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Abstract

Conformal Inference (CI) is a popular approach for generating �nite sample prediction
intervals based on the output of any point prediction method when data are exchangeable.
Adaptive Conformal Inference (ACI) algorithms extend CI to the case of sequentially observed
data, such as time series, and exhibit strong theoretical guarantees without having to assume
exchangeability of the observed data. The common thread that unites algorithms in the ACI
family is that they adaptively adjust the width of the generated prediction intervals in response to
the observed data. We provide a detailed description of �ve ACI algorithms and their theoretical
guarantees, and test their performance in simulation studies. We then present a case study of
producing prediction intervals for in�uenza incidence in the United States based on black-box
point forecasts. Implementations of all the algorithms are released as an open-source R package,
AdaptiveConformal, which also includes tools for visualizing and summarizing conformal
prediction intervals.
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1 Introduction

Conformal Inference (CI) is a family of methods for generating �nite sample prediction intervals
around point predictions when data are exchangeable (Vovk, Gammerman, and Shafer 2005; Shafer
and Vovk 2008; Angelopoulos and Bates 2023). The input point predictions can be derived from
any prediction method, making CI a powerful tool for augmenting black-box prediction algorithms
with prediction intervals. Classical CI methods are able to yield marginally valid intervals with
only the assumption that the joint distribution of the data does not change based on the order of
the observations (that is, they are exchangeable). However, in many real-world settings data are
not exchangeable: for example, time series data usually cannot be assumed to be exchangeable due
to temporal dependence. A recent line of research examines the problem of generating prediction
intervals for observations that are observed online (that is, one at a time) and for which exchangeability
is not assumed to hold (Gibbs and Candes 2021; Za�ran et al. 2022; Gibbs and Candès 2022; Bhatnagar
et al. 2023). The methods from this literature, which we refer to generally as Adaptive Conformal
Inference (ACI) algorithms, work by adaptively adjusting the width of the generated prediction
intervals in response to the observed data.

Informally, suppose a sequence of outcomes yt ∈ R, t = 1, . . . , T are observed one at a time. Before
seeing each observation, we have at our disposal a point prediction µ̂t ∈ R that can be generated by
any method. Our goal is to �nd an algorithm for producing prediction intervals [`t, ut], `t ≤ ut such
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that, in the long run, the observations yt fall within the corresponding prediction intervals roughly
α× 100% of the time: that is, limT→∞ 1/T

∑T
t=1 I{yt ∈ [`t, ut]} = α. The original ACI algorithm

(Gibbs and Candes 2021) is based on a simple idea: if the previous prediction interval at time (t− 1)
did not cover the true observation, then the next prediction interval at time t is made slightly wider.
Conversely, if the previous prediction interval did include the observation, then the next prediction
interval is made slightly narrower. It can be shown that this procedure yields prediction intervals
that in the long run cover the true observations the desired proportion of the time.

The main tuning parameter of the original ACI algorithm is a learning rate that controls how fast
prediction interval width changes. If the learning rate is too low, then the prediction intervals
will not be able to adapt fast enough to shifts in the data generating distribution; if it is too large,
then the intervals will oscillate widely. The critical dependence of the original ACI algorithm on
proper choice of its learning rate spurred subsequent research into meta-algorithms that learn the
correct learning rate (or an analogue thereof) in various ways, typically drawing on approaches
from the online learning literature. In this paper, we present four such algorithms: Aggregated ACI
(AgACI, Za�ran et al. 2022), Fully Adaptive Conformal Inference (FACI, Gibbs and Candès 2022),
Scale-Free Online Gradient Descent (SF-OGD, Bhatnagar et al. 2023), and Strongly Adaptive Online
Conformal Prediction (SAOCP, Bhatnagar et al. 2023). We note that the adaption of conformal
inference techniques is an active area of research and the algorithms we focus on in this work are
not exhaustive; see among others Feldman et al. (2023), Bastani et al. (2022), Xu and Xie (2021), and
Xu and Xie (2023).

Our primary practical contribution is an implementation of each algorithm in an open source R
package, AdaptiveConformal, which is available at https://github.com/herbps10/Adaptive
Conformal. The package also includes routines for visualization and summary of the prediction
intervals. We note that Python versions of several algorithms were also made available by Za�ran et
al. (2022) and Bhatnagar et al. (2023), but to our knowledge this is the �rst package implementing
them in R. In addition, several R packages exist for conformal inference in other contexts, including
conformalInference focusing on regression (Tibshirani et al. 2019), conformalInference.fd,
with methods for functional responses (Diquigiovanni et al. 2022), and cfcausal for causal inference
related functionals (Lei and Candès 2021). Our second practical contribution is to compare the
performance of the algorithms in simulation studies and in a case study generating prediction
intervals for in�uenza incidence in the United States based on black-box point forecasts.

The rest of the paper unfolds as follows. In Section 2, we present a uni�ed theoretical framework
for analyzing the ACI algorithms based on the online learning paradigm. In Section 3 we provide
descriptions of each algorithm along with their known theoretical properties. In Section 4 we compare
the performance of the algorithms in several simulation studies. Section 5 gives a case study based
on forecasting in�uenza in the United States. Finally, Section 6 provides a discussion and ideas for
future research in this rapidly expanding �eld.

2 Theoretical Framework

Notation: for any integer N ≥ 1 let JNK := {1, . . . , N}. Let I be the indicator function. Let ∇f
denote the gradient (subgradient) of the di�erentiable (convex) function f .

We consider an online learning scenario in which we gain access to a sequence of observations
(yt)t≥1 one at a time (see Cesa-Bianchi and Lugosi (2006) for an comprehensive account of online
learning theory). Fix α ∈ (0, 1) to be the target empirical coverage of the prediction intervals. The
goal is to output at time t a prediction interval for the unseen observation yt, with the prediction
interval generated by an interval construction function Ĉt. Formally, let Ĉt be a function that takes as
input a parameter θt ∈ R and outputs a closed prediction interval [`t, ut]. The interval construction

3

https://github.com/herbps10/AdaptiveConformal
https://github.com/herbps10/AdaptiveConformal


function must be nested: if θ′ > θ, then Ĉt(θ) ⊆ Ĉt(θ
′). In words, larger values of θ imply wider

prediction intervals. The interval constructor is indexed by t to emphasize that it may use other
information at each time point, such as a point prediction µ̂t ∈ R. We make no restrictions on how
this external information is generated.

De�ne rt := inf{θ ∈ R : I(yt ∈ Ĉt(θ))} to be the radius at time t. The radius is the smallest possible
θ such that the prediction interval covers the observation yt. A key assumption for the theoretical
analysis of several of the algorithms is that the radii are bounded:

Assumption: there exists a D > 0 such that rt < D for all t.

Next, we describe two existing de�nitions of interval construction functions.

2.1 Linear Intervals

A simple method for forming the prediction intervals is to use the parameter θt to directly de�ne the
width of the interval. Suppose that at each time t we have access to a point prediction µ̂t ∈ R. Then
we can form a symmetric prediction interval around the point estimate using

θ 7→ Ĉt(θ) := [µ̂t − θ, µ̂t + θ].

