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Abstract—Explainable machine learning techniques (XAI) aim
to provide a solid descriptive approach to Deep Neural Networks
(NN). In Multi-Variate Time Series (MTS) analysis, the most
recurrent techniques use relevance attribution, where importance
scores are assigned to each TS variable over time according to
their importance in classification or forecasting. Despite their
popularity, post-hoc explanation methods do not account for
causal relationships between the model outcome and its predic-
tors. In our work, we conduct a thorough empirical evaluation of
model-agnostic and model-specific relevance attribution methods
proposed for TCNN, LSTM, and Transformers classification
models of MTS. The contribution of our empirical study is three-
fold: (i) evaluate the capability of existing post-hoc methods
to provide consistent explanations for high-dimensional MTS
(ii) quantify how post-hoc explanations are related to sufficient
explanations (i.e., the direct causes of the target TS variable)
underlying the datasets, and (iii) rank the performance of
surrogate models built over post-hoc and causal explanations
w.r.t. the full MTS models. To the best of our knowledge, this is
the first work that evaluates the reliability and effectiveness of
existing xAI methods from a temporal causal model perspective.

Index Terms—Multivariate Time Series, Explainability, Clas-
sification, Causal Explanations, Consistency, Benchmarking

I. INTRODUCTION

Multivariate Time Series (MTS) are omnipresent in many
science and engineering domains, including health-care, sus-
tainable energy, geoscience, and high-performance computing.
An MTS is composed of more than one time-dependent
variables that may depend not only on its past values but also
on other variables. Neural Network (NN) architectures (e.g.,
TCNN [1], LSTM [2] Transformer [3]) are today state-of-the-
art solutions in order to implement MTS Classification [4]–[6].

Deep NN models are essentially uninterpretable black
boxes, where one feeds an input and obtains an output
without understanding the motivations behind that decision.
We have recently witnessed a consistent effort to enhance NN
models with explanation capabilities at various levels allowing
users to track the time-dependent variables or the training
timestamped samples that drive a NN model toward a certain
decision. Specifically, eXplainable Artificial Intelligence (xAI)
techniques such as dCAM [1], XCM [7], Dynamask [8],
TimeSHAP [9] aim to reveal which subsets of MTS variables
are mostly involved in deciding a particular class label.

Post-hoc explanation methods like feature attribution [10],
[11] or saliency maps [12] can help indicate which features
or pixels of input data are most ‘relevant’ to the output
decision of a NN model being ‘explained’. However, they are

designed with the assumption that a single sample is self-
explanatory and analysts can easily distinguish between two
samples, which is not easy in complex MTS with thousands of
time-dependent variables. Additionally, the intrinsic measures
underlying xAI methods are purely associational and may
expose potentially spurious and misleading correlations in
input data used to train a NN model. Clearly, correlation-based
explanations are not informative enough in order to produce
surrogate models of reduced complexity (i.e., by projecting
input data on the relevant features) or to debug models (e.g.,
by identifying data instances and/or model components that
cause incorrect predictions).

These kinds of tasks call for more expressive forms of expla-
nations, which can reveal causal-effect relationships between
TS variables (input or target) along with adequate lag informa-
tion. Causal explanations are usually distinguished between
sufficient explanations and counterfactual explanations [13].
The former permits users to understand the conditions in which
a particular action (e.g., selecting a subset of TS variables
as predictors) will produce a desired model outcome. The
latter instead identifies actions (e.g., changing the values of TS
variables) that can alter an observed input, ensuring a change
in a previously observed output.

In our work, we are experimentally evaluating the con-
sistency and effectiveness of model-specific (i.e, dCAM [1],
Dynamask [8], XCM [7]), and model-agnostic (i.e, Feature
Ablation [14], [15], Feature Permutation [16], Feature Occclu-
sion [16], Integrated Gradients [17], TimeSHAP [9], Gradient
Shap [11]) post-hoc explanations of MTS models built using
different NN architectures (i.e, TCNN [1], LSTM [2] and
Transformer [3]). More precisely, the contribution of our
empirical study is three-fold: (i) evaluate the ability of existing
post-hoc methods to provide consistent explanations for high-
dimensional MTS (ii) quantify how post-hoc explanations are
related to sufficient explanations (i.e., the direct causes of
the target TS variable) underlying the datasets, and (iii) rank
the performance of surrogate models built over post-hoc and
causal explanations w.r.t. the full MTS models.

None of the previous empirical studies ( [6], [18]) compare
both model-agnostic and model-specific post-hoc explanation
methods for a variety of MTS classification models (LSTM,
CNN, and Transformer) using as a cause-effect ground truth
underlying the benchmark datasets as validated by the domain
experts. More precisely, [6] focuses only on MTS agnostic xAI
methods (not tailored for MTS classification models) evaluated



using AUPR (Area under the precision-recall curve) given
as ground truth feature relevance constructed independently
of the underlying data generation processes (i.e., by adding
or subtracting a fixed constant from the data). The Exathlon
benchmark [18] compares two anomaly explanation methods
(Macrobase, Xstream) with LIME explanations for three NN-
based anomaly detectors (LSTM, Auto Encoder, and BiGAN).
Exathlon provides ground truth only for the range-based
anomalies occurring in Spark execution traces and explanation
conciseness and consistency are evaluated independently of
the true anomaly causes. As a matter of fact, these metrics
report only the number of features used in the explanations
and how often anomalies of the same type receive the same
explanation. Although the need for experimentally evaluating
sufficient explanations of target variables over time has been
raised in previous works [8], [13], this is the first empirical
study demonstrating that surrogate models built over causal
relationships outperform not only models built over relevant
features detected by xAI methods but also advanced NN
models trained over the whole data feature space.

