete our induction on the rank of E/Sd−1(E), we have to prove the case of
the rank of E/Sd−1(E) is equal to k ≥ 2, assuming that the case of rank k − 1 is
already proved,
Let F be a co-rank 1 normal sub-module containing Sd−1(E). This is easily obtained
by considering a J-H. sequence for E/Sd−1(E). Then we have Sd−1(F) = Sd−1(E)
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and Sd(F) = F . The rank of F/Sd−1(F) is k− 1 so our inductive assumption gives

an embedding φ : F → Ξ
(d−1)
[α] ⊗V . Define γ ∈ Q∗+ by E/F ≃ Eγ and as in the proof

of the Embedding Theorem (note that F has a simple pole because it is normal in
E which has a simple pole) let e ∈ E inducing the standard generator of Eγ via the
quotient map E → E/F . Then (a− γb)e is in F and in fact in bF using the simple

pole assumption, so that φ(e) is in bΞ
(d−1)
[α] ⊗V and, thanks to Lemma 5.1.4 we may

find ε ∈ Ξ
(d)
[α] ⊗ V ) which satisfies (a − γb)ε = φ(e). Then, as in the proof of the

Embedding Theorem, this allows to define an extension φ̃ : E → Ξ
(d)
[α] ⊗V by putting

φ̃(e) = ε. This extension is injective because its kernel has rank at most 1 so is

contained in S1(E) ⊂ F . Moreover, if ε is not in Ξ
(d−1)
α ⊗ V then B[a].ε is a rank

d+ 1 theme, thanks to Lemma 5.2.4, and then T := B[a].e ⊂ E is a d+ 1-theme in
E , so d(T ) = d+ 1 contradicting the fact that Sd(E) = E . So φ̃ is an embedding of

E in Ξ
(d−1)
α ⊗ V concluding the proof. ■

We conclude this sub-section by the following characterization of [α]-primitive themes
(compare with Corollary 5.1.6)..

Proposition 5.2.6 A fresco E is an [α]-primitive theme, for some α ∈]0, 1]∩Q, if
and only if it has at most one rank 1 normal sub-module.
In this case, it has, for each j ∈ [0, k], a unique normal rank j sub-module, where k
is the rank of E.

Proof. By definition an [α]-primitive theme E is a sub-module of the type Ãconv.φ

where φ is in a module Ξ
(N)
α for some N ∈ N. Then S1(E) ⊂ S1(Ξ

(N)
α ) ≃ Eα. So if

E ̸= 0 the rank of S1(E) is 1 and this implies the uniqueness of the normal rank 1
sub-module in E .
The quotient E/S1(E) is again a theme, so, using the equality

Ξ(N)
α /S1(Ξ

(N)
α ) ≃ Ξ(N−1)

α ,

and an induction of the rank j of a normal sub-module of E , we obtain the unique-
ness of a normal rank j sub-module of E for each j ∈ [0, k] where k is the rank of E .
Conversely if 0 ̸= E ⊂ Ξ

(N)
A ⊗ V is a fresco which has a unique rank 1 sub-module.

Then S1(E) = E ∩ (Ξ
(0)
A ⊗ V ) is rank 1 and we may embed E with an A which has

only one element α and with a 1-dimensional V , thanks to Proposition 5.2.5.
So E is an [α]-primitive theme. ■

6 Monodromy and the semi-simple filtration

6.1 Monodromy

The goal of the present sub-section is to define the action of the nilpotent part of
the logarithm of the monodromy (logarithm given by 2iπb−1a) on a simple pole ge-
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ometric (a,b)-module and to show that the semi-simple filtration of any geometric
(a,b)-module E coincides with the filtration induced on E by the successive kernels
of this nilpotent part acting on E ♯.

The first remark is that in a simple pole (a,b)-module the C-linear (bijective) endo-
morphism u := b−1a satisfies the following commutations relations:

ua− au = a and ub− bu = b.

Lemma 6.1.1 Let X be a C-algebra with unit and let u and x elements in X sat-
isfying ux− xu = x. Then for each n ∈ N we have unx− xun = x((1 + u)n − un).

Proof. The result is clear for n = 0, 1 so assume it is already proved for n − 1
with n ≥ 2. Then we have:

unx− xun = u(xun−1 + x(1 + u)n−1 − xun−1)− xun

unx− xun = ux(1 + u)n−1 − xun = x(1 + u)n − xun ■

Note that if z is a complex number then, replacing x by znx gives

(zu)nx− x(zu)n = x((z(u+ 1))n − (zu)n) ∀n ∈ N.

Assume now that the series
∑∞

j=0(2iπu)
n/n! converges in the algebra X having a

topology for which the product is continuous. Then we have

exp(2iπu)x− x exp(2iπu) =
∞∑
j=0

[(2iπu)n/n!]x− x[(2iπu)n/n!]

= x
[ ∞∑
j=0

(2iπ(u+ 1))n/n!−
∞∑
j=0

(2iπu)n/n!
]

= x
[
exp(2iπ(u+ 1))− exp(2iπu)

]
= 0,

which gives that exp(2iπu) and x commute.

Lemma 6.1.2 Let α be a rational number in ]0, 1] and N a non negative integer.
Then the C-linear map T := exp(2iπb−1a) :=

∑∞
q=0(2iπb

−1a)q/q! is well defined on

ΞN[α] and is B[a]-linear (and also A-linear). It is induced by the standard monodromy
around 0 given by Log s 7→ Log s+ 2iπ.

Proof. We have NN+1 = 0 and b−1a = (∆ + N ) as a C-linear endomorphisms

of Ξ
(N)
α where

∆(sβ
(Log s)j

j!
) = βsβ

(Log s)j

j!
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for any β ∈ α + N. So exp(2iπ∆) = exp(2iπα) on ΞN[α] and since ∆ commutes with
N , we obtain:

exp(−2iπα) exp(2iπb−1a) = exp(2iπN ) =
N+1∑
p=0

(2iπN )p

p!
.

Evaluation at sβ (Log s)j

j!
gives, since by definition T := exp(2iπb−1a):

T (sβ
(Log s)j

j!
) = exp(2iπα)

j∑
p=0

(2iπ)p sβ
(Log s)j−p

(j − p)!p!
= exp(2iπα)sβ

((Log s) + 2iπ)j

j!

thanks to the binomial formula.
Then we obtain, since exp(2iπN ) = (exp(−2iπα))T , the equality:

exp(2iπN )(sβ
(Log s)j

j!
) = sβ

(Log s+ 2iπ)j

j!
.

. ■

Corollary 6.1.3 For any simple pole geometric (a,b)-module the automorphism
T := exp(2iπb−1a) is well defined and is B[a]-linear (and Ãconv.-linear). It is com-
patible with any Ãconv.-linear map between geometric simple pole (a,b)-modules.

Proof. The preceding lemma extends immediately to any Ξ
(N)
A ⊗ V and then,

using the Embedding Theorem 5.1.3 the result is clear. ■

Definition 6.1.4 The Ãconv.-linear automorphism T := exp(2iπb−1a) of a simple
pole geometric (a,b)-module E is called the monodromy automorphism of E.

6.2 A direct construction in the formal case

We give now a direct approach to the monodromy of a formal simple pole geometric
(a,b)-module which does not use the Embedding Theorem. The convergent case
seems more difficult to obtain in this way because the convergence of the series
defining exp(2iπb−1a) for a simple pole convergent (a,b)-module is not obvious.

Lemma 6.2.1 Let E be a simple pole α-primitive formal (a,b)-module which is
geometric, where α is in Q∩]0, 1]. Define N := exp(−2iπ(α− b−1a))− 1. Then for
each x ∈ E the series

2iπN (x) :=
∞∑
p=1

(−1)p
Np

p
(x)

converges in E and N : E → E is a Ã-linear endomorphism of E which satisfies
N k = 0 where k is the rank of E.

59



proof. Since exp(−2iπ(α − b−1a)) is a unipotent automorphism of E/bE, N is
nilpotent on E/bE and then Nk(E) ⊂ bE where k is the rank of E. So the series
converges for the b-adic filtration and N (x) is well defined for any x ∈ E. The
commutation relations [b−1a, a] = a and [b−1a, b] = b in the C-linear algebra endo-
morphisms of E implies the Ã-linearity of N and then, of N .
Then, since N is nilpotent on E/bE the b-linearity implies that N k = 0 on E. More-
over if f : E → F is a Ã-linear map between two geometric simple poles formal
(a,b)-modules which are α-primitive, the fact that

bf(b−1ax) = f(ax) = af(x) = b(b−1a)f(x)

implies that f(N (x)) = N (f(x)).

Definition 6.2.2 Let E be a simple pole geometric formal (a,b)-module. We define
the nilpotent endomorphism N on E using the direct sum decomposition

E = ⊕α∈AE[α]

where A is the subset of Q∩]0, 1] of class modulo Z of the eigenvalues of the action
of b−1a on E/bE. Then N is the direct sum of the various N for each E[α]. It
satisfies N k = 0 where k is the rank of E.
Then we define the C-linear automorphism ∆ of E by the formula

∆ := b−1a−N .

Remarks.

1. Since b−1a and N commute, ∆ commutes with b−1a and N .

2. The commutation relations [b−1a, a] = a, [b−1a, b] = b] and the Ã-linearity of
N implies the commutation relations

[∆, a] = a and [∆, b] = b.

3. For any Ã-linear map f : E → F between simple poles geometric (a,b)-
modules we have f ◦∆ = ∆ ◦ f .

4. ∆ is bijective as a consequence of the bijectivity of b−1a and the nilpotence of
N proved in the lemma above.

Conclusion. Let E a simple pole geometric formal (a,b)-module. Defining the
monodromy automorphism on E[α], the [α]-primitive part of E by the formula

exp(−2iπα)T = exp(2iπN )

the Decomposition Theorem allows to define T on E as the direct sum of the mon-
odromies of the E[α] where α describes the image of the opposite of the roots of the
Bernstein polynomial of E in Q/Z.
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6.3 Nilpotent order

We come back to the study of convergent geometric (a,b)-modules.

Lemma 6.3.1 Let E be a simple pole geometric (a,b)-module which is [α]-primitive.
Then N d = 0 if d = d(E) is the nilpotent order of E. Moreover N d−1 ̸= 0.

Proof. First of all remark that T is an automorphism of E so that it sends Sj(E)
bijectively on itself for any j. Moreover, for any normal sub-module F of E (so, in
particular, for any Sj(E)) T induces the monodromy automorphism of F because
F is stable by b−1a.
Now when E is semi-simple, as the monodromy of any rank 1 simple pole (a,b)-
module Eβ for β ∈ α + Z is the product by exp(2iπα), T is also the mutiplication
by exp(2iπα) and the N = 0.
When E is any simple pole geometric (a,b)-module which is [α]-primitive, any quo-
tient Sj(E)/Sj−1(E) is also [α]-primitive and this implies that N (Sj(E)) ⊂ Sj−1(E)
for any j and then N d = 0 for d = d(E).
To prove the second part of the lemma, remark that the endomorphism N of
Ξ
(N)
[α] ⊗ V has its image in Ξ

(N−1)
[α] ⊗ V . So, as an B[a]-linear embedding of a sim-

ple pole (a,b)-module E (then necessarily geometric and [α]-primitive) in Ξ
(N)
[α] ⊗ V

commutes with the respective monodromies, using the case N = d(E)− 1 thanks to

Proposition 5.2.5, we see that N d−1(E) = 0 implies that E ⊂ Ξ
(d−2)
[α] ⊗V which forces

d(E) ≤ d−1, contradicting our assumption that d(E) = d. This conclude the proof.■

Let E be a simple pole geometric (a,b)-module. Then there exists a finite subset A
in Q∩]0, 1] such that E is A -primitive. Then define the B[a]-linear endomorphism
N of E by using the direct sum decomposition of E (see Theorem 3.3.7):

E ≃ ⊕α∈A E[α]

Then define N as the direct sum of the endomorphism N on each E[α], α ∈ A .
Define also ∆ on E as b−1a+ N .
Then the following theorem is an easy consequence of the previous lemma using the
fact that Sd(Ξ

(N)
[α] ⊗ V ) = Ξ

(d−1)
[α] ⊗ V and Lemma 4.2.5.

Theorem 6.3.2 Let E be a geometric (a,b)-module and let N be the nilpotent part
of the monodromy acting on E ♯. Then intersection with E of the kernel of N j is
equal to Sj(E) for all j ∈ [0, d]. So d = d(E) = d(E ♯) is the nilpotent order of the
action of the monodromy on E ♯. ■

In other terms the previous corollary explains that the semi-simple filtration of a
geometric (a,b)-module coincides with the filtration induced on E by the successive
kernels of the powers of nilpotent part of the monodromy of E ♯.
Note that, in general, the inclusion N (Sj(E)) ⊂ Sj−1(E) is not an equality for a
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simple pole geometric (a,b)-module. For instance if E = F ⊕ G where F is semi-
simple and G is not semi-simple with d(G) = 2, N (E) = N (G) ⊂ S1(G) is strictly
contained in S1(E) = F ⊕ S1(G) when F ̸= {0}.

We collect in the following proposition the main tools we have obtained to compute
the nilpotent order of a geometric (a,b)-module.

Proposition 6.3.3 Let E be a geometric (a,b)-module. Then we have the following
properties :

i) For each subset A ∈ Q∩]0, 1] we have Sj(E[A ]) = Sj(E)[A ], for each j ≥ 1.

ii) Any [α]−primitive sub-theme T in E of rank j is contained in Sj(E).

iii) Any [α]−primitive quotient theme T of Sj(E) has rank ≤ j.

iv) The nilpotent order of E = E[A ] is equal to d if and only if d is the maximal
rank of an [α]−primitive quotient theme of E where α is in A .

v) The nilpotent order of E = E[A ] is equal to d if and only if d is the maximal
rank of an [α]−primitive sub-theme of E where α is in A . ■

Lemma 6.3.4 Let F and G be two sub-modules of a geometric (a,b)-module. As-
sume that d(F) ≤ p and d(G) ≤ p. Then d(F + G) ≤ p.