We refer to this as the linear interval constructor. Note that in this case, the radius is simply the
absolute residual rt = |µ̂t − yt|.

2.2 Quantile Intervals

The original ACI paper proposed constructing intervals based on the previously observed residuals
(Gibbs and Candes 2021). Let S : R2 → R be a function called a nonconformity score. A popular choice
of nonconformity score is the absolute residual: (µ, y) 7→ S(µ, y) := |µ− y|. Let st := S(µ̂t, yt) be
the nonconformity score of the tth-observation. The quantile interval construction function is then
given by

Ĉt(θt) := [µ̂t −Quantile(θ, {s1, . . . , st−1}), µ̂t + Quantile(θ, {s1, . . . , st−1})]

where Quantile(θ,A) denotes the empirical θ-quantile of the elements in the set A. Note that Ĉt is
indeed nested in θt because the Quantile function is non-decreasing in θ.

Our proposed AdaptiveConformal package takes the absolute residual as the default nonconfor-
mity score, although the user may also specify any custom nonconformity score by supplying it as
an R function.

2.3 Online Learning Framework

We now introduce a loss function that de�nes the quality of a prediction interval with respect to a
realized observation. De�ne the pinball loss Lα as

(θ, r) 7→ Lα(θ, r) :=

{
α(θ − r), θ ≥ r
(1− α)(r − θ), θ < r.

The way in which the algorithm gains access to the data and incurs losses is as follows:

• Sequentially, for t = 1, . . . , T :
– Predict radius θt and form prediction interval Ĉt(θt).
– Observe true outcome yt and calculate radius rt.
– Record errt := I[yt 6∈ Ĉt(θt)].

4



– Incur loss Lα(θt, rt).

This iterative procedure is at the core of the online learning theoretical framework in which theoretical
results have been derived.

2.4 Assessing ACI algorithms

There are two di�erent perspectives we can take in measuring the quality of an ACI algorithm
that generates a sequence (θt)t∈JT K. First, we could look at how close the empirical coverage of
the generated prediction intervals is to the desired coverage level α. Formally, de�ne the empirical
coverage as the proportion of observations that fell within the corresponding prediction interval:
EmpCov(T ) := 1

T

∑T
t=1(1− errt). The coverage error is then given by

CovErr(T ) := EmpCov(T )− α.

The second perspective is to look at how well the algorithm controls the incurred pinball losses.
Following the classical framework from the online learning literature, we de�ne the regret as the
di�erence between the cumulative loss yielded by a sequence (θt)t∈JT K versus the cumulative loss of
the best possible �xed choice:

Reg(T ) :=
T∑
t=1

Lα(θt, rt)− inf
θ∗∈R

T∑
t=1

Lα(θ∗, rt).

In settings of distribution shift, it may not be appropriate to compare the cumulative loss of an
algorithm to a �xed competitor. As such, stronger notions of regret have been de�ned. The strongly
adaptive regret is the largest regret over any subperiod of length k ∈ JT K:

SAReg(T,m) := max
[τ,τ+m−1]⊆JT K

(
τ+m−1∑
t=τ

Lα(θt, rt)− inf
θ∗∈R

τ+m−1∑
t=τ

Lα(θ∗, rt)

)
.

Both ways of evaluating ACI methods are important because targeting only one or the other can lead
to algorithms that yield prediction intervals that are not practically useful. As a simple pathological
example of only targeting the coverage error, suppose we wish to generate α = 50% prediction
intervals. We could choose to alternate θ between 0 and∞, such that errt alternates between 0 and 1.
The empirical coverage would then trivially converge to the desired level of 50%. However, the same
algorithm would yield in�nite regret (see Bhatnagar et al. (2023) for a more in-depth example of an
scenario in which coverage is optimal but the regret grows linearly). On the other hand, an algorithm
that has arbitrarily small regret may not yield good empirical coverage. Suppose the observations and
point predictions are constant: yt = 1 and µ̂t = 0 for all t ≥ 1. Consider a simple class of algorithms
that outputs constantly θt = θ′ for some θ′ < 1. With the linear interval construction function,
the prediction intervals are then Ĉt(θt) = [−θ′, θ′]. The regret is given by Reg(T ) = 2Tα(1− θ′),
which approaches zero as θ′ approaches 1. The empirical coverage is, however, always zero. In other
words, the regret can be arbitrarily close to zero while at the same time the empirical coverage does
not approach the desired level.

These simple examples illustrate that, unfortunately, bounds on the coverage error and bounds on
the regret are not in general interchangeable. It is possible, however, to show equivalencies by either
(1) making distributional assumptions on the data or (2) using additional information about how the
algorithm produces the sequence (θt)t∈JT K (Bhatnagar et al. 2023).

It may also be informative to summarize a set of prediction intervals in ways beyond their coverage
error or their regret. A common metric for prediction intervals is the mean interval width:

MeanWidth(T ) :=
1

T

T∑
t=1

wt,
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where wt := ut − `t is the interval width at time t.

Finally, we introduce a metric that is intended to capture pathological behavior that can arise with ACI
algorithms where the prediction intervals oscillate between being extremely narrow and extremely
wide. De�ne the path length of prediction intervals generated by an ACI algorithm as

PathLength(T ) :=
T∑
t=2

|wt − wt−1|.

A high path length indicates that the prediction intervals were variable over time, and a low path
length indicates the prediction intervals were stable.

3 Algorithms

Table 1: Summary of ACI algorithms

Algorithm Tuning Parameters

Original
interval
constructor

Adaptive Conformal Inference (ACI) Learning rate γ Quantile
Aggregated Adaptive Conformal
Inference (AgACI)

Candidate learning rates (γk)1≤k≤K Quantile

Fully Adaptive Conformal Inference
(FACI)

Candidate learning rates (γk)1≤k≤K Quantile

Scale-Free Online Gradient Descent
(SF-OGD)

Learning rate γ or maximum radius D Linear

Strongly Adaptive Online Conformal
Prediction (SAOCP)

Learning rate γ, lifetime multiplier g Linear

As a simple running example to illustrate each algorithm, we simulate independently T = 500 values
y1, . . . , yT following

yt ∼ N(0, 0.22), t ∈ JT K.

For demonstration purposes we assume we have access to unbiased predictions µ̂t = 0 for all t ∈ JT K.
Throughout we set the target empirical coverage to α = 0.8.

3.1 Adaptive Conformal Inference (ACI)

Algorithm 1 Adaptive Conformal Inference

1: Input: starting value θ1, learning rate γ > 0.
2: for t = 1, 2, . . . , T do
3: Output: prediction interval Ĉt(θt).
4: Observe yt.
5: Evaluate errt = I[yt 6∈ Ĉt(θt)].
6: Update θt+1 = θt + γ(errt − (1− α)).
7: end for

The original ACI algorithm (Gibbs and Candes (2021); Algorithm 1 ) adaptively adjusts the width of
the prediction intervals in response to the observations. The updating rule for the estimated radius
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can be derived as an online subgradient descent scheme. The subgradient of the pinball loss function
with respect to θ is given by

∇Lα(θ, r) =


{−α}, θ < r,

{1− α}, θ > r,

[−α, 1− α], θ = r

It follows that, for all θt ∈ R and rt ∈ R,

1− α− errt ∈ ∇Lα(θt, rt).

