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Conformal Inference (CI) is a popular approach for generating nite sample prediction intervals based on the output of any point prediction method when data are exchangeable. Adaptive Conformal Inference (ACI) algorithms extend CI to the case of sequentially observed data, such as time series, and exhibit strong theoretical guarantees without having to assume exchangeability of the observed data. The common thread that unites algorithms in the ACI family is that they adaptively adjust the width of the generated prediction intervals in response to the observed data. We provide a detailed description of ve ACI algorithms and their theoretical guarantees, and test their performance in simulation studies. We then present a case study of producing prediction intervals for in uenza incidence in the United States based on black-box point forecasts. Implementations of all the algorithms are released as an open-source R package, AdaptiveConformal, which also includes tools for visualizing and summarizing conformal prediction intervals.

Introduction

Conformal Inference (CI) is a family of methods for generating nite sample prediction intervals around point predictions when data are exchangeable [START_REF] Vovk | Algorithmic Learning in a Random World[END_REF][START_REF] Shafer | A Tutorial on Conformal Prediction[END_REF][START_REF] Angelopoulos | Conformal Prediction: A Gentle Introduction[END_REF]. The input point predictions can be derived from any prediction method, making CI a powerful tool for augmenting black-box prediction algorithms with prediction intervals. Classical CI methods are able to yield marginally valid intervals with only the assumption that the joint distribution of the data does not change based on the order of the observations (that is, they are exchangeable). However, in many real-world settings data are not exchangeable: for example, time series data usually cannot be assumed to be exchangeable due to temporal dependence. A recent line of research examines the problem of generating prediction intervals for observations that are observed online (that is, one at a time) and for which exchangeability is not assumed to hold [START_REF] Gibbs | Adaptive Conformal Inference Under Distribution Shift[END_REF][START_REF] Za Ran | Adaptive Conformal Predictions for Time Series[END_REF][START_REF] Gibbs | Conformal Inference for Online Prediction with Arbitrary Distribution Shifts[END_REF][START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]. The methods from this literature, which we refer to generally as Adaptive Conformal Inference (ACI) algorithms, work by adaptively adjusting the width of the generated prediction intervals in response to the observed data.

Informally, suppose a sequence of outcomes y t ∈ R, t = 1, . . . , T are observed one at a time. Before seeing each observation, we have at our disposal a point prediction μt ∈ R that can be generated by any method. Our goal is to nd an algorithm for producing prediction intervals [ t , u t ], t ≤ u t such that, in the long run, the observations y t fall within the corresponding prediction intervals roughly α × 100% of the time: that is, lim T →∞ 1 /T T t=1 I{y t ∈ [ t , u t ]} = α. The original ACI algorithm [START_REF] Gibbs | Adaptive Conformal Inference Under Distribution Shift[END_REF] is based on a simple idea: if the previous prediction interval at time (t -1) did not cover the true observation, then the next prediction interval at time t is made slightly wider. Conversely, if the previous prediction interval did include the observation, then the next prediction interval is made slightly narrower. It can be shown that this procedure yields prediction intervals that in the long run cover the true observations the desired proportion of the time.

The main tuning parameter of the original ACI algorithm is a learning rate that controls how fast prediction interval width changes. If the learning rate is too low, then the prediction intervals will not be able to adapt fast enough to shifts in the data generating distribution; if it is too large, then the intervals will oscillate widely. The critical dependence of the original ACI algorithm on proper choice of its learning rate spurred subsequent research into meta-algorithms that learn the correct learning rate (or an analogue thereof) in various ways, typically drawing on approaches from the online learning literature. In this paper, we present four such algorithms: Aggregated ACI (AgACI, Za ran et al. 2022), Fully Adaptive Conformal Inference (FACI, Gibbs and Candès 2022), Scale-Free Online Gradient Descent (SF-OGD, [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF], and Strongly Adaptive Online Conformal Prediction (SAOCP, [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]. We note that the adaption of conformal inference techniques is an active area of research and the algorithms we focus on in this work are not exhaustive; see among others [START_REF] Feldman | Achieving Risk Control in Online Learning Settings[END_REF], [START_REF] Bastani | Practical Adversarial Multivalid Conformal Prediction[END_REF], [START_REF] Xu | Conformal Prediction Interval for Dynamic Time-Series[END_REF], and Xu and Xie (2023).

Our primary practical contribution is an implementation of each algorithm in an open source R package, AdaptiveConformal, which is available at https://github.com/herbps10/Adaptive Conformal. The package also includes routines for visualization and summary of the prediction intervals. We note that Python versions of several algorithms were also made available by Za ran et al. ( 2022) and [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF], but to our knowledge this is the rst package implementing them in R. In addition, several R packages exist for conformal inference in other contexts, including conformalInference focusing on regression [START_REF] Tibshirani | conformalInference: Tools for Conformal Inference in Regression[END_REF], conformalInference.fd, with methods for functional responses [START_REF] Diquigiovanni | conformalInference.fd: Tools for Conformal Inference for Regression in Multivariate Functional Setting[END_REF], and cfcausal for causal inference related functionals [START_REF] Lei | Conformal Inference of Counterfactuals and Individual Treatment E ects[END_REF]. Our second practical contribution is to compare the performance of the algorithms in simulation studies and in a case study generating prediction intervals for in uenza incidence in the United States based on black-box point forecasts.

The rest of the paper unfolds as follows. In Section 2, we present a uni ed theoretical framework for analyzing the ACI algorithms based on the online learning paradigm. In Section 3 we provide descriptions of each algorithm along with their known theoretical properties. In Section 4 we compare the performance of the algorithms in several simulation studies. Section 5 gives a case study based on forecasting in uenza in the United States. Finally, Section 6 provides a discussion and ideas for future research in this rapidly expanding eld.

Theoretical Framework

Notation: for any integer N ≥ 1 let N := {1, . . . , N }. Let I be the indicator function. Let ∇f denote the gradient (subgradient) of the di erentiable (convex) function f . We consider an online learning scenario in which we gain access to a sequence of observations (y t ) t≥1 one at a time (see [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] for an comprehensive account of online learning theory). Fix α ∈ (0, 1) to be the target empirical coverage of the prediction intervals. The goal is to output at time t a prediction interval for the unseen observation y t , with the prediction interval generated by an interval construction function C t . Formally, let C t be a function that takes as input a parameter θ t ∈ R and outputs a closed prediction interval [ t , u t ]. The interval construction function must be nested: if θ > θ, then C t (θ) ⊆ C t (θ ). In words, larger values of θ imply wider prediction intervals. The interval constructor is indexed by t to emphasize that it may use other information at each time point, such as a point prediction μt ∈ R. We make no restrictions on how this external information is generated.