Proof. Assume that we have a surjective (a,b)-linear map π : F + G → T where
T is an [α]-primitive theme of rank q > p. Then let e be a generator of T as a Ãconv.-
module and let u ∈ F and v ∈ G such that e = π(u+ v). Note T1 := π(Ãconv.u) and
T2 := π(Ãconv.v). Let T̃i be the normalization of Ti in T for i = 1, 2. Then if T̃i ̸= T
for i = 1, 2 these two normal sub-module are contained in the co-rank 1 sub-module
of T , and this is not possible since T1 + T2 = T .
So we have, for instance T̃1 = T . But this means that there exists n ∈ N such
that bne is in T1. Then bnT is contained in T1 and so F contains the sub-module
π−1(bnT ) which admits bnT as a quotient. But bnT is a rank q [α]-primitive theme
and then d(Ãconv.u) ≥ q. This contradicts our hypothesis that d(F) ≤ p since we
assume that q > p.
So any quotient theme of F + G has rank at most equal to p, concluding the proof,
thanks to Proposition 6.3.3. ■

Corollary 6.3.5 Let E be a geometric (a,b)-module. For each integer j ≥ 0, Sj(E)
is the subset of all x ∈ E such that d(Ãconv.x) ≤ j.
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Proof. It is clear that x ∈ Sj(E) implies d(Ãconv.x) ≤ j. Conversely, let x ∈ E
with d(Ãconv.x) ≤ j. Then, thanks to the previous lemma, we have

d(Ãconv.x+ Sj(E)) ≤ j

and this implies that Ãconv.x + Sj(E) ⊂ Sj(E) because Sj(E) is the maximal sub-
module in E with nilpotent order equal to j (see remark ii) following Lemma 4.2.5).
This is enough to conclude. ■

Lemma 6.3.6 Let E be a geometric (a,b)-module. Then the nilpotent orders of E[α]
and of E/E[ ̸=α] are the same.

Proof. We have an obvious inclusion E[α] ⊂ E/E[̸=α] since the intersection of E[α]
with E[ ̸=α] is {0}. Let us prove that the image of this injection has finite co-dimension.
Thanks to the Decomposition Theorem we know that for E ♯ we have

(E ♯)[α] ⊕ (E ♯)[ ̸=α] = E ♯.

So the result is clear for E ♯.
An other consequence of the Decomposition Theorem is the fact that for each α we
have equality of the ranks of E[α] and of (E ♯)[α]:
Indeed the inequality∑

α

rk((E ♯)[α]) = rk(E ♯) = rk(E) ≥
∑
α

rk(E[α])

implies the equality of rk(E[α]) with rk((E ♯)[α]) for each α. So the inclusion of
E[α] ⊂ (E ♯)[α] implies for each α the equality

rk(E[α]) = rk((E[α])♯) = rk((E ♯)[α]).

This implies the equality of the ranks of E[α] and E/E[̸=α].
So, since for each j ≥ 1, Sj(E[α]) = Sj(E/E[ ̸=α]) ∩ E[α] (see Lemma 4.2.5) has finite
co-dimension in Sj(E/E[ ̸=α]), they have the same rank. This is enough to conclude
the proof since a normal sub-module of finite co-dimension in a rank k (a,b)-module
E is equal to E . ■

7 Higher Bernstein polynomials

7.1 Frescos

Recall that a fresco is a geometric (a,b)-module which has one generator as a B[a]-
module (or as a Ãconv.-module). So a geometric (a,b)-module E is a fresco if and
only if E/aE + bE is a complex vector space with dimension ≤ 1.
We begin by the convergent analog of the structure theorem for frescos given in [9]
Theorem 3.4.1, in the formal case.
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Theorem 7.1.1 If E is a geometric (a,b)-module, for each x in E the left annihilator
of x in Ãconv. has a generator of the form

P = (a− λ1b)S
−1
1 (a− λ2b) . . . (a− λkb)S

−1
k

where λ1, . . . , λk are positive rational numbers satisfying λj+j > k, where S1, . . . , Sk
are invertible elements in B and where k is the rank of Ãconv.x ⊂ E (as a B-module).

Proof. Let F := Ãconv.x ⊂ E and let k the rank of F . We shall prove, by
induction on k ≥ 1 that the annihilator of x in E has the announced form. So
assume that k ≥ 2 and the case where F has rank k− 1 is already proved (the case
k = 1 is clear !).
Let Fk−1 be a normal rank (k − 1) sub-module of F . Such a sub-module exists
thanks to Proposition 3.4.2 which gives the existence of a J-H. sequence for any
regular (a,b)-module. Then there exists a positive rational number α such that
F/Fk−1 is isomorphic to Eα since −α is a root of BF and since we assume that
E (and then F) is geometric. Let eα be the standard generator of F/Fk−1 (so
(a − αb)eα = 0 and Eα = Beα). Then the image of x in F/Fk−1 is equal to Skeα
where Sk is an invertible element in B, since this image of x must generate Eα. Let
y := (a− αb)S−1

k x. Then y is in Fk−1.

Claim. y is a generator of Fk−1 as a B[a]-module.

proof of the claim. Let z be an element in Fk−1. Since S
−1
k x is a generator of

F we may write z = uS−1
k x for some u ∈ B[a]. Now write u = Q(a−αb)+R where

Q is in B[a] and R ∈ B. This implies

z = (Q(a− αb) +R)S−1
k x = Qy +RS−1

k x.

But the image of z in F/Fk−1 ≃ Eα is zero and this implies RS−1
k eα = 0 and so

R = 0. Then we have z = Qy proving the claim.
So Fk−1 is a rank k − 1 fresco and the annihilator in Ãconv. of y in E is some P of
the desired form (and rank k − 1). Let Π := P (a − λkb)S

−1
k where λk := α. Then,

to complete the proof, it is enough to show that Π generates the left ideal of Ãconv.

which is the annihilator of x in E .
So let v ∈ Ãconv. such that vx = 0. Then the image of vx in Eα vanishes and
so vSk is in the ideal Ãconv.(a − λkb) which is the annihilator of eα. Then write
v = z(a− λkb)S

−1
k where z is in Ãconv.. Then z(a− λkb)S

−1
k x = zy = 0. So we may

write z = wP by our inductive assumption and this give v = wΠ and v is in the left
ideal Ãconv.Π. ■

The following corollaries are direct consequences of the proof of Theorem 7.1.1. They
are the convergent analogs of results of [9] proved in the formal setting for frescos.
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Corollary 7.1.2 Let F be a rank k fresco. Then there exists positive rational num-
bers λ1, . . . , λk and invertible elements S1, . . . , Sk−1 in B such that F is isomorphic
to Ãconv./Ãconv.P where P := (a− λ1b)S

−1
1 (a− λ2b) . . . S

−1
k−1(a− λkb).

Moreover we have λj > k − j for each j ∈ [1, k]. ■

The following corollary of the proof above implies that the action of Ãconv. on a
geometric (a,b)-module may be reduced to the action of the sub-algebra B[a] and
even with a degree in a bounded by k − 1 where k is the rank of the geometric
(a,b)-module we consider.

Corollary 7.1.3 Let F be rank k fresco with generator x. Then each y = ux in F
may be written in unique way as y = vx where v is a polynomial of degree k − 1 in
B[a]. ■

Note that if e1, . . . , ek is a B-basis of a geometric (a,b)-module E , the corollary above
shows that any x ∈ E may be written as

∑k
j=1 ujej where each uj is a polynomial

in B[a] of degree at most k − 1.

It will be useful to note that the proof of the theorem above implies the following
basic fact.

Corollary 7.1.4 Let E be a fresco. If F is a normal sub-module of E, F and E/F
are frescos. ■

The next proposition is the analog in the convergent case of results in Section 3.4
of [9]. Its proof is the same.

Proposition 7.1.5 Let F = Ãconv.

/
Ãconv.P be a rank k fresco as described in

Corollary 7.1.2. The Bernstein polynomial of F is the characteristic polynomial
of −b−1a acting on F ♯

/
bF ♯. And the Bernstein element PF of F , defined

as the initial form in (a, b) of P , PF := In(P ) = (a− λ1b)(a− λ2b) . . . (a− λkb) for
any choice of an isomorphism F ≃ Ãconv.

/
Ãconv.P , is the element in A defined by

the Bernstein polynomial BF of F by the following formula

PF := (−b)kBE(−b−1a)

valid in the algebra A[b−1a]. ■

This implies that for any J-H. sequence of the fresco F , if we define the numbers
αj by Fj/Fj−1 ≃ Eαj

, the the roots of BF are the numbers −(αj + j − k) where k is
the rank of F .

Corollary 7.1.6 Let 0 → F → E → G → 0 be an exact sequence of frescos.
Then we have PE = PFPG in the algebra A which implies BE(x) = BF(x− r)BG(x)
where r is the rank of G. ■
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A corollary of the previous result is the Decomposition Theorem for Bernstein poly-
nomials of frescos, analog to Corollary 3.3.9 of the Decomposition Theorem for
simple pole (a,b)-modules.

Theorem 7.1.7 Let F be a fresco and let −A the image in Q
/
Z of the set of roots

of its Bernstein polynomial of F . For [α] ∈ A define B
[α]
F the Bernstein polynomial

of F
/
F[ ̸=α]. Then we have

BF =
∏
α∈A

B
[α]
F . (B)

Proof. For each α ∈ A the exact sequence of frescos

0 → F[ ̸=α] → F → F
/
F[̸=α] → 0

which implies that the Bernstein polynomial B
[α]
F of F

/
F[̸=α] divides BF . Moreover,

The Bernstein polynomial of F[ ̸=α] satisfies

BF[ ̸=α]
(x− δα) = BF(x)

/
B

F
/
F[ ̸=α]

(x)

where δα is the rank of F
/
F[ ̸=α]. Since BF[ ̸=α]

has not root in −α + Z we conclude

that B
[α]
F is the greatest divisor of BF having its roots in −α + Z. The conclusion

follows. ■

Remark. In the analog decomposition of the Bernstein polynomial for any simple
pole (a,b)-module we have an isomorphism E

/
E[̸=α] ≃ E[α] for each α ∈ A . This is

not true, in general, for a fresco.
For a [λ]−primitive formal fresco a more precise result is proved in [9] Proposition
3.5.2. The proof in the convergent case is the same.

Proposition 7.1.8 When F is [α]−primitive, there always exists a J-H. sequence
such that the associated sequence (αj + j) is non decreasing. ■

Definition 7.1.9 We say that a J-H. sequence of a [α]-primitive fresco with char-
acteristic numbers (α1, . . . , αk) is principal when the sequence (αj + j) is non de-
creasing.

The following uniqueness result is rather interesting since it shows that a fresco
admits a canonical J-H. sequence (invariant by automorphisms).

Theorem 7.1.10 Let F be a [α]-primitive fresco. Then F admits a unique
principal J-H. sequence
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Remark. Of course, since a [α]-primitive theme has a unique J-H. sequence, it
has to be the principal one. So the successive quotients of the J-H. sequence of a [α]-
primitive theme satisfies αj + j ≤ αj+1 + j +1. That means that the corresponding
roots of the Bernstein polynomial are in a non increasing order since they are equal
to the −αj + k − j where k is the rank of the theme.

Proof. We shall prove the uniqueness by induction on the rank k of the [α]-
primitive fresco F .
We begin by the case of rank 2.

Lemma 7.1.11 Let F be a rank 2 [α]-primitive fresco and let (α1, α2) the
numbers corresponding to a principal J-H. sequence of F (so α1 + 1 ≤ α2 + 2).
Then the normal rank 1 submodule of F isomorphic to Eα1 is unique. Moreover,
if there exists a β ̸= α1 and a rank 1 normal sub-module isomorphic to Eβ
then β = α2 + 1. In this case there exists infinitely many different normal rank 1
sub-modules isomorphic to Eα2+1.

Proof. The case α1+1 = α2+2 is obvious because then F is a [α]−primitive
theme (see [11] Corollary 2.1.7).
So we may assume that α2 = α1 + p1 − 1 with p1 ≥ 1 and that F is the
quotient Ãconv.

/
Ãconv.(a − α1b)(a − α2b) (see the classification of regular rank 2

(a,b)-modules in [6]), because the result is clear when F is a theme. We shall use
the B-basis e1, e2 of F where a is defined by the relations

(a− α2b)e2 = e1 and (a− α1b)e1 = 0.

This basis comes from the isomorphism F ≃ Ãconv.

/
Ãconv.(a−α1b)(a−α2b) deduced

from the classification of rank 2 frescos with e2 = [1] and e1 = (a− α2b)e2.
Let look for x := Ue2 + V e1 such that (a− βb)x = 0. Then we obtain

b2U ′e2 + U(a− α2b)e2 + (α2 − β)bUe2 + b2V ′e1 + (α1 − β)bV e1 = 0

which is equivalent to the two equations :

b2U ′ + (α2 − β)bU = 0 and U + b2V ′ + (α1 − β)bV = 0.

The first equation gives U = 0 for β ̸∈ α2 + N. As the case U = 0 will give (as
we want also that x ̸∈ bF) that x is equal to e1, up to a non zero multiplicative
constant, we may assume that β = α2 + q for some q ∈ N. Moreover, as the
second equation implies U(0) = 0, we may assume that q ≥ 1. This already shows
that β ̸= α1 (α2 + 1 = α1 + p1 > α1) and this proves the first assertion. Now to
finish our computation of normal rank 1 sub-modules, we have U = ρbq. Then
the solutions in B of the equation

ρbq−1 + bV ′ − (p1 + q − 1)V = 0
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are given by : V = −(ρ/p)bq−1 + σbp1+q−1 and the condition x ̸∈ bF implies
now q = 1. So we obtain β = α2 + 1 and for each τ ∈ C the element
x = (1 − p1τb

p1)e1 − p1be2 generates a normal rank 1 sub-module isomorphic to
Eα2+1. And with the unique sub-module isomorphic to Eα1 they are all the normal
rank 1 sub-modules in such an F . ■

end of the proof of theorem 7.1.10. As the result is obvious for k = 1,
we may assume k ≥ 2 and the result proved in rank ≤ k − 1. Let Fj, j ∈ [1, k]
and Gj, j ∈ [1, k] two J-H. principal sequences for F . As the sequences λj + j
and µj + j cöıncide up to the order (they are of the form −xj + k where the
(xj)j∈[1,k] are the roots of the Bernstein polynomial, counting multiplicities) and are
both not decreasing, they cöıncide. Now let j0 be the first integer in [1, k] such
that Fj0 ̸= Gj0 . If j0 ≥ 2 applying the induction hypothesis to F

/
Fj0−1 gives

Fj0
/
Fj0−1 = Gj0

/
Fj0−1 and so Fj0 = Gj0 .