This leads to the following update rule for θ based on subgradient descent:

θt+1 = θt + γ(errt − (1− α)),

where γ > 0 is a user-speci�ed learning rate. For intuition, note that if yt fell outside of the prediction
interval at time t (errt = 1) then the next interval is widened (θt+1 = θt + γα). On the contrary, if
yt fell within the interval (errt = 0) then the next interval is shortened (θt+1 = θt − γ(1− α)). The
learning rate γ controls how fast the width of the prediction intervals changes in response to the
data.

3.1.1 Theoretical Guarantees

The ACI algorithm has the following �nite sample bound on the coverage error (Gibbs and Candes
2021). For all γ > 0,

|CovErr(T )| ≤ D + γ

γT
.

This result was originally shown for ACI with the choice of the quantile interval constructor, although
it can also be extended to other interval constructors Feldman et al. (2023). In addition, standard
results for online subgradient descent yield the following regret bound with the use of the linear
interval constructor, assuming that the true radii are bounded by D:

Reg(T ) ≤ O(D2/γ + γT ) ≤ O(D
√
T ),

where the second inequality follows if the optimal choice of γ = D/
√
T is used (Bhatnagar et al.

2023). Taken together, these theoretical results imply that while the coverage error is guaranteed to
converge to zero for any choice of γ, achieving sublinear regret requires choosing γ more carefully.
This highlights the importance of both ways of assessing ACI algorithms: if we only focused on
controlling the coverage error, we might not achieve optimal control of regret, leading to intervals
that are not practically useful.

3.1.2 Tuning Parameters

Therefore, the main tuning parameter is the learning rate γ. The theoretical bounds on the coverage
error suggest setting a large γ such that the coverage error decays quickly in T ; however, in practice
and setting γ too large will lead to intervals with large oscillations as seen in Figure 1. This is
quanti�ed in the path length, which increases signi�cantly as γ increases, even though the empirical
coverage remains near the desired value of 80%. On the other hand, setting γ too small will lead to
intervals that do not adapt fast enough to distribution shifts. Thus, choosing a good value for γ is
essential. However, the optimal choice γ = D/

√
T cannot be used directly in practice unless the

time series length T is �xed in advance, or the so called “doubling trick” is used to relax the need to
know T in advance (Cesa-Bianchi and Lugosi 2006).
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The theoretical results guaranteeing the performance of the ACI algorithm do not depend on the
choice of starting value θ1, and thus in practice any value can be chosen. Indeed, the e�ect of the
choice of θ1 decays over time as a function of the chosen learning rate. In practice, substantive prior
information can be used to pick a reasonable starting value. By default, the AdaptiveConformal
package sets θ1 = α when the quantile interval predictor is used, and θ1 = 0 otherwise, although
in both cases the user can supply their own starting value. The behavior of the early prediction
intervals in the examples (Figure 1) is driven by the small number of residuals available, which
makes the output of the quantile interval constructor sensitive to small changes in θ. In practice, a
warm-up period can be used before starting to produce prediction intervals so that the quantiles of
the residuals are more stable.
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Figure 1: Example 80% prediction intervals from the ACI algorithm for di�erent choices of learning
rate γ and with θ1 = 0.8. Blue and red points are observations that fell inside and outside the
prediction intervals, respectively.

3.2 Aggregated Adaptive Conformal Inference (AgACI)

The Aggregated ACI (AgACI; Algorithm 2 ) algorithm solves the problem of choosing a learning rate
for ACI by running multiple copies of the algorithm with di�erent learning rates, and then separately
combining the lower and upper interval bounds using an online aggregation of experts algorithm
(Za�ran et al. 2022). That is, one aggregation algorithm seeks to estimate the lower (1−α)/2 quantile,
and the other seeks to estimate the upper 1− (1− α)/2 quantile. Za�ran et al. (2022) experimented
with multiple online aggregation algorithms, and found that they yielded similar results. Thus, we
follow their lead in using the Bernstein Online Aggregation (BOA) algorithm as implemented in
the opera R package (Wintenberger 2017; Gaillard et al. 2023). BOA is an online algorithm that
forms predictions for the lower (or upper) prediction interval bound as a weighted mean of the
candidate ACI prediction interval lower (upper) bound, where the weights are determined by each
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Algorithm 2 Aggregated Adaptive Conformal Inference

1: Input: candidate learning rates (γk)1≤k≤K , starting value θ1.
2: Initialize lower and upper BOA algorithms B` := BOA(α ← (1 − α)/2) and Bu := BOA(α ←

(1− (1− α)/2)).
3: for k = 1, . . . ,K do
4: Initialize ACI Ak = ACI(α← α, γ ← γk, θ1 ← θ1).
5: end for
6: for t = 1, 2, . . . , T do
7: for k = 1, . . . ,K do
8: Retrieve candidate prediction interval [`kt , u

k
t ] from Ak.

9: end for
10: Compute aggregated lower bound ˜̀

t := B`((`kt : k ∈ {1, . . . ,K})).
11: Compute aggregated upper bound ũt := Bu((ukt : k ∈ {1, . . . ,K})).
12: Output: prediction interval [˜̀t, ũt].
13: Observe yt.
14: for k = 1, . . . ,K do
15: Update Ak with observation yt.
16: end for
17: Update B` with observed outcome yt.
18: Update Bu with observed outcome yt.
19: end for

candidate’s past performance with respect to the quantile loss. As a consequence, the prediction
intervals generated by AgACI are not necessarily symmetric around the point prediction, as the
weights for the lower and upper bounds are separate.

3.2.1 Theoretical Gaurantees

AgACI departs from our main theoretical framework in that it does not yield a sequence (θt)t∈JT K

whose elements yield prediction intervals via a set construction function Ĉt. Rather, the upper
and lower interval bounds from a set of candidate ACI algorithms are aggregated separately. Thus,
theoretical results such as regret bounds similar to those for the other algorithms are not available.
It would be possible, however, to establish regret bounds for the pinball loss applied separately to
the lower and upper bounds of the prediction intervals. It is unclear, however, how to convert such
regret bounds into a coverage bound.