De ne r t := inf{θ ∈ R : I(y t ∈ C t (θ))} to be the radius at time t. The radius is the smallest possible θ such that the prediction interval covers the observation y t . A key assumption for the theoretical analysis of several of the algorithms is that the radii are bounded:

Assumption: there exists a D > 0 such that r t < D for all t.

Next, we describe two existing de nitions of interval construction functions.

Linear Intervals

A simple method for forming the prediction intervals is to use the parameter θ t to directly de ne the width of the interval. Suppose that at each time t we have access to a point prediction μt ∈ R. Then we can form a symmetric prediction interval around the point estimate using

θ → C t (θ) := [μ t -θ, μt + θ].
We refer to this as the linear interval constructor. Note that in this case, the radius is simply the absolute residual r t = |μ t -y t |.

Quantile Intervals

The original ACI paper proposed constructing intervals based on the previously observed residuals [START_REF] Gibbs | Adaptive Conformal Inference Under Distribution Shift[END_REF]. Let S : R 2 → R be a function called a nonconformity score. A popular choice of nonconformity score is the absolute residual: (µ, y) → S(µ, y) := |µ -y|. Let s t := S(μ t , y t ) be the nonconformity score of the tth-observation. The quantile interval construction function is then given by C t (θ t ) := [μ t -Quantile(θ, {s 1 , . . . , s t-1 }), μt + Quantile(θ, {s 1 , . . . , s t-1 })]

where Quantile(θ, A) denotes the empirical θ-quantile of the elements in the set A. Note that C t is indeed nested in θ t because the Quantile function is non-decreasing in θ.

Our proposed AdaptiveConformal package takes the absolute residual as the default nonconformity score, although the user may also specify any custom nonconformity score by supplying it as an R function.

Online Learning Framework

We now introduce a loss function that de nes the quality of a prediction interval with respect to a realized observation. De ne the pinball loss L α as

(θ, r) → L α (θ, r) := α(θ -r), θ ≥ r (1 -α)(r -θ), θ < r.
The way in which the algorithm gains access to the data and incurs losses is as follows:

• Sequentially, for t = 1, . . . , T :

-Predict radius θ t and form prediction interval C t (θ t ).

-Observe true outcome y t and calculate radius r t .

-

Record err t := I[y t ∈ C t (θ t )].
-Incur loss L α (θ t , r t ).

This iterative procedure is at the core of the online learning theoretical framework in which theoretical results have been derived.

Assessing ACI algorithms

There are two di erent perspectives we can take in measuring the quality of an ACI algorithm that generates a sequence (θ t ) t∈ T . First, we could look at how close the empirical coverage of the generated prediction intervals is to the desired coverage level α. Formally, de ne the empirical coverage as the proportion of observations that fell within the corresponding prediction interval:

EmpCov(T ) := 1 T T t=1 (1 -err t ).
The coverage error is then given by CovErr(T ) := EmpCov(T ) -α.

The second perspective is to look at how well the algorithm controls the incurred pinball losses.

Following the classical framework from the online learning literature, we de ne the regret as the di erence between the cumulative loss yielded by a sequence (θ t ) t∈ T versus the cumulative loss of the best possible xed choice:

Reg(T ) := T t=1 L α (θ t , r t ) -inf θ * ∈R T t=1 L α (θ * , r t ).
In settings of distribution shift, it may not be appropriate to compare the cumulative loss of an algorithm to a xed competitor. As such, stronger notions of regret have been de ned. The strongly adaptive regret is the largest regret over any subperiod of length k ∈ T :

SAReg(T, m) := max [τ,τ +m-1]⊆ T τ +m-1 t=τ L α (θ t , r t ) -inf θ * ∈R τ +m-1 t=τ L α (θ * , r t ) .
Both ways of evaluating ACI methods are important because targeting only one or the other can lead to algorithms that yield prediction intervals that are not practically useful. As a simple pathological example of only targeting the coverage error, suppose we wish to generate α = 50% prediction intervals. We could choose to alternate θ between 0 and ∞, such that err t alternates between 0 and 1. The empirical coverage would then trivially converge to the desired level of 50%. However, the same algorithm would yield in nite regret (see [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF] for a more in-depth example of an scenario in which coverage is optimal but the regret grows linearly). On the other hand, an algorithm that has arbitrarily small regret may not yield good empirical coverage. Suppose the observations and point predictions are constant: y t = 1 and μt = 0 for all t ≥ 1. Consider a simple class of algorithms that outputs constantly θ t = θ for some θ < 1. With the linear interval construction function, the prediction intervals are then

C t (θ t ) = [-θ , θ ].
The regret is given by Reg(T ) = 2T α(1 -θ ), which approaches zero as θ approaches 1. The empirical coverage is, however, always zero. In other words, the regret can be arbitrarily close to zero while at the same time the empirical coverage does not approach the desired level.

These simple examples illustrate that, unfortunately, bounds on the coverage error and bounds on the regret are not in general interchangeable. It is possible, however, to show equivalencies by either (1) making distributional assumptions on the data or (2) using additional information about how the algorithm produces the sequence (θ t ) t∈ T [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF].

It may also be informative to summarize a set of prediction intervals in ways beyond their coverage error or their regret. A common metric for prediction intervals is the mean interval width:

MeanWidth(T ) := 1 T T t=1 w t ,
where w t := u tt is the interval width at time t.

Finally, we introduce a metric that is intended to capture pathological behavior that can arise with ACI algorithms where the prediction intervals oscillate between being extremely narrow and extremely wide. De ne the path length of prediction intervals generated by an ACI algorithm as

PathLength(T ) := T t=2 |w t -w t-1 |.
A high path length indicates that the prediction intervals were variable over time, and a low path length indicates the prediction intervals were stable. For demonstration purposes we assume we have access to unbiased predictions μt = 0 for all t ∈ T . Throughout we set the target empirical coverage to α = 0.8.

Algorithms

Adaptive Conformal Inference (ACI)

Algorithm 1 Adaptive Conformal Inference 1: Input: starting value θ 1 , learning rate γ > 0.

2: for t = 1, 2, . . . , T do 3:

Output: prediction interval C t (θ t ).

4:

Observe y t .

5:

Evaluate err t = I[y t ∈ C t (θ t )].

6:

Update θ t+1 = θ t + γ(err t -(1 -α)).