The rest of the paper is structured as follows: Section II
introduces the core notions of post-hoc and sufficient explana-
tions. Section III presents the main aspects of the analyzed xAI
methods. Section IV describes our empirical evaluation setting
and metrics. Section V details the results of our experimental
evaluation and highlights the main insights. Finally, Section VI
summarizes our findings and presents plans for future works.

II. NOTATION AND PRELIMINARIES

We denote a multivariate time series (MTS) as X ∈ RN×T ,
where T is the number of time steps and N is the number of
dimensions. Each MTS dimension is a univariate TS variable
denoted as Xi, where 1 ≤ i ≤ N . The length of a TS variable
Xi is denoted as |Xi|. Since all univariate TS variables of an
MTS have the same length, we use the notation |X| to also
denote the number of time steps T .

We define a sub-sequence of Xi of length ℓ, starting
at time-step t, with Xi

t:t+ℓ−1 ∈ RN×ℓ, and the value at
time t of the ith TS variable as Xi

t ∈ R. Given X , we
define a multivariate sub-sequence (set of sub-sequences of
all TS variables) of length ℓ and starting at time-step t as
X

(1..N)
t:t+ℓ−1 = {X1

t:t+ℓ−1, .., X
N
t:t+ℓ−1}. Note that a multivariate

sub-sequence is a MTS itself.
To consider a scale-free representation of multivariate sub-

sequences we apply Z-normalization [19], [20]. Hence, given
a MTS X , each TS variable is always in the form Xi =

{Xi
1−µ
σ , ...,

Xi
|Xi|−µ

σ }, where µ and σ are the mean and stan-
dard of Xi respectively.

We define MTS classification as a function Fc that given a
multivariate sequence outputs the probability of the sequence
to belong to a given class. Formally, we have: Fc(X) =
[S1(X), ..., SC(X)] ∈ RC, where C is the total number of
classes and Si(X) represents the probability of the sequence
X to belong to the ith class. Hence,

∑C
i=1 Si(X) = 1.

We consider the explainability of an MTS classification
model in terms of relevance attribution, which assigns a score
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Fig. 1. (a) Synthetic MTS X , (b) Heatmap of a Relevance Attribution matrix
computed on X . The highest value R6

t is highlighted.

to each TS variable at each time step. This score typically
reports the feature’s importance with respect to a class assign-
ment. Fig. 1 illustrates an example of a Relevance Attribution
Matrix (Fig. 1(b)) computed on a MTS X (Fig. 1(a)).

Definition 1 (Relevance Attribution Matrix [6], [16], [21]):
Given an MTS X , for which a model Fc provides a prob-
ability to belong to the class a, the Relevance Attribution
Matrix is defined as R(X,Fc(X)[a]) ∈ RN×ℓ. Each Ri,j ∈
R(X,Fc(X)[a]) reports the importance score of a TS value
Xi

j for the model Fc in determining the prediction for the
class a. We denote by Rk(X,Fc(X)[a]) the set containing
the k ∈ N highest values in R(X,Fc(X)[a]).

In our work, we also consider causal explanations [22]
in terms of cause-effect relationships among MTS variables.
Causal relationships are typically stated through a temporal
graphical model that we introduce hereafter.

Definition 2 (Window Causal Graph [23]): Given an MTS
X ∈ RN×T a window causal graph is defined by Gt = (V,E)
at time t and maximal lag ℓ, where V = {Xi

t−s|1 ≤ i ≤
N ∧ 0 ≤ s ≤ ℓ} is the set of vertices each one representing a
feature value. A directed edge (Xa

t−τ , X
b
t ) ∈ E exists if Xa

causes the effect Xb at time t with lag τ ≤ ℓ. Note that if
a = b =⇒ τ > 0 (self-causation).

A window causal graph is consistent throughout time
when all the causal relationships remain constant (Consistency
Throughout Time [23] i.e., Stationary), and always precede
their effects (Temporal Priority [23]). In this case, we have
that Gt(V,E) = Gt′(V,E)∀t, t′.1 ≤ t, t′ ≤ |X| and thus we
denote a single window causal graph by G(V,E). In that case,
we simply refer to the MTS causal graph. In fact, finding a
causal explanation of a model outcome is equivalent to giving
the actual causes of that outcome [24], [25]. Hence, causal
explanations contain the direct causes of a target TS variable
as defined in a causal graph.

Definition 3 (Causal Explanation [26]): Given a MTS X
faithful to a causal graph G(V,E) with maximal lag ℓ, the
set of direct causes of an outcome Xi

t is defined as follows:
Ci

t(X) = {(a, t′)|t− ℓ ≤ t′ < t ∧ (Xa
t′ , X

i
t) ∈ E}.