3.2.2 Tuning Parameters

The main tuning parameter for AgACI is the set of candidate learning rates. Beyond necessi-
tating additional computational time, there is no drawback to having a large grid. As a default,
AdaptiveConformal uses learning rates γ ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}.
As a basic check, we can look at the weights assigned to each of the learning rates. If large weights
are given to the smallest (largest) learning rates, it is a sign that smaller (or larger) learning rates
may perform well. In addition each of the candidate ACI algorithms requires a starting value, which
can be set to any value as discussed in the ACI section. Figure 2 illustrates AgACI applied to the
running example with two sets of learning grids. The �rst grid is the default, and the second grid
includes the additional value γ = {0.0005}. For the �rst grid, we can see that for the lower bound
AgACI assigns high weight to the lowest learning rate (γ = 0.001). Based on this observation, as a
sensitivity check, we reran the algorithm with the second learning grid, which yields weights that
are less concentrated on a single learning rate. The output prediction intervals are similar, although
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slightly smoother in the second grid, re�ecting the lack of distributional shift in the simulated data.
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Figure 2: Example 80% prediction intervals from the AgACI algorithm with starting values θ1 = 0.8
and two di�erent learning rate grids, where the second grid is double the size of the �rst. In the left
column, blue and red points are observations that fell inside and outside the prediction intervals,
respectively.

3.3 Fully Adaptive Conformal Inference (FACI)

The Fully Adaptive Conformal Inference (FACI; Algorithm 3 ) algorithm was developed by the authors
of the original ACI algorithm in part to address the issue of how to choose the learning rate parameter
γ. In this respect the goal of the algorithm is similar to that of AgACI, although it is achieved slightly
di�erently. FACI also aggregates predictions from multiple copies of ACI run with di�erent learning
rates, but di�ers in that it directly aggregates the estimated radii emitted from each algorithm based
on their pinball loss (Gibbs and Candès 2022) using an exponential reweighting scheme (Gradu,
Hazan, and Minasyan 2023). As opposed to AgACI, this construction allows for more straightforward
development of theoretical guarantees on the algorithm’s performance, because the upper and lower
bounds of the intervals are not aggregated separately.

3.3.1 Theoretical Guarantees

FACI was originally proposed with the choice of the quantile interval constructor. FACI has the
following strongly-adaptive regret bound (Bhatnagar et al. 2023): for all γ > 0 and subperiod lengths
m,

SAReg(T,m) ≤ Õ(D2/γ + γm).

If m is �xed a-priori, then choosing γ = D/
√
m yields a strongly adaptive regret bound of order

Õ(D
√
m) (for a single choice of m). Practically, this result implies that, if we know in advance the

10



Algorithm 3 Fully Adaptive Conformal Inference

1: Input: starting value θ1, candidate learning rates (γk)1≤k≤K , parameters σ, η.
2: for k = 1, . . . ,K do
3: Initialize expert Ak = ACI(α← α, γ ← γk, θ1 ← θ1).
4: end for
5: for t = 1, 2, . . . , T do
6: De�ne pkt := wkt /

∑K
i=1w

i
t, for all 1 ≤ k ≤ K .

7: Set θt =
∑K

k=1 θ
k
t p
k
t .

8: Output: prediction interval Ĉt(θt).
9: Observe yt and compute rt.

10: w̄kt ← wkt exp(−ηLα(θkt , rt)), for all 1 ≤ k ≤ K .
11: W̄t ←

∑K
i=1 w̄

i
t.

12: wkt+1 ← (1− σ)w̄kt + W̄tσ/K .
13: Set errt := I[yt 6∈ Ĉt(θt)].
14: for k = 1, . . . ,K do
15: Update ACI Ak with yt and obtain θkt+1.
16: end for
17: end for

time length for which we would like to control the regret, it is possible to choose an optimal tuning
parameter value. However, we cannot control the regret simultaneously for all possible time lengths.

To establish a bound on the coverage error, the authors investigated a slightly modi�ed version of
FACI in which θt is chosen randomly from the candidate θtk with weights given by pt,k, instead of
taking a weighted average. This is a common trick used in the literature as it facilitates theoretical
analysis. In practice, the authors comment that this randomized version of FACI and the deterministic
version lead to very similar results. The coverage error result also assumes that the hyperparameters
can change over time: that is, we have t-speci�c ηt and σt, rather than �xed η and σ. The coverage
error then has the following bound (Gibbs and Candès 2022), where γmin and γmax are the smallest
and largest learning rates in the grid, respectively:

|CovErr(T )| ≤ 1 + 2γmax

Tγmin
+

(1 + 2γmax)2

γmin
exp(ηt(1 + 2γmax))

1

T

T∑
t=1

ηt + 2
1 + γmax

γmin

1

T

T∑
t=1

σt.

Thus, if ηt and σt both converge to zero as t → ∞, then the coverage error will also converge to
zero. In addition, under mild distributional assumptions the authors provide a type of short-term
coverage error bound for arbitrary time spans, for which we refer to (Gibbs and Candès 2022).

We note one additional result established by Gibbs and Candès (2022) on a slightly di�erent regret
bound in terms of the pinball loss, as it informs the choice of tuning parameters. Let γmax =
max1≤k≤K γk be the largest learning rate in the grid and assume that γ1 < γ2 < · · · < γK with
γk+1/γ ≤ 2 for all 1 ≤ k < K . Then, for any interval I = [r, s] ⊆ JT K and any sequence θ∗r , . . . , θ

∗
s ,

under the assumption that γk ≥
√

1 + 1/|I|,

1

|I|

s∑
t=r

E[Lα(θt, rt)]−
1

|I|

s∑
t=r

Lα(θt, θ
∗
t ) ≤

log(k/σ) + 2σ|I|
η|I|

+
η

|I|

s∑
t=r

E[Lα(θt, rt)
2]

+ 2
√

3(1 + γmax)2 max


√∑s

t=r+1 |θ∗t − θ∗t−1|+ 1

|I|
, γ1

 ,
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where the expectation is over the randomness in the randomized version of the algorithm. Here the
time interval I (with length |I|) is comparable to the time period length m for the strongly adaptive
regret. The parameter |I|, the time interval of interest for which we would like to control, can be
chosen arbitrarily.

3.3.2 Tuning parameters

The recommended settings for the tuning parameters depend on choosing a time interval length |I|
for which we would like to control the pinball loss. The choice of |I| can be chosen arbitrarily. For
the tuning parameter σ, the authors suggest the optimal choice σ = 1/(2|I|). Choosing η is more
di�cult. The authors suggest the following choice for η, which they show is optimal if there is in
fact no distribution shift:

η =

√
3

|I|

√
log(K · |I|) + 2

(α)2(1− α)3 + (1− α)2α3
.

Note that this choice is optimal only for the quantile interval constructor, for which θt is a quantile
of previous nonconformity scores. As an alternative, the authors point out that η can be learned in
an online fashion using the update rule

ηt :=

√
log(|I|K) + 2∑t−1
s=t−|I| L

α(θs, rs)
.

Both ways of choosing η led to very similar results in the original author’s empirical studies. In
our proposed AdaptiveConformal package, the �rst approach is used when the quantile interval
construction function is chosen, and the latter approach for the linear interval construction function.

Figure 3 illustrates FACI with the quantile interval construction function and with the learning rate
grid γ ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}.

3.4 Scale-Free Online Gradient Descent (SF-OGD)

Algorithm 4 Scale-Free Online Gradient Descent

1: Input: starting value θ1, learning rate γ > 0.
2: for t = 1, 2, . . . , T do
3: Output: prediction interval Ĉt(θt).
4: Observe yt and compute rt.
5: Update θt+1 = θt − γ ∇Lα(θt,rt)√∑t

i=1‖∇Lα(θi,ri)‖22
.