So we may assume that j0 = 1. Let H be the normalization of F1 +G1. As F1

and G1 are normal rank 1 and distinct, then H is a rank 2 normal sub-module.
It is a [α]-primitive fresco of rank 2 with two different normal rank 1 sub-modules
which are isomorphic as α1 = β1. Moreover the principal J-H. sequence of H
begins by a normal sub-module isomorphic to Eα1 . This contradicts the previous
lemma and so F1 = G1. So for any j ∈ [1, k] we have Fj = Gj. ■

Lemma 7.1.12 Let E be a geometric (a,b)-module of rank k. There exists a
fresco F ⊂ E with rank k, so such that the quotient E

/
F is a finite dimensional

complex vector space.

proof. We shall prove this fact by induction on the rank k of E . As the
statement is obvious for k ≤ 1, assume k ≥ 2 and the result proved in rank k−1.
As there exists a normal rank 1 submodule of E , consider an exact sequence

0 → Eλ → E π−→ G → 0

where G is a rank k − 1 geometric (a,b)-module. Let x ∈ E such that π(x)
generates a rank k − 1 fresco in G. Let P ∈ B[a] be a monic degree k − 1
polynomial in a with coefficients in B, which generates the annihilator of π(x)
in G. Then Px is in Eλ.
If Px = 0 we replace x by x+ bmeλ where m ∈ N is chosen in order that Pbmeλ ̸= 0.
Such an integer m exists because we have

Pbmeλ = (λ1 −m− λ) . . . (λk−1 −m− λ)bm+k−1eλ + bm+kEλ
if the initial form of P is (a− λ1b) . . . (a− λk−1b).
This allows us to assume that Px is a non zero element in Eλ∩Ãconv.x, which means
that Eλ ∩ Ãconv.x has rank 1 and has finite co-dimension in Eλ.
Then the exact sequence

0 → Eλ
/
Eλ ∩ Ãconv.x→ E

/
Ãconv.x→ G

/
Ãconv.π(x) → 0
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gives the finiteness of the complex vector space E
/
Ãconv.x, and the fresco Ãconv.x

has finite co-dimension in E . ■

The next result shows that any root of the Bernstein polynomial of a geometric
(a,b)-module E may be “realized” as by a fresco F ⊂ E .

Proposition 7.1.13 Let E be a geometric (a,b)-module and let −α −m be a root
of its Bernstein polynomial. Then there exists an element x ∈ E such that the
Bernstein polynomial of the fresco Ãconv.x ⊂ E has −α−m has a root.

The proof uses the following lemma.

Lemma 7.1.14 Let E1, . . . , Ep be sub-modules of a regular (a,b)-module E such that

E =
∑p

j=1 Ej. Then we have the equality E ♯ =
∑p

j=1 E
♯
j .

Proof. First remark that we have, for any two regular (a,b)-modules E1, E2, the
a natural isomorphism

(E1 ⊕ E2)♯ ≃ E ♯1 ⊕ E ♯2.
The inclusion of (E1 ⊕ E2)♯ in E ♯1 ⊕ E ♯2 is clear. If z = z1 ⊕ z2 is in E ♯1 ⊕ E ♯2, we
may write, for an integer q large enough, z1 =

∑q
j=1(b

−1a)jxj with xj ∈ E1 and

z2 =
∑q

j=1(b
−1a)jyj with yj ∈ E2. This gives z =

∑q
j=1(b

−1a)j(xj ⊕ yj) which shows

that z is in (E1 ⊕ E2)♯.
Now assume that E1, E2 are sub-modules of the regular (a,b)-module E such that
E = E1 + E2. We have a surjective map E1 ⊕ E2 → E and then a surjective map
(E1 ⊕ E2)♯ → (E1 + E2)♯ = E ♯. The conclusion follows by an easy induction on p. ■

Remark. If π : E → F is a surjective (a,b)-linear map between regular (a,b)-
modules, then the Bernstein polynomial of F divides the Bernstein polynomial of E
because the map π♯ : E ♯ → F ♯ is surjective.

Thanks to the surjectivity of the map E ♯1 ⊕ E ♯2 → E ♯, the following corollary of the
previous lemma is obvious.

Corollary 7.1.15 Assume that E1, E2 are sub-modules of the geometric (a,b)-module
E such that E = E1 + E2. Then each root of the Bernstein polynomial of E is also a
root of the Bernstein polynomial either of E1 or of E2. ■

Proof of Proposition 7.1.13. Let x1, . . . , xk be a B-basis of E . Then we have
E =

∑k
j=1 Ãconv.xj. Then Corollary 7.1.15 gives the conclusion by an easy induction

on k. ■

Corollary 7.1.16 Let −α−m be the biggest root of the Bernstein polynomial of a
geometric (a,b)-module E which is in −α − N. Then there exists x ∈ E such that
−α−m is the biggest root of the Bernstein polynomial of the fresco F := Ãconv.x in
−α− N.
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Proof. It is enough to prove, thanks to Proposition 7.1.13, that the Bernstein
polynomial of F has no root in −α−N which is strictly bigger than −α−m. This
is given by Lemma 3.2.8. ■

7.2 Semi-simple frescos

Proposition 7.2.1 Let F be a semi-simple fresco with rank k and let λ1, . . . , λk
be the numbers associated to a J-H. sequence of F . Let µ1, . . . , µk be a twisted
permutation11 of λ1, . . . , λk. Then there exists a J-H. sequence for F with quotients
corresponding to µ1, . . . , µk.

Proof. As the symmetric group Sk is generated by the transpositions tj,j+1

for j ∈ [1, k − 1], it is enough to show that, if F has a J-H. sequence with
quotients given by the numbers λ1, . . . , λk, then there exists a J-H. sequence for F
with quotients λ1, . . . , λj−1, λj+1 + 1, λj − 1, λj+2, . . . , λk for j ∈ [1, k − 1]. Put
G := Fj+1

/
Fj−1; it is a rank 2 sub-quotient of F with an exact sequence

0 → Fλj → G → Fλj+1
→ 0.

As G is a rank 2 semi-simple fresco, it admits also an exact sequence

0 → G1 → G → G
/
G1 → 0

with G1 ≃ Eλj+1+1 and G
/
G1 ≃ Gλj−1. Let q : Fj+1 → G be the quotient map.

Now the J-H. sequence for F given by

F1, . . . , Fj−1, q
−1(G1), Fj+1, . . . , Fk = F

satisfies our requirement. ■

Remark. If E is a semi-simple geometric (a,b)-module, we may have
G ≃ Eλj ⊕ Eλj+1

in the proof above, and then the conclusion does not hold. □

Proposition 7.2.2 Let F be a [λ]−primitive fresco. A necessary and sufficient
condition in order that F is semi-simple is that it admits a J-H. sequence with
quotient corresponding to µ1, . . . , µk such that the sequence (µj + j) is strictly
decreasing.

Proof. Remark first that if we have, for a fresco F , a J-H. sequence Fj, j ∈ [1, k]
such that λj + j = λj+1 + j + 1 for some j ∈ [1, k − 1], then Fj+1

/
Fj−1 is a

sub-quotient of F which is a [λ]−primitive theme of rank 2. So F is not semi-
simple. As a consequence, when a fresco F is semi-simple, thanks to Lemma 7.2.1,

11This means that the sequence µj + j, j ∈ [1, k] is a permutation (in the usual sense) of
λj + j, j ∈ [1, k].
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we may choose a J-H. sequence with a strictly decreasing sequence (λj + j).

Now let us prove the converse. So assume for some k ≥ 1 we already know that a
rank k (the case k = 1 is trivial) fresco admitting a J-H. sequence with characteristic
numbers λ1, . . . , λk such that the sequence λj + j is strictly decreasing is semi-
simple, and consider the case of a fresco E with rank k+1 and with a J-H. sequence
(Fj), j ∈ [1, k + 1] with characteristic sequence (λ1, . . . , λk+1) such that λj + j is
strictly decreasing. So we have

µ := λk+1 < Infj∈[1,k]{λj + j − k} − 1. (@)

Note F the fresco Fk in the J-H. sequence of E . Then we have an exact sequence of
frescos

0 → F → E → Eµ → 0.

The induction hypothesis gives that F is semi-simple. Then assume that E is not
semi-simple. Then we have S1(E) = F because the semi-simplicity of F gives
F ⊂ S1(E) and the rank of S1(E) is at most k, thanks to our hypothesis that E
is not semi-simple. Then the equality is consequence of the normality of F and of
S1(E).
Our hypothesis that E is not semi-simple implies, see Proposition 6.3.3 point iv),
that there exists a surjective (a,b)-linear map φ : E → T onto a rank 2 [λ]-primitive
theme T . Let (ν1, ν2) be the characteristic pair of the unique J-H. sequence of T .
So we have ν1 + 1 ≤ ν2 + 2. Note F1(T ) ≃ Eν1 the semi-simple part of T .
Now the normal sub-module φ−1(F1(T )) is equal to F because the rank of φ−1(F1(T ))
is k and the inclusion of φ(F) in F1(T ) is consequence of the semi-simplicity of F .
We obtain the equality using the normality of F and of φ−1(F1(T )) in E .
Now this implies, since F1(T ) ≃ Eν1 is a quotient of F , so there exists j0 ∈ [1, k]
with λj0 + j0 − k = ν1 Since we have an isomorphism

E/F
φ
≃ T/F1(T ) ≃ Eν2 ≃ Eµ.

the inequality ν1 − 1 ≤ ν2 implies

λj0 + j0 − k − 1 ≤ ν2 = µ.

This contradicts the inequality (@). So E is semi-simple. ■

Remarks.

1. As a fresco is semi-simple if and only if for each [λ] its [λ]−primitive part is
semi-simple, this proposition gives also a criterium to semi-simplicity for any
fresco.

2. This criterium is a very efficient tool to produce easily examples of semi-simple
frescos.
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3. Assume that the Bernstein polynomial of the semi-simple fresco

F := Ãconv./Ãconv.P,

where P := (a−λ1b)S1(a−λ2b)S2 . . . (a−λkb)Sk, where S1, . . . , Sk are invert-
ible elements in B, has a root −α−m. Then there is a unique j ∈ [1, k] such
that λj + j − k is equal to α+m, since the roots of the Bernstein polynomial
of a semi-simple (a,b)-module are simple. □
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7.3 Higher Bernstein polynomials

Thanks to the previous sections we are able now to associate to any geometric (a,b)-
module E many other geometric (a,b)-modules whose isomorphism classes depend
only on the isomorphism class of E :
For instance Sj(E) for some j ∈ [1, d(E)] and also E[α] for some α ∈ Q/Z, but also
quotients like Sj+h(E)/Sj(E) or, for a fresco F , the j-th term of the principal J-H.
sequence of F[α] or of F [α], etc . . . .
Then the Bernstein polynomials of these geometric (a,b)-modules depend only on
the isomorphism class of E .
If E is [α]-primitive for some α ∈ Q∩]0, 1], this gives us a collection of non negative
integers, all the roots of these Bernstein polynomials are in −α−N, which are related
to the monodromy of E ♯.
But even in the case of an [α]-primitive geometric (a,b)-module, the situation is
quite complicate, and it is not clear how to use these numbers.
So in this section we shall only consider the case where F is a fresco to exploit some
of these polynomials which only depend on the isomorphism class of the fresco F .

Definition 7.3.1 Let F be an [α]-primitive fresco and let d := d(F) its nilpotent
order. Then for j ∈ [1, d] we define the j-th Bernstein polynomial of F as
the monic polynomial in the variable x, noted Bj(F), which is equal to B̃j(x − δj)
where B̃j is the Bernstein polynomial of Sj(F)/Sj−1(F) and where δj is the rank of
F/Sj(F).
It will be convenient to define Bj(F) = 1 for j > d(F).

Remarks.

1. The shift by δj = rk(F/Sj(F)) in the definition above is motivated by the fact
that we have a product decomposition of the Bernstein polynomial BF of F
in the product of the Bj(F) for an [α]-primitive fresco F (see Theorem 7.3.2
below).

2. The same definition as above may be given for any geometric [α]-primitive
(a,b)-module, but when E is not a fresco, the relation between the higher
Bernstein polynomials and the usual Bernstein polynomial of E is not clear,
at least for 1 ≤ j < d(E) (see Remark 4 below).

3. Since each quotient Sj(F)/Sj−1(F) is semi-simple, for each j the j-th Bernstein
polynomial has always simple roots. Its degree if the rank of Sj(F)/Sj−1(F).
Thanks to Proposition 4.2.8 this degree is non increasing with j.

4. As Bd(F) for d := d(F) is the Bernstein polynomial of the quotient F/Sd−1(F)
of F it is clear that the d-th Bernstein polynomial of F divides the Bernstein
polynomial of F (also for a general [α]-primitive geometric (a,b)-module).

The following theorem summarizes the principal properties of these higher order
Bernstein polynomials for an [α]-primitive fresco F .
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Theorem 7.3.2 Let F := Ãconv.e be an [α]-primitive fresco and let

S1(F) ⊂ S2(F) ⊂ · · · ⊂ Sd(F) = F

be its semi-simple filtration. Then the Bernstein element PF of F has a natural
product decomposition PF = P1P2 . . . Pd in the sub-algebra A := C[b][a] ⊂ Ãconv.

where Pj is the Bernstein element of the fresco Sj(F)/Sj−1(F). We have the fol-
lowing properties, where Bj is the Bernstein polynomial of Sj(F)/Sj−1(F) shifted
by the rank δj of F/Sj(F):

1. The Bernstein polynomial of the fresco F is given by BF = B1(F) . . . Bd(F)
where d is the nilpotent order of F .

2. Each root of each Bj(F) is simple. The degree of the polynomials Bj are non
increasing and are equal to the ranks of the quotients Sj(F)/Sj−1(F).

Proof. The proof of point 1 is an immediate consequence of the existence of a
J-H. sequence Fh for F which is compatible with the semi-simple filtration because
in this situation the roots of Bj are the opposite of the numbers −(αh + h− k+ δj)
for h ∈ [1, k − δj] if k is the rank of F , so k − δj is the rank of Sj(F).
Point 2 is obvious because Sj(F)/Sj−1(F) is a semi-simple fresco (see the remark
following Proposition 4.1.4). ■
Note that if −α−m is a root of multiplicity p in the Bernstein polynomial BF of a
fresco F then −α−m is a root of each Bj(F) for j ∈ [1, p]. But the interest of these
higher order Bernstein polynomials appears when a simple root of BF is a root of
Bj(F) for some j ≥ 2; then this gives the existence of a Jordan bloc of size j for the
monodromy exp(2iπb−1a) of F ♯/bF ♯.

Now we shall give the definition of the higher order Bernstein polynomials for a
general fresco (so not necessarily [α]-primitive). In this case the relation with the
semi-simple filtration is less simple because for a general fresco we may have d(F)
may be strictly bigger than d(F[α]) for a given α, since

d(F) = sup
α∈A

d(F[α])

where −A is the image in Q∩]0, 1] of the set of roots of BF .