Under the assumptions of (I) faithfulness (only the con-
ditional independence relations true in the data are entailed
by the Causal Markov condition applied to the graph) (II)
causal sufficiency (no unobserved latent factor influences two
observed vertices), (III) correct independence tests (a.k.a.
Causal Markov condition [23]: nodes in a causal graph are
conditional independent of its nondescendant, given their
parents), (IV) temporal priority (causes occur before their



effects), (V) minimality (the causal graph does not contain
dependencies not present in the data), and (VI) absence of
selection bias, the set of direct causes contains all the observed
TS variables that are parents of a variable Xi

t in G(V,E), and
it is sufficient to predict a target variable Xi

t [26]. Formally,
variable Xi

t is independent of Xa
t′ conditionally on Ci

t(X)
where t′ < t.

III. EXPLANATION METHODS

In this work, we focus on model-specific and model-agnostic
post-hoc explanations of TS classification models produced by
Perturbation-based and Gradient-based methods.

A. Perturbation based methods

This family of xAI methods assesses feature relevance by
perturbing their values (masking, removing, altering, permut-
ing) and measuring the impact on the model outcome.
Dimension-wise Class Activation Map (dCAM) [1] is a
model-specific method that adapts a Class Activation Mapping
(CAM) [27] to MTS classification. CAM represents one of
the earliest explainability techniques natively applied to image
classification in Convolutional Neural Networks (CNN). CAM
aims to compute the discriminating data region that induces
the model to assign a particular class to a given instance.

We denote by A ∈ RZ the activation map generated by an
MTS X ∈ RN×T in the last convolutional filter of the network
(before Global Average Pooling layer). Note that Ai,j denotes
the activation at time step i (1 ≤ i ≤ T ) of the jth kernel.
Given wj

c , the weight connecting the activation to the neuron
of a class c to the kernel j, the CAM score for class c at time
step i is computed as follows:

CAM c
i =

∑
j

wj
cAi,j (1)

Each CAM score captures the activation conveying to a
single class neuron at timestamp i. Note that such scores
would not permit filtering out important features for predicting
each class. As a matter of fact, state-of-the-art xAI methods
for images (e.g., CAM) are not specifically tailored to MTS,
where discovering the relevance of features over different time
intervals becomes a crucial requirement. In [6] is empirically
shown that such limitation is principally due to the conflation
of time and feature representations in the NN layers.

To overcome this limitation, dCAM proposes a new CNN
architecture in which the first convolutional filter applies to
a TS cube containing all the features (a.k.a TS variables)
permutations (of the input instance) along time. To compute
relevance over time, dCAM does not require investigating ev-
ery possible permutation but summarizes feature importance at
each timestamp, by applying a heuristic over the permutations
cube to obtain the final relevance attribution matrix.
Dynamask (DM) [8] relies on a perturbation operator to create
a modified version of the model input in order to generate
relevance scores. The operator is defined by considering
neighboring values of each feature at different timestamps. By
comparing the perturbed prediction to the original prediction,
the produced errors can be backpropagated to adjust the matrix

scores in the final output. Unlike DM and dCAM tailored to
explain DL-based MTS classifiers, the following perturbation-
based methods are model agnostic and aim to assess the impact
of individual features in terms of model outcome difference,
when the features are masked or permuted.
SHapley Additive exPlanations (SHAP) [11] adopt a funda-
mental concept from cooperative game theory, which consists
of assigning importance value (a.k.a SHAP value) according
to the effect of a given feature on the model prediction. SHAP
values are regression coefficients whose computation requires
retraining the model to explain each feature, and thus, it
rapidly becomes a computationally expensive solution. Hence,
many approximations have been proposed in this respect, for
non-sequential and sequential models (a.k.a time series). Gra-
dientSHAP [11] (GS) is a hybrid approach (gradient-based
+ perturbation) that approximates SHAP values by adding
white noise to each input sample multiple times. It works by
selecting a random baseline and a random point along the path
between the baseline and the input, computing the gradient
of outputs w.r.t. the random points. The final SHAP values
represent the expected values of gradients multiplied by the
difference between the input and the baselines. TimeSHAP [9]
(TS) works by creating a parallel linear model to the one to
explain, training it with slightly perturbed data (over time).
Since the space of different feature sets to perturb grows
exponentially, TimeSHAP proposes a sampling strategy, that
merges sets (a.k.a. coalitions) of semantically equivalent MTS
dimensions and time-steps. The perturbation must change the
output of the model, but at the same time, it must be large
enough to identify the most important features for predictions.
Feature Ablation (FA) [14], [15] performs the classification
task by replacing each timestamp of an observed TS variable
with a given baseline value, and then computing the differ-
ence from the outcome generated by the original instance.
Such a difference quantifies the importance of the masked
feature. Feature Occlusion(FO) [16] masks all attributes over
a time interval (multivariate sub-sequence), obtaining thus
an importance score per time window. The final attribution
of each value becomes the mean value of all the window
scores in which the value appears. When Z-Normalization
is applied, it is common to consider a zero value and a
zero-valued TS baseline in FA and FO, respectively. Feature
Permutation(FP) [16] produces relevance scores by permuting
each feature individually and drawing a new feature value
randomly in batches.