6: end for

Scale-Free Online Gradient Descent (SF-OGD; Algorithm 4 ) is a general algorithm for online learning
proposed by Orabona and Pál (2018). The algorithm updates θt with a gradient descent step where
the learning rate adapts to the scale of the previously observed gradients. SF-OGD was �rst used in
the context of ACI as a sub-algorithm for SAOCP (described in the next section). However, it was
found to have good performance by itself (Bhatnagar et al. 2023) in real-world tasks, so we have
made it available in the package as a stand-alone algorithm.

3.4.1 Theoretical Guarantees

The SF-OGD algorithm with linear interval constructor has the following regret bound, which is
called an anytime regret bound because it holds for all t ∈ JT K (Bhatnagar et al. 2023). For any γ > 0,

Reg(t) ≤ O(D
√
t) for all t ∈ JT K.

12
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Figure 3: Example 80% prediction intervals generated by the FACI algorithm with starting values
θ1 = 0.8. Blue and red points are observations that fell inside and outside the prediction intervals,
respectively.

A bound for the coverage error has also been established (Bhatnagar et al. 2023). For any learning
rate γ = Θ(D) (where γ = D/

√
3 is optimal) and any starting value θ1 ∈ [0, D], then it holds that

for any T > 1,
|CovErr(T )| ≤ O

(
(1− α)−2T−1/4 log T

)
.

3.4.2 Tuning parameters

Figure 4 compares results for several choices of γ to illustrate its e�ect. The optimal choice of learning
rate is γ = D/

√
3, where D is the maximum possible radius. When D is not known, it can be

estimated by using an initial subset of the time series as a calibration set and estimating D as the
maximum of the absolute residuals of the observations and the predictions (Bhatnagar et al. 2023).
Figure 4 illustrates SF-OGD for several values of γ.

3.5 Strongly Adaptive Online Conformal Prediction (SAOCP)

The Strongly Adaptive Online Conformal Prediction (SAOCP; Algorithm 5 ) algorithm was proposed
as an improvement over the extant ACI algorithms in that it features stronger theoretical guarantees.
SAOCP works similarly to AgACI and FACI in that it maintains a library of candidate online learning
algorithms that generate prediction intervals which are then aggregated using a meta-algorithm
(Bhatnagar et al. 2023). The candidate algorithm was chosen to be SF-OGD, although any algorithm
that features anytime regret guarantees can be chosen. As opposed to AgACI and FACI, in which each
candidate has a di�erent learning rate but is always able to contribute to the �nal prediction intervals,
here each candidate has the same learning rate but only has positive weight over a speci�c interval of
time. New candidate algorithms are continually being spawned in order that, if the distribution shifts
rapidly, the newer candidates will be able to react quickly and receive positive weight. Speci�cally,
at each time point, a new expert is instantiated which is active over a �nite “lifetime”. De�ne the
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Figure 4: Example 80% prediction intervals generated by the SF-OGD algorithm with di�erent values
of the maximum radius tuning parameter D. Blue and red points are observations that fell inside
and outside the prediction intervals, respectively.
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Algorithm 5 Strongly Adaptive Online Conformal Prediction

1: Input: initial value θ0, learning rate γ > 0.
2: for t = 1, 2, . . . , T do
3: Initialize expert At = SF-OGD(α← α, γ ← γ, θ1 ← θt−1), set weight wtt = 0.
4: Compute active set Active(t) = {i ∈ JT K : t − L(i) < i ≤ t} (see below for de�nition of
L(t)).

5: Compute prior probability πi ∝ i−2(1 + blog2 ic)−1I[i ∈ Active(t)].
6: Compute un-normalized probability p̂i = πi[wt,i]+ for all i ∈ JtK.
7: Normalize p = p̂/‖p̂‖1 ∈ ∆t if ‖p̂‖1 > 0, else p = π.
8: Set θt =

∑
i∈Active(t) piθ

i
t (for t ≥ 2), and θt = 0 for t = 1.

9: Output: prediction set Ĉt(θt).
10: Observe yt and compute rt.
11: for i ∈ Active(t) do
12: Update expert At with yt and obtain θit+1.

13: Compute git =

{
1
D

(
Lα(θt, rt)− Lα(θit, rt)

)
wit > 0

1
D

[
Lα(θt, rt)− Lα(θit, rt))

]
+

wit ≤ 0
.

14: Update expert weight wit+1 = 1
t−i+1

(∑t
j=i g

i
j

)(
1 +

∑t
j=iw

i
jg
i
j

)
.

15: end for
16: end for

lifetime of an expert instantiated at time t as

L(t) := g ·max
n∈Z
{2nt ≡ 0 mod 2n},

where g ∈ Z∗ is a lifetime multiplier parameter. The active experts are weighted according to
their empirical performance with respect to the pinball loss function. The authors show that this
construction results in intervals that have strong regret guarantees.

3.5.1 Theoretical Guarantees

The theoretical results were established for SAOCP using the linear interval constructor. The
following bound for the strongly adaptive regret holds for all subperiod lengths m ∈ JT K (Bhatnagar
et al. 2023):

SAReg(T,m) ≤ 15D
√
m(log T + 1) ≤ Õ(D

√
m).

It should be emphasized that this regret bounds holds simultaneously across all m, as opposed to
FACI, where a similar bound holds only for a single m. A bound on the coverage error of SAOCP has
also been established as:

|CovErr(T )| ≤ O
(

inf
β

(T 1/2−β + T β−1Sβ(T ))

)
.

where Sβ(T ) is a technical measure of the smoothness of the cumulative gradients and expert weights
for each of the candidate experts (Bhatnagar et al. 2023).

3.5.2 Tuning Parameters

The main tuning parameter for SAOCP is the learning rate γ of the SF-OGD sub-algorithms, which
we saw in the previous section has for optimal choice γ = D/

√
3. Values for D that are too low

lead to intervals that adapt slowly, and values that are too large lead to jagged intervals. In their
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experiments, the authors select a value for D by picking the maximum residual from a calibration
set. The second tuning parameter is the lifetime multiplier g which controls the lifetime of each of
the experts. We follow the original paper in setting g = 8. Figure 5 illustrates the SAOCP algorithm
for choices of D ∈ {0.01, 0.1, 0.25, 0.5}.
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Figure 5: Example 80% prediction intervals generated by the SAOCP algorithm with di�erent values
of the maximum radius parameterD. Blue and red points are observations that fell inside and outside
the prediction intervals, respectively.

4 Simulation Studies

We present two empirical studies in order to compare the performance of the AgACI, FACI, SF-OGD,
and SAOCP algorithms applied to simple simulated datasets. The original ACI algorithm was not
included as it is not clear how to set the tuning rate γ, which can have a large e�ect on the resulting
intervals. For both simulations we set the targeted empirical coverage to α = 0.8, α = 0.9, and
α = 0.95. For each algorithm, we chose the interval constructor that was used in its original
presentation (see Table 1).

