
HAL Id: hal-04316324
https://hal.science/hal-04316324

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Choral: Object-Oriented Choreographic Programming
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti

To cite this version:
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti. Choral: Object-Oriented Choreographic
Programming. ACM Transactions on Programming Languages and Systems (TOPLAS), 2023,
�10.1145/3632398�. �hal-04316324�

https://hal.science/hal-04316324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Choral: Object-Oriented Choreographic Programming

SAVERIO GIALLORENZO∗, Università di Bologna, Italy and INRIA, France

FABRIZIO MONTESI†, University of Southern Denmark, Denmark

MARCO PERESSOTTI, University of Southern Denmark, Denmark

Choreographies are coordination plans for concurrent and distributed systems, which define the roles of

the involved participants and how they are supposed to work together. In the paradigm of choreographic

programming, choreographies are programs that can be compiled into executable implementations.

In this article, we present Choral, the first choreographic programming language based on mainstream

abstractions. The key idea in Choral is a new notion of data type, which allows for expressing that data is

distributed over different roles. We use this idea to reconstruct the paradigm of choreographic programming

through object-oriented abstractions. Choreographies are classes, and instances of choreographies are objects

with states and behaviours implemented collaboratively by roles.

Choral comes with a compiler that, given a choreography, generates an implementation for each of its

roles. These implementations are libraries in pure Java, whose types are under the control of the Choral

programmer. Developers can then modularly compose these libraries in their programs, to participate correctly

in choreographies. Choral is the first incarnation of choreographic programming offering such modularity,

which finally connects more than a decade of research on the paradigm to practical software development.

The integration of choreographic and object-oriented programming yields other powerful advantages,

where the features of one paradigm benefit the other in ways that go beyond the sum of the parts. On the one

hand, the high-level abstractions and static checks from the world of choreographies can be used to write

concurrent and distributed object-oriented software more concisely and correctly. On the other hand, we

obtain a much more expressive choreographic language from object-oriented abstractions than in previous

work. This expressivity allows for writing more reusable and flexible choreographies. For example, object

passing makes Choral the first higher-order choreographic programming language, whereby choreographies

can be parameterised over other choreographies without any need for central coordination. We also extend

method overloading to a new dimension: specialisation based on data location. Together with subtyping and

generics, this allows Choral to elegantly support user-defined communication mechanisms and middleware.

CCS Concepts: • Computing methodologies → Concurrent programming languages; • Software and
its engineering→Multiparadigm languages; Classes and objects; Concurrent programming structures.

Additional Key Words and Phrases: Choreographies, Communication, Higher-Kinded Types

∗
Work mainly performed while the author was employed at the University of Southern Denmark.

†
Corresponding author.

Authors’ addresses: Saverio Giallorenzo, Department of Computer Science and Engineering, Università di Bologna, Mura

Anteo Zamboni 7, Bologna, 40126, Italy, INRIA, Sophia-Antipolis, France, saverio.giallorenzo@gmail.com; Fabrizio Montesi,

Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark,

fmontesi@imada.sdu.dk; Marco Peressotti, Department of Mathematics and Computer Science, University of Southern

Denmark, Campusvej 55, Odense, 5230, Denmark, peressotti@imada.sdu.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

0164-0925/2023/11-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

ACM Reference Format:
Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2023. Choral: Object-Oriented Choreographic

Programming. ACM Trans. Program. Lang. Syst. 1, 1 (November 2023), 58 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
Background. Choreographies, broadly construed, are coordination plans for concurrent and distrib-

uted systems [Object Management Group 2011; W3C 2004]. Examples of choreographies include

distributed authentication protocols [OpenID Foundation 2014; Sporny et al. 2011], cryptographic

protocols [Diffie and Hellman 1976], and multiparty business processes [Object Management Group

2011; W3C 2004]. In software development, programmers use choreographies to agree on the

interactions that communicating endpoints should enact to achieve a common goal; then, each

endpoint can be programmed independently. The success of this development process hinges on

achieving choreography compliance: when all endpoints are run together, they interact as defined

by the choreographies agreed upon [Montesi 2023].

 Legend Choreographies

Endpoint Code

(coordination and
local code written by
programmers)

Manual

Compliance

Programmer

Fig. 1. Choreography compliance: endpoints should
communicate as intended by the choreographies that
they engage in.

 Legend

Coordination code
(compiled)

Local code

(written by
programmers)

Choral Choreographies

Compliance

by Construction

Compiler

Fig. 2. Our proposal: compliant-by-construction lib-
raries are automatically compiled from choreograph-
ies in Choral.

Achieving choreography compliance is hard, because of some usual suspects of concurrent and

distributed programming: predicting how multiple programs will interact at runtime is challenging

[O’Hearn 2018], and mainstream programming languages do not adequately support programmers

in reasoning about coordination in their code [Leesatapornwongsa et al. 2016; Lu et al. 2008].

Additionally, choreographies are complex. At a minimum, choreographies define the expected com-

munication flows among their roles (abstractions of endpoints, like ‘Alice’, ‘Bob’, ‘Buyer’, etc.) [Intl.

Telecommunication Union 1996]. However, they often include computational details of arbitrary

complexity, for example, pre- or post-processing of data (encryption, validation, anonymisation,

etc.), state information, and decision procedures to choose among alternative behaviours. These

computational details are essential parts of many protocols, ranging from security protocols to

business processes. Figure 1 depicts the common situation where a programmer tries to ensure

choreography compliance through their subjective interpretation of the choreography and the

manual coding of endpoints.

In response to the challenge of choreography compliance, researchers investigated methods to

relate choreographies to endpoint programs – many are reviewed in [Ancona et al. 2016; Hüttel et al.

2016]. Initially, these methods focused on simple choreographic languages without computation

that were inspired by, e.g., communicating automata, process calculi, and session types [Basu et al.

2012; Bravetti and Zavattaro 2007; Honda et al. 2016; Qiu et al. 2007]. Some ideas developed for

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Choral: Object-Oriented Choreographic Programming 3

choreographies were later adopted in the paradigm of choreographic programming [Carbone and

Montesi 2013; Montesi 2013], where choreographies are written in a Turing-complete programming

language that allows for defining arbitrary computation at endpoints. Thanks to the capability of

combining computation with coordination, choreographic programming languages can capture

realistic protocols that include data manipulation and decision procedures, including encryption

strategies (as in security protocols), retry strategies (as in transport protocols), and marshalling

(as in application protocols). In choreographic programming, compliance is obtained by construc-

tion: given a choreography, a compiler automatically translates it to a set of compliant endpoint

implementations. Choreographic programming has been shown to have promising potential in

multiple contexts, including information flow [Lluch-Lafuente et al. 2015], distributed algorithms

[Cruz-Filipe and Montesi 2016], cyber-physical systems [López and Heussen 2017; López et al.

2016], and self-adaptive systems [Dalla Preda et al. 2017].

The problem. Current approaches to choreographic programming come at a significant cost to

modularity, and it remains unclear how the benefits of this paradigm can be applied to mainstream

software development.

Typically, the endpoint code that implements a choreography comes in libraries that developers

can use in their applications through an API [Atzori et al. 2010; Murty 2008; Wilder 2012]. For

example, a library that implements a choreography for user authentication might provide a method

authenticate that a web service can invoke to run (its part of) the protocol in collaboration with a

connected client. The implementation of authenticate might involve a series of communications

between the client and the web service. Potentially, a third-party identity provider might be involved

as well, and messages might include passwords that should be hashed. Usually, and ideally, all

these details are hidden from the API (the signature of the method) exposed to the developer

of the web service. This abstraction allows the developer to minimise coupling between their

implementation of the functionalities offered by the web service and the choreography used for

authentication, bringing the expected benefit: the library implementing the choreography and the

rest of the code of the web service can be updated independently and recombined, as long as the

API provided by the former remains compatible with the one expected by the latter. This benefit is

key to large-scale software development, and it is an initial assumption for modern development

practices like microservices and DevOps [Dragoni et al. 2017].

Unfortunately, previous frameworks for choreographic programming do not support modular

software development [Dalla Preda et al. 2017; Montesi 2013]. The code that these frameworks

generate for each endpoint is a ‘black box’ program without an API: it can be executed, but it is not

designed to be composed by programmers within larger codebases. Thus, these frameworks fall

short of providing the aforementioned benefit of modularity. Furthermore, the common scenario

of programming an endpoint that participates in multiple choreographies is not supported, and

neither is programming an endpoint where participating in a choreography is only part of what

the endpoint does.

A major factor that makes modularity challenging is that current choreographic languages

are based on behavioural models (process calculi, communicating automata, etc.), which makes

translating choreographies into libraries based on mainstream abstractions (data, functions, objects,

etc.) nontrivial. For the simpler setting of choreographic languages without computation, we know

that choreographies can be translated to libraries that offer a ‘fluid’ API. For instance, Scalas

et al. [2017] produce object-oriented libraries whose APIs enforce the invocation of send and

receive methods in the right order: if an endpoint should send, receive, and then send, the

developer will be forced to write something like o.send(..).receive(..).send(..). However,
this approach leaks the structure of the communication flow implemented by the library; thus,

future versions of the library that adopt a different structure (e.g., an unnecessary communication

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

4 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

might be removed, or some communications might be bunched together for efficiency) would

require rewriting the application that uses the library. Furthermore, this approach does not let

the choreography programmer decide how the generated API will look; thus, we cannot use this

method to generate drop-in replacements for existing libraries.

In summary, we still have to discover how the principles of choreographic programming can be

applied to mainstream programming. This article aims to fill this gap.

This article. We present Choral, a new choreographic programming language that supports modu-

larity and is based on mainstream programming concepts (from object-oriented programming). To

demonstrate applicability, Choral is compatible with Java, but our ideas apply to most statically-

typed, object-oriented languages.

The fulcrum of Choral is a new interpretation of choreographies that builds naturally on top

of existing language abstractions: Choral is an object-oriented choreographic programming lan-

guage, where choreographies are classes and their instances are objects. The starting point for this

interpretation is a generalisation of the key idea found in Lambda 5 [Murphy VII et al. 2004], the

model that inspired the research line on multitier programming [Cooper et al. 2006; Murphy VII

et al. 2007; Neubauer and Thiemann 2005; Serrano et al. 2006; Weisenburger et al. 2020]. In Lambda

5, each data type is located at a (single) place, which enables reasoning on spatially-distributed

computation. Choral generalises these types from single to multiple locations, which allows us to

express that an object is implemented choreographically: Choral objects have types of the form

T@(A1, ..., An), where T is the usual interface of the object, and A1, . . . , An are the roles that

collaboratively implement the object.

As an example, consider the case of a multiparty choreography for distributed authentication,

where a service authenticates a client via a third-party identity provider. We can define such a

choreography as a Choral class with type DistAuth@(Client, Service, IP) (IP is short for

identity provider). The class can implement methods that involve multiple roles. For example, it

can offer a method authenticate with the following signature.

Optional@Service<AuthToken> authenticate(Credentials@Client credentials) Choral Code

Invoking authenticatewith some Credentials located at Client returns an authorisation token
at Service (Optional since authentication can fail), denoting the movement of data.

We leverage our object-oriented interpretation of choreographies to develop a methodology

for choreography compliance that supports modularity and is compatible with mainstream pro-

gramming. We depict this methodology in Figure 2. Given the code of a Choral class with some

roles, a compiler produces a compliant-by-construction software library in pure Java for each role

(‘coordination code’ in Figure 2): each library contains the local implementation of what its role

should do to execute the choreography correctly. These libraries offer Java APIs derived from the

source choreographies, which reveal only the details pertaining to the implemented role. When a

software developer programs an endpoint that should engage in a choreography, they can just take

the library compiled for the role that their endpoint needs to play and use the library through its

Java API. Those APIs allow developers to modularly compose multiple libraries within their code

(‘local code’ in Figure 2), thus gaining the ability to participate in multiple choreographies.

The Java code compiled from the method authenticate for the roles Client and Service has

the following signatures, respectively.

// Compiled code for Client
Unit authenticate(Credentials credentials)

Generated Code

// Compiled code for Service
Optional<AuthToken> authenticate()

Generated Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 5

The compiled signatures follow the principle that we have just mentioned – that is, for each role,

only what pertains to that role is reported. This is why the signature compiled for Client has a
parameter of type Credentials and return type Unit: in the source choreography, the parameter is

located at Client whereas the return type is located at another role.
1
Following the same principle,

the signature for Service has return type Optional<AuthToken> and no parameters.

Contributions. We outline our main contributions.

Language.We present Choral, the first choreographic programming language based on mainstream

abstractions and interoperable with a mainstream language (Java). The key novelty of the Choral

language is that data types are higher-kinded types parameterised on roles. We leverage this feature

to bring the key aspects of choreographies to object-oriented programming (spatial distribution,

interaction, and knowledge of choice). Choral is also the first truly higher-order choreographic

language, where choreographies passed as arguments can carry state and invocations of higher-

order choreographies require no centralised coordination [Dalla Preda et al. 2017; Demangeon and

Honda 2012].

Integrating object-oriented principles with choreographies brings key benefits in the other

direction too, in the sense that we gain a much richer choreographic language than the state-of-the-

art. By using subtyping, we can define abstract APIs for choreographies that can be implemented

in different ways and communication behaviours, bringing the usual substitution principle for

objects to choreographies. Method overloading allows us to specialise computation based on the

locations of arguments – which is a new dimension for overloading. Semantic parametricity enables

the writing of reusable choreographies that treat uniformly parameters that implement a shared

API. These features allow us to generalise choreographies from assuming a fixed communication

primitive to user-definable communication methods, thus freeing Choral from commitments to

any communication technology or middleware. Furthermore, we can define in Choral the first

hierarchy of ‘channel types’ for choreographies, which can be used to represent at the level of types

the topological assumptions of a choreography. In general, users are free to define other ‘channel

types’ to support more topologies.