7: end for

The original ACI algorithm [START_REF] Gibbs | Adaptive Conformal Inference Under Distribution Shift[END_REF]; Algorithm 1 ) adaptively adjusts the width of the prediction intervals in response to the observations. The updating rule for the estimated radius can be derived as an online subgradient descent scheme. The subgradient of the pinball loss function with respect to θ is given by

∇L α (θ, r) =      {-α}, θ < r, {1 -α}, θ > r, [-α, 1 -α], θ = r
It follows that, for all θ t ∈ R and r t ∈ R,

1 -α -err t ∈ ∇L α (θ t , r t ).
This leads to the following update rule for θ based on subgradient descent:

θ t+1 = θ t + γ(err t -(1 -α)),
where γ > 0 is a user-speci ed learning rate. For intuition, note that if y t fell outside of the prediction interval at time t (err t = 1) then the next interval is widened (θ t+1 = θ t + γα). On the contrary, if y t fell within the interval (err t = 0) then the next interval is shortened (θ t+1 = θ t -γ(1 -α)). The learning rate γ controls how fast the width of the prediction intervals changes in response to the data.

Theoretical Guarantees

The ACI algorithm has the following nite sample bound on the coverage error [START_REF] Gibbs | Adaptive Conformal Inference Under Distribution Shift[END_REF]. For all γ > 0,

|CovErr(T )| ≤ D + γ γT .
This result was originally shown for ACI with the choice of the quantile interval constructor, although it can also be extended to other interval constructors [START_REF] Feldman | Achieving Risk Control in Online Learning Settings[END_REF]. In addition, standard results for online subgradient descent yield the following regret bound with the use of the linear interval constructor, assuming that the true radii are bounded by D:

Reg(T ) ≤ O(D 2 /γ + γT ) ≤ O(D √ T ),
where the second inequality follows if the optimal choice of γ = D/ √ T is used [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]. Taken together, these theoretical results imply that while the coverage error is guaranteed to converge to zero for any choice of γ, achieving sublinear regret requires choosing γ more carefully. This highlights the importance of both ways of assessing ACI algorithms: if we only focused on controlling the coverage error, we might not achieve optimal control of regret, leading to intervals that are not practically useful.

Tuning Parameters

Therefore, the main tuning parameter is the learning rate γ. The theoretical bounds on the coverage error suggest setting a large γ such that the coverage error decays quickly in T ; however, in practice and setting γ too large will lead to intervals with large oscillations as seen in Figure 1. This is quanti ed in the path length, which increases signi cantly as γ increases, even though the empirical coverage remains near the desired value of 80%. On the other hand, setting γ too small will lead to intervals that do not adapt fast enough to distribution shifts. Thus, choosing a good value for γ is essential. However, the optimal choice γ = D/ √ T cannot be used directly in practice unless the time series length T is xed in advance, or the so called "doubling trick" is used to relax the need to know T in advance [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF].

The theoretical results guaranteeing the performance of the ACI algorithm do not depend on the choice of starting value θ 1 , and thus in practice any value can be chosen. Indeed, the e ect of the choice of θ 1 decays over time as a function of the chosen learning rate. In practice, substantive prior information can be used to pick a reasonable starting value. By default, the AdaptiveConformal package sets θ 1 = α when the quantile interval predictor is used, and θ 1 = 0 otherwise, although in both cases the user can supply their own starting value. The behavior of the early prediction intervals in the examples (Figure 1) is driven by the small number of residuals available, which makes the output of the quantile interval constructor sensitive to small changes in θ. In practice, a warm-up period can be used before starting to produce prediction intervals so that the quantiles of the residuals are more stable. 

Aggregated Adaptive Conformal Inference (AgACI)

The Aggregated ACI (AgACI; Algorithm 2 ) algorithm solves the problem of choosing a learning rate for ACI by running multiple copies of the algorithm with di erent learning rates, and then separately combining the lower and upper interval bounds using an online aggregation of experts algorithm [START_REF] Za Ran | Adaptive Conformal Predictions for Time Series[END_REF]. That is, one aggregation algorithm seeks to estimate the lower (1-α)/2 quantile, and the other seeks to estimate the upper 1 -(1 -α)/2 quantile. Za ran et al. ( 2022) experimented with multiple online aggregation algorithms, and found that they yielded similar results. Thus, we follow their lead in using the Bernstein Online Aggregation (BOA) algorithm as implemented in the opera R package [START_REF] Wintenberger | Optimal Learning with Bernstein Online Aggregation[END_REF][START_REF] Gaillard | Opera: Online Prediction by Expert Aggregation[END_REF]. BOA is an online algorithm that forms predictions for the lower (or upper) prediction interval bound as a weighted mean of the candidate ACI prediction interval lower (upper) bound, where the weights are determined by each Algorithm 2 Aggregated Adaptive Conformal Inference 1: Input: candidate learning rates (γ k ) 1≤k≤K , starting value θ 1 . 2: Initialize lower and upper BOA algorithms

B := BOA(α ← (1 -α)/2) and B u := BOA(α ← (1 -(1 -α)/2)). 3: for k = 1, . . . , K do 4: Initialize ACI A k = ACI(α ← α, γ ← γ k , θ 1 ← θ 1 ). 5: end for 6: for t = 1, 2, . . . , T do 7: for k = 1, . . . , K do 8: Retrieve candidate prediction interval [ k t , u k t ] from A k . 9:
end for 10:

Compute aggregated lower bound ˜ t := B (( k t : k ∈ {1, . . . , K})).

11:

Compute aggregated upper bound ũt := B u ((u k t : k ∈ {1, . . . , K})).

12:

Output: prediction interval [ ˜ t , ũt ].
13:

Observe y t .

14:

for k = 1, . . . , K do 15:
Update A k with observation y t .

16:

end for 17:

Update B with observed outcome y t .

18:

Update B u with observed outcome y t . 19: end for candidate's past performance with respect to the quantile loss. As a consequence, the prediction intervals generated by AgACI are not necessarily symmetric around the point prediction, as the weights for the lower and upper bounds are separate.

Theoretical Gaurantees

AgACI departs from our main theoretical framework in that it does not yield a sequence (θ t ) t∈ T whose elements yield prediction intervals via a set construction function C t . Rather, the upper and lower interval bounds from a set of candidate ACI algorithms are aggregated separately. Thus, theoretical results such as regret bounds similar to those for the other algorithms are not available. It would be possible, however, to establish regret bounds for the pinball loss applied separately to the lower and upper bounds of the prediction intervals. It is unclear, however, how to convert such regret bounds into a coverage bound.