Definition 7.3.3 Let F be a fresco. For α ∈ A we denote F [α] the [α]-primitive
fresco F

/
F[ ̸=α]. Then we define the j-th Bernstein polynomial of F by the formula

Bj(F) :=
∏
α∈A

Bj(F [α]) (Bj)

Then an obvious consequence of the Decomposition Theorem for the Bernstein poly-
nomial of a fresco (see 7.1.7 ) gives:
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Corollary 7.3.4 For any fresco F we have

BF =

d(F)∏
j=1

Bj(F). (BB)

thanks to formulas (B) and (Bj). ■

Remark. Beware that for a fresco the injective map F[α] → F [α] = F
/
F[̸=α] is

not, in general, surjective. So the Bernstein polynomials are in general different.
Since these two [α]-primitive frescos have the same rank, the sum of shifts between
corresponding roots of their respective polynomials12 is equal to the dimension of
the quotient F [α]

/
F[α] (see Proposition 3.4.2).

7.4 Somme complements

We give now some useful complements which allow to make explicit computations
in some cases of fresco associated to hyper-surface singularities (see Section 9) and
so to apply in concrete cases our main results given in Section 8.

Proposition 7.4.1 Let F be a [α]-primitive fresco and assume that −α − m is a
root of its k-th Bernstein polynomial. Then for each j ∈ [1, k] there exists an integer
mj ∈ [0,m] such that −α−mj is a root of the j-th Bernstein polynomial of F .

Proof. By definition, if the nilpotent order for F is strictly bigger than k then
the Bernstein polynomial of Sk(F) has a root which is strictly bigger than −α−m.
So it is enough to prove the lemme when k is the nilpotent order of F . Then, by a
descendant induction on j ∈ [1, k − 1] it is enough to prove the case j = k − 1.
Taking the quotient by Sk−2(F) we reduce the question in the case k = 2.
In this case, there exists a quotient theme T with rank 2 whose Bernstein polyno-
mial has the root −α−m as its minimal root. Then the other root −α−m′ of the
Bernstein polynomial of T satisfies −α − m′ ≥ −α − m. Since T is a quotient of
F , −α −m′ is a root of the Bernstein polynomial of F . If it is a root of the first
Bernstein polynomial of F we are done. If this is not the case, −α−m′ is a root of
the second Bernstein polynomial of F . But in this case m′ < m since the roots of
the second Bernstein polynomial of F are simple. Then we can play the same game
as before, but with the root −α−m′. Since there is only finitely integer in [0,m] we
finally reach a root −α−m′′ of the first Bernstein polynomial of F such that m′′ is
in [0,m]. ■

12The consideration of a J-H. sequence of F [α] induces a J-H. sequence of F[α] defining such a
correspondence.
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Remark. Let T be a [α]-primitive theme with rank k. Then its j-th Bern-
stein polynomial has degree 1 for j ∈ [1, k] and is equal to (x + α + mj) where
−α−m1, . . . ,−α−mk are the roots of its Bernstein polynomial in decreasing order.
So −α−mk is the smallest root of its Bernstein polynomial.

Note that, for any [α]-primitive fresco, the smallest root of the Bernstein polynomial
is always a root of the k-th Bernstein polynomial where k = d(F) is the nilpotent
order of the fresco F . But for a “general” [α]-primitive fresco, we do not know
other relation between the order of the roots of the Bernstein polynomial of F and
the roots of the j-th Bernstein polynomial of F than the fact, given by the Lemma
above.

Proposition 7.4.2 Let F be a semi-simple fresco. Then −λ is a root of the Bern-
stein polynomial of F if and only if there exists a Ã-linear surjective map

π : F → Eλ ≃ Ã
/
Ã(a− λb).

Proof. The existence of π is sufficient because the Bernstein polynomial of a
quotient of F divides the the Bernstein polynomial of F .
Conversely, if λ is a root of the Bernstein polynomial of F , since F is semi-simple,
there exists a Jordan-Hölder sequence for F such its last quotient is Eλ, thanks to
Proposition 7.2.1 in [13]. So the proof is complete. ■.

Corollary 7.4.3 Let F be be a [α]-primitive fresco with nilpotent order k. Assume

that F = Ãe ⊂ Ξ
(k−1)
α ⊗ V 13. Let p be the rank of F

/
Sk−1(F). Then there exists p

linearly independent vectors v1, . . . , vp in V such that e may be written

e =

p∑
j=1

Sj(b)s
α+mj−1(Log s)k−1 ⊗ vj + ψ.

where ψ is in Ξ
(k−2)
α ⊗ V , and where the Sj are invertible elements in C[[b]]. More-

over we may choose the vectors v1, . . . , vp such that m1 < · · · < mp.
When this condition is fulfilled the k-th Bernstein polynomial of F is equal to∏p

j=1(x+ α +mj).

For α = 1 it is convenient to replace Ξ
(k−1)
1 by Ξ

(k)
1

/
Ξ
(0)
1 to consider only the singular

part of the asymptotic expansions. This is the case in the examples computed in
Section 4.

Proof. Since Sk−1(F) = F ∩ (Ξ
(k−2)
α ⊗ V ), it is enough to treat the semi-simple

case. In this case, since each Eα+m is embedded in Ξ
(0)
α we may assume that

e =
∑q

j=1 Sj(b)s
α+µj−1 ⊗ vj where v1, . . . , vq is a basis of V (by definition of semi-

simplicity), where m1, . . . ,mq are non negative integers and where Sj are invertible

13This is not restrictive thanks to the results of Section 5 .

76



elements in C[[b]] or vanish identically. Moreover, since the saturation F ♯ is a direct
sum of Eα+m and has the same rank than F , we may assume that the vector vj for
which Sj ̸= 0 generate a subspace W of dimension p in V , where p is the rank of F .
If the integer µ1, . . . , µp are pairwise distinct we may order the v1, . . . , vp such that
µ1 < · · · < µp and put mj := µj. If this is not the case, consider m1 the infimum
of the µj and when µj = m1 let w1 = v1 +

∑
cjvj where the sum is on each j ≥ 2

such that µj = m1 and where cj = Sj(0)S1(0)
−1 with µj = m1. Now we obtain a

new expression for e in the basis w1, v2, . . . , vp of W , where m1 is strictly less than
all µ′

j which appear for j ≥ 2. Continuing in this way we obtain that (w1, . . . , wp)
is a new basis of W and m1 < · · · < mp.
Then consider the Ã-linear maps given by the linear forms lj ∈ V ∗ defined by
lj(wh) = δj,h, h ∈ [1, p]. The Ã-linear map id⊗lj for j ∈ [1, p] sends surjectively F
to Eα+mj

and this implies that −(α +mj) is a root of the Bernstein polynomial of
F for each j ∈ [1, p]. But since F has rank p we obtain all the roots of its Bernstein
polynomial since the mj are pair-wise distinct14. This completes the proof. ■

Remark. As a consequence of the previous corollary we have the following char-
acterization of the roots of the k-th Bernstein polynomial of a [α]-primitive fresco
with nilpotent order k:

• −α−m is a root of the [α]-primitive fresco with nilpotent order k if and only
if there exists a Ã-linear surjective map of F to a rank k theme Tk such its
k-th Bernstein polynomial is (x+ α +m).

7.5 Some examples

Consider α ∈ [0, 1[ and m ∈ N∗. Then define

e := sα+m−1Log s+ sα−1

Let F be the fresco generated by e in Ξ1
α. We have

ae = sα+mLog s+ sα

(α +m)be = sα+mLog s− sα+m

α +m
+ (α +m)

sα

α

(a− (α +m)b)e =
sα+m

α +m
−m

sα

α

(a− (α +m)b)e = − α

m
(1 + γbm)sα with γ = − α

m(α + 1) . . . (α +m− 1)

So we have
(a− (α + 1)b)(1 + γbm)−1(a− (α +m)b)e = 0

14Note that the initial µj gives also roots of the k-th Bernstein polynomial of F but they may
not give all the roots.
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and this equality shows that the Bernstein polynomial of the fresco F is equal to
BF (x) = (x+ α)(x+ (α +m)).
But since F has finite co-dimension in the rank 2 [α]-primitive theme generated by
ε := sα+mLog s in Ξ1

α, it is a rank 2 theme (the fact that γ ̸= 0 is also a way to
prove this, looking at the classification of rank 2 regular (a,b)-modules).
Then the first Bernstein polynomial of F is equal to x + α corresponding to the
semi-simple part S1(F ) which generated by sα (beware to the shift by the rank of
S2(F )/S1(F ) which is 1 in the definition of B1

F ) and the second Bernstein polyno-
mial of F is equal to x+ α +m.

More generally, using the fact that a [α]-primitive theme T has a unique Jordan-
Hölder sequence (see Corollary 5.1.6) and the fact that the corresponding simple
quotients Eλj , j ∈ [1, k] satisfy λj ≥ λj+1 − 1 (see the remark following Theorem
7.1.10), we obtain that, in such a situation, the j-th Bernstein polynomial of T is
equal to x+λj + j− k. In fact λ1, · · · , λk are necessarily in non decreasing order so
if the roots µ1, . . . , µk of the Bernstein polynomial of T are in non increasing order
then the root of the j-th Bernstein polynomial of T is µj = −λj + k − j with the
notation above.

The following easy lemma shows that the interaction between several roots of the
Bernstein polynomial of a fresco may be maximal, even when their differences are
integers arbitrarily big compare to the rank.

Lemma 7.5.1 Let T be a rank k ≥ 2 [α]-primitive theme. Assume that its Bern-
stein polynomial is equal to (x + α)k. Then there exists a finite co-dimension sub-
theme Θ in T (so it has also rank k and is [α]-primitive) such that its Bernstein
polynomial is equal to (x+α+ p1) . . . (x+α+ pk) for any given increasing sequence
of integers 0 < p1 < p2 < · · · < pk.

Note that in this situation the i-th Bernstein polynomial of Θ is equal to (x+α+pi).

Proof. We leave to the reader to convince itself that it is enough to treat the case
where T = Ξ

(k−1)
α and then that, in this case, the sub-theme generated by

e :=
k∑
i=1

sα+pi−1(Log s)i−1

satisfies the requirements. ■

The aim of the next paragraph is to find back in any [α]-primitive fresco F whose
nilpotent order is at least equal to k, a rank k theme T with Bernstein polynomial
(x + α +m)k such that its saturation T ♯ is also contained in F . The saturation of
such a theme is called a Jordan bloc (of size k and eigenvalue α +m).
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7.6 Jordan blocs

Lemma 7.6.1 Let α ∈]0, 1] ∩Q and let φ be an element in Ξ
(N)
α which is of degree

N in Log s. Then inside the rank N + 1 theme T := Ãconv..φ ⊂ Ξ
(N)
α , there exists

an element

ψN := sα+m−1 (Log s)
N

N !

where m is an integer.

Proof. Note first that T := Ãconv.φ is a rank (N + 1) theme thanks to Lemma
5.2.4. We shall prove the lemma by induction on N ≥ 0. Since the case N = 0 is
clear, assume that the lemma is proved for N − 1 and let T ⊂ Ξ

(N)
α a rank N + 1

theme. Then S1(T ) is equal to T ∩ Ξ
(0)
α and we may embed the rank N theme

T/S1(T ) in
Ξ(N−1)
α ≃ Ξ(N)

α /Ξ(0)
α .

Thanks to our inductive hypothesis there exists an integer m′ such that

sα+m
′−1(Log s)N/N ! modulo Ξ(0)

α

is in T/S1(T ) and, since S1(T ) ⊂ Ξ
(0)
α , we may find an invertible element S in

B such that φ := sα+m
′−1(Log s)N/N ! + S(b)sα+M−1 is in T . Since S1(T ) is

isomorphic to Eα+q for some positive integer q, for an integer m′′ large enough,
sα+m

′+m′′−1(Log s)N/N ! will be in T , since S(b)sα+M+m′′−1 will be in S1(T ), con-
cluding the proof. ■

Corollary 7.6.2 Let F be a fresco and assume that the p-th Bernstein polynomial
of F has a root in −α−N, where α is in ]0, 1]∩Q. Then there exists w1, . . . , wp in
F (in fact in F[α]) and an integer m ∈ N satisfying the relations:

awj = (α +m)bwj + bwj−1 ∀j ∈ [1, p] with the convention w0 ≡ 0 (⋆)

and which are B-linearly independent in F .

Proof. Since Sp(F[α]) = Sp(F)[α], thanks to Lemma 4.2.5, and has finite co-
dimension in Sp(F [α]) we may find an [α]-primitive theme T1 of rank p in F [α] thanks
to Proposition 6.3.3. Then T := q−1(T1) ∩ F[α], where q : F → Fα is the quotient

map, is a rank p theme in F[α]. As we may assume that T is embedded in Ξ
(p−1)
α the

previous lemma shows that there exists an integer m such that sα+m−1(Log s)p/p!
is an element in T .
Define wj = sα+m−1(Log s)j/j! for j ∈ [1, p]. Then the relations (⋆) are satisfied and
imply that w1, . . . , wp are elements in T .
To shows that w1, . . . , wp are B-linearly independent, note J the B-sub-module
generated by w1, . . . , wp. Then it has rank at most p. But the relation (⋆) shows
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that J is an (a,b)-sub-module of T with a simple pole. Moreover as w1, . . . , wp are
clearly linearly independent over A = C{s}, we have

dimC J/aJ = dimC J/bJ ≥ p

so J has rank p as a B-module. ■

Remark. Let J :=
∑p

j=1Bwj the sub-B-module generated by w1, . . . , wp. Then
J is a sub-(a,b)-module of F which has a simple pole and is [α]-primitive; it is equal
to E(Jα+m,p) where Jα+m,p is the matrix of the standard Jordan bloc with rank p
and eigenvalue α +m (see the end of Section 2.3). The action of b−1a on J/bJ is
given by Jα+m,p. So the Bernstein polynomial of J is equal to (x+ α +m)p.

It is interesting to compare this result with Corollary 3.2.6. Here we do not assume
that the action of b−1a on F ♯/bF ♯ has a Jordan block of size p for some λ in α+N
but, in a way, that this happens for the eigenvalue exp(2iπb−1a) acting of F ♯/bF ♯.
And this hypothesis is precisely formulated by the existence of a root in −α−N for
the p-th Bernstein polynomial of the fresco F .
Note that contrary to the result in Corollary 3.2.6. we have no control here on the
integral shift between the root of the p-th Bernstein polynomial and the (multiple)
root of the Bernstein polynomial of the Jordan block obtained.