We implement a type checker that, in addition to the expected checks for an object-oriented

language, detects coding errors related to roles. For example, our checker can rule out computation

at a role that erroneously accesses data at another role without proper communication. This makes

distribution errors manifest to the programmer. Our typing also supports the reuse of all existing

Java classes and interfaces in Choral, because every such type can be lifted to a Choral type located

at a single role.

In Choral, choreographies are concrete software artefacts. This poses questions such as what

code should go in these artefacts, what code should remain local, and how these two parts of

software should interact through APIs. We elicit these questions and report on our experience in

addressing them throughout the article, where they become relevant.

Compiler.We implement a compiler that translates Choral source into Java libraries that comply

with the source choreography: the code generated for each role performs the actions prescribed

by the choreography. With our compiler, the programmer of the choreography is in control of

the generated APIs: the APIs for each role follow the same structure found in the choreography,

but where all data types and parameters in method signatures that do not pertain to the role are

omitted, as we exemplified previously for the authenticate method.

Testing. We present the first testing tool for choreographic programming. Since choreography

implementations are spread over multiple components (one for each role), testing choreographies

can be difficult because it calls for integration testing. Our testing tool leverages Choral to write

1
We use a Unit return type – provided with Choral – instead of void for compositionality reasons, as discussed in Section 2.2.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

6 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

‘choreographic tests’ that look like simple unit tests at the choreographic level, but are then compiled

to integration tests that integrate the respective implementations of all roles.

Evaluation.We explore the expressivity of Choral with use cases of different kinds, covering security

protocols, cyber-physical systems connected to the cloud, and parallel algorithms. For these use

cases, we discuss relevant code excerpts and development techniques induced by Choral.

We then move from our examples to real-world comparisons.

First, we show how Choral can be used to transition existing Java programs to choreographies.

We reimplement in Choral the Java implementation of Karatsuba’s algorithm for fast multiplication,

which yields a parallel implementation. Furthermore, we reimplement a clone of Twitter developed

by the Spring team. Implementing this system in Choral requires identifying roles, which makes

the original monolithic application much more modular.

Second, we compare Choral to a popular framework for concurrent programming in Java based

on actors (Akka). In particular, we identify the key differences in the development processes and

resulting architectures induced by the two technologies. We find that Choral provides concrete

benefits in avoiding subtle concurrency bugs.

Third, we carry out a quantitative evaluation of how Choral impacts software development and

runtime performance. Thanks to its choreographic approach, Choral consistently leads to smaller

codebases. Moreover, the impact of our compiler on the speed of the edit-compile cycle is negligible

(milliseconds). Finally, we show that the runtime performance of the code generated by Choral is

not worse (and often better) than that of alternative implementations in Java and Akka.

Outline. We overview Choral with simple examples in Section 2, and give more realistic use cases

in Section 3. The syntax and implementation of Choral are discussed in Section 4, and testing

in Section 5. We evaluate Choral in depth in Section 6. Related and future work are discussed in

Section 7. We draw conclusions in Section 8.

2 CHORAL IN PRACTICE
We start with an overview of the key features of Choral. First, spatial distribution: the expression

of computation that takes place at different roles (Section 2.1). Second, interaction: the coding of

data exchanges between roles (Section 2.2). Third, knowledge of choice: the coordination of roles

to choose between alternative behaviours (Section 2.3).

The Choral language is quite big. Its usefulness depends on the capability to produce software

libraries whose APIs look like ‘idiomatic’ Java APIs, so we chose to incorporate a substantial set of

features, which would commonly be considered necessary to use and produce Java APIs: Choral

supports classes, interfaces, generics, inheritance, and method overloading. APIs generated by

Choral support lambda expressions, in the sense that Java programmers can pass lambda expressions

as arguments to our APIs. (Just as in Java, Choral sees these arguments as objects.) Supporting

the Java syntax for lambda expressions inside Choral programs is not necessary for our objective,

since they can be encoded as objects, so we leave it to future work on ergonomics.

In the rest of this section, we explain the key aspects of Choral by assuming that the reader is

familiar with Java. The reader can assume that language constructs that have the same syntax as

Java behave as expected (modulo our additions, which we explain in the text).

2.1 Roles and data types
Hello roles. All values in Choral are distributed over one or more roles, using the @-notation seen in

Section 1. The degenerate case of values involving one role allows Choral to reuse existing Java

classes and interfaces, lifted mechanically to Choral types and made available to Choral code. For

example, the literal "Hello from A"@A is a string value "Hello from A" located at role A. Code
involving different roles can be freely mixed in Choral, as in the following snippet.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 7

1 class HelloRoles@(A,B) {
2 public static void sayHello() {
3 String@A a = "Hello from A"@A;
4 String@B b = "Hello from B"@B;
5 System@A.out.println(a);
6 System@B.out.println(b);
7 }
8 } Choral Code

The code above defines a class, HelloRoles, parameterised over two roles, A and B. At line 3, we
assign the string "Hello from A" located at A ("Hello from A"@A) to variable a of type ‘String

at A’ (String@A). At line 4, we do the same for a string located at B. Then, at line 5, we print variable
a by using the System object at A (System@A); at line 6, we do the same for variable b at role B.
Roles are part of data types in Choral, adding a new dimension to typing. For example, the

statement String@A a = "Hello from B"@B would be ill-typed, because the expression on the

right returns data at a different role from that expected by the left-hand side.

Formally, in Choral, String is a type of a higher kind (or type constructor): it takes a role in order

to return a type of the same kind of Java types [Moors et al. 2008]. The code String@A represents

the instantiation of String at role A. Any Java type is automatically liftable to a Choral type with a

single role parameter by following the same reasoning, enabling interoperability. Type constructors

in Choral are not limited to a single role in general. We are going to see examples with multiple

roles and more complex type parameters later in this section.

From Choral to Java.Given class HelloRoles, the Choral compiler generates for each role parameter

a Java class with the behaviour for that role, in compliance with the source class. Here, the Java

class for role A is HelloRoles_A and the class for B is HelloRoles_B.

1 class HelloRoles_A {
2 public static void sayHello() {
3 String a = "Hello from A";
4 System.out.println(a);
5 }
6 } Generated Code

1 class HelloRoles_B {
2 public static void sayHello() {
3 String b = "Hello from B";
4 System.out.println(b);
5 }
6 } Generated Code

Each generated class contains only the instructions that pertain to that role. If Java developers

want to implement the behaviour of method sayHello for a specific role of the HelloRoles
choreography, say A, they just need to invoke the generated sayHello method in the respective

generated class (HelloRoles_A). If all Java programs interested in participating in HelloRoles do

that, then their resulting global behaviour complies by construction with the source choreography.

Notice that the code compiled for A and B will not interact and can therefore proceed fully con-

currently because the choreography does not prescribe so. In general, choreographic programming

languages are expected to generate code that interacts only to enact the communications that the

programmer specified in the choreography [Montesi 2023]. Choral follows this adequacy principle.

We discuss how to program interactions in Section 2.2.

Distributed state. Fields of Choral classes carry state and can be distributed over different roles. For

example, a class DPair can define a distributed structure storing two values at different roles.

1 class DPair@(A,B)<L@C,R@D> {
2 private L@A left;
3 private R@B right;
4 public DPair(L@A left, R@B right) { this.left = left; this.right = right; } Choral Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

8 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

5 public L@A left() { return this.left; }
6 public R@B right() { return this.right; }
7 } Choral Code

Class DPair is distributed between roles A and B and has two fields, left and right. In general,

every class or interface in Choral is always parameterised on at least one role and, hence, it is a

type constructor. The class is also parameterised on two data types, L and R, which exemplifies

our support for generics [Naftalin and Wadler 2006]. At line 1, L@C specifies that L is expected

to be a data type parameterised over a single role, abstracted by C; similarly for R@D. Naming

the role parameters of L and R does not add any information in this particular example (we only

need to know that they have one parameter). However, naming role parameters in generics is

useful for expressing type bounds in extends clauses, as discussed later in this section. Choral

interprets role parameter binders as in Java generics: the first appearance of a parameter is a binder,

while subsequent appearances of the same parameter are bound. Observe that the scope of role

parameters C and D is limited to the declaration of the type parameters L and R, respectively – we

use distinct names exclusively for readability. At lines 2 and 3 we have the two fields, left and

right, respectively located at A and B as stated by the types L@A and R@B, the constructor is at line
4, while accessors to the two fields are at lines 5–6.

Data structures like DPair are useful when defining choreographies where the data at some role

needs to correlate with data at another role, as with distributed authentication tokens. We apply

them to a use case in Section 3.1.

2.2 Interaction
Choral programs become interesting when they contain interaction between roles – otherwise,

they are simple interleavings of local independent behaviours by different roles, as in HelloRoles.
Choreography models typically come with some fixed primitives for interaction, e.g., sending

a value from a role to another over a channel [Carbone et al. 2012]. Thanks to our data types

parameterised over roles, Choral is more expressive: we can program these basic building blocks

and then construct more complex interactions compositionally. This allows us to be specific about

the requirements of choreographies regarding communications, leading to more reusable code.

For instance, if a choreography needs only a directed channel, then our type system can see by

subtyping that a bidirectional channel is also fine.

Directed data channels. We start our exploration of interaction in Choral from simple, directed

channels for transporting data. In Choral, such a channel is just an object that takes data from one

place to another. We can specify this behaviour as an interface.

interface DiDataChannel@(A,B)<T@C> {
<S@D extends T@D> S@B com(S@A m);

} Choral Code

A DiDataChannel is the interface of a directed channel between two roles, abstracted by A and B,
for transmitting data of a given type, abstracted by the type parameter T, from A to B (hence the
number of role parameters in T). Data transmission is performed by invoking the only method

of the interface: com, which takes any value of a subtype of T located at A, S@A, and returns a

value of type S@B. The type parameter S of method com has T as the upper bound (we can read

the expression S@D extends T@D as ‘for any role D, S@D extends T@D’) and allows us to transmit

data of types more specific than T without losing type information (as it would be if the signature

of com was simply T@B com(T@A m)).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 9

Parameterising data channels over the type of transferrable data (T) is important in practice for

channel implementors, because they often need to deal with data marshalling. Choral comes with

a standard library that offers implementations of our channel APIs for a few common types of

channels, e.g., TCP/IP sockets supporting JSON objects and shared memory channels. Users can

provide their own implementations.

Using a DiDataChannel, we can write a simple method that sends a string notification from a

Client to a Server and logs the reception by printing on screen.

notify(DiDataChannel@(Client,Server)<String> ch, String@Client msg) {
String@Server m = ch.<String>com(msg);
System@Server.out.println(m);

} Choral Code

Note that String is a valid instantiation of T of DiDataChannel because we lift all Java types as
Choral types parameterised over a single role.

Alien data types. Compiling DiDataChannel to Java poses an important question: what should be

the return type of method com in the code produced for role A? Since the return type does not

mention A (we say that it is alien to A), a naïve answer to this question could be void, as follows.

interface DiDataChannel_A<T> {
<S extends T> void com(S m);

} Tentative Code

It turns out that this solution does not work well with expressions that compose multiple

method calls, including chaining like m1(e1,e2).m2(e3) and nesting like m1(m2(e)). As a concrete
example, consider a simple round-trip communication from A to B and back.

1 static <T@C> T@A roundTrip(DiDataChannel@(A,B)<T> chAB,DiDataChannel@(B,A)<T> chBA,T@A msg) {
2 return chBA.<T>com(chAB.<T>com(msg));
3 } Choral Code

Method roundTrip takes two channels, chAB and chBA, which are directed channels respectively
from A to B and from B to A. The method sends the input msg from A to B and back by nested coms
and returns the result at A.
A structure-preserving compilation of method roundTrip for role A would be as follows.

1 static <T> T roundTrip(DiDataChannel_A<T> chAB, DiDataChannel_B<T> chBA, T msg) {
2 return chBA.<T>com(chAB.<T>com(msg));
3 } Generated Code

Observe how the inner method call, chAB.com<T>(msg), should return something, such that it can

trigger the execution of the outer method call to receive the response. Therefore, the com method

of DiDataChannel_A cannot have void as the return type.

Programming language experts have probably guessed by now that the solution is to use unit

values instead of void. Indeed, Choral defines a singleton type Unit (a final class) that our compiler

uses instead of void to obtain Java code whose structure resembles its Choral source code.

We now show the Java code produced by our compiler from DiDataChannel for both A and B.
interface DiDataChannel_A<T> {
<S extends T> Unit com(S m);

} Generated Code

interface DiDataChannel_B<T> {
<S extends T> S com(Unit m);

} Generated Code

Given these interfaces, the compilation of roundTrip for role A is well-typed and correct Java code.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

10 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Without Unit, we would be forced to sensibly modify the structure of the compiled code wrt to its

source. We chose in favour of our solution because preserving source-to-compiled-code structure

makes it easier to read and debug the compiled code (especially when comparing it to the source

choreography), and also makes our compiler simpler.

The users of our compiled libraries are not forced to pass Unit arguments to methods. Indeed, for

methods like com of DiDataChannel_B, our compiler generates corresponding ‘courtesy methods’

that take no parameters and inject Units automatically.

Bidirectional channels. An immediate generalisation of directed data channels brings us to bidirec-

tional data channels, specified by BiDataChannel.

interface BiDataChannel@(A,B)<T@C,R@D> extends DiDataChannel@(A,B)<T>,DiDataChannel@(B,A)<R>{
<S@C extends T@C> S@B com(S@A m); // inherited from DiDataChannel@(A,B)<T>
<S@C extends R@C> S@A com(S@B m); // inherited from DiDataChannel@(B,A)<R>

} Choral Code

A BiDataChannel is parameterised over two types: T is the type of data that can be transferred

from A to B and, vice versa, R is the type of data that can be transferred in the opposite direction.

This is obtained by multiple type inheritance: BiDataChannel extends DiDataChannel in one and

the other direction, which allows us to modularly use a bidirectional data channel in code that

has the weaker requirement of a directed data channel in one of the two supported directions.