Tuning Parameters

The main tuning parameter for AgACI is the set of candidate learning rates. Beyond necessitating additional computational time, there is no drawback to having a large grid. As a default, AdaptiveConformal uses learning rates γ ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}. As a basic check, we can look at the weights assigned to each of the learning rates. If large weights are given to the smallest (largest) learning rates, it is a sign that smaller (or larger) learning rates may perform well. In addition each of the candidate ACI algorithms requires a starting value, which can be set to any value as discussed in the ACI section. Figure 2 illustrates AgACI applied to the running example with two sets of learning grids. The rst grid is the default, and the second grid includes the additional value γ = {0.0005}. For the rst grid, we can see that for the lower bound AgACI assigns high weight to the lowest learning rate (γ = 0.001). Based on this observation, as a sensitivity check, we reran the algorithm with the second learning grid, which yields weights that are less concentrated on a single learning rate. The output prediction intervals are similar, although slightly smoother in the second grid, re ecting the lack of distributional shift in the simulated data. 

Final Aggregation Weights

Learning Rates (γ)

Weight 5e-04 0.002 0.008 0.032

Upper Lower

Figure 2: Example 80% prediction intervals from the AgACI algorithm with starting values θ 1 = 0.8 and two di erent learning rate grids, where the second grid is double the size of the rst. In the left column, blue and red points are observations that fell inside and outside the prediction intervals, respectively.

Fully Adaptive Conformal Inference (FACI)

The Fully Adaptive Conformal Inference (FACI; Algorithm 3 ) algorithm was developed by the authors of the original ACI algorithm in part to address the issue of how to choose the learning rate parameter γ. In this respect the goal of the algorithm is similar to that of AgACI, although it is achieved slightly di erently. FACI also aggregates predictions from multiple copies of ACI run with di erent learning rates, but di ers in that it directly aggregates the estimated radii emitted from each algorithm based on their pinball loss (Gibbs and Candès 2022) using an exponential reweighting scheme [START_REF] Gradu | Adaptive Regret for Control of Time-Varying Dynamics[END_REF]. As opposed to AgACI, this construction allows for more straightforward development of theoretical guarantees on the algorithm's performance, because the upper and lower bounds of the intervals are not aggregated separately.

Theoretical Guarantees

FACI was originally proposed with the choice of the quantile interval constructor. FACI has the following strongly-adaptive regret bound [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]): for all γ > 0 and subperiod lengths m, 

SAReg(T, m) ≤ O(D 2 /γ + γm). If m is xed a-priori, then choosing γ = D/ √ m
Initialize expert A k = ACI(α ← α, γ ← γ k , θ 1 ← θ 1 ). 4: end for 5: for t = 1, 2, . . . , T do 6: De ne p k t := w k t / K i=1 w i t , for all 1 ≤ k ≤ K. 7: Set θ t = K k=1 θ k t p k t .
8:

Output: prediction interval C t (θ t ).

9:

Observe y t and compute r t .

10:

wk t ← w k t exp(-ηL α (θ k t , r t )), for all 1 ≤ k ≤ K. 11: Wt ← K i=1 wi t .
12:

w k t+1 ← (1 -σ) wk t + Wt σ/K. 13: Set err t := I[y t ∈ C t (θ t )].
14:

for k = 1, . . . , K do 15:
Update ACI A k with y t and obtain θ k t+1 .

16:

end for 17: end for time length for which we would like to control the regret, it is possible to choose an optimal tuning parameter value. However, we cannot control the regret simultaneously for all possible time lengths.

To establish a bound on the coverage error, the authors investigated a slightly modi ed version of FACI in which θ t is chosen randomly from the candidate θ t k with weights given by p t,k , instead of taking a weighted average. This is a common trick used in the literature as it facilitates theoretical analysis. In practice, the authors comment that this randomized version of FACI and the deterministic version lead to very similar results. The coverage error result also assumes that the hyperparameters can change over time: that is, we have t-speci c η t and σ t , rather than xed η and σ. The coverage error then has the following bound [START_REF] Gibbs | Conformal Inference for Online Prediction with Arbitrary Distribution Shifts[END_REF], where γ min and γ max are the smallest and largest learning rates in the grid, respectively:

|CovErr(T )| ≤ 1 + 2γ max T γ min + (1 + 2γ max ) 2 γ min exp(η t (1 + 2γ max )) 1 T T t=1 η t + 2 1 + γ max γ min 1 T T t=1 σ t .
Thus, if η t and σ t both converge to zero as t → ∞, then the coverage error will also converge to zero. In addition, under mild distributional assumptions the authors provide a type of short-term coverage error bound for arbitrary time spans, for which we refer to [START_REF] Gibbs | Conformal Inference for Online Prediction with Arbitrary Distribution Shifts[END_REF].

We note one additional result established by [START_REF] Gibbs | Conformal Inference for Online Prediction with Arbitrary Distribution Shifts[END_REF] on a slightly di erent regret bound in terms of the pinball loss, as it informs the choice of tuning parameters. Let γ max = max 1≤k≤K γ k be the largest learning rate in the grid and assume that

γ 1 < γ 2 < • • • < γ K with γ k+1 /γ ≤ 2 for all 1 ≤ k < K.
Then, for any interval I = [r, s] ⊆ T and any sequence θ * r , . . . , θ * s , under the assumption that

γ k ≥ 1 + 1/|I|, 1 |I| s t=r E[L α (θ t , r t )] - 1 |I| s t=r L α (θ t , θ * t ) ≤ log(k/σ) + 2σ|I| η|I| + η |I| s t=r E[L α (θ t , r t ) 2 ] + 2 √ 3(1 + γ max ) 2 max    s t=r+1 |θ * t -θ * t-1 | + 1 |I| , γ 1    ,
where the expectation is over the randomness in the randomized version of the algorithm. Here the time interval I (with length |I|) is comparable to the time period length m for the strongly adaptive regret. The parameter |I|, the time interval of interest for which we would like to control, can be chosen arbitrarily.

Tuning parameters

The recommended settings for the tuning parameters depend on choosing a time interval length |I| for which we would like to control the pinball loss. The choice of |I| can be chosen arbitrarily. For the tuning parameter σ, the authors suggest the optimal choice σ = 1/(2|I|). Choosing η is more di cult. The authors suggest the following choice for η, which they show is optimal if there is in fact no distribution shift:

η = 3 |I| log(K • |I|) + 2 (α) 2 (1 -α) 3 + (1 -α) 2 α 3 .
Note that this choice is optimal only for the quantile interval constructor, for which θ t is a quantile of previous nonconformity scores. As an alternative, the authors point out that η can be learned in an online fashion using the update rule

η t := log(|I|K) + 2 t-1 s=t-|I| L α (θ s , r s )
.