8 Existence of poles

8.1 The complex of sheaves (Ker df •, d•)

The standard situation . We consider now the following situation:
Let f : U → C be a holomorphic function on an open polydisc U with center
0 in Cn+1. We shall assume that U is small enough in order that the inclusion
{df = 0} ⊂ {f = 0} holds in U .
We denote Y the hypersurface {f = 0} in U and we assume that Y is reduced. For
each point y ∈ Y we denote fy : Xy → Dy a Milnor representative of the germ of
f at y. So Xy is constructed by cutting a small ball, with center y and with radius
ε > 0 very small, with f−1(Dδ) where Dδ is an open disc with center 0 and radius
δ ≪ ε.
For y = 0 we simply write f : X → D such a Milnor representative of the germ of
f at the origin.
Let π : H → D∗ be the universal cover of the punctured disc D∗ := D \ {0} and
choose a base point s̃0 in H over the base point s0 in D∗. Fix a point y ∈ Y and
take for D the disc of a Milnor representative of fy. Then we identify the Milnor
fiber Fy of f at y with f−1(s0).
For any p-cycle γ in Hp(Fy,C) let (γs̃)s̃∈H be the horizontal family of p-cycles in the
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fibers of f ×D∗ π over H taking the value γ at the point s̃0. Then the regularity of
the Gauss-Manin connection of f at y insures that for any ω ∈ Ωp+1

y which satisfies
dω = 0 and df ∧ ω = 0 the (multi-valued) function s 7→

∫
γs
ω/df has a convergent

asymptotic expansion when s goes to 0, which is in Ξ
(p−1)
A where exp(2iπA ) contains

the eigenvalues of the monodromy of f at the point y.
We define on Y the following sheaves for each integer p ∈ [1, n]:
First let Ker df p+1 ⊂ Ωp+1 be the kernel of the map ∧df : Ωp+1 → Ωp+2 of coherent
sheaves on U and Ker dp+1 be the kernel of the (C-linear) de Rham differential

dp+1 : Ωp+1 → Ωp+2.

Then for p ∈ [1, n] define the sheaf Hp+1 as the (topological) restriction on Y of the
sheaf Ker df p+1 ∩Ker dp+1

/
d(Ker df p).

By convention we put Hp+1 = 0 for p ̸∈ [1, n].
Then we have a natural structure of A-modules on the sheaves Hp+1 for each p
induced by the natural action of A on Ω|Y given by (g, ω) 7→ f ∗(g)ω where g is in
A := C{s} and ω is in Ωp+1

y , for each y ∈ Y .
We have also an action of C[b] on Hp+1 for each p ∈ [1, n] which is defined as follows:

• For ωy ∈ Ker dp+1∩Ker dfp+1 write ωy := duy for some uy ∈ Ωp
y (holomorphic

de Rham Lemma) and put b[ωy] := [df ∧ uy].
Then clearly d(df ∧ uy) = 0 and df ∧ (df ∧ uy) = 0.

• Of course, if we change the choice of uy ( for p ∈ [1, n]) in uy + dvy, vy ∈ Ωp−1
y ,

the class of b[ωy] ∈ Hp+1 is the same since df ∧ dvy = −d(df ∧ vy) is in
d(Ker dfp).

The sheaf Hp+1 modulo its a-torsion, noted Hp+1, is the (a,b)-module version of the
Gauss-Manin connection in degree p. As we assume f reduced, the 0-th cohomology
of the Milnor fiber is C and the corresponding monodromy is trivial.

Lemma 8.1.1 The actions of a and b on Hp+1 satisfy the commutation relation
ab− ba = b2.

Proof. For ωy = duy ∈ Ker df p+1 ∩Ker dp+1 we have

b(a[ωy] + b[ωy]) = b[fduy + df ∧ duy] = b[d(fuy)] = [df ∧ fuy] = ab[ωy]

which gives the relation b(a+ b) = ab concluding the proof. ■

Note that the action of a is well defined on Ker df p+1 but the action of b is only
well defined on the cohomology Hp+1

y for each p ∈ [1, n] and each y ∈ Y .

Theorem 8.1.2 We keep the notations introduced above and let p be an integer in
[1, n]. Let ω ∈ Ωp+1

y be in Ker dfp+1 such that dω = 0. Then for each γ ∈ Hp(Fy,C)
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define Φ(γ, ω) as the element in Ξ
(p−1)
A given by the asymptotic expansion15 of the

period-integral
∫
γs
ω/df , where A is the image in ]0, 1] of the opposite of the roots

of the reduced Bernstein polynomial of f at the point y ∈ Y and where (γs)s∈H is
the horizontal family of p-cycles taking the value γ at the base point s̃0. So we have:

Φ(ω, γ) :=

∫
γs

ω/df ∈ Ξ
(p−1)
A .

Then using the fact that Hp(Fy,C) is the dual of Hp(Fy,C) and the linarity of Φ in
γ, Φ defines a map

Ψ : Hp+1
y → Ξ

(p)
A ⊗C H

p(Fy,C), Ψ(ω) := [γ 7→ Φ(ω, γ)]

which is A-linear and b-linear and whose kernel is equal to the a-torsion of Hp+1.

Proof. The A-linearity of Ψ is obvious. The b-linearity is an easy consequence of
the derivation formula

∂s(

∫
γs

u) =

∫
γs

du/df

when u is in Ωp
y satisfies df ∧ du = 0.

Consider now ω ∈ Ker df p+1 such that dω = 0 and assume that ω is in the Ker-
nel of Ψ. Then for each γ the corresponding period-integral vanishes because the
asymptotic expansion is convergent (thanks to the regularity of the Gauss-Manin
connection). So the class induced by ω/df in Hp(Fy,C) vanishes which implies that
the class defined by ω in the f -relative de Rham cohomology vanishes and so we
may find a meromorphic form v ∈ Ωp−1

y [f−1] such that ω = df ∧ dv (see [3] and [4]
for α = 1). This implies that aN [ω] = 0 in Hp+1

y . ■

Remark. The map Φ satisfies also the relation Φ(ω, Tγ) = T (Φ(ω, γ)) where T
is the monodromy acting on Hp(Fy,C) and where T is the monodromy acting on

Ξ
(p−1)
A via Log s 7→ Log s + 2iπ. So the image of Ψ is contained in the sub-(a,b)-

module of Ξ
(p−1)
A ⊗CH

p(Fy,C) which is invariant by T ⊗ T ∗ where T ∗ is the action
of the monodromy on Hp(Fy,C).

Corollary 8.1.3 For y ∈ Y let Hp+1
y be the quotient of Hp+1

y by its a-torsion. Then
Hp+1
y is a geometric (convergent) (a,b)-module.

15for the eigenvalue 1 we consider only the singular part of the asymptotic expansion, so we

replace Ξ
(p−1)
1 by Ξ

(p)
1

/
Ξ
(0)
1 which is isomorphic to Ξ

(p−1)
1 ; see [4].

This shift is related to the Γ-factor that we introduce below in the complex Mellin transform (see

[5]) Fω,ω′

h (λ) of hermitian periods
∫
f=s

ρω ∧ ω̄′/df ∧ df̄ .
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Proof. The point is that Hp+1
y is a finite type A-module since A is noetherian

and Ξ
(p)
A is a finite type (free) A-module. Then Hp+1

y is closed for the natural dual
Fréchet topology induced by ΞpA ⊗ Hp(Fy,C). As it is b-stable it is also stable by
the action of B and even of Ãconv.. So it is a geometric (a,b)-module. ■

Note that it is not simple to show directly that B acts on Hp+1
y (and a fortiori that

Ãconv. acts on it) contrary to the formal case.

Definition 8.1.4 In the situation above, let ω be a germ at y ∈ Y of the sheaf
Ker dfp+1 which is d-closed. Then we define the fresco Ff,ω,y associated to these
data as the fresco Ãconv.[ω] ⊂ Hp+1

y which is generated in the geometric (a,b)-module
Hp+1
y by the class of ω.

Note that for p = n each germ ω at a point y of Ωn+1
y satisfies df ∧ω = 0 and dω = 0.

In the sequel we shall mainly use the case p = n with y = 0. So we simplify the
notation to Fω when we consider the fresco Ff,ω,0 in Hn+1

0 .

8.2 The use of frescos

We begin by the definition of the main hypothesis on the holomorphic germ f which
is assumed in the sequel.

Definition 8.2.1 In the standard situation, fix a rational number α ∈]0, 1]. We say
that the germ f has an isolated singularity for the eigenvalue exp(2iπα) of
its monodromy when the local monodromy of f at each point y ̸= 0 in the reduced
hypersurface Y = f−1(0), acting on the reduced cohomology of the Milnor fiber at
the point y does not admit this eigenvalue. This hypothesis is denoted H(α, 1) in the
sequel.

Let us recall some known facts.

1. The hypothesis H(α, 1) is equivalent to the fact that, in open neighborhood
of the origin, the local reduced b-function of f at any point x ̸= 0 has no root
in −α− N.

2. The hypothesis H(α, 1) is equivalent to the fact that, in an open neighborhood
of the origin, the polar parts of the meromorphic extension of the distributions

1

Γ(λ)
|f |2λf̄−h, ∀h ∈ Z,

at points in −α− N are distributions with support {0}.
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3. The hypothesis H(α, 1) is equivalent to the fact that, for any test form φ in
C ∞
c (Cn+1)n+1,n+1 with compact support in X \{0} the meromorphic extension

of the functions
1

Γ(λ)

∫
X

|f |2λf̄−hφ

has no pole in −α− N for each h ∈ Z.

4. Since the monodromy of f is defined on Hp(Fy,Z), for α ∈]0, 1[ the hypothesis
H(α, 1) is equivalent to the hypothesis H(1− α, 1).
So the hypotheses of isolated singularity at the origin for the eigenvalues
exp(±2iπα) of the monodromy for a holomorphic germ f are equivalent.

Assume that we are in the standard situation and that f satisfies the hypothesis
H(α, 1), that is to say that f has an isolated singularity for the eigenvalue exp(2iπα)
of its monodromy.
Let ω, ω′ ∈ Ωn+1

0 and let ρ ∈ C ∞
c (Cn+1) such that ρ ≡ 1 near 0 and its support is

small enough in order that ρω∧ ω̄′ is a well defined and C ∞
c differential form of type

(n + 1, n + 1) on Cn+1. Then for any h ∈ Z the holomorphic function, defined for
2ℜ(λ) > sup{0, h} by the formula

F ω,ω′

h (λ) :=
1

Γ(λ)

∫
X

|f |2λf̄−hρω ∧ ω̄′ (F)

has a meromorphic continuation to the all complex plane with poles in −A − N
where −A is the finite subset of Q− which is the set of the roots of the reduced
Bernstein polynomial b̃f,0 of f at the origin.
Moreover, thanks to our hypothesis H(α, 1) we have the following properties (see
[12] for a proof) :

1. The polar parts of F ω,ω′

h (λ) on the points in −α − N do not depend on the
choice (with the conditions specified above) of the function ρ.

2. The polar parts of F ω,ω′

h (λ) at points in −α − N depend, for given ω′ and h,

only on the image of ω in the formal (a,b)-module Ĥn+1
0 , which is the formal

completion of the geometric (a,b)-module Hn+1
0 defined in section 8.1.

The following result is proved in [12] Proposition 3.1.1.

Proposition 8.2.2 In the standard situation assume that the hypothesis H(α, 1) is
satisfied. Let ω and ω′ be holomorphic (n+ 1)-differential forms on X0 and let ρ be
a C ∞ function with compact support in X0 which satisfies ρ ≡ 1 near 0. We have
the following properties:

i) If there exists v ∈ Ωn(X0) satisfying df∧v ≡ 0 and dv = ω on X0, then F
ω,ω′

h (λ)
has no pole in −α− N for any h ∈ Z and any ω′ ∈ Ωn+1

0 .

ii) F aω,ω′

h (λ) − (λ + 1)F ω,ω
h−1(λ + 1) has no pole in −α − N for any h ∈ Z and any

ω′ ∈ Ωn+1
0 .
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iii) F bω,ω′

h (λ)+F ω,ω′

h−1 (λ+1) has no pole in −α−N for any h ∈ Z and any ω′ ∈ Ωn+1
0 .

iv) For any complex number µ, F
(a−µb)ω,ω′

h (λ)− (λ+µ+1)F ω,ω′

h−1 (λ+1) has no pole
in −α− N for any h ∈ Z and any ω′ ∈ Ωn+1

0 . ■

An easy consequence of the proposition above is the following:

Corollary 8.2.3 Under the hypothesis H(α, 1) assume that the meromorphic ex-

tension of the holomorphic function F ω,ω′

h (λ) has never a pole of order ≥ p at each
point in −α − N for some given ω′ ∈ Ωn+1

0 but for each h ∈ Z. Then the same is
true for any w ∈ Ωn+1

0 such that [w] is in the fresco Fω = Ãconv.[ω] ⊂ Hn+1
0 .

Proof of Corollary 8.2.3. Assume that the result is not true. So we have
a P ∈ B[a], an integer m ∈ N and some h ∈ Z such that F Pω,ω′

h (λ) has a pole of
order at least equal to p at the point −α −m. First remark that if p + q ≥ m + 1
the points ii) and iii) of Proposition 8.2.2 show that F apbqω,ω′

h (λ) has no pole at the
point in −α−m. So we may assume that the total degree of P in (a, b) is bounded
by m+1 and the previous proposition gives a contradiction with our assumption.■

The following important tool for the sequel is also a consequence of Proposition
8.2.2, using the Structure Theorem for frescos of [9] extended in Corollary 7.1.2 to
the convergent case.

The following terminology will be convenient:

The property P (ω, ω′, p). In the standard situation with the hypothesis H(α, 1)
fix two holomorphic germs ω, ω′ in Ωn+1

0 . Let p ≥ 1 be an integer and assume that

there exists h ∈ Z such that F ω,ω′

h (λ) has a pole of order at least equal to p at a
point in −α−N. Then we shall say that the integer m has the property P (ω, ω′, p)
when m is the smallest integer such that there exists an integer h ∈ Z with a pole
of order ≥ p at the point λ = −α−m for F ω,ω′

h (λ).

Proposition 8.2.4 In the situation described above, assume that, for some h ∈ Z,
there exists a pole of order ≥ p at the point −α−m for F ω,ω′

h (λ). Then the following
properties hold true:

1. Assume that the integer m satisfies the property P (ω, ω′, p). For each S ∈ B̂

such that S(0) ̸= 0 there exists a pole of order at least equal to p for F
S(b)ω,ω′

h+1 (λ)
at the point −α − m. Moreover, the integer m satisfies also the property
P (Sω, ω′, p).