B. Gradient-based Approaches

This family of xAI methods relies on gradient computation
of neural network outputs to quantify feature relevance. Gra-
dient CAM (Grad-CAM) [27] is a generalization of CAM
aiming to output relevance scores based on all the network
layers. Such scores are calculated by backpropagating the
gradient of each class with respect to the activation generated
by each observed TS variable at each timestamp.
XCM [7] was the first model-specific method adapting Grad-
CAM to obtain feature relevance scores for MTS classification.



Fig. 2. Causal graphs underlying datasets of the three families: nodes are
labeled by TS variables, directed edges represent direct causal relationships.
Dashed lines indicate the presence of latent confounders (i.e., non-observable
TS variables) that cause both linked observable TS variables).

Formally, the importance in terms of the neuron activation of
a feature f for a given class yc is denoted by:

αc
f =

1

N × T

∑
i

∑
j

δyc

δAf
i,j

(2)

The coefficient αc
f reports the global average of the (back-

propagated) gradients of a class score yc (output of the softmax
layer) w.r.t. the activation map Af obtained by the application
of the first 2-dimensional convolution filter on a TS variable
instance Xi

t ∈ RN×T . To compute the relevance attribution,
Grad-CAM involves a combination of the relevance coefficient
αc
f and all the feature maps. Hence, the final Grad-CAM score

attribution for a class c is given according to the following
formulae:

Lc
2D = ReLU(

∑
f

αc
fA

f ) (3)

Note that here, a linear rectifier (ReLU) filter keeps only
positive attributions, while Lc

2D reports a score for each
observed TS variable at each timestamp.
Integrated Gradients (IG) is a model-agnostic method [17]
that considers the integral of gradients of the model output
with respect to the inputs along the straight line path (in
RN×T ) from a baseline instance X ′ to the input X .

IV. METHODOLOGY AND EXPERIMENTAL FRAMEWORK

Testbed Datasets Our experimental evaluation considers fam-
ilies of datasets that dispose of casual graph validated by
domain experts. Other available time series benchmarks like
Exathlon [18] require to first run and evaluate causal discovery
algorithms [23], [28]–[31] that is outside the scope of our
work. Each dataset family is a collection of instances (MTS)
with similar properties. For the sake of reproducibility, the
complete framework containing the classification models and
the explanation algorithms is available online [32]. We have
integrated into our testbed the source code of the model
agnostic methods provided by the library Captum1, as well
as, the original implementations of model-specific methods
(dCAM, XCM, TimeShap and Dynamask) provided by their
authors.

Table I summarizes the main characteristics of the datasets
of the three families included in our testbed. Each dataset
family contains several MTS instances (number reported in the
previous table) of diverse length and dimensionality (i.e., TS

1https://captum.ai/api/

TABLE I
DATASETS CHARACTERISTICS: FMRI AND CLIM INSTANCES COMMIT TO

DIFFERENT CAUSAL GRAPHS (IN-DEGREES ARE AGGREGATED).

Dataset Instances Variables Timestamps Avg in-degree Max lag

7ts2h [23] 10 7 4000 1.8 1
fMRI [31] 17 5 200 to 5000 2.0 to 2.6 1
CLIM [29] 200 5 250 2.0 to 4.4 2

variables) committing to causal graphs (see Fig. 2) of varying
structure (w.r.t. node number and in-degree) and temporal
dependencies (i.e., linear vs nonlinear).

Instances of the CLIM family [29] encode linear temporal
relationships estimated from a Vector Auto-Regressive model
fit on real-world data and processed by domain experts of
climate modeling. Instances of the fMRI family [33] simulate
fMRI-BOLD levels in a brain network using a domain-specific
model and includes nonlinear relations as it is generated from
a linear ODE with constant coefficients. Finally, instances of
7ts2h [34] are fully synthetically generated, using a struc-
tural model that includes sines, cosines, or absolute values.

A. Datasets

7ts2h and fMRI exhibit different distributions of MTS in-
stances, as the generative stochastic process relies on different
weights and coefficients from one instance to another. On the
other hand, their causal graphs differ by two edges in the worst
case. 7ts2h is the only family where the data-generating
process contains hidden confounders (i.e., non-observed TS
variables), which are part of true causes in the causal graphs.

The causal graph (with lag values information) is available
for each instance in all families except for CLIM. For this
latter, we obtain causal information running SLARAC [35]
algorithm, as suggested by Runge et al. in their bench-
mark [29]. In the obtained causal model, we observe a sig-
nificant variance in the number of edges across the instances.
Moreover, we consider that all the cause-effect pairs have
a lag, either one or two, as indicated in the context of the
causality4climate competition [29].
Problem Settings In our study, we consider the problem of
predicting the value of a target TS variable at time t+1, namely
Xi

t+1, given the MTS subsequence of the preceding window
(of length ℓ) denoted by X1,..,N

(t−ℓ+1):t (a.k.a predictor). Since the
evaluated explanation methods apply to (deep learning) clas-
sification models, we compute binary labels from continuous
target values. In this respect, we rely on the KBinsDiscretizer
available in Scikit-learn. Hence, the probability of Xi

t+1 to
belong to one class or another is given by Fc(X1,..,N

(t−ℓ+1):t). The
total number of timestamps for which we predict the value of
the target TS variable is |X| − ℓ.
NN Architectures for Classification To implement MTS
classification we rely on state-of-the-art Neural Network (NN)
architectures such as Temporal Convolutional Neural Network
(TCNN)(dCAM [1], XCM [7]), Long-short Term Memory
Network (LSTM) [2] and Transformer [3] Neural Networks.