Both ways of choosing η led to very similar results in the original author's empirical studies. In our proposed AdaptiveConformal package, the rst approach is used when the quantile interval construction function is chosen, and the latter approach for the linear interval construction function.

Figure 3 illustrates FACI with the quantile interval construction function and with the learning rate grid γ ∈ {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}.

Scale-Free Online Gradient Descent (SF-OGD)

Algorithm 4 Scale-Free Online Gradient Descent 1: Input: starting value θ 1 , learning rate γ > 0.

2: for t = 1, 2, . . . , T do 3:

Output: prediction interval C t (θ t ).

4:

Observe y t and compute r t .

5:

Update

θ t+1 = θ t -γ ∇L α (θt,rt) √ t i=1 ∇L α (θ i ,r i ) 2 2 .
6: end for Scale-Free Online Gradient Descent (SF-OGD; Algorithm 4 ) is a general algorithm for online learning proposed by [START_REF] Orabona | Scale-Free Online Learning[END_REF]. The algorithm updates θ t with a gradient descent step where the learning rate adapts to the scale of the previously observed gradients. SF-OGD was rst used in the context of ACI as a sub-algorithm for SAOCP (described in the next section). However, it was found to have good performance by itself [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]) in real-world tasks, so we have made it available in the package as a stand-alone algorithm.

Theoretical Guarantees

The SF-OGD algorithm with linear interval constructor has the following regret bound, which is called an anytime regret bound because it holds for all t ∈ T [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]. For any γ > 0, A bound for the coverage error has also been established [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]. For any learning rate γ = Θ(D) (where γ = D/ √ 3 is optimal) and any starting value θ 1 ∈ [0, D], then it holds that for any T > 1,

Reg(t) ≤ O(D √ t) for all t ∈ T .
|CovErr(T )| ≤ O (1 -α) -2 T -1/4 log T .

Tuning parameters

Figure 4 compares results for several choices of γ to illustrate its e ect. The optimal choice of learning rate is γ = D/ √ 3, where D is the maximum possible radius. When D is not known, it can be estimated by using an initial subset of the time series as a calibration set and estimating D as the maximum of the absolute residuals of the observations and the predictions [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]. Figure 4 illustrates SF-OGD for several values of γ.

Strongly Adaptive Online Conformal Prediction (SAOCP)

The Strongly Adaptive Online Conformal Prediction (SAOCP; Algorithm 5 ) algorithm was proposed as an improvement over the extant ACI algorithms in that it features stronger theoretical guarantees. SAOCP works similarly to AgACI and FACI in that it maintains a library of candidate online learning algorithms that generate prediction intervals which are then aggregated using a meta-algorithm [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]). The candidate algorithm was chosen to be SF-OGD, although any algorithm that features anytime regret guarantees can be chosen. As opposed to AgACI and FACI, in which each candidate has a di erent learning rate but is always able to contribute to the nal prediction intervals, here each candidate has the same learning rate but only has positive weight over a speci c interval of time. New candidate algorithms are continually being spawned in order that, if the distribution shifts rapidly, the newer candidates will be able to react quickly and receive positive weight. Speci cally, at each time point, a new expert is instantiated which is active over a nite "lifetime". De ne the Initialize expert A t = SF-OGD(α ← α, γ ← γ, θ 1 ← θ t-1 ), set weight w t t = 0.

4:

Compute active set Active(t) = {i ∈ T : t -L(i) < i ≤ t} (see below for de nition of L(t)).

5:

Compute prior probability π i ∝ i -2 (1 + log 2 i ) -1 I[i ∈ Active(t)].

6:

Compute un-normalized probability pi = π i [w t,i ] + for all i ∈ t .

7:

Normalize p = p/ p 1 ∈ ∆ t if p 1 > 0, else p = π.

8:

Set θ t = i∈Active(t) p i θ i t (for t ≥ 2), and θ t = 0 for t = 1.

9:

Output: prediction set C t (θ t ).

10:

Observe y t and compute r t .

11:

for i ∈ Active(t) do 12:

Update expert A t with y t and obtain θ i t+1 .

13:

Compute

g i t = 1 D L α (θ t , r t ) -L α (θ i t , r t ) w i t > 0 1 D L α (θ t , r t ) -L α (θ i t , r t )) + w i t ≤ 0 . 14:
Update expert weight w i t+1 = 1 t-i+1 t j=i g i j 1 + t j=i w i j g i j .

15:

end for 16: end for lifetime of an expert instantiated at time t as

L(t) := g • max n∈Z {2 n t ≡ 0 mod 2 n },
where g ∈ Z * is a lifetime multiplier parameter. The active experts are weighted according to their empirical performance with respect to the pinball loss function. The authors show that this construction results in intervals that have strong regret guarantees.

Theoretical Guarantees

The theoretical results were established for SAOCP using the linear interval constructor. The following bound for the strongly adaptive regret holds for all subperiod lengths m ∈ T [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF]:

SAReg(T, m) ≤ 15D m(log T + 1) ≤ Õ(D √ m).
It should be emphasized that this regret bounds holds simultaneously across all m, as opposed to FACI, where a similar bound holds only for a single m. A bound on the coverage error of SAOCP has also been established as:

|CovErr(T )| ≤ O inf β (T 1/2-β + T β-1 S β (T )) .
where S β (T ) is a technical measure of the smoothness of the cumulative gradients and expert weights for each of the candidate experts [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF].

Tuning Parameters

The main tuning parameter for SAOCP is the learning rate γ of the SF-OGD sub-algorithms, which we saw in the previous section has for optimal choice γ = D/ √ 3. Values for D that are too low lead to intervals that adapt slowly, and values that are too large lead to jagged intervals. In their experiments, the authors select a value for D by picking the maximum residual from a calibration set. The second tuning parameter is the lifetime multiplier g which controls the lifetime of each of the experts. We follow the original paper in setting g = 8. 

Simulation Studies

We present two empirical studies in order to compare the performance of the AgACI, FACI, SF-OGD, and SAOCP algorithms applied to simple simulated datasets. The original ACI algorithm was not included as it is not clear how to set the tuning rate γ, which can have a large e ect on the resulting intervals. For both simulations we set the targeted empirical coverage to α = 0.8, α = 0.9, and α = 0.95. For each algorithm, we chose the interval constructor that was used in its original presentation (see Table 1).