4.1 Time series with ARMA errors

In this simulation we reproduce the setup described in Za�ran et al. (2022) (itself based on that of
Friedman, Grosse, and Stuetzle (1983)). The time series values yt for t ∈ JT K (T = 600) are simulated
according to

yt = 10 sin(πXt,1Xt,2) + 20(Xt,3 − 0.5)2 + 10Xt,4 + 5Xt,5 + 0Xt,6 + εt,
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where Xt,i, i = 1, . . . , 6, t ∈ JT K are independently uniformly distributed on [0, 1] and the noise
terms εt are generated according to an ARMA(1, 1) process:

εt = ψεt−1 + ξt + θξt−1,

ξt ∼ N(0, σ2).

We set ψ and θ jointly to each value in {0.1, 0.8, 0.9, 0.95, 0.99} to simulate time series with in-
creasing temporal dependence. The innovation variance was set to σ2 = (1− ψ2)/(1 + 2ψξ + ξ2)
(to ensure that the process has constant variance). For each setting, 25 simulated datasets were
generated.

To provide point predictions for the ACI algorithms, at each time t ≥ 200 a random forest model
was �tted to the previously observed data using the ranger R package (Wright and Ziegler 2017).
The estimated model was then used to predict the subsequent time point. The maximum radius D
was estimated as the maximum residual observed between time points t = 200 and t = 249. The
ACI models were then executed starting at time point t = 250. All metrics are based on time points
t ≥ 300 to allow time for the ACI methods to initialize.

simulate <- function(seed, psi, xi, N = 1e3) {
set.seed(seed)

s <- 10
innov_scale <- sqrt(s * (1 - psi2) / (1 + 2 * psi * xi + xi2))

X <- matrix(runif(6 * N), ncol = 6, nrow = N)
colnames(X) <- paste0("X", 1:6)

epsilon <- arima.sim(n = N, model = list(ar = psi, ma = xi), sd = innov_scale)

mu <- 10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] - 0.5)2 + 10 * X[,4] + 5 * X[,5]
y <- mu + epsilon
as_tibble(X) %>% mutate(y = y)

}

estimate_model <- function(data, p = NULL) {
if(!is.null(p)) p()
preds <- numeric(nrow(data))
for(t in 200:nrow(data)) {

model <- ranger::ranger(y ~ X1 + X2 + X3 + X4 + X5 + X6, data = data[1:(t - 1),])
preds[t] <- predict(model, data = data[t, ])$predictions

}
preds

}

metrics <- function(fit) {
indices <- 300:length(fit$Y)
aci_metrics(fit, indices)

}

fit <- function(data, preds, method, alpha, p = NULL) {
if(!is.null(p)) p()
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D <- max(abs(data$y - preds)[200:249])
gamma <- D / sqrt(3)

interval_constructor = case_when(
method == "AgACI" ~ "conformal",
method == "FACI" ~ "conformal",
method == "SF-OGD" ~ "linear",
method == "SAOCP" ~ "linear"

)

if(interval_constructor == "linear") {
gamma_grid = seq(0.1, 1, 0.1)

}
else {

gamma_grid <- c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128)
}

parameters <- list(
interval_constructor = interval_constructor,
D = D,
gamma = gamma,
gamma_grid = gamma_grid

)

aci(
data$y[250:nrow(data)],
preds[250:nrow(data)],
method = method,
alpha = alpha,
parameters = parameters

)
}

N_sims <- 25
simulation_data <- expand_grid(

index = 1:N_sims,
param = c(0.1, 0.8, 0.9, 0.95, 0.99),
N = 600

) %>%
mutate(psi = param, xi = param)

# For each simulated dataset, fit multiple ACI methods
simulation_study_setup <- expand_grid(

alpha = c(0.8, 0.9, 0.95),
method = c("AgACI", "SF-OGD", "SAOCP", "FACI")

)

simulation_study1 <- run_simulation_study1(
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simulation_data,
simulation_study_setup,
estimate_model,
fit,
workers = 8

)

The coverage errors, mean interval widths, and path lengths of each of the algorithms for α = 0.9
are shown in Figure 6 (results for α ∈ {0.8, 0.95} were similar and are available in the appendix). All
methods achieved near optimal empirical coverage, although SAOCP tended to slightly undercover.
The mean interval widths were similar across methods, although again SAOCP had slightly shorter
intervals (as could be expected given its tendency to undercover). The path length of SAOCP was
larger than any of the other methods. To investigate why, Figure 7 plots wt −wt−1, the di�erence in
interval width between times t− 1 and t, for each method in one of the simulations. The interval
widths for AgACI and FACI change slowly relative to those for SF-OGD and SAOCP. For SAOCP, we
can see the interval widths have larger �uctuations than for the other methods, explaining its higher
path width.

simulation_one_plot(simulation_study1$results %>% filter(alpha == 0.9))
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Figure 6: Coverage errors, mean interval widths, and path lengths for the �rst simulation study with
target coverage α = 0.9.

fits <- simulation_study1$example_fits

par(mfrow = c(2, 2), mar = c(3, 4, 2, 1))
for(i in 1:4) {

plot(
diff(fits$fit[[i]]$intervals[,2] - fits$fit[[i]]$intervals[,1]),
main = fits$method[[i]],
xlab = "T",
ylab = expression(w[t] - w[t - 1]))

}
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
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Figure 7: Di�erence in successive interval widths (wt − wt−1) from an illustrative simulation from
the �rst simulation study.

4.2 Distribution shift

This simulation study features time series with distribution shifts. The setup is quite simple in order
to probe the basic performance of the methods in response to distribution shift. As a baseline, we
simulate time series of independent data with

yt ∼ N(0, σ2t ),

σt = 0.2,

for all t ∈ JT K (T = 500). In the second type of time series, the observations are still independent
but their variance increases halfway through the time series:

yt ∼ N(0, σ2t ),

σt = 0.2 + 0.5I[t > 250].

In each case, the ACI algorithms are provided with the unbiased predictions µ̂t = 0, t ∈ JT K. Fifty
simulated datasets were generated for each type of time series.

simulate <- function(seed, distribution_shift = 0, N = 1e3, sigma = 0.2) {
set.seed(seed)
mu <- rep(0, N)
shift <- 1:N > (N / 2)
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muhat <- mu
y <- rnorm(n = length(mu), mean = mu, sd = sigma + ifelse(shift, distribution_shift, 0))

tibble(y = y, muhat = muhat)
}

metrics <- function(fit) {
N <- length(fit$Y)
indices <- which(1:N > 50)
aci_metrics(fit, indices)

}

fit <- function(data, method, alpha, p = NULL) {
if(!is.null(p)) p()

interval_constructor = case_when(
method == "AgACI" ~ "conformal",
method == "FACI" ~ "conformal",
method == "SF-OGD" ~ "linear",
method == "SAOCP" ~ "linear"

)

if(interval_constructor == "linear") {
D <- max(abs(data$y - data$muhat)[1:50])