Unlike the standard deployment of TCNN and LSTM archi-
tectures [6], we have made adjustments to the Transformers

https://captum.ai/api/


TABLE II
AVERAGE AUCROC AND NUMBER OF MODELS WITH AUCROC ≥ 0.7

PER NN ARCHITECTURE AND DATASET FAMILY.

7ts2h CLIM fMRI
LSTM 0.916 (51) 0.784 (116) 0.817 (45)
XCM 0.901 (43) 0.801 (49) 0.826 (19)
DCAM 0.867 (38) 0.786 (59) 0.793 (26)
Transformer 0.903 (51) 0.792 (23) 0.906 (16)

NNs architecture commonly adopted in the literature [36]. In
particular, we use only a transformer encoder replacing ReLU
with GELU activations (in the Position-Wise Feed-Forward
Layer). To obtain the final outcome, a single feature vector
(per batch) resulting from max-pooling the temporal features
is fed to a two-layer multi-layer perceptron, which uses GELU
activation prior to producing the classification results (in the
softmax layer). Our implementation relies on [37] that learns
positional encoding instead of the default sine-cosine scheme
in order to obtain a better classification performance overall.
Model training We train a model of each DL architecture
type on the prediction task, for each target variable and each
MTS instance (in total 1155 models). To obtain meaningful
insights from explanation methods, for each NN architecture
we consider models built with MTS instances that have an
AUCROC above 0.7. The final number of retained models per
dataset family and DL architecture is reported in Table II,
for a total of 537 models. We perform MTS classification
over windows (i.e., sub-sequences) of eight observations.
Such window length permits to cover maximal lags between
causes and effects in the causal graph, along with several
previous timestamps whose influence might be correlated
to the target TS variable. We use a 70:30 splitting ratio
for training/validation and test respectively, adopting Forward
Chaining Cross Validation [38] (FCCV). During training, we
oversampled MTS instances to balance classes. We rely on a
stratified K-Fold data split to tune NN hyperparameters using
the optuna tool. During this process, we apply K-Fold to a
subset of instances (up to three, depending on the dataset size
and time complexity limit) and uniquely on training data.

B. Explanation evaluation metrics

xAI methods are usually evaluated along two axes: (i) to
what extent the generated explanations meet user expectations
(Plausibility); (ii) how accurately they reflect the predictive
model to explain (Fidelity). In this paper, we focus on the
latter criterion, and specifically, we consider the following
metrics: (a) temporal consistency of explanations produced in
different windows; (b) the relevance of explaining features to
the underlying causal graph; (c) the predictive performance of
the surrogate models trained only on the explaining features.

1) Temporal Explanation Consistency: In explainability,
the notion of consistency typically measures to what extent
two samples of the same class are explained in the same
manner. In the case of the datasets we use, where each MTS
value originates from a unique generation process, we expect
that explanations are locally consistent over time. Hence, we
measure the temporal consistency of an xAI method as the

degree of randomness exhibited by explanations across differ-
ent windows. Specifically, we adopt a definition of consistency
similar to the concordance metric introduced in the Exathlon
benchmark [18].

More precisely, given an MTS X ∈ RN×T and a classifica-
tion model Fc, we compute consistency over the k highest
scores of relevance attribution matrices resulting from the
application of a classification model Fc on each sub-sequence
in X of length ℓ. Recall that the number of sub-sequences of
length ℓ in X is given by the number of target TS variables
we predict in X , namely |X| − ℓ. Hence, we define:

Consistency = −
N∑
i=1

ℓ∑
j=1

pk(i, j) log2 pk(i, j) (4)

pk(i, j) =

∑|X|−ℓ
t=1 1[Ri,j ∈ Rk(X1,..,N

t,(t+ℓ−1),F
c(X1,..,N

t,(t+ℓ−1))[a])]

k(|X| − ℓ)
(5)

In equation (4), pk(i, j) corresponds to the relevance scores
frequency of all sub-sequences at position i, j in the top k
scores of each relevance attribution. Each relevance attribution
matrix is computed with respect to a class a, where each
sub-sequence belongs to. Consistency is thus the entropy of
this distribution. In equation (5) 1[] is the indicator function.
The sum of all frequencies

∑N
i=1

∑ℓ
j=1 pk(i, j) is equal to 1.

Consistency is bounded between a fixed theoretical maximum
log2(N×ℓ) and a theoretical minimum log2 k. As Consistency
measures the entropy of explanations across time, the lower
the value the more consistent the set of k-length explanations
we obtain across time.

2) Explanation precision w.r.t. a Causal Graph: To mea-
sure whether highly scored relevance features correspond to
true causes of the target variable, we introduce Precision and
Recall for a fixed explanation length k, using as ground truth
the causal graph of each dataset.