Distinguishing the two parameters T and R is useful for protocols that have different types for

requests and responses, like HTTP. Extending DiDataChannel twice does not result in any clashes

since A and B play different roles in each supertype. This ‘twin’ inheritance results in the overload

of method com, one for each communication direction supported by the channel. This overload

does not result in any clash in the compilation, as illustrated by the code generated for A (the code

generated for B is symmetric).

interface BiDataChannel_A<T,R> extends DiDataChannel_A<T>, DiDataChannel_B<R> {
<S extends T> Unit com(S m); // inherited from DiDataChannel_A<T>
<S extends R> S com(Unit m); // inherited from DiDataChannel_B<R>

} Generated Code

We discuss more types of channels (including symmetric channels) in Section 2.4 and provide more

details on inheritance and overloading in Section 4.

Forward chaining.We use bidirectional channels to define a choreography for remote procedure

calls, called RemoteFunction, which leverages the standard Java interface Function<T,R>.

1 class RemoteFunction@(Client,Server)<T@A,R@B> {
2 private BiDataChannel@(Client,Server)<T,R> ch;
3 private Function@Server<T,R> f;
4 public RemoteFunction(BiDataChannel@(Client,Server)<T,R> ch, Function@Server<T,R> f) {
5 this.ch = ch; this.f = f;
6 }
7 public R@Client call(T@Client t) {
8 return ch.<R>com(f.apply(ch.<T>com(t)));
9 }
10 } Choral Code

In our experience with programming larger Choral programs (as those in Section 3) we found it

rather natural to compose method invocations that transfer data, as in line 8 of RemoteFunction.
In these chains, we read data transfers from right to left (innermost to outermost invocation), but

most choreography models in the literature use a left-to-right notation (as in ‘Alice sends 5 to Bob’).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 11

To make Choral closer to that familiar choreographic notation, we borrow the forward chaining

operator >> from F# [Petricek and Skeet 2009], so that exp >> obj::method is syntactic sugar

for obj.method(exp). For example, we can rewrite method call of RemoteFunction as follows,

which is arguably more readable and recovers a more familiar choreographic notation.

public R@Client call(T@Client t) {
return t >> ch::<T>com >> f::apply >> ch::<R>com;

} Choral Code

Using Choral libraries. As mentioned for Channels, when we compile the RemoteFunction class
above, we obtain two Java classes: a RemoteFunction_Client, which sends some data to the

Server for processing and waits for its response, and a RemoteFunction_Server, which, upon
reception, feeds the data into a Function and sends back to the Client its result.

The RemoteFunction_Server is an interesting example of how users interact with Choral

libraries. The code (snippet) generated from Choral is:

1 class RemoteFunction_Server<T,R> {
2 private BiDataChannel_B <T,R> ch;
3 private Function <T,R> f;
4 public RemoteFunction_Server(BiDataChannel_B<T,R> ch, Function<T,R> f) { /*...*/ }
5 public Unit call() { /*...*/ }
6 } Generated Code

Auser of the RemoteFunction_Server can interact in the choreography by providing the definition
of the Function at the creation of the object. In general, this is how we expect users to integrate

Choral-generated code with their ‘local code’, i.e., code parametric to the choreography that

users can implement locally, without any coordination with the other participants (save the APIs

induced by Choral-generated code). For example, the snippet below is from a Java class that uses

RemoteFunction_Server to provide a remote procedure for checking if an integer is even.

1 BiDataChannel_B<Integer,Boolean> channel = /*...*/;
2 new RemoteFunction_Server<Integer, Boolean>(channel, i -> i % 2 == 0).call(); Local Code

Here, at line 2 (second argument of the constructor), we provide the definition of the Function
using Java Lambdas functional syntax.

2.3 Knowledge of choice
Knowledge of choice is a hallmark challenge of choreographies: when a choreography chooses

between two alternative behaviours, roles should coordinate to ensure that they agree on which

behaviour should be implemented [Castagna et al. 2011].

We exemplify the challenge with the following code, which implements the consumption of a

stream of items from a producer A to a consumer B.

1 // wrong implementation
2 consumeItems(DiDataChannel@(A,B)<Item@C> ch, Iterator@A<Item> it, Consumer@B<Item> consumer){
3 if (it.hasNext()) {
4 it.next() >> ch::<Item>com >> consumer::accept;
5 consumeItems(ch, it, consumer);
6 }
7 } Choral Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

12 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Method consumeItems takes a channel from A to B, an iterator over a collection of items at A, and a
consumer function for items at B. Role B works reactively, where its consumer function is invoked

whenever the stream of A produces an element: if the iterator can provide an item (line 3), it is

transmitted from A to B, consumed at B, and the method recurs to consume the other items (line 4).

The reader familiar with choreographies should recognise that this method implementation is

wrong, due to (missing) knowledge of choice: the information on whether the if-branch should be

entered or not is known only by A (since it evaluates the condition), so B does not know whether it

should run lines 4–5 (receive, consume, and recur), or do nothing and terminate.

In choreographic programming, knowledge of choice is typically addressed by equipping the

choreography language with a ‘selection’ primitive to communicate constants drawn from a

dedicated set of ‘labels’ [Carbone and Montesi 2013; López et al. 2016]. This makes it possible for

the compiler to build code that can react to choices made by other roles, inspired by a theoretical

operator known as merging [Carbone et al. 2012]. In Choral, we adapt this practice to objects.

Notably, Choral is expressive enough that we do not need to add a dedicated primitive or a dedicated

set of labels.

We define a method-level annotation @SelectionMethod, which developers can apply only to

methods that can transmit instances of enumerated types between roles (the compiler checks for

this condition). For example, we can specify a directed channel for sending such enumerated values

with the following DiSelectChannel interface.

interface DiSelectChannel@(A,B) {
@SelectionMethod
<T@C extends Enum@C<T>> T@B select(T@A m);

} Choral Code

Our compiler assumes that implementations of methods annotated with @SelectionMethod
return at the receiver the same value given at the sender. (This is part of the contract for channels,

and it is a standard assumption in implementations of choreographies.)

Typically, channels used in choreographies are assumed to support both data communications

and selections. We can capture this functionality with DiChannel (directed channel), a subtype of

both DiDataChannel and DiSelectChannel (we include inherited methods for convenience).

interface DiChannel@(A,B)<T@C> extends DiDataChannel@(A,B)<T>, DiSelectChannel@(A,B) {
<S@C extends T@C> S@B com(S@A m); // inherited from DiDataChannel@(A,B)
<S@C extends Enum@C<T>> T@B select(T@A m); // inherited from DiSelectChannel@(A,B)

} Choral Code

Using DiChannels, we can update consumeItems to respect knowledge of choice.

enum Choice@A { GO, STOP } Choral Code

1 consumeItems(DiChannel@(A,B)<Item> ch, Iterator@A<Item> it, Consumer@B<Item> consumer) {
2 if (it.hasNext()) {
3 ch.<Choice>select(Choice@A.GO);
4 it.next() >> ch::<Item>com >> consumer::accept;
5 consumeItems(ch, it, consumer);
6 } else {
7 ch.<Choice>select(Choice@A.STOP);
8 }
9 } Choral Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 13

<S@D extends T@D> S@B com(S@A m)

«bind» A::A

«bind» B::B

«bind» T::T

«interface»

BiDataChannel@(A ,B)< T@C, R@D >

«bind» A::B

«bind» B::A

«bind» T::R

«interface»

SymDataChannel@(A, B)< T@C >

«bind» A::A

«bind» B::B

«bind» T::T

«bind» R::T

<S@C extends Enum@C<S>> S@B select(S@A m)

«bind» A::A

«bind» B::B

«interface»

SymSelectChannel@(A, B)

«bind» A::B

«bind» B::A

<S@D extends T@D> S@B com(S@A m)

<S@D extends Enum@D<S>> S@B select(S@A m)

«bind» A::A

«bind» B::B

«bind» T::T

«bind» A::A

«bind» B::B

«interface»

BiChannel@(A, B)< T@C, R@D >

«bind» A::A

«bind» B::B

«bind» T::T

«bind» A::B

«bind» B::A

«bind» T::R

«bind» A::A

«bind» B::B

«bind» T::T

«bind» R::R

«interface»

SymChannel@(A, B)< T@C >

«bind» A::A

«bind» B::B

«bind» T::T

«bind» R::T

«bind» A::A

«bind» B::B

«bind» T::T

«bind» A::A

«bind» B::B

1 2 3 4

«interface»

DiDataChannel@(A, B)< T@C >

«interface»

DiChannel@(A, B)< T@C >

«interface»

DiSelectChannel@(A, B)

<S@C extends Enum@C<S>> S@B select(S@A m)

<S@C extends Enum@C<S>> S@A select(S@B m)

<S@E extends T@E> S@B com(S@A m)
<S@E extends R@E> S@A com(S@B m)

<S@E extends T@E> S@B com(S@A m)
<S@E extends R@E> S@A com(S@B m)

<S@E extends Enum@E<S>> S@B select(S@A m)

<S@E extends Enum@E<S>> S@A select(S@B m)

<S@D extends T@D> S@B com(S@A m)
<S@D extends T@D> S@A com(S@B m)

<S@D extends T@D> S@B com(S@A m)
<S@D extends T@D> S@A com(S@B m)

<S@D extends Enum@D<S>> S@B select(S@A m)

<S@D extends Enum@D<S>> S@A select(S@B m)

Fig. 3. UML class diagram of the hierarchy of the *Channel interfaces.

Differently from the previous, broken implementation of consumeItems, now role A sends a

selection of either GO or STOP to B. Role B can now inspect the received enumerated value to infer

whether it should execute the code for the if- or the else-branch of the conditional. This information

is exploited by our static analyser to check that consumeItems respects knowledge of choice, and

also by our compiler to generate code for B that reacts correctly to the choice performed by A. (We

provide a more extensive example, including the code compiled for the receiver, in Section 3.1.)

Our compiler supports three features to make knowledge of choice flexible. Firstly, our check for

knowledge of choice works with arbitrarily-nested conditionals. Secondly, knowledge of choice can

be propagated transitively. Say that a role A makes a choice that determines that two other roles

B and C should behave differently, and A informs B of the choice through a selection. Now either

A or B can inform C with a selection because our compiler sees that B now possesses knowledge

of choice. Thirdly, knowledge of choice is required only when necessary: if A makes a choice and

another role, say B, does not need to know because it performs the same actions (e.g., receiving an

integer from A) in both branches, then no selection is necessary. We explain the technicalities of

this check in Section 4.

2.4 The family of Choral channels
Choral types give us a new way to specify requirements on channels that prior work implicitly

assumed, leading to the definition of a family of channel interfaces diagrammed in Figure 3.

From the left-most column in Figure 3, at the top, we find DiDataChannel, representing a directed
channel parameterised over T (the type of data that can be sent). We obtain BiDataChannel, a
bidirectional data channel, by extending DiDataChannel once for each direction: 1○ it binds the

role parameters of one extension in the same order given for the role parameters of BiDataChannel,
giving us a direction from A to B and 2○ it binds the role parameters of the other extension in the

opposite way, giving us a direction from B to A. The result is that BiDataChannel defines two com
methods: one transmitting from A to B, the other from B to A. The last lines in 1○ and 2○ in Figure 3

complete the picture: the first generic data type T binds data from A to B, the second generic data

type R binds data from B to A. The SymDataChannel in Figure 3, by extending the BiDataChannel
interface and binding the two generic data types T and R with its only generic data type T, defines
a bidirectional data channel that transmits one type of data, regardless of its direction.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

14 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

The right-most vertical hierarchy in Figure 3 represents channels supporting selections and it

follows a structure similar to that of data channels. A DiSelectChannel is a directed selection

channel and a SymSelectChannel is the bidirectional version – there is no BiSelectChannel
since both directions exchange the same enumerated types.

The vertical hierarchy in the middle column of Figure 3 is the combination of the left-most and

right-most columns. Interface DiChannel is a directed channel that supports both generic data

communications and selections. BiChannel is its bidirectional extension (3○ and 4○ in Figure 3), and

SymChannel is the symmetric extension of BiChannel. The snippet below contains the definition

of the interface BiChannel.

interface BiChannel@(A,B)<T@C, R@D> extends
DiChannel@(A,B)<T>, // A BiChannel is a pair of directed channels
DiChannel@(B,A)<R>, // in opposite directions
BiDataChannel@(A,B)<T,R>, // that supports data
BiSelectChannel@(A,B) // and selections

{ } // we do not define any new methods, since they are all inherited Choral Code

This definition means that for any pair of distinct roles C, D and for any pair of types S, P (with one

role parameter), BiChannel@(C,D)<S,P> is a subtype of DiChannel@(C,D)<S>, DiChannel@(D,
C)<P>, BiDataChannel@(C,D)<S,P>, and BiSelectChannel@(C,D).
Implementing Choral channels. Our channel interfaces can be implemented directly in Choral or in

Java. We exemplify the latter case, which lets us also show how one can carry out this task by fully

leveraging the existing Java language and ecosystem.

Let us say we want to implement a symmetric channel over TCP/IP that a client (say A) is going
to use for transmitting strings to a server (say B). We can implement this channel by writing a class

TCPClientChannel that implements the interface generated for A from SymChannel (instantiating

its generic with String). The snippet below shows the structure of such an implementation.