2. If µ ̸= α +m there exists a pole of order at least equal to p for F
(a−µb)ω,ω′

h+1 (λ)
at the point −α − m − 1. Moreover, if the integer m satisfies the property
P (ω, ω′, p), the integer m+ 1 satisfies the property P ((a− µb)ω, ω′, p).
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3. For µ = α + m, there exists a pole of order at least equal to p − 1 for

F
(a−µb)ω,ω′

h+1 (λ) at the point −α−m− 1.

Proof. Assume that X is a sufficiently small open neighborhood of 0 in Cn+1

such that the germs ω and ω′ are holomorphic on X and that there exists u ∈ Ωn(X)
satisfying du = ω on X.
Thanks to Stokes Formula and hypothesis H(α, 1) (see Proposition 3.1.1 in [12] or
Proposition 8.2.2 above) the meromorphic function

F bω,ω′

h (λ) + (λ+ 1)F ω,ω′

h−1 (λ+ 1) = − 1

Γ(λ)

∫
X

|f |2λf̄−hdρ ∧ u ∧ ω̄′

has no poles at points in −α − N for any choice of ω′, h and ρ ∈ C ∞
c (X) which is

identically 1 near the origin.
Since m satisfies Property P (ω, ω′, p), it is clear that for any positive integer q,

F bqω,ω′

h′ (λ) has no pole of order ≥ p at −α − m′ for each m′ ≤ m − q. Since we

have never a pole for F ω,ω′

h (λ) at points where ℜ(λ) ≥ 0, we conclude that for any

S ∈ B̂ with S(0) ̸= 0 we have a pole of order p for F
S(b)ω,ω′

h+1 (λ) at the point −α−m.
Moreover m satisfies the property P (Sω, ω′, p).
With the same arguments (and the same Proposition 3.1.1 in [12] or Proposition
8.2.2) the meromorphic function

F
(a−µb)ω,ω′

h (λ)− (λ+ µ+ 1)F ω,ω′

h−1 (λ+ 1)

has no pole at points in −α − N for any choice of ω′, h and ρ ∈ C ∞
c (X) which is

identically 0 near the origin.
Now the same line of proof gives the assertions 2 and 3 of the proposition using
point iv) in Proposition 8.2.2. ■

Here appears the main strategy of proof to locate the bigger order p pole in −α−N
for a given pair ω, ω′.

Corollary 8.2.5 Assume that there exists a pole of order at least equal to p at the
point −α −m for F ω,ω′

h (λ) for some integer h ∈ Z and assume that the integer m
satisfies Property P (ω, ω′, p).
Let Π := (a− µ1b)S1(a− µ2b)S2 . . . (a− µkb)Sk where S1, . . . , Sk are invertible ele-
ments in B and µ1, . . . , µk are positive rational numbers.

1. Assume that µj + j − k ̸= α + m for each j ∈ [1, k]. Then FΠω,ω′

h+k (λ) has a
pole of order at least equal to p at the point −α−m− k. Moreover the integer
m+ k satisfies the property P (Πω, ω′, p) .

2. If µ1 is the only value of j ∈ [1, k] such that µ+ j− k = α+m then FΠω,ω′

h+k (λ)
has a pole of order p− 1 at the point −α−m− k.
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Proof. Using inductively the assertions 1, 2, 3 of the previous proposition gives
this corollary. ■

Corollary 8.2.6 Assume H(α, 1) and that the nilpotent order of (Ãconv.ω)[α] (the

[α]-primitive part of the fresco Ãconv.ω) is at most p − 1. Then for any choice of

ω′ and h, the meromorphic extension of F ω,ω′

h (λ) has no pole of order ≥ p at each
point in −α− N.

Proof. We shall prove the result by induction on p ≥ 1. For p = 1 our hypothesis
means that (Ãconv.ω)[α] = {0} so if Π := (a − µ1b)S1(a − µ2b)S2 . . . (a − µkb)Sk
where S1, . . . , Sk are invertible elements in B, generates the annihilator of [ω] in the
geometric (a,b)-module Hn+1

0 (see Corollary 7.1.2), we may assume that µ1, . . . , µk
are not in −α− N. Then, since FΠω,ω′

h (λ) has no poles in −α− N (see Proposition
8.2.2 i)), we obtain immediately a contradiction with the assertion of Corollary 8.2.5
if we assume that for some choice of ω′ and h the meromorphic function has a pole
at some point −α−m.
Thanks to the case proved above, we may replace ω by a generator of the fresco
Ãconv.ω

/
(Ãconv.ω

)
̸=[α]

, which means that we may assume now that Ãconv.ω is an

[α]-primitive fresco with nilpotent order at most p− 1 with p ≥ 2 (note that we use
here Lemma 6.3.6).
Define F := Sp−1(Ãconv.ω)

/
Sp−2(Ãconv.ω). This fresco is [α]-primitive, semi-simple

and generated by [ω]. So the generator Π := (a− µ1b)S1(a− µ2b)S2 . . . (a− µkb)Sk
where S1, . . . , Sk are invertible elements in B, of the annihilator of the class [ω]
in this semi-simple fresco may be chosen (see Proposition 7.2.1) such that we may
choose any order for the sequence µj + j. Since these numbers are pairwise distinct
there exists at most one j ∈ [1, k] such that µj + j − k = α + m. We have two
cases : either there is no such j ∈ [1, k] or there exists a unique j ∈ [1, k] such that
µj0 + j0 − k = α +m and in this case we may choose j0 = 1.

So using inductively Corollary 8.2.5 we see that if we assume that F ω,ω′

h (λ) has a
pole of order ≥ p at the point −α − m, we shall find a pole of order ≥ p − 1 for
FΠω,ω′

h+k (λ) at the point −α−m− k. Since the fresco G generated by the class Π[ω]

satisfies G = Sp−2(Ãconv.[ω]), its nilpotent order is at most equal to p − 2. This
contradicts our induction hypothesis.
The case where there is no j ∈ [1, k] such that µj + j − k = α +m leads to a pole
of order ≥ p at the point −α−m− k, so gives also a contradiction. ■

8.3 The final key

Note that in Section 8.2 we always assume the existence of poles at some point in
−α−N for F ω,ω′

h (λ) (under our hypothesis H(α, 1)) and obtain consequences on the
Bernstein polynomial of the fresco Fω. These results go in the same direction than
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the results in [12]. To go in the other direction, that is to say to prove the existence
of such poles as consequence of informations on the Bernstein polynomial of Fω, we
shall use now the main idea of [3] (and also [4] in the case α = 1). This is the point
where the use of convergent (a,b)-modules is essential. It allows to show that the
non vanishing of the class induced by ω in the [α]-primitive part of Hn+1

0 implies
that the cohomology class induces by ω/df in the spectral part for the eigenvalue
exp(−2iπα) of the monodromy of f acting on Hn(F0,C) does not vanish.

Theorem 8.3.1 Assume that H(α, 1) is satisfied by f : X → D, a Milnor repre-
sentative of a holomorphic germ near the origin in Cn+1. Let u ∈ Ωn(X) such that
there exists m ∈ N with fdu = (α+m)df∧u on X and assume that the class induced
by u in Hn(F0,C) is not 0. Then there exists a germ ω′ ∈ Ωn+1

0 , and an integer
h ∈ N such that for any ρ ∈ C ∞

c (X) which is identically 1 near 0 and with support
small enough in order that ρω′ is in C ∞

c (X), the meromorphic extension of

1

Γ(λ)

∫
X

|f |2λf̄−hρ
df

f
∧ u ∧ ω̄′ (16)

has a pole at −α−m.

Proof. Define, for j ∈ N, the (n, 0)−current on X by the formula16

⟨Tj, ψ⟩ := Pf(λ = −α−m,
1

Γ(λ)

∫
X

|f |2λf̄−ju ∧ ψ)

where ψ is a test form of type (1, n+ 1) which is C ∞
c in X.

Claim. Then we have the following properties for each j ∈ N

1. f̄Tj+1 = Tj on X

2. The support of the current d′Tj is contained in {0}.

3. The support of the current d′′Tj + (α +m+ j)d̄f ∧ Tj+1 is contained in {0}.

proof of the claim. The first assertion is clear.
Let us compute d′Tj. Let φ be a C ∞

c (X) test form of type (0, n+ 1). We have

⟨d′Tj, φ⟩ := (−1)n⟨Tj, d′φ⟩ = (−1)n⟨Tj, dφ⟩

But for ℜ(λ) ≫ 1 the form |f |2λf̄−j.u ∧ φ is in C 1
c (X) and Stokes Formula and the

meromorphic continuation give

0 =
1

Γ(λ)

∫
X

d
(
|f |2λf̄−ju∧φ

)
=

(λ+ α +m)

Γ(λ)

∫
X

|f |2λf̄−j df

f
∧u∧φ+(−1)n⟨Tj, d′φ⟩

16Here Pf(λ = λ0, F (λ)) denote the constant term in the Laurent expansion at λ = λ0 of the
meromorphic function F (λ).
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because du = (α +m)df
f
∧ u and df̄ ∧ φ ≡ 0. Then we obtain17

⟨d′Tj, φ⟩ = Res(λ = −α−m,
1

Γ(λ)

∫
X

|f |2λf̄−j df

f
∧ u ∧ φ) (17)

This gives our assertion 2) because we know that the poles of the meromorphic
extension of 1

Γ(λ)

∫
X
|f |2λf̄−j□ at points in −α + Z are supported by the origin,

thanks to our hypothesis H(α, 1).
In an analogous way let us compute d′′Tj; let ψ be a C ∞

c (X) test form of type (1, n).
We have:

⟨d′′Tj, ψ⟩ := (−1)n⟨Tj, d′′ψ⟩ = (−1)n⟨Tj, dψ⟩

But for ℜ(λ) ≫ 1 the form |f |2λf̄−ju ∧ ψ is in C 1
c (X) and so:

d
(
|f |2λf̄−ju ∧ ψ

)
= (λ− j)|f |2λf̄−j−1d̄f ∧ u ∧ ψ + (−1)n|f |2λf̄−ju ∧ dψ

because the type of du as well as the type of df∧u is (0, n+1). Then Stokes Formula
and the meromorphic continuation give

⟨d′′Tj+(α+m+ j)d̄f ∧Tj+1, ψ⟩ = Res(λ = −α−m, 1

Γ(λ)

∫
X

|f |2λf̄−j−1df̄ ∧u∧ψ).

This proves the assertion 3), again thanks to our hypothesis H(α, 1).
Now we shall argue by contradiction and we shall assume that for each j0 ∈ N,
the current d′Tj0 induces the class zero in the conjugate of the space Hn+1

[0] (X,OX)

which means that there exists a (n, 0)−current Θj0 with support {0} satisfying
d′Θj0 = d′Tj0 on X. Then, as we have f̄kTj0 = Tj0−k for any k ∈ N thanks to 1), we
obtain that d′f̄kΘj0 = f̄kd′Θj0 = f̄kTj0 = Tj0−k. Now we fix j0 ≫ 1 and define, for
each j ≤ j0, Θj := f̄ j0−jΘj0 . So for any such j ≤ j0 this gives d′Θj = d′Tj.
Now we shall use Lemma C1, C2 and Lemma D in [3] and Lemma C ′

1, C
′
2 in [4] in

the case α = 1, for the family of currents T̃j := Tj −Θj for j ≤ j0. They satisfy

1. d′T̃j = 0 on X.

2. d′′T̃j + (α +m+ j)d̄f ∧ T̃j+1 has its support in {0}.

3. The current T̃j coincides with |f |−2(α+m)f̄−ju on the Milnor fiber F0 = f−1(s0)
(these currents are smooth outside Y ).

Note that we have Hp(X \{0},OX) = 0 for 1 ≤ p ≤ n−1 which is used for checking
the hypothesis of Lemmas C ′

1, C
′
2 in the case α = 1 .

Then we contradict our assumption that the class induced by u in Hn(F0,C) does
not vanish.
So we obtain that there exists j0 ∈ N such that the class induced by d′Tj0 does not

vanish in the dual of the space Ωn+1
0 of the germs at the origin of anti-holomorphic

volume forms on Cn+1 (and then for any j0 + k for k ∈ N also). So there exists

17Here Res(λ = λ0, F (λ)) denotes the residue at λ = λ0 of the meromorphic function F (λ).
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ω′ ∈ Ωn+1
0 and ρ ∈ C ∞

c (X) which is identically 1 near 0 and with support small
enough in order that ρω′ is in C ∞

c (X) such that

⟨d′Tj0 , ρω′⟩ = Res
(
λ = −α−m,

1

Γ(λ)

∫
X

|f |2λf̄−j0 df

f
∧ u ∧ ρω′) ̸= 0

concluding the proof of the theorem. ■

Remark. To apply the results in degree n of [3] and [4] used in the previous proof,
it is enough to assume that j0 = n + 1 to conlude. That is to say that if there is
no pole in the range [−α − n− 1,−α] ∩ {−α − N} for F ω,ω′

h (λ), there is no pole in
−α− N.

Corollary 8.3.2 Assume that we have holomorphic forms uj ∈ Ωn(X) for each
integer j in [−N, p] such that

fduj = (α +m)df ∧ uj = df ∧ uj−1

with the hypothesis that [duj] = 0 in Hn+1
0 for each j ∈ [−N, 0] and with u1 = u as

in the previous theorem (so the class induced by u in Hn(F0,C) is not 0).
Then there exists h ∈ N and ω′ ∈ Ωn+1

0 such that the meromorphic extension of

1

Γ(λ)

∫
X

|f |2λf̄−hρ
df

f
∧ up ∧ ω̄′ (18)

has a pole of order at least equal to p at the point λ = −α−m.

Proof. For ℜ(λ) ≫ 1 the differential form |f |2λf̄−hρuj ∧ ω̄′ is of class C 1 and
satisfies

d(|f |2λf̄−hρuj ∧ ω̄′) = (λ+ α +m)|f |2λf̄−hρ(df/f) ∧ uj ∧ ω̄′+

+ |f |2λf̄−hρ(df/f) ∧ uj−1 ∧ ω̄′ + |f |2λf̄−hdρ ∧ uj ∧ ω̄′.

Then Stokes Formula and the meromorphic extension gives, where Pq(λ = λ0, F (λ))
means the coefficient of (λ − λ0)

−q in the Laurent expansion of the meromorphic
function F at the point λ = λ0, that for each q ≥ 0 we have:

Pq+1(λ = −α−m,
1

Γ(λ)

∫
X

|f |2λf̄−hρ(df/f) ∧ uj ∧ ω̄′) =

− Pq(λ = −α−m,
1

Γ(λ)

∫
X

|f |2λf̄−hρ(df/f) ∧ uj−1 ∧ ω̄′).