Given a MTS X ∈ RN×T and a classification model Fc

applied on a number |X| − ℓ of sliding windows of X to
predict the class of values in a target Xi, we define:

P =

|X|−ℓ∑
t=1

|{Ra,b ∈ Rk(X1,..,N
t,(t+ℓ−1)|(a, b) ∈ Ci

t+ℓ(X)}|
k(|X| − ℓ)

(6)

R =

|X|−ℓ∑
t=1

|{(a, b) ∈ Ci
t+ℓ(X)|Ra,b ∈ Rk(X1,..,N

t,(t+ℓ−1)}|
|Ci

t+ℓ(X)|(|X| − ℓ)
(7)

P measures on average how many relevant features are
direct causes of the target attributes in X . Symmetrically, R
reports the average number of direct causes that are relevant
according to the explanation provided in the top k scores of
each relevance attribution matrix.

3) Predictive Performance of Explanations: The predictive
performance of explanations is often evaluated using the
Insertion Deletion method [39] that measures the impact of
top k salient features on the classification performance (e.g.,
AUC), either by masking those or by masking all other
features. While useful for comparing different xAI methods,



this method does not suit binary causal relationships with
a target MTS variable. While it is possible to define the
causal strength of directed feature relationships [40], such
information is not available in our ground truth.

In our study, we are interested in measuring the predic-
tive performance of the final classification outcome of the
known causes. In this respect, we rely on the remove-and-
retrain method (ROAR) [41], which consists of re-training
a model with reduced data dimensionality and testing its
performance. In a nutshell, for each MTS and model we
build and compare two different models: I) the Explanation-
Only model (EO model), which is is trained with only the
k most frequently salient features for pk, and II) the Cause-
Only model (CO model) trained with only the features that
are direct causes of the target variable.

To compare the performance of these two kinds of surrogate
models, we measure the Area Under the Receiver Operating
Characteristics Curve (ROC AUC) while performing FCCV.
It is worth mentioning that we can not exploit the Insertion
Deletion method [39], measuring the AUC of model accuracy
variation, when k changes. Since no order exists on the causes’
importance in the causal graph ground truth, k must remain
fixed to the number of true causes (k = |Ci

t(X)|).

V. EXPERIMENTAL RESULTS

In this Section, we report the performance results of the
explanation methods presented in Section III according to the
metrics we introduced in Section IV. We finally highlight the
main conclusions drawn from our experiments.

We evaluate each metric on our 30% test data split. As
relevance maps have to be computed w.r.t. a given class, we
restrict our analysis to values of the target variable belonging
to the positive class of each MTS instance. The number of
relevance attribution maps over which metrics are computed
varies across MTS instances, for a minimum of 17 in fMRI
and CLIM and 47 for 7ts2h.
A. Temporal Consistency of xAI Methods

The series of experiments reported in this section aims to
answer the following questions: (i) Is there an xAI method
that is more consistent than others across windows? (ii) Is
there a NN architecture that is favored by an xAI method when
looking for temporally consistent explanations? (iii) How does
the length k of explanations affect their consistency, with
respect to a random and theoretical best baseline?

Fig. 3 illustrates the temporal consistency of different xAI
methods per NN architecture and dataset family, when varying
the length k of explanations. The minimal (or optimal) con-
sistency metric corresponding to a deterministic explanation is
plotted in dashed font as a reference. Note that given a MTS
X ∈ RN×T , the largest value for k is thus given by N × T .

The Feature Occlusion (FO) method is evaluated only for k
that are multiples of the number of TS variables. Note that the
relevance attribution of all TS variables in a given timestamp
is identical since the occlusion patch covers all features in a
timestamp. In this sense, the FO method estimates temporal
importance rather than feature importance. Hence, we consider

Fig. 3. Mean temporal consistency when varying k per dataset family and NN
architecture. Lines represent average consistency across all target TS variables
in a dataset and areas the 95% confidence interval of predictions.

only k values that correspond to selecting all features in the
most salient timestamps.

We first focus on the temporal consistency of xAI methods
(i). As we can observe in Fig. 3 with the exception of
dCAM and XCM, explanation methods exhibit similar trends
for the same NN architecture and dataset family. The two
gradient methods IG and GS have nearly the same consistency,
which we can attribute to the high similarity between the two
methods. FA is similar but with better consistency at k < 5,
showing that the method’s higher saliency features tend to vary
less.

The lower consistency metric value that DM shows around
k = 4, 5, 6 is a consequence of the sparsity loss term optimized
by the method. It forces an adjustable number of relevance
coefficients to zero and the rest to 1 (and selects by itself
this adjustable parameter). There is thus a reduced amount
of randomness in its top k features as k gets close to this
threshold. Method TS performs close to or better than FA,
except for LSTMs. As for FO, it is more consistent than
other methods due to ranking timestamps and not individ-
ual features, which decreases the entropy of the associated
distribution. As expected, methods with coalition constraints
(FO, DM, TS) are generally more consistent than univariate
alternatives, except FA.



The randomness of the FP method could be attributed to
the batch computation. To permute features, FP explains at the
same time a batch of windows. The values of the permuted
features come from the same batch. Since our batch size is 32,
the distribution of permuted features varies in practice across
batches.

The dCAM method shows a distinct behavior, especially at
high k, due to the internals of its architecture. We observe
that CAM coefficients regularly have low variance in the last
time steps of the window. This side effect is likely due to
the input padding, which consists of adding zero coefficients
to the input of each convolutional layer. It derives that the
feature relevance in the last timestamps of each window is
consistently low.