1 public class TCPClientChannel implements SymChannel_A<String> {
2 private final SocketChannel socketChannel;
3 private TCPClientChannel(SocketChannel socketChannel) {
4 this.socketChannel = socketChannel;
5 }
6 public void com(String m) { /*...*/ }
7 public String com() { /*...*/ }
8 /*...*/
9 public static TCPClientChannel open(SocketAddress remote) throws IOException {
10 return new TCPClientChannel(SocketChannel.open(remote));
11 }
12 }

The TCPClientChannel uses SocketChannel from the Java standard library. The class also offers a

factory method for connecting to a remote address in the standard way. This method creates a chan-

nel that the user can pass as an argument to the code generated from a choreography. In particular,

the TCPClientChannel is designed to provide a conventional socket set-up experience for Java pro-
grammer, where the expected contract relies on opening a connection based on a SocketAddress.
Implementing the server-side counterpart of TCPClientChannel is straightforward and follows

the same approach.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 15

2.5 Handling exceptions
Typically, choreographic languages assume reliable communications [Carbone et al. 2008; Carbone

and Montesi 2013; Dalla Preda et al. 2017]. The only exception is the language theory in [Montesi

and Peressotti 2017], which shows that one can relax this assumption, by allowing the choreographic

language to handle local exceptions. In Choral, we follow the same strategy, which we briefly

illustrate here.

Choral can invoke Java code, which might raise an exception. Plain Java code is always located

at one role, and therefore the same holds for exceptions (exceptions are ‘local’). We exemplify how

we treat exceptions with the following choreography, where a role B uses the Java standard library

to save on disk some text communicated from another role A.

1 public Result@A<String, String> save(
2 SymDataChannel@(A,B)<String> chAB, String@A text, Path@B path
3) {
4 String@B textB = text >> chAB::<String>com;
5 Result@B<String, String> result;
6 try {
7 Files@B.writeString(path, textB);
8 result = Result@B.ok("Saved"@B);
9 } catch(IOException@B ex) {
10 result = Result@B.err(ex.getMessage());
11 }
12 return result >> chAB::<String>com;
13 } Choral Code

Above, we start by communicating the text to be saved from A to B (line 4). We then declare

at B a result variable (line 5), which will store either a success or error message – that B later

communicates to A (line 12). At line 7, B attempts to save the received text.

This choreography might incur execution errors related to communication or file writing. Excep-

tions encapsulate these errors. For example, the invocation of method writeString might throw

an IOException located at B, which we handle with the try-catch block at lines 6–11.

Method com can throw exceptions too, depending on the implementation of channel ch. Channels
for remote communication (e.g., based on TCP/IP sockets) in the Choral library use the following

strategy: the sender attempts at sending a message until its network stack accepts the task (using

exponential backoff and bound by a maximal number of attempts, to guarantee termination);

likewise, the receiver attempts at receiving until a timeout expires. If the sender ultimately fails

at relaying the message to its local network stack, the channel throws a SendException at the

sender (A in our example). If the receiver timeouts before receiving a message, the channel raises a

TimeoutException at the receiver (B in our example).

As a design choice, we left the exceptions of method com unchecked. The idea is that the

implementation of channels should do their best to deliver messages, and when this is not possible

the local code that uses the code generated from a choreography should deem the execution of the

choreography unsuccessful. The local code is free to catch these exceptions and attempt recovery,

for example by executing the choreography again (as in actor frameworks [Wyatt 2013]).

However, our implementation of com in the Choral standard library is just a default; Choral does

not hardcode any communication semantics. The user is free to implement alternative commu-

nication methods that expose an API which the caller choreography might use to handle network

errors, e.g., lost messages. For instance, we might account for lossy communications between A
and B within the above choreography as follows.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

1 public Result@A<String, String> save(
2 LossySymDataChannel@(A,B)<String> chAB, String@A text, Path@B path
3) {
4 Optional@B<String> textB = text >> chAB::<String>lossyCom;
5 Result@B<String, String> result;
6 if(!textB.isEmpty()) {
7 try {
8 Files@B.writeString(path, textB.get());
9 result = Result@B.ok("Saved"@B);
10 } catch(IOException@B ex) {
11 result = Result@B.err(ex.getMessage());
12 }
13 } else {
14 result = Result@B.err("Network error");
15 }
16 return result >> chAB::<String>com;
17 } Choral Code

Channel chAB is now a LossySymDataChannel and, in addition to method com, it offers also
method lossyCom. The latter does not throw exceptions in case of communication failures but

rather returns an Optional value that contains the received value in case of success or is empty

otherwise.

Choosing which errors a choreography should deal with and which errors should be raised

as unrecoverable exceptions to the local code is a design trade-off that derives from the usual

tension between robustness versus simplicity. This trade-off is typical of coordination protocols

and exists independently from Choral, which is why we decided to leave the programmer free

to navigate this spectrum. Gathering from our own experience with Choral, we recognised the

following design principles. Protocols whose design assumes a reliable network layer should not

deal with communication errors within the choreography (e.g., the Diffie-Hellman protocol for

key exchange, which we briefly describe below and that we implemented for our evaluation in

Section 6). Contrarily, choreographies implementing protocols designed to deal with network errors

should specify the handling of those errors (e.g., implementations of objects dedicated to data

transfer, like our channels). Choral is quite flexible regarding these aspects. A channel API can

offer methods that both raise exceptions – like method com, meaning that the communication is

essential – or wrap failures in data types (raising no exceptions) – like method lossyCom, meaning

that the communication is not essential and that the choreography can handle internally the failure.

The programmer can use the different methods within the same choreography to pinpoint which

communications are deemed essential and which are not.

2.6 What goes in a choreography?
We have just looked at the design issue of deciding whether to deal with errors in the choreography

or in the local code that uses the (communication code compiled from the) choreography. This is

an instance of the more general issue of protocol design: what should be part of a choreography?

This issue exists even when designing choreographies informally (without Choral) because one

needs to choose what details are fixed in the protocol and what is instead left to the discretion

of the local code. There is no one-size-fits-all solution since these choices are influenced by the

concrete use case that the choreography deals with.

Consider, for example, the widely adopted Diffie-Hellman protocol for cryptographic key ex-

change [Diffie and Hellman 1976]. Integral parts of the protocol specify both computation and

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 17

communication. In the protocol, two parties, e.g., Alice and Bob, use two pairs of keys (a private

and a public one) to generate a shared secret, which they can later use for symmetric encryption.

Formally, let 𝑝 be a prime number and 𝑔 be a primitive root modulo 𝑝 , 𝑠𝐴 be a secret key held by

Alice, and 𝑠𝐵 be a secret key held by Bob. First, Alice computes her public key 𝑝𝐴 = (𝑔𝑠𝐴 mod 𝑝)
and, likewise, Bob computes his public key 𝑝𝐵 = (𝑔𝑠𝐵 mod 𝑝). Then, Alice and Bob exchange their
public keys, which they can use to generate their shared secret 𝑠:

Alice’s side︷ ︸︸ ︷
(𝑔𝑠𝐵 mod 𝑝)︸ ︷︷ ︸

Bob’s 𝑝𝐵

𝑠𝐴
mod 𝑝 = 𝑠︸︷︷︸

shared secret

=

Bob’s side︷ ︸︸ ︷
(𝑔𝑠𝐴 mod 𝑝)︸ ︷︷ ︸
Alice’s 𝑝𝐴

𝑠𝐵
mod 𝑝 .

Since the computations performed by Alice and Bob are essential to the protocol, any faithful

Choral implementation shall include those details too: doing otherwise would mean implementing

a different protocol. The following is a snippet of the implementation that we have written for our

evaluation in Section 6 (with variables renamed to match our description above).

1 BigInteger@Bob pA = g.modPow(sA, p) >> channel::<BigInteger>com;
2 BigInteger@Bob s = pA.modPow(sB, p); Choral Code

Differently from these computational details, the Diffie-Hellman protocol does not fix the im-

plementation of the channel used to communicate data. It is therefore reasonable that a Choral

implementation of the protocol is parameterised on this implementation – we reflected this condi-

tion by having channel as a parameter of the method that contains our code above.

An example of a choreography where the definition of computation is completely abstracted

away is the consumeItemsmethod in Section 2.3. The choreography fixes the coordination between

the participants, but not how they produce or consume the data to be exchanged. The latter is to be

defined by either local code or another choreography that invokes consumeItems.
In general, how much computation should be defined in a choreography forms a spectrum. A

‘good’ choreographic programming language should thus give freedom to define or abstract away

computation at will. Choral provides this capability through the standard facilities of object-oriented

programming (parameters, inheritance, etc.).

3 USE CASES
We dedicate this section to illustrating how the features of Choral contribute to writing realistic

choreographies. We start with a protocol for distributed authentication (Section 3.1), which we

then reuse modularly in another use case from the healthcare sector that mixes cloud computing,

edge computing, and Internet of Things (IoT) (Section 3.2). Finally, we show a use case on parallel

computing, by showing a distributed implementation of merge sort (Section 3.3).

3.1 Distributed authentication
We write a choreography for distributed authentication, inspired by the single sign-on authentica-

tion scheme: an IP (‘Identity Provider’, also known as central authentication service) authenticates

a Client that accesses a third-party Service.
We start by introducing an auxiliary class, AuthResult, that we will use to store the result of

authentication. The idea is that, after performing the authentication protocol, both the Client and

the Server should have an authentication token if the authentication succeeded, or an ‘empty’

value if it failed. We model this behaviour by extending the DPair class presented in Section 2.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

18 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

1 public class AuthResult@(A,B)
2 extends DPair@(A,B)<Optional@A<AuthToken>,Optional@B<AuthToken>> {
3 public AuthResult(AuthToken@A t1, AuthToken@B t2) {
4 super(Optional@A.<AuthToken>of(t1), Optional@B.<AuthToken>of(t2));
5 }
6 public AuthResult() {
7 super(Optional@A.<AuthToken>empty(), Optional@B.<AuthToken>empty());
8 }
9 } Choral Code

The constructors of AuthResult guarantee that either both roles (A and B) have an optional con-

taining a value or both optionals are empty (Optional is the standard Java type). Since AuthResult
extends DPair, these values are locally available by invoking the left and right methods.

We now present the choreography for distributed authentication, as the DistAuth class below.

1 enum AuthBranch { OK, KO }
2

3 public class DistAuth@(Client,Service,IP){
4 private TLSChannel@(Client,IP)<Object> ch_Client_IP;
5 private TLSChannel@(Service,IP)<Object> ch_Service_IP;
6

7 public DistAuth(
8 TLSChannel@(Client,IP)<Object> ch_Client_IP,
9 TLSChannel@(Service,IP)<Object> ch_Service_IP) {
10 this.ch_Client_IP = ch_Client_IP;
11 this.ch_Service_IP = ch_Service_IP;
12 }
13

14 private String@Client calcHash(String@Client salt, String@Client pwd) { /*...*/ }
15

16 public AuthResult@(Client,Service) authenticate(Credentials@Client credentials) {
17 String@Client salt = credentials.username
18 >> ch_Client_IP::<String>com >> ClientRegistry@IP::getSalt >> ch_Client_IP::<String>com;
19 Boolean@IP valid = calcHash(salt, credentials.password)
20 >> ch_Client_IP::<String>com >> ClientRegistry@IP::check;
21 if (valid) {
22 ch_Client_IP.<AuthBranch>select(AuthBranch@IP.OK);
23 ch_Service_IP.<AuthBranch>select(AuthBranch@IP.OK);
24 AuthToken@IP t = AuthToken@IP.create();
25 return new AuthResult@(Client,Service)(
26 ch_Client_IP.<AuthToken>com(t), ch_Service_IP.<AuthToken>com(t)
27);
28 } else {
29 ch_Client_IP.<AuthBranch>select(AuthBranch@IP.KO);
30 ch_Service_IP.<AuthBranch>select(AuthBranch@IP.KO);
31 return new AuthResult@(Client,Service)();
32 }
33 }
34 } Choral Code

Class DistAuth is a multiparty protocol parameterised over three roles: Client, Service, and
IP (for Identity Provider). It composes two channels as fields (lines 4–5), which respectively connect

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 19

Client to IP and Service to IP – hence, the interaction between Client and Service can only

happen if coordinated by IP. The channels are of type TLSChannel, a class for secure channels
from the Choral standard library that uses TLS for security and the Kryo library [Grotzke 2020] for

marshalling and unmarshalling objects. Class TLSChannel implements interface SymChannel, from
Section 2, so it can be used in both directions. The private method calcHash (omitted) implements

the local code that Client uses to hash its password.

Method authenticate (lines 16–33) is the key piece of DistAuth, which implements the au-

thentication protocol. It consists of three phases. In the first phase, lines 17–18, the Client com-

municates its username to IP, which IP uses to retrieve the corresponding salt in its local database

ClientRegistry; the salt is then sent back to Client. The second phase (lines 19–20) deals with

the resolution of the authentication challenge. Client computes its hash with the received salt and

its locally-stored password and sends the latter to IP. IP then checks whether the received hash

is valid, storing this information in its local variable valid. The result of the check is a Boolean
stored in the valid variable located at IP. The first two phases codify some best practices for

distributed authentication and password storage [Grassi et al. 2017]: the identity provider IP never

sees the password of the client, but only its attempts at solving the challenge (the salt), which
Client can produce with private information (here, its password). In the third phase, (lines 21–32),

IP decides whether the authentication was successful or not by checking valid. In both cases, IP
informs the Client and the Service of its decision, using selections to distinguish between success

(represented by OK) or failure (represented by KO). In case of success, IP creates a new authentication

token (line 24) and communicates the token to both Client and Service (inner calls to com at line

26). The protocol can now terminate and return a distributed pair (an AuthResult) that stores the
same token at both Client and Service, which they can use later for further interactions (line

25). In case of failure, the method returns an authentication result with empty Optionals (line 31).
New to choreographic programming, DistAuth is a higher-order choreography: the channels

that it composes are choreographies for secure communication that carry state – the result of the

TLS handshake, which method com of TLSChannel uses internally. Taking this even further, we

could overload method authenticate with a continuation-passing style alternative that, instead

of returning a result, takes as parameters choreographic continuations (objects that involve Client
and Service) to be called respectively in case of success (line 25) or failure (line 31).

Compilation.We now discuss key parts of the compilation of DistAuth for role Client, i.e., the
Java library that clients can use to authenticate to an identity provider and access a service.