}
else {

D <- 1
}

gamma <- D / sqrt(3)

if(interval_constructor == "linear") {
gamma_grid <- seq(0.1, 2, 0.1)

}
else {

gamma_grid <- c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128)
}

parameters <- list(
interval_constructor = interval_constructor,
D = D,
gamma = gamma,
gamma_grid = gamma_grid

)

aci(data$y, data$muhat, method = method, alpha = alpha, parameters = parameters)
}

N_sims <- 5e1
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simulation_study_setup2 <- expand_grid(
index = 1:N_sims,
distribution_shift = c(0, 0.5),
alpha = c(0.8, 0.9, 0.95),
N = 500,
method = c("AgACI", "SF-OGD", "SAOCP", "FACI"),

) %>%
mutate(data = pmap(list(index, distribution_shift, N), simulate))

simulation_study2 <- run_simulation_study2(simulation_study_setup2, fit, workers = 8)

The coverage error, mean path length, and mean interval widths of the algorithms are summarized
in Figure 8 (an alternative plot is included in the appendix as Figure 14). The coverage error of all
the algorithms is near the desired value in the absence of distribution shift. On the contrary, all of
the algorithms except AgACI and FACI undercover when there is distributional shift. SAOCP tends
to have higher average path lengths than the other methods. An illustrative example of prediction
intervals generated by each method for one of the simulated time series with distribution shift is
shown in Figure 9. The SAOCP prediction intervals in the example before the distribution shift are
more jagged than those produced by the other methods, which illustrates why SAOCP may have
longer path lengths.

fits <- simulation_study2$example_fits

coverage <- format_coverage(extract_metric(fits$fit, "coverage"))
path_length <- format_path_length(extract_metric(fits$fit, "path_length"))

par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))
for(i in 1:4) {

plot(fits$fit[[i]], legend = FALSE, main = fits$method[[i]], index = 51:500)
text(x = -10, y = -1.5, labels = bquote(EmpCov == .(coverage[[i]]) ), pos = 4)
text(x = -10, y = -2, labels = bquote(PathLength == .(path_length[[i]]) ), pos = 4)

}
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
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Figure 8: Mean interval width vs coverage error (top) and Mean Path Length vs. coverage error
(bottom) for the second simulation study. The error bars represent the 10% to 90% quantiles of the
metrics over the simulation datasets.
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Figure 9: Example prediction intervals (target coverage α = 0.9) from the second simulation study
of time series with distributional shift, in which the shift occurs at time 250. Blue and red points are
observations that fell inside and outside the prediction intervals, respectively.

5 Case Study: In�uenza Forecasting

In�uenza is a highly infectious disease that is estimated to infect approximately one billion individuals
each year around the world (Krammer et al. 2018). In�uenza incidence in temperate climates tends to
follow a seasonal pattern, with the highest number of infections during what is commonly referred to
as the �u season (Lofgren et al. 2007). Accurate forecasting of in�uenza is of signi�cant interest to aid
in public health planning and resource allocation. To investigate the accuracy of in�uenza forecasts,
the US Centers for Disease Control (CDC) initiated a challenge, referred to as FluSight, in which
teams from multiple institutions submitted weekly forecasts of in�uenza incidence (Biggersta� et al.
2016). Reich et al. (2019) evaluated the accuracy of the forecasts over seven �u seasons from 2010 to
2017. As a case study, we investigate the use of ACI algorithms to augment the FluSight forecasts
with prediction intervals.

The FluSight challenge collected forecasts for multiple prediction targets. For this case study, we
focus on national (US) one-week ahead forecasts of weighted in�uenza-like illness (wILI), which
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is a population-weighted percentage of doctors visits where patients presented with in�uenza-like
symptoms (Biggersta� et al. 2016). The FluSight dataset, which is publicy available, include forecasts
derived from 21 di�erent forecasting models, from both mechanistic and statistical viewpoints
(Flusight Network 2020; Tushar et al. 2018, 2019). For our purposes, we treat the way the forecasts
were produced as a black box.

Formally, let yt, t ∈ JT K be the observed national wILI at time t, and let µ̂j,t, j ∈ JJK, be the one-week
ahead forecast of the wILI from model j at time t. Two of the original 21 forecasting methods were
excluded from this case study due to poor predictive performance (Delphi_Uniform and CUBMA).
In addition, six methods had identical forecasts (CU_EAKFC_SIRS, CU_EKF_SEIRS, CU_EKF_SIRS,
CU_RHF_SEIRS, CU_RHF_SIRS), and therefore we only included one (CU_EAKFC_SEIRS) in the
analysis. The ACI methods were then applied to the log-observations and log-predictions, where
the log-transformation was used to constrain the �nal prediction intervals to be positive. The �rst
�u season (2010-2011) was used as a warm-up for each ACI method, and we report the empirical
performance of the prediction intervals for the subsequent seasons (six seasons from 2012-2013 to
2016-2017). The ACI algorithms target prediction intervals with coverage of α = 0.8, α = 0.9, and
α = 0.95. As in the simulation study, we used the interval constructor corresponding to the original
presentaiton of each algorithm (see Table 1).

url <- "https://raw.githubusercontent.com/FluSightNetwork/cdc-flusight-ensemble/master/scores/point_ests.csv"
raw_data <- read_csv(url, show_col_types = FALSE)

fit <- function(data, method, alpha) {
first_season <- data$Season == "2010/2011"
D <- max(abs(data$obs_value - data$Value)[first_season])

interval_constructor = case_when(
method == "AgACI" ~ "conformal",
method == "FACI" ~ "conformal",
method == "SF-OGD" ~ "linear",
method == "SAOCP" ~ "linear"

)

gamma <- D / sqrt(3)

if(interval_constructor == "linear") {
gamma_grid = seq(0.1, 1, 0.1)

}
else {

gamma_grid <- c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128)
}

parameters <- list(
interval_constructor = interval_constructor,
D = D,
gamma = gamma,
gamma_grid = gamma_grid

)

aci(
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Y = log(data$obs_value),
predictions = log(data$Value),
method = method,
parameters = parameters,
alpha = alpha

)
}

metrics <- function(data, fit) {
aci_metrics(fit, indices = which(data$Season != "2010/2011"))

}

analysis_data <- raw_data %>%
filter(

Target == "1 wk ahead",
Location == "US National",
!(model_name %in% c("Delphi_Uniform", "CUBMA", "CU_EAKFC_SIRS", "CU_EKF_SEIRS", "CU_EKF_SIRS", "CU_RHF_SEIRS", "CU_RHF_SIRS"))

) %>%
arrange(Year, Model.Week) %>%
group_by(model_name) %>%
nest()

fits <- expand_grid(
analysis_data,
tibble(method = c("AgACI", "FACI", "SF-OGD", "SAOCP")),
tibble(alpha = c(0.8, 0.9, 0.95))

) %>%
mutate(fit = pmap(list(data, method, alpha), fit),

metrics = map2(data, fit, metrics))

case_study_results <- fits %>%
select(-data, -fit) %>%
mutate(metrics = map(metrics, as_tibble)) %>%
unnest(c(metrics))

The coverage errors, mean interval widths, and path lengths of the prediction intervals for each
of the underlying forecast models is shown in Figure 10. In all cases the absolute coverage error
was less than 0.1. SF-OGD performed particularly well, with coverage errors close to zero for all
forecasting models. Interval widths were similar across methods, with SAOCP slightly shorter. Path
Lengths were shorter for AgACI and FACI and longer for SAOCP.

case_study_plot(case_study_results)
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Figure 10: Coverage errors, mean interval widths, and path lengths of prediction intervals generated
with each ACI method based on forecasts from each of the 19 underlying in�uenza forecasting
models.