As for the XCM method in 7ts2h, we observe that for about
60% of the models, the saliency maps produced consist of
zero-valued coefficients. XCM essentially runs two parallel
stacks of convolution layers with temporal (1D) and spa-
tiotemporal (2D) kernels respectively. To build explanations,
XCM only uses the spatiotemporal stack. We note that the
temporal pipeline has wider kernels and three to four times
more trainable weights. Obtaining zero-valued explanations
denotes that the model has learned to use only this part. For
the other 40% of the models, we observe a consistency at
around four for k = 1. In fMRI and CLIM, the produced
saliency maps are different from zero for more than 90% of
the models.

Then, we investigate the effect of different NN architectures
(ii). Our first observation is that up to k = 10, explanations of
LSTM models are systematically more consistent than their
counterparts computed on TCNN and Transformer (except
FA on Transformer). For k = 1 in particular, for each xAI
method and dataset family, the consistency metric on LSTM
is at least one point below the consistency metric on the other
types of models. The consistency at low k (LSTM, XCM,
Transformer, DCAM) is ordered by the number of trainable
parameters in our NN architectures. More complex models
might distinguish more finely between different inputs, leading
to a higher variation of explanations. A more extensive study
of the impact of the model size on the temporal consistency
of explanations is left as future work.

We finally study the consistency of explanations for differ-
ent k values (iii). Our general observation is that the more
features in the explanation, the less consistent the explanation
is, across all NN architectures and xAI methods. For LSTM
especially, the explanation methods get farther away from the
minimal consistency as k increases. This indicates that the
top few features are less randomly distributed than the rest
ones, especially when it comes to the last 15 features, where
consistency becomes close to a fully random explanation. We
observe the ability of the xAI methods to report somewhat
consistent most salient features while having very random
small coefficients for others. Another noteworthy result is that
for the LSTM model on 7ts2h with FA, explanations of length
one have about the same entropy as a uniform distribution
of support two. This means that the explanation methods are

mostly concentrating on one or two features.
Summary: xAI methods produce more consistent explana-

tions of LSTMs, which could be due to their small size. On
the same NN architecture and dataset family, coalition-based
method tend to be more consistent than univariate alternatives,
with FA as an exception for low explanation sizes. dCAM and
XCM have side effects leading to distinct behaviors.Finally,
we observe that explanations quickly become random as we
include features of lower relevance.

B. Causal Relevance of xAI Methods

The series of experiments reported in this section aims to
identify the extent to which xAI methods are able to discover
the true causes of the predicted variable in the causal graph.
Similarly to the previous section, we are interested in the
comparative performance i) of the different xAI methods, ii)
of the different NN architectures, iii) and how performance
metrics are affected as k grows, with respect to a random and
theoretical best baseline.

We measure for each xAI method the precision and recall
per explanation length k using as ground truth the respective
causal graph. We first compute these metrics for individual
MTS instances and predicted variables and average them over
the time t. Then, we average across MTS instances and
targets to plot in Fig. 4 a single curve per dataset family
and NN architecture. We add two baselines: max and random,
corresponding respectively to the maximal precision or recall
that can be obtained, and the expectation of these metrics if
the explanation was a uniformly randomly chosen feature set.

On TCNNs and LSTM, the xAI methods that achieves the
best precision and recall are FA and TS on most datasets
with close performances. DM seems well suited to the fMRI
dataset. The sparsity constraint around k = 4, 5, 6 is effective
in selecting the best features. Gradient-based methods IG
and GS obtain near identical results. FP exhibits a per-
formance either above or below IG and GS depending on
the NN architecture and dataset family. dCAM explanations
are extremely inaccurate: similarily to consistency, dCAM
explanations miss the ground truth causes as they are usually
situated within the last few timestamps of the saliency map that
have systematically low coefficients. On the opposite, FO has
a high precision and recall starting from the second marker on
CLIM, since FO often identifies the two timestamps in which
the ground truth causes are located. XCM produces close-to-
random explanations. As seen in the previous section, XCM
explains the less relevant spatiotemporal part of the network.
The problem of 0-valued saliency maps is a particular case
of this partial model explanation. Finally, we remark that in
general, all xAI methods exhibit a similar standard deviation
of the precision across all datasets and model combinations
(differing by less than 0.1 to 0.05), decreasing as k increases.
On top of it, we remark no clear ordering on all (dataset,
model) pairs, except that GS and IG are nearly identical and
have the highest variance on 7ts2h and CLIM.

Considering model differences (ii), we see that LSTM
dominates over the others on all methods and dataset families.



(a) Precision (b) Recall

Fig. 4. Mean Precision (a) and Recall (b) as a function of k per NN architecture and family of datasets. Lines represent metrics at a given k averaged over
all predicted features and instances and areas the 95% confidence intervals of predictions.

At k = 1, each xAI method dominates its counterparts in
other models by at least 0.1. This is a surprising result as
the AUCROC of the models used for explanation are not
higher in LSTM compared to XCM and Transformer (see
Table II). Nevertheless, we observe that the LSTM models
obtain an AUCROC higher than 0.7 on more MTS instances.
We conjecture that even if two architectures have similar
performance, the architecture that can be applied reliably on
many MTS instances will focus more on the true causes. The
recurrent structure of the LSTM permits it to outperform other
models since it is capable of better learning cause and effect
with a short lag (1 or 2).