1 public class DistAuth_Client {
2 private TLSChannel_A<Object> ch_Client_IP;
3

4 public DistAuth_Client(TLSChannel_A <Object> ch_Client_IP) {
5 this.ch_Client_IP = ch_Client_IP;
6 }
7

8 private String calcHash(String salt, String pwd) { /*...*/ }
9

10 public AuthResult_A authenticate(Credentials credentials) {
11 String salt = ch_Client_IP.<String>com(ch_Client_IP.<String>com(credentials.username));
12 ch_Client_IP.<String>com(calcHash(salt, credentials.password));
13 switch (ch_Client_IP.<AuthBranch>select(Unit.id)) {
14 case OK -> { return new AuthResult_A(ch_Client_IP.<AuthToken>com(Unit.id), Unit.id); }
15 case KO -> { return new AuthResult_A(); }
16 default -> { throw new RuntimeException(/*...*/); } Generated Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

20 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

17 }
18 }
19 } Generated Code

The field, constructor, and method at lines 2–8 are straightforward projections of the source class

for role Client – fields and parameters pertaining only to other roles disappeared. The interesting

code is at lines 10–17, which defines the local behaviour of Client in the authentication protocol.

Note that forward-chaining sequences (>>) become plain nested calls in Java (lines 11 and 12). At

line 11, the client sends its username to the identity provider and receives back the salt. Recall
from Section 2 that the innermost invocation of method com returns a Unit since the client acts as

the sender here. Once the username is sent, the innermost com returns, and we run the outermost

invocation of com, which received the salt through the channel with the identity provider. At line

12, the Client sends the computed hash to the identity provider.

At line 13, we see an example of how our compiler implements knowledge of choice for roles

that need to react to decisions made by other roles. The client receives an enumerated value of

type AuthBranch, which can be either OK or KO, through the channel with the identity provider.

Then, a switch statement matches the received value to decide whether (case OK) we shall receive
an authentication token from the identity provider and store it as an AuthResult_A or (case KO)
the authentication procedure failed.

3.2 A use case from healthcare: handling streams of sensitive vitals data
In this use case, we exemplify how developers can locally compose the libraries generated by

independent choreographies, using a healthcare use case inspired by previous works on edge

computing and pseudonymisation [Giallorenzo et al. 2019; Swaroop et al. 2019].

Suppose that a ‘healthcare service’ in a hospital needs to gather sensitive data about vital signs

(we call them vitals) from some IoT devices (e.g., smartwatches, heart monitors), and then upload

them to the cloud for storage. This is a typical scenario that requires the integration of libraries for

participating in choreographies at the local level. We shall carry out the following two steps.

(1) Define a new choreography class, called VitalsStreaming, that prescribes how data should

be streamed from an IoT Device monitoring the vitals of a patient to a data Gatherer;
this choreography shall enforce that the Gatherer processes only data that is (a) correctly

cryptographically signed by the device and (b) pseudonymised.

(2) Implement the healthcare service as a local Java class, called HealthCareService, that
combines the Java library compiled from VitalsStreaming to gather data from the IoT

devices with the Java library compiled from our previous DistAuth example, to authenticate

at the cloud storage service through a third-party service (this could be, e.g., a national

authentication system) and upload the data.

Vitals choreography. VitalsStreaming implements the choreography for streaming vitals.

1 public enum StreamState@R { ON, OFF }
2

3 public class VitalsStreaming@(Device,Gatherer) {
4 private SymChannel@(Device,Gatherer)<Object> ch;
5 private Sensor@Device sensor;
6

7 public VitalsStreaming(SymChannel@(Device,Gatherer)<Object> ch, Sensor@Device sensor) {
8 this.ch = ch;
9 this.sensor = sensor;
10 } Choral Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 21

11

12 private static Vitals@Gatherer pseudonymise(Vitals@Gatherer vitals) { /*...*/ }
13 private static Boolean@Gatherer checkSignature(Signature@Gatherer signature) { /*...*/ }
14

15 public void gather(Consumer@Gatherer<Vitals> consumer) {
16 if (sensor.isOn()) {
17 ch.<StreamState>select(StreamState@Device.ON);
18 VitalsMsg@Gatherer msgOpt = sensor.next() >> ch::<VitalsMsg>com;
19 if (checkSignature(msg.signature())) {
20 msg.content() >> this::pseudonymise >> consumer::accept;
21 }
22 gather(consumer);
23 } else {
24 ch.<StreamState>select(StreamState@Device.OFF);
25 }
26 }
27 } Choral Code

At lines 3–5, the class VitalsStreaming composes a channel between the Device and the

Gatherer and a Sensor object located at the Device (for obtaining the local vital readings). At line
12, we define a method that pseudonymises personal data in Vitals at the Gatherer. Likewise, at
line 13 we have a method that the Gatherer uses to check that a message signature is valid. (We

omit the bodies of these two static methods, which are standard local methods.) The interesting

part of this class is method gather (lines 15–26). The Device checks whether its sensor is on (line

16) and informs the Gatherer of the result with appropriate selections for knowledge of choice

(lines 17 and 24). If the sensor is on, then Device sends its next available reading to Gatherer (line

18). Gatherer now checks that the message is signed correctly (line 19); if so, it pseudonymises the

content of the message and then hands it off to a local consumer function. Notice that Gatherer
does not need to inform Device of its local choice since it does not affect the code that Device
needs to run. We then recursively invoke gather to process the next reading.

Local code of the healthcare service. The local implementation of the healthcare service acts as

Gatherer in the VitalsStreaming choreography (to gather the data) and as the Client in the

DistAuth choreography (to authenticate with the cloud storage). So we compose the compiled

Java classes VitalsStreaming_Gatherer and DistAuth_Client, respectively.

1 public class HealthCareService {
2 public static void main() {
3 TLSChannel_A toIP = HealthIdentityProvider.connect();
4 MQTTClient toStorage = HealthDataStorage.connect();
5 AuthResult_A authResult = new DistAuth_Client(toIP).authenticate(getCredentials());
6 authResult.left().ifPresent(token -> {
7 DeviceRegistry
8 .parallelStream()
9 .forEach(device ->
10 Supervision.restart(() ->
11 new VitalsStreaming_Gatherer(device.connect())
12 .gather(data -> toStorage.com(new StorageMesg(token, data)))
13)
14);
15 });
16 } Local Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

22 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

17 private static Credentials getCredentials() { /* ... */ }
18 } Local Code

Above, the main method idiomatically combines Java standard libraries with those generated

by our compiler. At lines 3 and 4, we use auxiliary methods to connect to the identity provider

(which implements IP in DistAuth) and the data storage service (which implements Service in

DistAuth) – these services are provided by third parties, e.g., the national health system and some

cloud provider. We choose a TLS channel to enact authentication. Instead, for communications with

devices and storage, we use the MQTT protocol, which is typical for IoT applications [Hunkeler et al.

2008] – MQTTClient implements (the projection of) interface SymChannel, dealing with possible

connectivity issues. At line 5, we run our distributed-authentication protocol as the Client. At line
6, we check if we successfully received an authentication token by inspecting the optional result. If

so, we obtain a parallel stream of Device objects from a local registry (lines 7–8). Each device (line

9) is handled by a worker that uses a restart supervision strategy (line 10), i.e., if the projection

of the choreography VitalsStreaming encounters an unrecoverable error, it is restarted. At line

11, we create a new instance of VitalsStreaming_Gatherer (the code compiled for Gatherer
from VitalsStreaming), which receives an MQTT channel for communicating with the device

(obtained by device.connect()). Finally, at line 12, we call the gather method to engage in the

VitalsStreaming choreography with each device, passing a consumer function that sends the

received data to the cloud storage service (including the authentication token).

Notice that we do not need to worry about pseudonymisation or signature checking in the local

code since the code compiled from VitalsStreaming manages all these details.

3.3 Merge sort
The last use case that we present is a three-way concurrent implementation of merge sort [Knuth

1998], which illustrates the design of parallel algorithms in Choral. It also serves to showcase how

role instantiation can help Choral programmers with writing load-distribution logic.

We define a class MergeSort parameterised on three roles: themerger (M), which is the participant
that holds the list of elements that have to be sorted, and two sorters (S1, S2). In the code of

MergeSort, the merger splits its list into two halves and respectively communicates them to the

two sorters. The sorters are responsible for sorting their sublists and communicating the results

back to the merger. When the merger gets the ordered sublists, it merges them in the standard way

to compute the complete ordered list. The definition of MergeSort follows.

1 enum Choice@R { L, R }
2 public class Mergesort@(M,S1,S2){
3 SymChannel@(M,S1)<Object> ch_MS1;
4 SymChannel@(S1,S2)<Object> ch_S1S2;
5 SymChannel@(S2,M)<Object> ch_MS2;
6

7 public MergeSort(
8 SymChannel@(M,S1)<Object> ch_MS1,
9 SymChannel@(S1,S2)<Object> ch_S1S2,
10 SymChannel@(S2,M)<Object> ch_MS2) {
11 this.ch_MS1 = ch_MS1; this.ch_S1S2 = ch_S1S2; this.ch_MS2 = ch_MS2;
12 }
13

14 public List@M<Integer> sort(List@M<Integer> a) {
15 if (a.size() > 1@M) {
16 ch_MS1.<Choice>select(Choice@M.L); Choral Code

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 23

17 ch_MS2.<Choice>select(Choice@M.L);
18 Double@M pivot = a.size() / 2@M >> Math@M::floor >> Double@M::valueOf;
19 MergeSort@(S1,S2,M) mb = new MergeSort@(S1,S2,M)(ch_S1S2, ch_MS2, ch_MS1);
20 MergeSort@(S2,M,S1) mc = new MergeSort@(S2,M,S1)(ch_MS2, ch_MS1, ch_S1S2);
21 List@S1<Integer> lhs = a.subList(0@M,pivot.intValue())
22 >> ch_MS1::<List<Integer>>com >> mb::sort;
23 List@S2<Integer> rhs = a.subList(pivot.intValue(), a.size())
24 >> ch_MS2::<List<Integer>>com >> mc::sort;
25 return merge(lhs >> ch_MS1::<List<Integer>>com, rhs >> ch_MS2::<List<Integer>>com);
26 } else {
27 ch_MS1.<Choice>select(Choice@M.R);
28 ch_MS2.<Choice>select(Choice@M.R);
29 return a;
30 }
31 }
32

33 private List@M<Integer> merge(List@M<Integer> lhs, List@M<Integer> rhs) { /* ... */ }
34 } Choral Code

In the code, the interaction logic that we have just described is implemented in method sort.
Method merge, instead, merges two lists at M; we omit it since it is entirely local and works as in

the standard sequential algorithm. Method sort consists of a conditional that checks whether the

list should be split, which is determined by having more than one element (line 15). If so, then the

merger finds a pivot (line 18) and uses it to split the list and communicate the resulting sublists to

the two sorters (lines 21–24). The interesting part is that we recursively instantiate (lines 19–20)

and use MergeSort (lines 22 and 24) to accomplish the two subtasks given to the sorters. In these

recursive invocations, roles are switched to put each sorter in charge of its sublist: the sorter acts

as the merger, and the other two nodes act as sorters. This goes on until the list to be sorted cannot

be split anymore. The ordered sublists computed by each sorter are then merged at line 25.

The sequence diagram in Figure 4 exemplifies the coordination pattern codified by our choreo-

graphy (for brevity, we omit selections). In the diagram we have three endpoint nodes – Node1,

Node2, and Node3 – which engage in the choreography by playing the respective roles M, S1, and
S2. We use numbered subscripts to denote the

round (recursive step in the algorithm) that

each interaction belongs to (sort1, sort2). The

initial input list is [15, 3, 14]; it is located at

Node1, which in the beginning plays role M
. In the first round (first invocation of sort),
Node1 asks Node2 and Node3 to sort the sub-

lists obtained from the initial list – respectively

[15, 3] and [14]. This action starts a recursive

call (second round) where Node2 is the merger

(M) and the other two nodes play the sorters.

The lists communicated to the sorters in this

round are [15] and [3]. These lists contain only
one element each, so they are dealt with by the

else-branch of the conditional in method sort
and we do not start other rounds. Node2 now

collects the lists from Node1 and Node2 and

merges them locally, obtaining [3, 15].

Node1 Node2 Node3

[15,3,14]

plays M plays S1 plays S2
sort1 [15,3]

sort1 [14]

plays S2 plays M plays S1
sort2 [15]

sort2 [3]

sort2 [3]sort2 [15]

plays M plays S1 plays S2

sort1 [14]

sort1 [3,15]

[3,14,15]

Fig. 4. Sequence diagram of data exchanges in the three-
way distributed merge sort (selections are omitted).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

24 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Literals lit F null@(A) true@A false@A "a"@A . . . 1@A . . .

Program P F P ·Interface P ·Class P ·Enum P ·EOF
Enum Enum F AN ·MD·enum·id@A{id}
Interface Interface F AN ·MD·interface·id@(A)⟨FTP⟩ extends·TE,·TE{MDef ;}
Annotation AN F @𝑖𝑑(𝑖𝑑 = lit)
Modifiers MD F public protected private abstract final static
Formal

Type Param.

FTP F id@(A)·extends·TE·&·TE

Type Expr. TE F 𝑖𝑑 ⟨TE⟩ 𝑖𝑑@(A)⟨TE⟩ void
Method Def. MDef F AN ·MD·⟨FTP⟩·TE·id·(TE·id)
Class Class F AN ·MD·class·id@(A)⟨FTP⟩ extends·TE·implements·TE,·TE

{CField CConst MDef ; MDef {Stm}}
Class Field. CField F AN ·MD·TE·𝑖𝑑;
Class Con. CConst F AN ·MD·⟨FTP⟩·id (TE·id){Stm}
Statement Stm F 𝑛𝑖𝑙 return·Exp; Exp;Stm TE·id = Exp;Stm

Exp·AsgOp·Exp; Stm if(Exp){Stm}else{Stm} Stm
{Stm} Stm try{Stm}catch(TE·id){Stm} Stm

Expression Exp F lit FAcc Exp·BinOp·Exp Exp.Exp ⟨TE⟩id (Exp)
new·⟨TE⟩id@(A)⟨TE⟩(Exp) id@(A).⟨TE⟩id (Exp) Exp·>>·EChain

Field Acc. FAcc F id id@(A).id
Exp. Chain EChain F FAcc.id::id id@(A)⟨𝑇𝐸⟩::new
Assign Op. AsgOp ∈ {=, +=, -=, *=, /=, &!=, |!=, %!=}
Binary Op. BinOp ∈ {||, &&, |, &, ==, !=, <, >, <=, >=, +, -, *, /, %}

Fig. 5. Syntax of the Choral language.