As an illustrative example, in Figure 11 we plot the point forecasts from one of the forecasting models
(based on SARIMA with no seasonal di�erencing) and the associated ACI-generated 90% prediction
intervals for each season from 2011-2017. In general, in this practical setting all of the ACI algorithms
yield quite similar prediction intervals. Interestingly, the forecasts in 2011-2012 underpredicted the
observations for much of the season. The algorithm responds by making the intervals wider to
cover the observations, and because the intervals are symmetric the lower bound then becomes
unrealistically low. A similar phenomenon can be seen in the growth phase of the 2012/2013 season
as well.

sarima_fits <- fits %>% filter(
model_name == "ReichLab_sarima_seasonal_difference_FALSE",
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alpha == 0.9
) %>%

mutate(output = map(fit, extract_intervals)) %>%
select(method, alpha, data, output) %>%
unnest(c(data, output)) %>%
filter(Season != "2010/2011")

sarima_fits %>%
ggplot(aes(x = Model.Week, y = log(obs_value))) +
geom_point(aes(shape = "Observed")) +
geom_line(aes(y = pred, lty = "Forecast"), color = "black") +
geom_line(aes(y = lower, color = method)) +
geom_line(aes(y = upper, color = method)) +
facet_wrap(~Season) +
labs(

x = "Flu Season Week",
y = "log(wILI)",
title = "SARIMA forecasts with ACI 90% prediction intervals"

)
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Figure 11: Example conformal prediction intervals for six �u seasons based on forecasts from a
SARIMA type model.

6 Discussion

The results of our simulations and case study show that, when tuning parameters are chosen well,
Adaptive Conformal Inference algorithms yield well-performing prediction intervals. On the contrary,
poor choice of tuning parameters can lead to intervals of low utility. Furthermore, in some cases the
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prediction intervals may appear to perform well with respect to metrics like the empirical coverage
error, while simultaneously being useless in practice. The original ACI algorithm illustrates this
phenomenon: too small a value of its learning rate γ yields prediction intervals that are not reactive
enough, while too large a value yields intervals that change too fast. In both cases, the empirical
coverage may appear well-calibrated, while the prediction intervals will not be useful. Thus, the core
challenge in designing an ACI algorithm is in �nding an optimal level of reactivity for the prediction
intervals. As users of these algorithms, the challenge is in �nding values for the tuning parameters
that avoid pathological behaviors.

Several of the algorithms investigated in this paper handle the problem of �nding an optimal level of
reactivity by aggregating prediction intervals generated by a set of underlying ACI algorithms. Our
results show the algorithms can perform well in multiple di�cult scenarios. However, the overall
e�ect of these approaches is to shift the problem to a higher level of abstraction: we still need to set
tuning parameters that control the amount of reactivity, but do so at a higher level than the original
ACI algorithm. It is desirable that these tuning parameters be easily interpretable, with simple
strategies available for setting them. An advantage of the SF-OGD and SAOCP algorithms in this
respect are that their main tuning parameter, the maximum radius D, is easily interpretable as the
maximum possible di�erence between the input predictions and the truth. It is also straightforward
to choose this parameter based on a calibration set, although this strategy does not necessarily work
well in cases of distribution shift. We also found that an advantage of the AgACI method is its
robustness to the choice of its main tuning parameter, the set of candidate learning rates. Indeed, if
AgACI does not perform well, one can simply increase the number of candidate learning rates.

A key challenge in tuning the algorithms arises in settings of distribution shift, where methods for
choosing hyperparameters based on a calibration set from before the distribution shift will likely not
perform well. The second simulation study we conducted probed this setting in a simple scenario.
We found that several of the methods yielded prediction intervals that had non-optimal empirical
coverage. As we picked hyperparameters based on a calibration set formed before the distribution
shift, it is not surprising that the resulting tuning parameters are not optimal. This underscores the
di�culty in designing ACI algorithms that can adapt to distribution shifts, and in �nding robust
methods for choosing hyperparameters. In practice, it is possible the second simulation study does
not accurately re�ect real-world scenarios. Indeed, the benchmarks presented in Bhatnagar et al.
(2023) using the datasets from the M4 competition (Makridakis, Spiliotis, and Assimakopoulos 2020),
and using point predictions generated by diverse prediction algorithms, found that ACI algorithms
exhibited good performance in terms of empirical coverage. Nevertheless, our recommendation for
future papers in this line of research is to include simulation studies for simple distributional shift
scenarios as a benchmark.

Our case study results illustrate the dependence of the ACI algorithms on having access to high-
quality point predictions. If the predictions are biased, for example, then the prediction intervals
may be able to achieve optimal coverage at the expense of larger interval widths. Using ensemble
methods to combine forecasts from several �exible machine learning models is one strategy that can
be used to hedge against model misspeci�cation and improve the quality of forecasts (Makridakis,
Spiliotis, and Assimakopoulos 2020).

There remain many possible extensions of ACI algorithms. The algorithms presented in this work
primarily consider symmetric intervals evaluated using the pinball loss function (AgACI can yield
asymmetric intervals because the aggregation rule is applied separately to the lower and upper
bounds from the underlying experts, but those underlying experts only produce symmetric intervals).
A simple extension would switch to using the interval loss function (Gneiting and Raftery 2007),
which would allow for asymmetric intervals where two parameters are learned for the upper and
lower bounds, respectively. It may also be of interest to generate prediction intervals that have
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coverage guarantees for arbitrary subsets of observations (for example, we may seek prediction
intervals for daily observations that have near optimal coverage for every day of the week, or month
of the year), similar to guarantees provided by the MultiValid Prediction method described in (Bastani
et al. 2022). Another avenue for theoretical research is to propose algorithms with provable bounds
for the coverage and regret that do not depend on the outcome being bounded.
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7 Appendix

7.1 Additional simulation study results

simulation_one_plot(simulation_study1$results)
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Figure 12: Coverage errors, mean interval widths, and path lengths for the �rst simulation study
with target coverage α ∈ {0.8, 0.9, 0.95}.

34



simulation_one_joint_plot(simulation_study1$results)
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Figure 13: Mean Interval Width vs Coverage Error for the �rst simulation study. The error bars
represent the 10% to 90% quantiles of the metrics over the simulation datasets.

simulation_two_plot(simulation_study2$results)
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Figure 14: Coverage error, mean interval width, and path length forα = 0.8, 0.9, 0.95 and simulations
with and without distributional shift.
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