Regarding the effect of the explanation length (iii), we
observe that for k = 1 LSTM paired with FA achieves a
close to 0.9 precision for the most salient feature in 7ts2h,
and above 0.75 for CLIM. The recall of explanations methods
excluding dCAM and XCM shows that up to k = 8, the
k-th feature is identifying true causes better than a random
guessing. Afterward, added features bring little information
until the recall reaches the random baseline. It becomes clear
that only the top few features include the true causes of our
target variable, while the rest of the explanation contains noise.

Finally, we observe a lower starting precision on fMRI than

CLIM or 7ts2h. Table II reports a lower number of successful
models for fMRI than for CLIM and 7ts2h. We reach a similar
conclusion as in the analysis of per model type behavior: the
ability of a model to achieve acceptable performances on a
diverse set of MTS of similar dynamics is linked to model
reliance on true causes.

Summary: Overall, methods other than dCAM and XCM
succeed in recovering at least one of the true causes. Still, none
of them are able to recover all causes, as features outside of the
top 10 bring little information. FA and DM have a small lead
on other xAI methods depending on the model and the dataset.
Finally, models that perform well on more MTS instances, as
LSTM does, have explanations closer to the causal graph.

C. Predictive Performance of xAI Methods

The last part of our analysis concerns the predictive perfor-
mance of surrogate models trained only over the explaining
features. We seek to know if the top salient features are
sufficient predictors for training surrogate models and compare
their performance to a baseline model where only the direct
causes from ground truth are included as input. Thus, we focus
on i) whether the features that are most frequently included in
explanations can be used to predict the target TS variable as
the original model, ii) how the performance of these surrogate



Fig. 5. Critical difference (CD) diagram of the AUCROC of the EO, CO, and
Full models (Nemenyi test CD=0.518). The scale denotes the average ranking
of each method, and bold lines denote non significant differences.

models compares to models exclusively built over the direct
causes set of the target TS variable.

Both questions i) and ii) relate to the relative performance
of the explanation-only models with FA, IG, GS, FP, DM,
XCM, dCAM, TS (EO models), along with cause-only models
(CO models) and Full (original) models. We build a critical
difference diagram using the AutoRank library [42] to test if
there are any significant differences between the 10 models
[43]. We rely on the non-parametric Friedman test [43] as an
omnibus test, and reject the null hypothesis that all methods
come from the same distribution (with a significance level of
5%). Next, we use the post-hoc Nemenyi test, in order to
compare the methods in pairs. Two methods are significantly
different when their average ranks differ more than a critical
distance (CD) of 0.585 (at a significance level of 0.05). We
conduct our test on the 536 data points that are formed
by successfully trained models (Table II). Fig. 5 depicts the
statistically significant models in a critical difference diagram.

We observe that i) EO models exhibit on average a poor
predictive performance compared to Full models, and ii) that
CO models outperform on average not only the EO models but
also the Full models. xAI methods definitively fail to identify a
minimal set of features necessary to the prediction task, unlike
causal predictors leading on average to a higher model quality.

Fig. 6 finally depicts how often EO models exhibit a
worse performance than the CO models. Only in a few MTS
instances, we observed that EO models are better than their CO
counterparts. We speculate that this difference is attributed to
two factors. The first is the independence relations not entailed
by the causal graph (i.e. the faithfulness of the causal graph
to the distribution it explains). Specifically, it is possible that
some TS variables in our true causes have low causal strength.
The second factor is specific to the CLIM dataset, where the
causal ground truth is observed to be slightly inaccurate for
some particular MTS instances.

Summary: EO models clearly underperform compared to
the Full and CO models. This demonstrates not only the pre-
dictive power of direct causes w.r.t. the salient features but also
w.r.t. to the full models trained on the original set of features.
As a matter of fact, full models exploit correlations between
all available features to gain predictive performance that are
unlikely to generalize in different environments, especially in
high-dimensional settings.

Fig. 6. AUCROC of explanation-only restricted (EO) models compared
to the causal-only restricted (CO) models, for each predicted variable and
xAI method. Points above the diagonal represent datasets where the EO
outperforms the CO model.

VI. CONCLUSION

The main conclusion drawn from our experiments is that
relevance attribution methods do not produce consistent ex-
planations across time and seldom discover the true causes
of the predicted variables. As expected, the intrinsic measures
underlying post-hoc methods are purely associational and usu-
ally expose potentially spurious and misleading correlations in
input data used to train a NN model. For this reason, surrogate
models build over salient features systematically underperform
w.r.t. MTS classifiers build over the full feature space. On
the contrary, sparse NN models build over causal explanations
generalize much better than the full models.

We let as future work the study of how the size/complexity
of the models influences the consistency of the xAI methods.
We also remark on the need of adding more stochastically
generated dataset families, ideally with controllable noise and
diverse dynamics. This would allow experimenting on a link
between the discovery of true causes and the robustness of
the model type (to which extent the same NN architecture can
learn on different MTS instances of shared dynamics). Dataset
families with a large number of covariates could be added to
study if NN can learn sparse causal information despite the
curse of dimensionality, and if sparsity constraints could make
the networks focus on causal variables. Another direction of
improvement would be enlarging the causal evaluation of xAI
methods to counterfactual explanations [44], to forecasting and
multi-class models interpretability methods [45].
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