Now that the recursive invocation for sorting [15, 3] is complete, we are back to completing the

invocation of sort where Node1 plays M. Node1 collects the lists [3, 15] and [14] from Node2 and

Node3, and then merges them to obtain the final result [3, 14, 15].
Note that the code for parallel merge sort closely resembles the structure of a standard sequential

merge sort. However, thanks to role annotations, we obtain a parallel implementation. We will come

back to this aspect in Section 6.1.1. Another key benefit is that the compiled code is deadlock-free

by construction, as usual for choreographic programming [Carbone and Montesi 2013]. A more

detailed discussion of safety and liveness properties is given in Section 7.

4 IMPLEMENTATION
We discuss the main elements of the implementation of Choral. First, we show its syntax and

comment on the main differences with Java’s. Then, we present the Choral type checker, including

examples of the main errors related to roles that it detects and related error messages. Finally, we

describe the key components of the Choral compiler.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 25

4.1 Language
Figure 5 displays the grammar of Choral; dashed underlines denote optional terms and solid over-

lines denote sequences of terms of the same sort. We omit syntax for packages and imports, which

is as in Java. Reserved identifiers like super and this are considered identifiers in the grammar, but

our compiler treats them like their Java counterparts. The key syntactic novelties are underlined;

they consist of i) syntax for declaring and instantiating role parameters and ii) the forward chaining
operator >> (cf. Section 2).

Role parameters have a separate namespace and always appear in expressions like @(A1,...,An)
that follow the name of a class, interface, enum, or type parameter e.g., DiChannel@(A,B). Moreover,

role parameters are introduced only by the declaration of a type (e.g., class Foo@(A,B)) or a
type parameter (e.g., <T@(A,B) extends Foo@(A,B) & Bar@(B,A)>) and their scope is limited

to the defining type, similar to type parameters in Java. The snippet below contains an example

of shadowing of role parameters; for each use of role A, we show its binding site with an arrow.

interface Foo@(A,B) extends Bar@(A,B) { <T@(A,B) extends Foo@(A,B) & Bar@(B,A)> T@(A,B) m();}

The Choral type checker covers all common Java type errors (illegal type conversions, access to

type members, etc.), as exemplified below. Indeed, when checking a Choral program with exactly

one role parameter, the Choral type checker acts exactly like its Java counterpart.

Integer@A x = "foo"@A;
------------^
Incompatible types: expecting 'Integer@A' found 'String@A'.

return x.length();
---------^
Cannot resolve method 'length' in 'Integer@(A)'

Roles. The novelties compared to Java compilers emerge when two or more roles are involved. In

these settings, programmers can make new kinds of errors that are specifically about the misuse of

role-parameterised types – therefore, these errors are pertinent to Choral. In many of the examples

discussed so far, we can think of role parameters as Java generics. Although this is a reasonable

approximation, some care is necessary when handling type instantiation due to some substantial

differences between role and type parameters.

One type of these errors is that data types are instantiated using incompatible roles. Instances

of the same type with different role parameters represent values located at different roles, which

restricts their usage.

String@A x = "foo"@B; // error, same local type but at different roles
-----------^
Incompatible types: expecting 'String@A' found 'String@B'.

The order in which roles appear carries meaning since role parameters are positional – like type

parameters in Java generics.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

26 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

void m(SymChannel@(A,B)<T> x) {
SymChannel@(A,B)<T> a = x; // matching roles
SymChannel@(B,A)<T> b = x; // error, same roles but wrong positions

------------------------^
Incompatible types: expecting 'SymChannel@(B,A)<T>' found 'SymChannel@(A,B)<T>'.

Differently from Java generics, role parameters cannot appear multiple times in the same type since

this corresponds to requiring that the same participant playsmultiple roles in the same choreography.

In the snippet below, A must play both the sender and receiver for the directed channel c.

DiChannel@(A,A)<String> c;
-------------^
Illegal type instantiation: role 'A' must play exactly one role in 'DiChannel'.

Forbidding role aliasing is an established restriction in choreographic programming since aliasing

introduces self-communication, which would potentially break deadlock-freedom and the capability

to produce separate code for each role (unless roles are provably not-aliased).

Subtyping. Choral types form a hierarchy defined following the same principles used by Java. This

hierarchy is used to check if values are compatible type as expected.

void m(BiChannel@(A,B)<T,T> x) {
DiChannel@(A,B)<T> a=x; // BiChannel@(A,B)<T,T> extends DiChannel@(A,B)<T>
DiChannel@(B,A)<T> b=x; // BiChannel@(A,B)<T,T> extends DiChannel@(B,A)<T>
SymChannel@(A,B)<T> c=x; // error, BiChannel@(A,B)<T,T> does not extend SymChannel@(A,B)<T>

-----------------------^
Incompatible types: expecting 'SymChannel@(A,B)<T>' found 'BiChannel@(A,B)<T>'.

Classes and interfaces define their supertypes by extending and implementing other classes and

their interfaces with the same set of roles. This restriction provides a substitution principle that

elicits all roles involved in a choreography.

interface AuditedDiChannel@(A,B,Auditor)<T@C> extends DiChannel@(A,B)<T> {/*...*/}
--^
Illegal inheritance: 'AuditedDiChannel@(A,B,Auditor)' and 'DiChannel@(A,B)<T>' must have the

same roles.

interface ReplicatedList@(A,Replica)<T@B> extends List@A<T> {/*...*/}
--^
Illegal inheritance: 'ReplicatedList(A,Replica)' and 'List@A<T>' must have the same roles.

In some cases, ‘hidden roles’ in choreographies might be useful, e.g., to add external auditing or

data replication as an extension of an existing choreography. Unfortunately, this introduces security

concerns (channels may have hidden bystanders) or complex communication semantics (what is

the meaning of sending a ReplicatedList@(A,B) over a channel expecting a List@A?). These
are general open problems for choreographies, left to future work.

Cyclic inheritance is not allowed and the type checker does not discriminate over role paramet-

ers. As an example, consider the SymChannel interface; given its symmetric nature, one might be

tempted to force this equality by having SymChannel@(A,B) subtype SymChannel@(B,A).

interface SymChannel@(A,B)<T@C> extends SymChannel@(B,A)<T> { /* ... */ }
--^
Cyclic inheritance: 'SymChannel' cannot extend 'SymChannel'.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 27

However, allowing declarations like the one above in Choral would result in cyclic inheritance

errors in Java, as exemplified by the following ‘manual’ compilation of the code above.

interface SymChannel_A<T> extends SymChannel_B<T> { /* ... */ } // Projection for A
interface SymChannel_B<T> extends SymChannel_A<T> { /* ... */ } // Projection for B

To have channels that are instances of both SymChannel@(A,B) and SymChannel@(B,A) one needs
to define a subtype of both as in the snippet below.

interface PeerChannel@(A,B)<T@C> extends SymChannel@(A,B)<T>, SymChannel@(B,A)<T> {
<S@C extends T@C> S@B com(S@A m); // inherited
<S@C extends T@C> S@A com(S@B m); // inherited
<S@C extends Enum@C<S>> S@B select(T@A m); // inherited
<S@C extends Enum@C<S>> S@A select(T@B m); // inherited

PeerChannel@(B,A)<T> flip(); // roles A and B are interchangeable
} Choral Code

By returning an instance of the same interface but with the roles flipped, the method flip() intro-

duced by the interface PeerChannel@(A,B), prescribes that the roles A and B are interchangeable

peers.

Finally, primitive types (int@A, bool@A, etc.) follow the same rules of Java for subtyping, con-

versions, autoboxing, and autounboxing (when roles match, otherwise the compiler will return

a role mismatch error).

Overloading. The Choral type checker refines overload equivalence: it can discriminate overloaded

methods by considering roles. For example, m(Char@B x) and m(Char@A x) can be distinguished

because one parameter is located at A whereas the other at B. However, we need to be careful with

preventing potential clashes in the compiled Java code. Consider the following snippet and error

message.

class Foo@(A,B) {
void m(Char@B x) { /* ... */ } // void m() at A and void m(Char x) at B
void m(Char@A x) { /* ... */ } // void m(Char x) at A and void m() at B
void m(Long@A x) { /* ... */ } // error, void m(Long x) at A and void m() at B

-------^
Illegal overload: 'm(Long@A x)' and 'm(Char@A x)' have the same signature for role 'B'.

The last two signatures are distinguishable in Choral, since each method has different parameter

types. However, this information is only available to role A, while the projection of both signatures

at role B coincide (they would both be void m()). This is an instance of knowledge of choice

but, differently from conditionals, it cannot be addressed locally (within the class/interface) be-

cause extending classes may introduce new branches and new points of choice by overriding and

overloading, as in the example below.

class Bar@(A,B) extends Foo@(A,B) { void m(Integer@A x) { /* ... */ } } Choral Code

Exceptions. Like every other type lifted from Java, exceptions are located at one role. This design

choice allows us to preserve the expected type hierarchy in the generated code and have java
.lang.Exception as the supertype of all exceptions. The Choral compiler then enforces that a

try-catch block is located at exactly one role.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

28 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Choral

class

Parsing &

desugaring

=============⇒
Choral

AST

Type checking

& annotation

================⇒
**

*

*

Annotated

Choral AST

Projection

============⇒
Single-role

Choral ASTs

Role erasure

& output

=============⇒
Java

classes

Fig. 6. Pipeline Schema of the Choral Compiler.

String@A fetch(DiChannel@(A,B)<T> ch, String@B file) {
try { return RemoteReader@(A,B).read(ch,file); } catch (IOException@B e) { return null@A; }

--^
Non-local try-catch: try-catch must be at a single role, found 'A' and 'B'.

Allowing multiple roles in the mechanics of exceptions introduces a knowledge-of-choice situation

where all roles need to obtain information about which handler to execute, if any, and when. The

general problem of exceptions and their choreographic handling has been investigated in some

theories, but all models proposed so far assume reliable communications among all roles and either

rely on specialised orchestration primitives in the target language (i.e., some form of middleware)

[Carbone 2009; Carbone et al. 2008; Fowler et al. 2019] or synthesise new communications for

recovery [Neykova and Yoshida 2017].

4.2 Compiler
The Choral compiler consists of several steps organised in a pipeline, which we illustrate in Figure 6.

From left to right, the first step is (as expected) parsing the input Choral source code to obtain an

Abstract Syntax Tree (AST) – the chain operator >> is desugared in this step. Next, we perform

type checking as previously discussed. This step also annotates the nodes in the AST with type

information, which is used in the following projection step. The next step – projection – transforms

this annotated AST into a collection of Choral ASTs, each representing the implementation of a

single role. At this stage, all types are located at exactly one role, representing the fact that all code

is fully local. Finally, in the last step, we output Java code by erasing all role annotations.

We discuss the most important aspects of projection. For clarity, we model and present it as a

partial function from (well-typed) Choral terms to Java code: the projection of a Choral term Term on

a role A, written LTermMA, is a Java term that implements the behaviour of A in Term. Intuitively, this

passage covers the last two steps in Figure 6. The full definition of projection is given in Appendix A.

The projection of a Choral class, interface, or enum generates a corresponding Java term for

each role parameter. If there are two or more roles, each Java artefact name is suffixed with the role

that it implements, e.g., the Java class compiled from class Foo(A,B) for role A is called Foo_A. If
the Choral class has exactly one role, then we use the same name, e.g., class Integer@A becomes

class Integer – this practice minimises the friction of integrating Java types within Choral.

The projection LTEMA of a type expression TE at a role A is recursively defined below – we use

the auxiliary function roleName(𝑖𝑑, 𝑖) to retrieve the name of the 𝑖-th role parameter from the

definition of 𝑖𝑑 .

L𝑖𝑑@(B)<TE>MA =


𝑖𝑑<LTEMA> if B = A
𝑖𝑑_𝐴′<LTEMA> if A is the 𝑖-th element of B and roleName(𝑖𝑑, 𝑖) = 𝐴′

Unit otherwise

The projection LExpMA of an expression Exp at role A is defined following a similar intuition: it is

a recursive stripping of role information as long as A occurs in the type of Exp or any of its subterms

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 29

(written A ∈ rolesOf (Exp)), otherwise it is the only instance of the singleton Unit (stored in its

static field id), as illustrated by the cases of static field access and constructor invocation below.

L𝑖𝑑@(B).𝑓 MA =

{
Lid@(B)MA.𝑓 if A ∈ rolesOf (𝑓)
Unit.id otherwise

Lnew·⟨TE⟩id@(B)⟨TE⟩(Exp)MA =

{
new·⟨LTEMA⟩Lid@(B)⟨TE⟩MA(LExpMA) if A ∈ B
Unit.id(L𝐸𝑥𝑝MA) otherwise

The projection LStmMA of a statement Stm at A is defined following the above intuition, save

for the cases of conditionals and selections, which require care to address knowledge of choice

(cf. Section 2.3). Specifically, the rule for projecting if statements: for the role evaluating the guard

(read from its type), it preserves the conditional; for all other roles, the if disappears and it is

replaced by the projection of the guard (since it might have side effects) followed by the merging
⊔ of the projections of the bodies of the two branches and the projection of the continuation Stm.