Time series with ARMA errors

In this simulation we reproduce the setup described in Za ran et al. ( 2022) (itself based on that of [START_REF] Friedman | Multidimensional Additive Spline Approximation[END_REF]). The time series values y t for t ∈ T (T = 600) are simulated according to y t = 10 sin(πX t,1 X t,2 ) + 20(X t,3 -0.5) 2 + 10X t,4 + 5X t,5 + 0X t,6 + t , where X t,i , i = 1, . . . , 6, t ∈ T are independently uniformly distributed on [0, 1] and the noise terms t are generated according to an ARMA(1, 1) process:

t = ψ t-1 + ξ t + θξ t-1 , ξ t ∼ N (0, σ 2 ).
We set ψ and θ jointly to each value in {0.1, 0.8, 0.9, 0.95, 0.99} to simulate time series with increasing temporal dependence. The innovation variance was set to σ 2 = (1 -ψ 2 )/(1 + 2ψξ + ξ 2 ) (to ensure that the process has constant variance). For each setting, 25 simulated datasets were generated.

To provide point predictions for the ACI algorithms, at each time t ≥ 200 a random forest model was tted to the previously observed data using the ranger R package [START_REF] Wright | ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R[END_REF]. The estimated model was then used to predict the subsequent time point. The maximum radius D was estimated as the maximum residual observed between time points t = 200 and t = 249. The ACI models were then executed starting at time point t = 250. All metrics are based on time points t ≥ 300 to allow time for the ACI methods to initialize. The coverage errors, mean interval widths, and path lengths of each of the algorithms for α = 0.9 are shown in Figure 6 (results for α ∈ {0.8, 0.95} were similar and are available in the appendix). All methods achieved near optimal empirical coverage, although SAOCP tended to slightly undercover. The mean interval widths were similar across methods, although again SAOCP had slightly shorter intervals (as could be expected given its tendency to undercover). The path length of SAOCP was larger than any of the other methods. To investigate why, Figure 7 plots w t -w t-1 , the di erence in interval width between times t -1 and t, for each method in one of the simulations. The interval widths for AgACI and FACI change slowly relative to those for SF-OGD and SAOCP. For SAOCP, we can see the interval widths have larger uctuations than for the other methods, explaining its higher path width. fits <-simulation_study1$example_fits 

par(mfrow = c(2, 2), mar = c(3, 4, 2, 1)) for(i in 1:4) { plot( diff(fits$fit[[i]]$intervals[,2] -fits$fit[[i]]$intervals[,1]), main = fits$method[[i]], xlab = "T", ylab = expression(w[t] -w[t -1])) } par(mfrow = c(1,

Distribution shift

This simulation study features time series with distribution shifts. The setup is quite simple in order to probe the basic performance of the methods in response to distribution shift. As a baseline, we simulate time series of independent data with

y t ∼ N (0, σ 2 t ), σ t = 0.2,
for all t ∈ T (T = 500). In the second type of time series, the observations are still independent but their variance increases halfway through the time series:

y t ∼ N (0, σ 2 t ), σ t = 0.2 + 0.5I[t > 250].
In each case, the ACI algorithms are provided with the unbiased predictions μt = 0, t ∈ T . Fifty simulated datasets were generated for each type of time series.

simulate <-function(seed, distribution_shift = 0, N = 1e3, sigma = 0.2) { set.seed(seed) mu <-rep(0, N) shift <-1:N > (N / 2) simulation_study_setup2 <-expand_grid( index = 1:N_sims, distribution_shift = c(0, 0.5), alpha = c(0.8, 0.9, 0.95), N = 500, method = c("AgACI", "SF-OGD", "SAOCP", "FACI"), ) %>% mutate(data = pmap(list(index, distribution_shift, N), simulate))

simulation_study2 <-run_simulation_study2(simulation_study_setup2, fit, workers = 8)

The coverage error, mean path length, and mean interval widths of the algorithms are summarized in Figure 8 (an alternative plot is included in the appendix as Figure 14). The coverage error of all the algorithms is near the desired value in the absence of distribution shift. On the contrary, all of the algorithms except AgACI and FACI undercover when there is distributional shift. SAOCP tends to have higher average path lengths than the other methods. An illustrative example of prediction intervals generated by each method for one of the simulated time series with distribution shift is shown in Figure 9. The SAOCP prediction intervals in the example before the distribution shift are more jagged than those produced by the other methods, which illustrates why SAOCP may have longer path lengths.

fits <-simulation_study2$example_fits coverage <-format_coverage(extract_metric(fits$fit, "coverage")) path_length <-format_path_length(extract_metric(fits$fit, "path_length")) par(mfrow = c(2, 2), mar = c(3, 3, 2, 1)) for(i in 1: 

Case Study: In uenza Forecasting

In uenza is a highly infectious disease that is estimated to infect approximately one billion individuals each year around the world [START_REF] Krammer | In uenza[END_REF]. In uenza incidence in temperate climates tends to follow a seasonal pattern, with the highest number of infections during what is commonly referred to as the u season [START_REF] Lofgren | In uenza Seasonality: Underlying Causes and Modeling Theories[END_REF]). Accurate forecasting of in uenza is of signi cant interest to aid in public health planning and resource allocation. To investigate the accuracy of in uenza forecasts, the US Centers for Disease Control (CDC) initiated a challenge, referred to as FluSight, in which teams from multiple institutions submitted weekly forecasts of in uenza incidence [START_REF] Biggersta | Results from the Centers for Disease Control and Prevention's Predict the 2013-2014 In uenza Season Challenge[END_REF]. [START_REF] Reich | A Collaborative Multiyear, Multimodel Assessment of Seasonal In uenza Forecasting in the United States[END_REF] evaluated the accuracy of the forecasts over seven u seasons from 2010 to 2017. As a case study, we investigate the use of ACI algorithms to augment the FluSight forecasts with prediction intervals.

The FluSight challenge collected forecasts for multiple prediction targets. For this case study, we focus on national (US) one-week ahead forecasts of weighted in uenza-like illness (wILI), which is a population-weighted percentage of doctors visits where patients presented with in uenza-like symptoms [START_REF] Biggersta | Results from the Centers for Disease Control and Prevention's Predict the 2013-2014 In uenza Season Challenge[END_REF]). The FluSight dataset, which is publicy available, include forecasts derived from 21 di erent forecasting models, from both mechanistic and statistical viewpoints (Flusight Network 2020;[START_REF] Tushar | FluSightNetwork: Cdc-Flusight-Ensemble Repository[END_REF][START_REF] Tushar | FluSightNetwork/cdc-usight-ensemble: End of 2018/2019 US in uenza season[END_REF]. For our purposes, we treat the way the forecasts were produced as a black box.