Then the fact that there exists h ∈ N and ω′ ∈ Ωn+1
0 with (here P1 = Res !)

P1(λ = −α−m,
1

Γ(λ)

∫
X

|f |2λf̄−hρ(df/f) ∧ u1 ∧ ω̄′) ̸= 0
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which is the content of the previous theorem since we assume thet u1 = u, implies

Pp(λ = −α−m,
1

Γ(λ)

∫
X

|f |2λf̄−hρ(df/f) ∧ up ∧ ω̄′) ̸= 0

concluding the proof. ■

To be able to use the previous corollary, the following lemma, combined with Corol-
lary 7.6.2 will be useful.

Lemma 8.3.3 Let w1, . . . , wp be in Ωn+1
0 such that the induced class in Hn+1

0 satisfy
the relations:

a[wj] = (α +m)b[wj] + b[wj−1] ∀j ∈ [1, p] with the convention [w0] = 0 (⋆)

Then there exists an integer N and u1 . . . , up in Ωn
0 such that

fduj = (α +m+N)df ∧ uj + df ∧ uj−1 with the convention u0 = 0 (⋆⋆)

and such that we have [duj] = (a+ b)N [wj] in Hn+1
0 .

Proof. Choose for each j ∈ [1, p] a vj ∈ Ωn
0 such that dvj = wj. Then for each

j ∈ [1, p] the class induced in Hn+1
0 by the form

fdvj − (α +m)df ∧ vj − df ∧ vj−1 with the convention v0 = 0

is of a-torsion Hn+1
0 . So there exists an integer N and tj ∈ (Ker df)n0 such that, for

j ∈ [1, p], we have

fN+1dvj − (α +m)df ∧ fNvj − df ∧ fNvj−1 = fdtj.

This equality may be written

fd(fNvj + tj)− (α +m+N)df ∧ (fNvj + tj)− df ∧ (fNvj−1 + tj−1) = 0

with the convention t0 = 0, using the fact that df ∧ tj = 0 for each j. Then defining
uj := fNvj + tj for j ∈ [1, p] concludes the proof since the class induced in Hn+1

0 by
duj is equal to a

N [wj]+Na
N−1b[wj], thanks to the equality aN +NaN−1b = (a+b)N

(see the exercise below). ■

Exercise. Show that the commutation relation ab−ba = b2 implies the relation18

(a+ b)q = aq−1(a+ qb) ∀q ∈ N∗

18Compare with Corollary 2.4.2.
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8.4 Statements and proofs

Our first result gives an improvement of the result in [12] but is also a precise
converse of this statement. It shows the interest in considering the higher order
Bernstein polynomials introduced in section 7.

Theorem 8.4.1 In the standard situation described above, assume that the hypoth-
esis H(α, 1) is satisfied. Consider a germ ω ∈ Ωn+1

0 such that the p-th Bernstein
polynomial of the fresco Fω := Ãconv.ω in Hn+1

0 has a root in −α − N. Then there
exists ω′ ∈ Ωn+1

0 and an integer h such that the meromorphic extension of the integral

F ω′

ω,h(λ) :=
1

Γ(λ)

∫
X

|f |2λf̄−hρω ∧ ω̄′ (A)

has a pole of order at least equal to p at λ = −α−m for m a large enough integer,
where ρ ∈ C ∞

c (X) is identically 1 near zero.

Remark. The converse of this result, that is to say the fact that, for a germ
ω ∈ Ωn+1

0 , the existence of such ω′, h,m giving a pole of order p at a point in −α−N
for (A) implies that the p-th Bernstein polynomial of the fresco Fω = Ãconv.ω has a
root in −α − N, will be a consequence of the Theorem 8.5.3 which is more precise,
using the following consequence of Proposition 4.2.8 :

• If the q-th Bernstein polynomial of the fresco F has a root in −α − N then
for each p ∈ [1, q] the p-th Bernstein polynomial of F has also a root in −α−N.

For the proof of Theorem 8.4.1 we shall need the following result.

Proposition 8.4.2 Assume that the hypothesis H(α, 1). Suppose that u1 ∈ Ωn
0

satisfies the relation fdu1 = (α + m)df ∧ u1 for some integer m. If [du1] is not
zero in Hn+1

0 then the cohomology class induced by u1 in Hn(F0,C) is not zero. So
u|F0 induces a class which is an eigenvector of the monodromy for the eigenvalue
exp(−2iπα).

Proof. Thanks to Grothendieck (see [16] ), the meromorphic relative de Rham
complex of f computes the cohomology of X \ f−1(0) and under the hypothesis
H(α, 1) the spectral sub-space Hn(F0,C)exp(−2iπα) of the monodromy is isomorphic
to the n-th cohomology group of the complex(

Ω•
0[f

−1]
/
df ∧ Ω•−1

0 [f−1], (d− α
df

f
∧)•

)
.

If we assume that u1 induces 0 in Hn(F0,C), since we have

d(f−mu1)− α
df

f
∧ f−mu1 = 0,
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there exists v, w ∈ Ωn−1
0 [f−1] such that

dv − α
df

f
∧ v = f−mu1 + df ∧ w.

This gives

d(f−mu1) = −df ∧ dw + αdf ∧ v/f and then

f−mdu1 −m
df

f
∧ f−mu1 = (1−m/(m+ α))f−mdu1 = df ∧ d(−w + αv/f)

and this implies, since α is in ]0, 1], that [du1] is of a-torsion in Hn+1
0 and then 0 in

Hn+1
0 . Contradiction. ■

Proof of Theorem 8.4.1. Using Corollary 7.6.2 there exist [w1], . . . , [wp] in Fω

and an integer m ∈ N satisfying the relations:

a[wj] = (α +m)b[wj] + b[wj−1] ∀j ∈ [1, p] with the convention [w0] = 0 (*)

and which are B-linearly independent in Fω. Assuming that the Theorem does not
hold would imply, thanks to Corollary 8.2.3 and to Corollary 8.3.2, that writing
w1 = du1 with u1 ∈ Ωn

0 , the class induced by u1 in Hn(F0,C) vanishes.
But this contradicts the hypothesis that [w1] is not zero in Fω ⊂ Hn+1

0 , thanks to
Proposition 8.4.2. ■

The following corollary of Theorem 8.4.1 is clear since we may use a Bernstein
identity at the origin to describe the poles of the meromorphic extension of the
distribution 1

Γ(λ)
|f |2λf̄−h for any h ∈ Z (see [2] or [15]).

Corollary 8.4.3 In the situation of the previous theorem, the existence of a germ
ω ∈ Ωn+1

0 such that the p-th Bernstein polynomial of the fresco Ãconv.ω ⊂ Hn+1
0 has

a root in −α − N implies the existence of at least p roots of the reduced b-function
bf,0 of f at the origin in −α− N counting multiplicities. ■

Remark. The interest of this corollary lies in the fact that the existence of p roots
in −α − N for the reduced Bernstein polynomial bf,0 does not implies, in general
under our hypothesis, the existence of a pole of order p at some point λ = −α−m
with m ∈ N large, for the meromorphic extension of 1

Γ(λ)

∫
X
|f |2λf̄−hφ for some test

(n+ 1, n+ 1)-form φ.
The consideration of higher order Bernstein polynomials of frescos associated to
germs ω ∈ Ωn+1

0 is then a tool which may help to determine the nilpotency order
of the monodromy of f at the origin in the case of an isolated singularity for the
eigenvalue exp(2iπα).

Our next result is an improvement of Theorem 8.4.1.
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Theorem 8.4.4 In the standard situation, we assume that the hypothesis H(α, 1)
is satisfied. Assume that there exists ω ∈ Ωn+1

0 such that Bp(F [α]) has a root in
−α − N where F [α] := Fω

/
(Fω)[ ̸=α] and where p = d(F [α]) is the nilpotent order of

the fresco F [α]. Let −α − m the biggest root of Bp(F [α]) in −α − N. Then there

exists ω′ ∈ Ωn+1
0 and h ∈ Z such that F ω,ω′

h (λ) has a pole of order p at the point
−α−m.

Recall that, of course, in the previous statement Bp(F denotes the p-th Bernstein
polynomial of the fresco F .

Proof. First recall that, thanks to Lemma 6.3.6, we have, for any geometric (a,b)-
module E , the equality d(E[α]) = d(E

/
E[ ̸=α]) = d(E [α]).

Let −α−m be the biggest root of Bp(F [α]). Then we may choose a J-H. sequence of
F [α]

/
Sp−1(F [α]) such that its last quotient is isomorphic to Eα+m . This possible be-

cause the fresco F [α]
/
Sp−1(F [α]) is semi-simple and has −α−m as a root of its Bern-

stein polynomial (remind that the Bernstein polynomial fo F [α]
/
Sp−1(F [α]) divides

Bp(F [α]) which also divides Bp(F)). Then if Π0 is the generator of the annihilator
of [ω] in F [α]

/
Sp−1(F [α]), it may be written Π0 = (a− (α+m+1−k)b)Π′

0 where k is

the rank of F [α]
/
Sp−1(F [α]). Then, choosing a J-H. sequence of F which begins by a

J-H. sequence of F[ ̸=α] and ending by the J-H. sequence of F [α] chosen above, we see
that the annihilator of ω in F may be written as Π = Π2Π1(a− (α+m+1−k)b)Π′

0

with Ãconv.

/
Ãconv.Π

′
0 semi-simple [α]-primitive with a Bernstein polynomial having

roots strictly less than −α−m, with d(Ãconv.

/
Ãconv.Π1) ≤ p− 1, since this fresco is

isomorphic to Sp−1(F [α]) and with (Ãconv.

/
Ãconv.Π2)[α] = {0} since Ãconv.

/
Ãconv.Π2

is isomorphic to F[ ̸=α].
Now, applying Theorem 8.4.1 we find ω′ ∈ Ωn+1

0 , h ∈ Z and m1 ∈ N such that

F ω,ω′

h (λ) has an order p pole at the point −α − m1 and such that the integer m1

satisfies the property P (ω, ω′, p).
Using then Proposition 8.2.2 we see that if m ̸= m1 we contradict Corollary 8.2.3
because we find a pole of order p at a point −α−m1 − k for FΠ0ω,ω′

h−q−1 (λ) where k is
the degree in a of Π0. So we obtain m = m1. ■

The following corollaries are obvious consequences of the previous result.

Corollary 8.4.5 In the standard situation described above, under the assumption
H(α, 1), consider a germ ω ∈ Ω0 and assume that −α − m is the biggest possible
pole in −α − N for any choices of ω′ ∈ Ωn+1

0 and any h ∈ Z for the meromorphic

functions F ω,ω′

h (λ). Then −α − m is the biggest root in −α − N of the Bernstein
polynomial of the fresco Fω := (Ãconv.ω) ⊂ Hn+1

0 . ■

Corollary 8.4.6 In the standard situation described above, under the assumption
H(α, 1), assume that −α − m is the biggest root of the Bernstein polynomial in
−α − N of the geometric (a,b)-module Hn+1

0 . Then there exists h ∈ Z such the
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meromorphic extension of the distribution 1
Γ(λ)

|f |2λf̄−h has a pole at −α−m. ■

Note that it is enough to consider the integers h ∈ [m + 1, n −m] in the previous
statement since the exponent of f̄ has to be negative and thanks to the remark
following Theorem 8.3.1 (which also implies that α +m ≤ n+ 1).

The following consequence of the previous corollary is obvious, since in the case of
an isolated singularity at 0 for f it is known (see [20]) that the Brieskorn module
coincides with Hn+1

0 and that its Bernstein polynomial coincides with the reduced
Bernstein polynomial b̃f of f .

Corollary 8.4.7 Assume that the germ f : (Cn+1, 0) → (C, 0) of holomorphic func-
tion has an isolated singularity at the origin. For α ∈]0, 1] ∩ Q let −α −m be the
biggest root of the reduced Bernstein polynomial of f in −α− N. Then there exists
h ∈ Z such the meromorphic extension of the distribution |f |2λf̄−h/Γ(λ) has a pole
at −α−m. ■

Question. In the case of an isolated singularity for the eigenvalue exp(2iπα) of
the monodromy (so with our hypothesis H(α, 1)), is the Bernstein polynomial of the
geometric (a,b)-module Hn+1

0

/
(Hn+1

0 ) ̸=[α] (which is the biggest polynomial having
its root in −α−N and dividing the Bernstein polynomial of the (a,b)-module Hn+1

0 )
coincides with the biggest polynomial having its root in −α − N and dividing the
reduced Bernstein polynomial of f at the origin ?

8.5 Some improvements of Theorem 3.1.2 in [12]

The goal of this paragraph is to show that, using the higher Bernstein polynomials
of the fresco Ff,ω generated by the class of ω in Hn+1

0 , and the tools introduced
above, we can improve the main result in [12] (Theorem 3.1.2). The converse of
this result which is proved in Section 8.4 is in fact a converse of the improvement
obtained below in Theorem 8.5.1.

We begin by some remarks to make clear the correspondence between our present
notations with these used in [12].

Remarks.

1. We use here the notation H(α, 1) with α ∈]0, 1] ∩ Q instead of the notation
H(ξ, 1) with ξ ∈ Q.

2. To consider a form ψ ∈ C ∞
c (Cn+1)0,n+1 with small enough support and such

that dψ = 0 in a neighborhood of 0 is equivalent to consider ρ.ω̄′ where ω′ is
in Ωn+1

0 and ρ is a function in C ∞
c (Cn+1) with small enough support which is
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identically 1 near the origin.
Indeed any such ψ may be written as ψ = ω̄′ for some ω′ ∈ Ωn+1 near the
origin thanks to Dolbeault’ Lemma, and then ψ− ρω̄′ is identically 0 near the
origin, so replacing ψ by ρω̄′ do not change the poles which may appear in
−α − N for the functions we are looking at (what ever is the choice of h ∈ Z
thanks to our hypothesis H(α, 1).

Then, for ω, ω′ in Ωn+1
0 we use the notation F ω,ω′

h (λ) where the function
ρ ∈ C ∞

c(Cn+1) which is identically 1 near the origin and has a sufficiently
small support in order that ρω∧ ω̄′ is smooth, does not appear in this notation
because the poles at points in −α− N do not depend on the choice of this ρ.
This corresponds to the notation Fψ

h (λ) where ψ is in C ∞
c (X)0,n+1 is d-closed

near the origin (where ω is given in Ωn+1(X)) and with ψ = ρω̄′.