Lif(Exp){Stm1}else{Stm2}StmMA =

{
if(LExpMA){LStm1MA}else{LStm2MA}LStmMA if Exp : boolean@A
LExpMA;

{
L𝑆𝑡𝑚1MA ⊔ L𝑆𝑡𝑚2MA

}
L𝑆𝑡𝑚MA otherwise

The merge operator Stm⊔ Stm′
is a partial operator that tries to combine branching code [Carbone

et al. 2012], which we adapt to Java for the first time. Essentially, given two Java terms, merging

recursively requires them to be equivalent unless they are switch statements. Appendix A contains

the full definition of merging. Here we report its most interesting case: merging switch statements.

switch·(Exp){
case·id𝑎->{Stm𝑎}
· · ·
case·id𝑥->{Stm𝑥 }
case·id𝑦->{Stm𝑦}
default->{Stm𝑑1}

}·Stm

⊔

switch·(Exp){
case·id𝑎->{Stm′

𝑎}
· · ·
case·id𝑥->{Stm′

𝑥 }
case·id𝑧->{Stm𝑧}
default->{Stm𝑑2}

}·Stm′

=

switch·(Exp ⊔ Exp′){
case·id𝑎->{Stm𝑎 ⊔ Stm′

𝑎}
· · ·
case·id𝑥->{Stm𝑥 ⊔ Stm′

𝑥 }
case·id𝑦->{Stm𝑦}
case·id𝑧->{Stm𝑧}
default->{Stm𝑑1 ⊔ Stm𝑑2}

}·Stm ⊔ Stm′

Above, the merging of two switch statements is a switch whose guard is the merging of the original

guards (Exp ⊔ Exp′). In the merging, for each case present in both the input switches (id𝑎, · · · , id𝑥),
we get a case in the result whose body merges the respective bodies of the original cases; all cases

that are not shared are simply put in the result as they are (the lists of cases case·id𝑦 ·->·Stm𝑦 from

the first and case·id𝑧 : Stm𝑧 from the second).

An example of the result of merging was presented for DistAuth_Client in Section 3.1, where

the cases for OK and KO are combined from the respective projections for Client of the two branches
in the source choreographic conditional evaluated by IP. These cases are produced by the rule for

projecting selections, which applies to statements of the form Exp;·Stm when Exp calls (possibly

in a chain call) a method annotated with @SelectionMethod. (Our type checker checks that these
annotations are used only for methods that take enumerated types as parameters, cf. Section 2.3.) For

compactness, let 𝑆 = Exp.⟨TE⟩id1 (id2@A′ .id3) where @SelectionMethod ∈ annotations(id1)

L𝑆;StmMA =


switch(L𝑆MA)

{
case·𝑖𝑑3->{LStmMA}
default·->{throw new ...}

}
if 𝑆 : Enum<T>@A for some T

L𝑆MA; L𝑆𝑡𝑚MA otherwise

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

30 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

For the recipient of the selection (first case), the statement becomes a switch on the projection of

the Expression that will receive the selection, while the projection of the continuation Stm becomes

the body of the corresponding case in the argument. The projection for the other roles (second

case) is standard, projecting the Expression followed by the projection of the continuation Stm.

Our implementation of merging is smart enough to deal with some ‘non-effectful’ usages of

Unit. For instance, consider the following choreography.

if(true@A){System@A.out.println("true"@A);}

If we project it at a role different from A, say B, we obtain the code Unit.id(Unit.id) for the
then-branch, and [𝑏𝑙𝑎𝑛𝑘] for the (missing) else-branch. These fragments are not mergeable, but

our compiler uses a unit-normalising operator, given in Appendix A, which transforms also the first

fragment into [𝑏𝑙𝑎𝑛𝑘] by removing the irrelevant usages of Unit.

5 TESTING
Testing implementations of choreographies is challenging since the distributed programs of all

participants need to be integrated (integration testing). We introduce ChoralUnit, a testing tool

that enables the writing of integration tests as simple unit tests for choreographic classes.

Writing tests. Following standard practice in object-oriented languages and inspired by JUnit, tests

in ChoralUnit are defined as methods marked with a @Test annotation [Gamma and Beck 2006;

Hamill 2004]. For example, we can define the following unit test for the VitalsStreaming class
from Section 3.2.

1 public class VitalsStreamingTest@(Device,Gatherer) {
2 @Test
3 public static void test1(){
4 SymChannel@(Device,Gatherer)<Object> ch =
5 TestUtils@(Device,Gatherer).newLocalChannel("VST_channel1"@[Device,Gatherer]);
6 new VitalsStreaming@(Device,Gatherer)(ch, new FakeSensor@Device())
7 .gather(new PseudoChecker@Gatherer());
8 }
9 }
10

11 class PseudoChecker@R implements Consumer@R<Vitals> {
12 public void accept(Vitals@R vitals){
13 Assert@R.assertTrue("bad pseudonymisation"@R, isPseudonymised(vitals));
14 }
15 private static Boolean@R isPseudonymised(Vitals@R vitals) { /* ... */ }
16 }
17

18 class FakeSensor@R implements Sensor@R { /* ... */ } Choral Code

The test method test1 checks that data is pseudonymised correctly by VitalsStreaming. Test
methods must be annotated with @Test, be static, have no parameters, and return no values.

At lines 4–5, we create a channel between the Device and the Gatherer by invoking the

TestUtils.newLocalChannel method, which is provided by ChoralUnit as a library to sim-

plify the creation of channels for testing purposes. This method returns an in-memory chan-

nel, which both Device and Gatherer will find by looking it up in a shared map under the key

"VST_channel1". Thus, both roles must have the same key in their compiled code, which is guar-

anteed, here, by the fact that the expression "VST_channel1"@[Device,Gatherer] is syntactic
sugar for "VST_channel1"@Device, "VST_channel1"@Gatherer.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 31

At lines 6–7, we create an instance of VitalsStreaming (the choreography we want to test). We

use a FakeSensor object to simulate a sensor that sends some data containing sensitive information

(omitted). We then invoke the gather method, passing an implementation of a consumer that

checks whether the data received by the Gatherer has been pseudonymised correctly.

Given a class like VitalsStreamingTest, ChoralUnit compiles it by invoking our compiler with

a special flag (-annotate). This flag makes the compiler annotate each generated Java class with

an @Choreography annotation that contains the name of its source Choral class and the role that

the Java class implements.

When the compilation is finished, we can invoke ChoralUnit to run the tests from the class

VitalsStreamingTest. Once launched, the tool finds all the Java classes with an @Choreography
annotation whose name value corresponds to VitalsStreamingTest. By construction, each dis-

covered class has a method with the same name, corresponding to the namesake method from the

source Choral test class (test1, in our example). ChoralUnit exhaustively runs all the tests found

in the test class. Namely, for each @Test-annotated method and for each class generated from

the Choral source, ChoralUnit starts a thread that runs the local implementation of that method

implemented by that class.

In our example, VitalsStreamingTest is compiled to a class for Device and another for

Gatherer, each with a test1 method. Thus, ChoralUnit starts two threads, one running test1
of the first generated Java class and the other running test1 of the second generated Java class.

Multiparty assertions. In the previous example, we have written an assertion (in PseudoChecker)
that checks a condition at a single role (Gatherer). Sometimes, it is useful to assert conditions

that involve multiple roles. A typical example is testing the correct implementation of protocols

that aim at making two parties agree on a symmetric cryptographic key, like the Diffie-Hellman

protocol [Diffie and Hellman 1976]. In particular, after running the protocol, the two participants

(say A and B) should have the same key. We can express this assertion as follows.

1 Assert2@(A,B).assertEquals("key mismatch"@B, chAB, keyA@A, keyB@B); Choral Code

Above, method assertEquals of class Assert2 uses the channel chAB to communicate the key

at A (keyA) from A to B, and then checks locally at B that it is equal to the key at B (keyB). If the
check fails, an assertion error is raised at B.
Class Assert2 can be user-defined, and likewise, developers can define classes that allow for

assertions that involve more roles (e.g., Assert3, Assert4, etc.). In these implementations, the

user can also freely code different protocols for communicating the data among the participants.

6 EVALUATION
In Section 3, we explored how Choral can be used to program choreographies for a few realistic

scenarios. In this section, we extend the evaluation of our approach in three different directions:

(1) In Section 6.1, we exemplify how one can use Choral to transition existing (Java) programs

to choreographies. In Section 6.1.1, we show how Choral aids in transitioning sequential

algorithms into concurrent implementations. We consider a Java algorithm and present the

necessary steps to transform it into a Choral program that distributes its computation over

three nodes – the number of nodes follows naturally from the recursive structure of the

algorithm. The steps are straightforward, thanks also to the guidance offered by the Choral

compiler. In Section 6.1.2, we consider a complete, three-tier system: RetwisJ
2
, a clone of

Twitter implemented by the Spring team as an example of integration with the Redis data

store. RetwisJ comes as a monolithic application that consists of mainly three components

2
https://github.com/spring-attic/spring-data-keyvalue-examples/tree/master/retwisj.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://github.com/spring-attic/spring-data-keyvalue-examples/tree/master/retwisj

32 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

that respectively handle clients’ invocations, the business logic, and the interaction with

a data store. Following this design, in the transition to Choral (called ChoRetwis), each

component appears as a role in the choreography. ChoRetwis is a drop-in replacement for

RetwisJ (e.g., we can use RetwisJ and ChoRetwis with the same clients and data store). As an

advantage of our choreographic refactoring, the architecture is more flexible wrt deployment:

all components can be deployed on the same or different machines.

(2) In Section 6.2, we compare Choral to a popular alternative for concurrent and distributed

programming: reactive actors. We use the Akka framework for Java as a representative for

reactive actors. Since Choral is essentially an extension of Java, this choice helps in compar-

ing our approach against more standard approaches to concurrent programming at the net

of linguistic differences. In addition to the key qualitative advantage that Choral provides

choreography compliance, we find that Choral contributes to keeping the codebase smaller.

Furthermore, we find that the Java code generated by the Choral compiler is not significantly

different in size from manually-written Java code. This opens the door to a quantitative

evaluation, which we carry out in Section 6.3.

(3) In Section 6.3, we present a quantitative evaluation of how Choral impacts software develop-

ment and execution performance. In Section 6.3.1, we report relevant measurements on the

performance of the Choral compiler. Our analysis shows that using Choral leads to smaller

codebases and that the numbers of roles and conditionals in a choreography are significant

determinants of how much our approach contributes to this aspect. We also observe that both

our type checker and our compiler are fast when used on our set of examples – they provide

feedback and complete the compilation in a matter of milliseconds. Thus, our approach does

not significantly reduce the performance of development toolchains. In Section 6.3.2, we

look at the runtime performance of the code that we generate. Specifically, we compare the

execution times of Choral and Akka implementations of the Karatsuba algorithm presented,

respectively, in Section 6.1 and Section 6.2. We find the performance of the two models

comparable (and the Choral variant performs the best in the majority of the tested cases).

Overall, our results are encouraging. In addition to the advantage of choreography compli-

ance, smaller codebases tend to host fewer bugs [Bessey et al. 2010], and Choral appears rather

approachable when we consider the context of existing practices.

The code used in this evaluation is available in two public repositories. The first contains the

material for the comparison with Java and Akka (both quantitative and qualitative) and for bench-

marking the performance of the compiler.
3
The second includes the original code and the Choral

re-implementation of RetwisJ.
4

6.1 From Java to Choral
Thanks to the fact that Choral is based on mainstream abstractions, we can use the implementation

of a sequential algorithm in Java as a starting point to obtain a concurrent variant (in Choral).

6.1.1 Transforming an algorithm: Karatsuba. Consider the algorithm for fast multiplication by

Karatsuba and Ofman [1962]. We report an implementation of that algorithm in Java on the left

side of Figure 7.

Starting from the Java implementation, we can obtain a distributed implementation of the same

algorithm in Choral by adding: a) information on where the data is located and b) data transmissions

for moving the data and implementing knowledge of choice.

3
https://github.com/choral-lang/evaluation.

4
https://github.com/choral-lang/choretwis.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://github.com/choral-lang/evaluation
https://github.com/choral-lang/choretwis

Choral: Object-Oriented Choreographic Programming 33

1 public static Long multiply(Long n1, Long n2) {
2 if (n1 < 10 || n2 < 10) {
3 return n1 * n2;
4 } else {
5 Double m = Math.max(Math.log10(n1), Math.log10(n2)) + 1;
6 Integer m2 = Double.valueOf(m / 2).intValue();
7 Integer splitter = Double.valueOf(Math.pow(10, m2)).intValue();
8 Long h1 = n1 / splitter; Long l1 = n1 % splitter;
9 Long h2 = n2 / splitter; Long l2 = n2 % splitter;

10 Long z0 = Karatsuba.multiply(l1, l2);
11 Long z2 = Karatsuba.multiply(h1, h2);
12 Long z1 = Karatsuba.multiply(l1 + h1, l2 + h2) - z2 - z0;
13 return z2 * splitter * splitter + z1 * splitter + z0;
14 }
15 }

1

1 public static Long@A multiply (Long@A n�, Long@A n�,
2 SymChannel@(A, B)�Long� ch_AB,
3 SymChannel@(B, C)�Long� ch_BC,
4 SymChannel@(C, A)�Long� ch_CA) {
5 if (n� � ��@A || n� � ��@A) {
6 ch_AB.�Choice�select(Choice@A.DONE); ch_CA.�Choice�select(Choice@A.DONE);
7 return n� * n�;
8 } else {
9 ch_AB.�Choice�select(Choice@A.REC); ch_CA.�Choice�select(Choice@A.REC);

10 Double@A m � Math@A.max(Math@A.log��(n�), Math@A.log��(n�)) � �@A;
11 Integer@A m� � Double@A.valueOf(m / �@A).intValue();
12 Integer@A splitter � Double@A.valueOf(Math@A.pow(��@A, m�)).intValue();
13 Long@A h� � n� / splitter; Long@A l� � n� � splitter;
14 Long@A h� � n� / splitter; Long@A l� � n� � splitter;
15 Long@A z� � Karatsuba@(B, C, A)
16 .multiply(ch_AB.�Long�com(l�), ch_AB.�Long�com(l�), ch_BC, ch_CA, ch_AB)
17 �� ch_AB::�Long�com;
18 Long@A z� � Karatsuba@(C, A, B)
19 .multiply(ch_CA.�Long�com(h�), ch_CA.�Long�com(h�), ch_CA, ch_AB, ch_BC)
20 �� ch_CA::�Long�com;
21 Long@A z� � Karatsuba@(A, B, C)
22 .multiply(l� � h�, l� � h�, ch_AB, ch_BC, ch_CA) - z� - z�;
23 return z� * splitter * splitter � z� * splitter � z�;
24 }
25 }

1

Fig. 7. Karatsuba algorithm. Left: Java (sequential). Right: Choral (choreographic).