Formally, let y t , t ∈ T be the observed national wILI at time t, and let μj,t , j ∈ J , be the one-week ahead forecast of the wILI from model j at time t. Two of the original 21 forecasting methods were excluded from this case study due to poor predictive performance (Delphi_Uniform and CUBMA).

In addition, six methods had identical forecasts (CU_EAKFC_SIRS, CU_EKF_SEIRS, CU_EKF_SIRS, CU_RHF_SEIRS, CU_RHF_SIRS), and therefore we only included one (CU_EAKFC_SEIRS) in the analysis. The ACI methods were then applied to the log-observations and log-predictions, where the log-transformation was used to constrain the nal prediction intervals to be positive. The rst u season (2010)(2011) was used as a warm-up for each ACI method, and we report the empirical performance of the prediction intervals for the subsequent seasons (six seasons from 2012-2013 to 2016-2017). The ACI algorithms target prediction intervals with coverage of α = 0.8, α = 0.9, and α = 0.95. As in the simulation study, we used the interval constructor corresponding to the original presentaiton of each algorithm (see Table 1). analysis_data <-raw_data %>% filter( Target == "1 wk ahead", Location == "US National", !(model_name %in% c("Delphi_Uniform", "CUBMA", "CU_EAKFC_SIRS", "CU_EKF_SEIRS", " ) %>% arrange(Year, Model.Week) %>% group_by(model_name) %>% nest() fits <-expand_grid( analysis_data, tibble(method = c("AgACI", "FACI", "SF-OGD", "SAOCP")), tibble(alpha = c(0.8, 0.9, 0.95)) ) %>% mutate(fit = pmap(list(data, method, alpha), fit), metrics = map2(data, fit, metrics)) case_study_results <-fits %>% select(-data, -fit) %>% mutate(metrics = map(metrics, as_tibble)) %>% unnest(c(metrics))

The coverage errors, mean interval widths, and path lengths of the prediction intervals for each of the underlying forecast models is shown in Figure 10. In all cases the absolute coverage error was less than 0.1. SF-OGD performed particularly well, with coverage errors close to zero for all forecasting models. Interval widths were similar across methods, with SAOCP slightly shorter. Path Lengths were shorter for AgACI and FACI and longer for SAOCP. As an illustrative example, in Figure 11 we plot the point forecasts from one of the forecasting models (based on SARIMA with no seasonal di erencing) and the associated ACI-generated 90% prediction intervals for each season from 2011-2017. In general, in this practical setting all of the ACI algorithms yield quite similar prediction intervals. Interestingly, the forecasts in 2011-2012 underpredicted the observations for much of the season. The algorithm responds by making the intervals wider to cover the observations, and because the intervals are symmetric the lower bound then becomes unrealistically low. A similar phenomenon can be seen in the growth phase of the 2012/2013 season as well. 

Discussion

The results of our simulations and case study show that, when tuning parameters are chosen well, Adaptive Conformal Inference algorithms yield well-performing prediction intervals. On the contrary, poor choice of tuning parameters can lead to intervals of low utility. Furthermore, in some cases the prediction intervals may appear to perform well with respect to metrics like the empirical coverage error, while simultaneously being useless in practice. The original ACI algorithm illustrates this phenomenon: too small a value of its learning rate γ yields prediction intervals that are not reactive enough, while too large a value yields intervals that change too fast. In both cases, the empirical coverage may appear well-calibrated, while the prediction intervals will not be useful. Thus, the core challenge in designing an ACI algorithm is in nding an optimal level of reactivity for the prediction intervals. As users of these algorithms, the challenge is in nding values for the tuning parameters that avoid pathological behaviors.

Several of the algorithms investigated in this paper handle the problem of nding an optimal level of reactivity by aggregating prediction intervals generated by a set of underlying ACI algorithms. Our results show the algorithms can perform well in multiple di cult scenarios. However, the overall e ect of these approaches is to shift the problem to a higher level of abstraction: we still need to set tuning parameters that control the amount of reactivity, but do so at a higher level than the original ACI algorithm. It is desirable that these tuning parameters be easily interpretable, with simple strategies available for setting them. An advantage of the SF-OGD and SAOCP algorithms in this respect are that their main tuning parameter, the maximum radius D, is easily interpretable as the maximum possible di erence between the input predictions and the truth. It is also straightforward to choose this parameter based on a calibration set, although this strategy does not necessarily work well in cases of distribution shift. We also found that an advantage of the AgACI method is its robustness to the choice of its main tuning parameter, the set of candidate learning rates. Indeed, if AgACI does not perform well, one can simply increase the number of candidate learning rates.

A key challenge in tuning the algorithms arises in settings of distribution shift, where methods for choosing hyperparameters based on a calibration set from before the distribution shift will likely not perform well. The second simulation study we conducted probed this setting in a simple scenario. We found that several of the methods yielded prediction intervals that had non-optimal empirical coverage. As we picked hyperparameters based on a calibration set formed before the distribution shift, it is not surprising that the resulting tuning parameters are not optimal. This underscores the di culty in designing ACI algorithms that can adapt to distribution shifts, and in nding robust methods for choosing hyperparameters. In practice, it is possible the second simulation study does not accurately re ect real-world scenarios. Indeed, the benchmarks presented in [START_REF] Bhatnagar | Improved Online Conformal Prediction via Strongly Adaptive Online Learning[END_REF] using the datasets from the M4 competition (Makridakis, Spiliotis, and Assimakopoulos 2020), and using point predictions generated by diverse prediction algorithms, found that ACI algorithms exhibited good performance in terms of empirical coverage. Nevertheless, our recommendation for future papers in this line of research is to include simulation studies for simple distributional shift scenarios as a benchmark.

Our case study results illustrate the dependence of the ACI algorithms on having access to highquality point predictions. If the predictions are biased, for example, then the prediction intervals may be able to achieve optimal coverage at the expense of larger interval widths. Using ensemble methods to combine forecasts from several exible machine learning models is one strategy that can be used to hedge against model misspeci cation and improve the quality of forecasts (Makridakis, Spiliotis, and Assimakopoulos 2020).

There remain many possible extensions of ACI algorithms. The algorithms presented in this work primarily consider symmetric intervals evaluated using the pinball loss function (AgACI can yield asymmetric intervals because the aggregation rule is applied separately to the lower and upper bounds from the underlying experts, but those underlying experts only produce symmetric intervals).