3. Note also that we change the sign of the integer h ∈ Z between these two
articles.

Theorem 8.5.1 Let α ∈]0, 1] and assume the hypothesis H(α, 1) for the germ at
the origin in Cn+1 of holomorphic function f̃ : (Cn+1, 0) → (C, 0). Assume that
ω in Ωn+1

0 is such that there exists an integer h ∈ Z and a form ω′ ∈ Ωn+1
0 for

which the function F ω,ω′

h (λ) has a pole of order p ≥ 1 at some point ξ in {−α−N}.
Note ξp = −α − m be the biggest such number ξ in {−α − N} for any choice of
ω′ and h ∈ Z. Then the p-th Bernstein polynomial of the fresco Ff,ω has a root in
[−α−m,−α] ∩ Z.

Proof. Note P := P1P2 the annihilator of the class of [ω] in the [α]-primitive
quotient

Fα := Ff,ω

/(
Ff,ω

)
̸=α

of the fresco Ff,ω := Ã[ω] inside the (a,b)-module Hn+1
0 associated to f , where P2 is

the annihilator of [ω] in Ff,ω

/
Sp−1

(
Fα

)
. If F ω,ω′

h (λ) has a pole of order at least equal
to p at the point −α−m and if −α−m is not a root of the p-th Bernstein polyno-
mial of Fα

f,ω, then −α −m is not a root of the (usual) Bernstein polynomial of the

fresco Ã
/
ÃP2 which is isomorphic to Sp−1(Fα). In this situation, using Corollary

8.2.5 we see F P2ω,ω′

h+p2
(λ) has a pole of order at least equal to p at −α−m , where k is

the rank of the fresco Fα
/
Sp−1

(
Fα

)
. But this is impossible, according to Corollary

8.2.6 since the nilpotent order of Sp−1

(
Fα

)
is p − 1. So −α −m is a root of some

(p+ j)-th Bernstein polynomial of Fα
f,ω for some integer j ≥ 0. ■

The end of Theorem 3.1.2 in [12] is also improved as follows:

Corollary 8.5.2 In the situation of the previous theorem, let, for each integer s in
[1, p], ξs be the biggest element in −α−N for which there exists h ∈ Z and ω′ ∈ Ωn+1

0

such that F ω,ω′

h (λ) has a pole of order at least equal to s at ξs. Then ξs is a root of
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some (s+ j)-th Bernstein polynomial of the fresco Fα
f,ω for some j ∈ N.

Moreover, if ξs = ξs+1 = · · · = ξs+p then there exists at least p distinct values of
j ∈ N such that ξs is root of the (s+ j)-th Bernstein polynomial of the fresco Fα

f,ω.

Proof. The proof of the first assertion is analogous to the proof of the theorem
above.
The second assertion is an immediate consequence of the fact that the roots of the
Bernstein polynomial of a semi-simple fresco are simple, applied to the successive
semi-simple quotients

Sd(Fα)
/
Sd−1(Fα)

for d = s+ 1, s+ 2, . . . , s+ p. ■

Now we conclude by a result which combine the results in both direction to precise
the link between the first pole of order ≥ p for a given pair (ω, ω′) with the roots of
the Bernstein polynomials of order /geqp of the fresco Ff,ω associated to (f, ω).

Theorem 8.5.3 In the standart situation, assume that the hypothesis H(α, 1) is
satisfied. Let ω be in Ωn+1

0 and define the fresco Fω := Ãconv.ω. Assume that
p := d(Fα

ω ) is at least equal to 1 and choose19 ω′ ∈ Ωn+1
0 such that there exists h ∈ Z

such that F ω,ω′

h (λ) has a pole of order p at some point in −α−N. For each j ∈ [1, p],
let mj be the integer which has the property P (ω, ω′, j). Then −α−mj is a root of
at least one of the polynomials Bj+q(Fω), for some integer q in N.

Proof. Assuming that for some j ≥ 1 no root of the polynomials Bj+q for q ≥ 0
is equal to −α − mj allows to find a J-H. sequence of Fω such the corresponding
generator of the annihilator of ω is of the form Π := Π2Π1 where Π1 has no factor
(a−λhb) with λh+h−k equal to α+mj and where the nilpotent order of the fresco
d(Ãconv.

/
Ãconv.Π2)

α) ≤ j − 1 and where k is the rank of Fω. Then we conclude as
in the previous Theorem using Corollary 8.2.3. ■

9 Examples

It is, in general, rather difficult to compute the Bernstein of the fresco associated to
a given pair (f, ω), even in the case where f has an isolated singularity.
Nevertheless, in the case where f is a polynomial in C[x0, . . . , xn] having (n + 2)
monomials, we describe in the article [12], a rather elementary method to obtain an
estimation for the Bernstein polynomial of the fresco Ff, ω associated to a monomial
(n+ 1)-form ω.
Of course, when the full Bernstein polynomial has a root of multiplicity k ≥ 2 then
this root is also a root of the j-th Bernstein polynomial for each j ∈ [1, k] but when

19such a ω′ exists thanks to Theorem 8.4.1.
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the Bernstein polynomial has only simple roots, the computation of the higher order
Bernstein polynomials, even in the special situation of [12], is not easy. We present
in below some examples where we show that the second Bernstein polynomial is not
trivial but where the full Bernstein polynomial has no multiple root.

Proposition 9.0.1 Let f(x, y, z) := xy3 + yz3 + zx3 + λxyz where λ ̸= 0 is any
complex number which is a parameter, and consider the holomorphic forms

ω1 := dx ∧ dy ∧ dz, ω2 := y3z2ω1, ω3 = y7ω1, and ω4 := xy3ω1.

Then, in each of these cases, the fresco Ff, ωi
is a rank 2 theme and the second

Bernstein polynomial is equal respectively to x+ 1, x+ 4, x+ 5 and x+ 3.
Moreover, for i = 3, 4 the corresponding (full) Bernstein polynomial of the corre-
sponding frescos has only simple roots.

Note that this proposition allows to apply Theorem 8.5.1 in [13] to conclude that
for each i ∈ {1, 2, 3, 4}, there exists some integer h and some germ ω′

i ∈ Ω3
0 such

that the meromorphic extension of

F
ωi,ω

′
i

h (λ) =
1

Γ(λ)

∫
X

|f |2λf̄−hρωi ∧ ω̄′
i

has a double pole at the point λi equal to the root of the second Bernstein polyno-
mial of the fresco Ff,ωi

.

The proof of this proposition uses several lemmas and the technic of computation
described in [12] (see paragraph 4.3.2 in loc. cit.).

Lemma 9.0.2 Let e be a generator of the rank 2 theme T := Ã/Ã(a − 2b)(a − b)
(which is the unique fresco with Bernstein polynomial (x + 1)2). Assume that we
have three homogeneous polynomials P,Q and R in A of respective degrees 3, 4 and
k with the following conditions

1. P,Q and R are monic in a.

2. Then exists a non zero constant c such that P + cQ kills e in T .

3. The Bernstein polynomial of Q20 is not a multiple of (x+ 1) or of (x+ 2).

4. The Bernstein polynomial of R is not a multiple of (x+ 3)(x+ 2)(x+ 1)

Then Re generates a rank two sub-theme in T .

20By definition BP is defined by the formula

(−b)pBP (−b−1a) = P

where P is in A, is homogeneous in (a,b) of degree p and monic in a. This is the Bernstein
polynomial of the fresco Ã/ÃP .
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Proof. First, remark that our hypothesis implies that P = (a−νb)(a−2b)(a− b)
for some ν ∈ C since T is isomorphic to Ã

/
Ã(a− 2b)(a− b). We may realize T in

the simple pole asymptotic expansion module with rank 2 which is isomorphic to T ♯

Θ := Ξ2
1

/
Ξ0
1 ≃ C[[s]](Log s)2 ⊕ C[[s]Log s

where a is the multiplication by s and b is defined by ab− ba = b2 and

b(Log s) = sLog s and b((Log s)2) = s(Log s)2 − 2sLog s.

Then let us prove that image of e in Ξ2
1

/
Ξ0
1 may be written

e = u(Log s)2 + vs(Log s)2 + ws3(Log s)2 + s4C[[s]](Log s)2 + C[[s]](Log s) (@)

where φ is in Ξ2
1

/
Ξ0
1 and where uvw ̸= 0 are complex numbers.

Remark that the only restrictive condition for writing e as in (@) is the condition
uvw ̸= 0. The condition u ̸= 0 is easy because we assume that e is a generator of
T with Bernstein polynomial (x+ 1)2, so writing e as a C[[b]]-linear combination of
the C[[b]]-basis e1 = (Log s)2 and e2 = Log s of T we see that the coefficient of e1
must be invertible in C[[b]].
But the condition (P + cQ)(e) = 0 implies, since the Bernstein element of T is
(a− 2b)(a− b), that we may write21 P = (a− νb)(a− 2b)(a− b).
The annihilator of (Log s)2 in Ξ2

1

/
Ξ0
1 is the ideal Ã(a − 2b)(a − b) so we have

P ((Log s)2) = 0 in T . Since Q((Log s)2) has a non zero term in s4(Log s)2, be-
cause −1 is not a root of BQ, only the term coming from

P (s(Log s)2) =
4− ν

24
s4(Log s)2 modulo C[[s]]Log s

can compensate for this term, in order to obtain the equality (P +cQ)(e) = 0. Then
u ̸= 0. implies v ̸= 0.
But now, the only term which can kill the non zero term in s5(Log s)2 coming from
Q(vs(Log s)2) (using that BQ is not a multiple of (x + 2)) can only comes from
P (ws2(Log s)2) and this proves that w ̸= 0. So the assertion (@) holds true.
Now if R is homogeneous of degree k in (a, b) a necessary condition on R such that
R(e) has no term in sk+i(Log s)2, for i = 0, 1, 2, is thatBR divides (x+1)(x+2)(x+3).
So, when it is not the case, Lemma 5.2.4 implies that R(e) is a rank 2 theme and
that its second Bernstein polynomial has a (unique) root equal to −(k+j) where −j
is the smallest integer among {−1,−2,−3} which is not a root of BR (see Corollary
7.4.3). ■

Note that the Lemma above may be easily generalized to many [α]-primitive frescos
provided that the nilpotent order is known and that it has a generator which admits
a enough simple element in A belonging to its annihilator.

21In our choice of f and ω1, µ = 3.
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Lemma 9.0.3 In the situation of Proposition 9.0.1, the frescos generated by the
forms

ω1 := dx ∧ dy ∧ dz, ω2 := y3z2ω1, ω3 := y7ω1, and ω4 := xy3ω1

generate rank 2 [1]-primitive themes. Their Bernstein polynomials are respectively
equal to

(x+ 1)2, (x+ 3)2 or (x+ 2)(x+ 3), (x+ 3)(x+ 5) and (x+ 2)(x+ 3)

and their respective 2-Bernstein polynomials are (x+1), (x+3), (x+5) and (x+3).
In the cases i = 3, 4 there is no double root for the Bernstein polynomial of Ff,ωi

.

Proof. The first point is to show that Ff,ω1 has rank 2. Since f has an isolated
singularity at the origin, we have Kerdfn = df ∧ Ωn−1 and then Hn+1/bHn+1 ≃
O0/J(f) and H

n+1 has no b-torsion and no a-torsion. Since f is not22 in J(f) the
image of ω1 and aω1 = fω1 in Hn+1 are linearly independent (over C) and then the
rank of Ãω1 is at least equal to 2. Now the computation in [12] (see 4.3.2) shows
that the Bernstein polynomial of this fresco divides (x + 1)3 (see also the detailed
computation below). So it is a theme of rank 2 or 3. But using our main result, the

rank 3 would imply that there exists a pole of order 3 for some F ω1,ω′

h (λ) which is
impossible23 in C3. So Ff,ω1 is a rank 2 theme with Bernstein polynomial (x+ 1)2.
The computation in [12] gives that P3 + cλ−4P4 kills ω1 in Hn+1 where

P3 := (a−3b)(a−2b)(a− b), P4 = (a− (13/4)b)(a− (5/2)b)(a− (7/4)b)a, and c = 44

This is easily obtained by using the technic of the computation of loc.cit. (see the
detailed computation in the Appendix of [13]). Then we may apply Lemma 9.0.2
to see that λm1m2ω1 = λ(a − 2b)(a − b)ω1 generates rank 2 themes in Hn+1. But
the identity λm1m2 = m4y

3z2 shows that ω2 generates also rank 2 in Hn+1 since
m4ω2 = λm1m2ω1 = λ(a−2b)(a−b)ω1 applying Lemma 9.0.2 with R = (a−2b)(a−b)
whose Bernstein polynomial is (x + 1)2. Moreover we see that Re has a non zero
term in s3(Log s)2.
Since m4ω2 generates a rank 2 theme, then ω2 generates a rank 2 theme also (the
rank 3 is again excluded because it would imply that f 2 ̸∈ J(f) which is impossible
as explained above).
The technic of computation in [12] applied to ω2 gives now that the Bernstein
polynomial of the rank 2 theme Ãω2 has to divide24 the polynomial (x+2)(x+3)2.
But the fact that m4ω2 has a non zero term in s3(Log s)2 (and no term in (Log s)2

or in s(Log s)2) implies, since we have

m4ω2 = 4(a− 2b)ω2

22This point is not so easy to check directly. But the rank is not 1 since this would implies that
this fresco has a simple pole and the argument used in Lemma 9.0.2 gives then a contradiction.

23This would give an order 4 pole for the meromorphic continuation of |f |2λ !
24This computation gives that Q3+dλ−4Q4 kills ω2 in Hn+1 with Q3 := (a−4b)(a−4b)(a−3b).
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ω2 has a non zero term in s2(Log s)2 and then −3 is a root of the second Bernstein
polynomial of the fresco Ff,ω2 . So the Bernstein polynomial is either (x+ 2)(x+ 3)
or (x+ 3)2.
We know that the Bernstein polynomial of Ff,ω3 divides (x + 5)(x + 3)(x + 2) by
using the technic of [12].
We know also that m2

1m4ω1 = λm3ω3 has a non zero term in s5(Log s)2 (as a con-
sequence of Lemma 9.0.2) and, since −m3ω3 = (a− 2b)ω3 implies that ω3 has a non
zero term in s4(Log s)2, the second Bernstein polynomial of Ff,ω3 is x+ 5.

Note that the Bernstein polynomial of the fresco Ff,ω3 has two simple roots.

The last case is similar, since we know that m1ω1 has a non zero term in s2(Log s)2.
So our assertion is consequence of the estimation of the Bernstein polynomial. ■

The reader may find more details on the previous computations in [13].
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