A simple extension would switch to using the interval loss function [START_REF] Gneiting | Strictly Proper Scoring Rules, Prediction, and Estimation[END_REF], which would allow for asymmetric intervals where two parameters are learned for the upper and lower bounds, respectively. It may also be of interest to generate prediction intervals that have coverage guarantees for arbitrary subsets of observations (for example, we may seek prediction intervals for daily observations that have near optimal coverage for every day of the week, or month of the year), similar to guarantees provided by the MultiValid Prediction method described in [START_REF] Bastani | Practical Adversarial Multivalid Conformal Prediction[END_REF]. Another avenue for theoretical research is to propose algorithms with provable bounds for the coverage and regret that do not depend on the outcome being bounded. 
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 1 Figure1: Example 80% prediction intervals from the ACI algorithm for di erent choices of learning rate γ and with θ 1 = 0.8. Blue and red points are observations that fell inside and outside the prediction intervals, respectively.

Figure 3 :

 3 Figure 3: Example 80% prediction intervals generated by the FACI algorithm with starting values θ 1 = 0.8. Blue and red points are observations that fell inside and outside the prediction intervals, respectively.

Figure 4 :

 4 Figure 4: Example 80% prediction intervals generated by the SF-OGD algorithm with di erent values of the maximum radius tuning parameter D. Blue and red points are observations that fell inside and outside the prediction intervals, respectively.

Figure 5 :

 5 Figure 5: Example 80% prediction intervals generated by the SAOCP algorithm with di erent values of the maximum radius parameter D. Blue and red points are observations that fell inside and outside the prediction intervals, respectively.

  simulate <-function(seed, psi, xi, N = 1e3) { set.seed(seed) s <-10 innov_scale <-sqrt(s * (1 -psi2) / (1 + 2 * psi * xi + xi2)) X <-matrix(runif(6 * N), ncol = 6, nrow = N) colnames(X) <-paste0("X", 1:6) epsilon <-arima.sim(n = N, model = list(ar = psi, ma = xi), sd = innov_scale) mu <-10 * sin(pi * X[,1] * X[,2]) + 20 * (X[,3] -0.5)2 + 10 * X[,4] + 5 * X[,5] y <-mu + epsilon as_tibble(X) %>% mutate(y = y) } estimate_model <-function(data, p = NULL) {

Figure 6 :

 6 Figure6: Coverage errors, mean interval widths, and path lengths for the rst simulation study with target coverage α = 0.9.

Figure 7 :

 7 Figure7: Di erence in successive interval widths (w t -w t-1 ) from an illustrative simulation from the rst simulation study.

Figure 8 :Figure 9 :

 89 Figure 8: Mean interval width vs coverage error (top) and Mean Path Length vs. coverage error (bottom) for the second simulation study. The error bars represent the 10% to 90% quantiles of the metrics over the simulation datasets.

  url <-"https://raw.githubusercontent.com/FluSightNetwork/cdc-flusight-ensemble/maste raw_data <-read_csv(url, show_col_types = FALSE) fit <-function(data, method, alpha) { first_season <-data$Season == "2010/2011" D <-max(abs(data$obs_value -data$Value)[first_season]) interval_constructor method == "AgACI" ~"conformal", method == "FACI" ~"conformal", method == "SF-OGD" ~"linear", method == "SAOCP" ~"linear" ) gamma <-D / sqrt(3) if(interval_constructor == "linear") { gamma_grid = seq(0.1, 1, 0function(data, fit) { aci_metrics(fit, indices = which(data$Season != "2010/2011")) }

Figure 10 :

 10 Figure 10: Coverage errors, mean interval widths, and path lengths of prediction intervals generated with each ACI method based on forecasts from each of the 19 underlying in uenza forecasting models.

Figure 11 :

 11 Figure 11: Example conformal prediction intervals for six u seasons based on forecasts from a SARIMA type model.
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 1213 Figure12: Coverage errors, mean interval widths, and path lengths for the rst simulation study with target coverage α ∈ {0.8, 0.9, 0.95}.

Figure 14 :

 14 Figure14: Coverage error, mean interval width, and path length for α = 0.8, 0.9, 0.95 and simulations and without distributional shift.

Table 1 :

 1 Summary of ACI algorithms

			Original
			interval
	Algorithm	Tuning Parameters	constructor
	Adaptive Conformal Inference (ACI) Learning rate γ	Quantile
	Aggregated Adaptive Conformal	Candidate learning rates (γ k ) 1≤k≤K	Quantile
	Inference (AgACI)		
	Fully Adaptive Conformal Inference	Candidate learning rates (γ k ) 1≤k≤K	Quantile
	(FACI)		
	Scale-Free Online Gradient Descent	Learning rate γ or maximum radius D	Linear
	(SF-OGD)		
	Strongly Adaptive Online Conformal	Learning rate γ, lifetime multiplier g	Linear
	Prediction (SAOCP)		
	As a simple running example to illustrate each algorithm, we simulate independently T = 500 values
	y 1 , . . . , y T following		
	y t ∼ N (0, 0.2 2 ), t ∈ T .	

case_study_plot(case_study_results)
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 D <-max(abs(data$y -preds)[200:249]) gamma <-D / sqrt(3) interval_constructor = case_when( method == "AgACI" ~"conformal", method == "FACI" ~"conformal", method == "SF-OGD" ~"linear", method == "SAOCP" ~"linear" ) if(interval_constructor == "linear") { gamma_grid = seq(0. # For each simulated dataset, fit multiple ACI methods simulation_study_setup <-expand_grid( alpha = c(0.8, 0.9, 0.95), method = c("AgACI", "SF-OGD", "SAOCP", "FACI") ) simulation_study1 <-run_simulation_study1( muhat <-mu y <-rnorm(n = length(mu), mean = mu, sd = sigma + ifelse(shift, distribution_shift tibble(y = y, muhat = muhat) } metrics <-function(fit) { N <-length(fit$Y) indices <-which(1:N > 50) aci_metrics(fit, indices) } fit <-function(data, method, alpha, p = NULL) { if(!is.null(p)) p() interval_constructor = case_when( method == "AgACI" ~"conformal", method == "FACI" ~"conformal", method == "SF-OGD" ~"linear", method == "SAOCP" ~"linear" ) if(interval_constructor == "linear") { D <-max(abs(data$y -data$muhat)[1:50]) } else { D <-1 } gamma <-D / sqrt(3) if(interval_constructor == "linear") { gamma_grid <-seq(0.1, 2, 0.1) } else { gamma_grid <-c(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128) } parameters <-list( interval_constructor = interval_constructor, D = D, gamma = gamma, gamma_grid = gamma_grid ) aci(data$y, data$muhat, method = method, alpha = alpha, parameters = parameters) } N_sims <-5e1