We report the resulting Choral program on the right side of Figure 7, highlighting the additions

from the original Java code in yellow.

The Choral program has three roles (A, B, and C), which distribute among themselves the three

sub-calculations of the algorithm. In the parameters and return type, we added information on

data locality (e.g., Long@A n1) and the necessary channels (e.g., ch_AB) for moving data in the

implementation of the method. Given the original Java code, the type checker of the Choral compiler

would assist the programmer by pointing out that data locality information must be added. Likewise,

in the implementation of the method, we added information on data locality for constant values and

variables (e.g., Double@A m). Additionally, we added the necessary data transmissions: selections to

implement knowledge of choice for the conditional, and communications of values whenever they

should move from a role to another. Again, the Choral compiler aids the programmer by asking

for all this information.

6.1.2 Transforming an entire system: RetwisJ (Redis-based Twitter clone). We now focus on the

transformation of a complex, real-world system to provide a more comprehensive view of the

process. The transformation allows us to illustrate how Choral can help developers transition from

monolithic to distributed implementations (à la microservices) while maintaining their options

open wrt code reuse, interoperability, and deployment configurations.

Concretely, we took RetwisJ
5
, which is a Java, Spring-based port of Retwis

6
, and re-implemented

its logic as a distributed application that consists of three separate modules. We report, at the

top of Figure 8, the simplified class diagram of RetwisJ. The application is a monolith, where the

central module ‘RetwisController’ works both as the gateway for serving webpages to the user

(the ‘JSP pages’ module) and as the entry-point for user requests (e.g., to log in, to post tweets, etc.).

The classes ‘User’ and ‘Post’ model the main entities in the system, while the ‘RetwisRepository’

implements the logic for data persistence and retrieval.

5
Source code available at https://github.com/spring-projects/spring-data-keyvalue-examples, documentation available at

https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/.

6
A Twitter clone originally proposed by the Redis team to illustrate the capabilities of the data store, described at https:

//redis.io/topics/twitter-clone.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://github.com/spring-projects/spring-data-keyvalue-examples
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://redis.io/topics/twitter-clone
https://redis.io/topics/twitter-clone

34 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Refactoring RetwisJ in Choral naturally follows well-known patterns from microservice archi-

tectures [Dragoni et al. 2017; Newman 2021]: interaction with the client is handled by a ‘Gateway’

component; business logic is managed by a ‘Controller’ component; and data storage and access

is managed by a ‘Storage’ component. These components (depicted in the lower part of Figure 8)

correspond to roles in our implementation, so we obtain a choreography that defines how these

three roles collaborate to implement the application.

Each component is implemented by combining its respective code compiled from the choreo-

graphy (for coordination) together with local code that implements the internal functionalities

that are out of the scope of the choreography. For such internal functionalities – e.g., the concrete

data read/write operations on Redis – we reuse existing code from RetwisJ. In Figure 8, we display

which classes from RetwisJ have been reused as-is (e.g., ‘User’ and ‘Post’). All three components

are loosely coupled, in the sense that they interact purely via message passing (as instructed by the

choreography). Since the choreography uses our abstract channel interfaces, our implementation

is more flexible than the original RetwisJ. Developers can choose to distribute the components

by using, e.g., TCP/IP channels, or to deploy all of them as a single application using in-memory

communication channels (which is the only option for RetwisJ).

The choreography is strategically parametric on a few notable aspects.

• The gateway receives API calls through a generic ‘CommandInterface’, which allows us to

expose the API over different media. In our concrete example, we implemented an ‘HTTP-

CommandInterface’ for exposing a typical REST API (designed by us) and an alternative that

acts as a drop-in replacement for RetwisJ by implementing the API expected by the JSP pages

provided in that project.

• The controller delegates the storage and retrieval of the session state to an abstract ‘Session-

Manager’. Our implementation stores state locally (in memory), but it can in principle be

generalised to storing state on an external distributed store, to allow for replication.

• The storage component relies on an abstract ‘DatabaseConnection’ (a database abstraction

layer), which determines how data is concretely represented, read, and written. Our imple-

mentation reuses the Redis-based code from RetwisJ. Thus, RetwisJ and our implementation

can even be used in parallel. Storage is, however, not limited to using Redis and alternative

implementations of ‘DatabaseConnection’ can be provided.

To test our implementation and its consistency with the original RetwisJ, we developed a test

suite that programmatically invokes the HTTP APIs of the two systems. The suite performs a series

of tests that simulate usage, modifying state (e.g., creating users and posts) and then checking that

the results are as expected.

6.2 Programming paradigms: Choral and Akka
We carry out a brief comparison between Choral and an established framework for concurrent

programming: the Akka framework for the Java language. Akka is a popular reactive framework

based on actors for the ‘traditional’ way of programming concurrent software; that is, software

where each endpoint is programmed from a local viewpoint, in contrast with the global view on

the expected interactions of choreographic programming. We use Akka version 2.6.18.

We depict the development processes of Choral and Akka in Figure 9, respectively on the left

and the right sides. The processes are slightly different.

• In Choral, we implement a choreography using a single codebase (A○). The codebase for each

participant is then generated automatically by our compiler (B○).

• By contrast, in Akka, we implement the behaviour of each participant separately (C○). There

are no components to write choreographies.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 35

RetwisController

RetwisJ

JSP pages RetwisRepository

Post

User

Gateway

Gateway Storage

SessionManager DatabaseConnectionHTTPCommandInterface

Redis

Controller

Controller

Storage

LEGEND

Network connection

Dependency

(via shared memory)

Package
Java Class Database

instance
generated

with Choral

IM
PLEM

EN
TATIO

N
 BY TH

E
SPR

IN
G

 FR
AM

EW
O

R
K TEAM

O
U

R
 IM

PLEM
EN

TATIO
N

OUR TEST SUITE

Test Suite

Fig. 8. Diagram of the RetwisJ and ChorRetwis Systems (classes, packages, and deployment).

class MyClass@(
Comp1, Comp2, Comp3)
{ ... }

Choral Source

CHH1 for JavaLib1
CHH2 for JavaLib2
CHH3 for JavaLib3

class
MyClass_Comp2{ ... }

Java Source

Compilation

JavaLib2

A

B Akka Runtime

Akka Library

class Comp1{ ... }

class Comp3{ ... }

class Comp2{ ... } JavaLib2

JavaLib3

JavaLib1

class
MyClass_Comp1{ ... }

Java Source

JavaLib1

class
MyClass_Comp3{ ... }

Java Source

JavaLib3

C

Java Source

Java Source

Java Source

Fig. 9. Depiction of the programming approaches of Choral (left) and Akka (right).

Choral provides choreography compliance through its language and compiler. Akka provides

no tools to express choreographies, nor to check for compliance – these aspects must be handled

manually by the programmer.

Both Choral and Akka require the programmer to adopt a few principles, respectively: for Choral,

our notion of data types with multiple roles; for Akka, the design patterns and APIs expected by

the Akka framework for user implementations, and the APIs of the Akka libraries. Notably, Choral

does not fix any APIs. The choice of APIs and implementations of channels or other methods are

completely up to the user. Thus, Choral leaves more freedom to the developer in choosing what

libraries to rely on. Furthermore, Choral requires no runtime library during execution, while Akka

requires programmers to adopt the Akka runtime (represented in Figure 9 by the Akka Runtime
rectangle that surrounds the components).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

36 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Program Choral (LOC) Java/Choral-generated (LOC) Java/Akka (LOC)

DistAuth 56 137 234

MergeSort 63 239 166

Karatsuba 31 92 118

Table 1. Comparison of three codebases implemented in Choral and Akka.

Choral and Akka allow for reusing existing Java code and libraries, e.g., database drivers. When

Java code involves a single role, using it in Choral is straightforward – we interpret any Java type

as a type parametric at a single role. In general, programmers can explicitly coerce Java types

to arbitrary Choral types by using special header files called Choral Headers, shortened as CHH

(CHH1, · · · ,CHH3 in Figure 9), which isolate code that might be ‘unsafe’ because manually written

in Java.

To get more concrete observations and data, we manually implemented in Akka three choreo-

graphies presented in this paper, namely DistAuth (see Section 3.1), MergeSort (see Section 3.3),

and Karatsuba (see the beginning in this section). In Table 1, we compare the sizes of the three

codebases for each example in terms of lines of code (LOC). Specifically, we report: the size of the

Choral implementation, the size of the Java code generated from the Choral implementation, and

the size of the manually-written Akka implementation.

The comparison between the implementations of DistAuth is straightforward. The main differ-

ence lies in the fact that Akka follows a reactive programming style that dictates the usage of fields

and messages of different types inside each actor to track the (local) status of the protocol. The flow

of interactions becomes thus implicit, and needs to be reconstructed by the expected asynchronous

activations of methods at actors – a similar observation has already beenmade byWeisenburger et al.

[2018]. Differently, in Choral the flow of interactions is made explicit by our type system and sequen-

cing of actions. This difference makes the Choral codebase quite shorter, since the fields andmessage

types used to implement causal dependencies in Akka add boilerplate code. The structures of the

components between the generated Choral code and the Akka implementation follow the same pat-

tern, i.e., we have one class for each participant (the Client, the Service, and the IP from Section 3.1).

We then moved to implementing the MergeSort and Karatsuba examples, because their recursive

nature makes them a good fit for reactive programming as in Akka. Indeed, differently from the

DistAuth implementation that had a one-to-one correspondence between the Choral-generated

and Akka-based classes, the Akka implementations of MergeSort and Karatsuba rely mainly on

a single class that defines the implementation of all roles. We find that the actor paradigm and

the programming style we used for Choral in this article promote different ways of dealing with

recursion. For the Akka implementation, we followed the idiomatic approach of creating a new actor

for each new recursive call of the distributed algorithm. By contrast, in the Choral implementations,

it is natural to use the same participants in recursive calls by switching their roles as shown in

Sections 3.3 and 6.1.1 – this lowers complexity and performance costs wrt coordination since we

avoid creating and managing new participants. Adopting the ‘one class’ style for Akka helps keep

the codebase small (the Java implementation generated from Choral is bigger for MergeSort), but

makes the implementation tightly coupled.

Interestingly, for the Karatsuba algorithm, the Choral-generated Java implementation is smaller

than the manually-written Akka implementation. This is because Karatsuba requires more coordin-

ation and local tracking of the distributed state, correspondent to boilerplate code that defines

bookkeeping message types and fields in Akka.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 37

What went wrong. There are valuable lessons that we learned from the exercise of writing im-

plementations of the Karatsuba algorithm in Akka and Choral. In particular, writing the Akka

implementation was trickier and more error-prone. We illustrate two representative issues, which

arise from the lack of a choreographic view in Akka. These issues have been analysed by two of

the authors working together to peer-review both the development process and the resulting code.

• For the first Akka implementation, we noticed that its performance was always the same

for all tested inputs. It took us some time to notice that no communications were performed

at all: all multiplications were resolved locally because there was a typo in the direction of

the inequality check that decides whether to perform the z0-z1-z2 decomposition of the

product (cf. Figure 7) or perform it directly. This was a very subtle bug because the program

was terminating successfully and returned the right results.

This issue was caused by the fact that the code for the Karatsuba algorithm needs to be

distributed across different methods in Akka, which obfuscates the original structure of the

algorithm and adds opportunities for banal bugs (e.g., swapping two arguments by mistake).

We did not encounter this kind of issues with the Choral implementation, because we just

needed to augment the original (correct) Java implementation with channel usage and roles

(cf. Figure 7). The distribution of code in the final Java implementation has been carried out

by the Choral compiler without mistakes.

• Another bug that we encountered was due to a typo, too, which made the Akka implement-

ation perform the calculation of z2 instead of the one of z1. However, more interestingly,

this error manifested itself as a deadlock: an actor was waiting for the arrival of the three

sub-calculations for z0, z1, z2, and instead received only those for z0 and z2 (the latter twice).
Fixing this kind of bugs is tricky in parallel programming, and indeed our first attempt at

a fix introduced another bug: we fixed the deadlock, but we started obtaining wrong results

because the fix caused a swap of the inputs for z1 and z2.
The key reason behind these bugs was that, in Akka, we had to manually write code that

reads and writes tags in messages to know if they contain the result of computing z0, z1,
or z2. In this code, errors can be written in the code that creates messages at the sender and

the code that processes them at the receiver. Implementations can therefore fall out of sync.

Choreographic programming (hence Choral) prevents this kind of bugs entirely because it

is not possible to write mismatched communications at the choreographic level.

6.3 Microbenchmarks
We now move to a more systematic and quantitative evaluation of how Choral impacts software

development – in addition to the key benefit of choreography compliance. First, we evaluate the

performance of the Choral compiler with microbenchmarks on 11 Choral programs. Then, since

we implemented the same Karatsuba algorithm both in Java, Choral, and Akka, we provide some

preliminary runtime benchmarks by contrasting their performance.

6.3.1 Compilation Benchmarks. Regarding the performance of the Choral compiler, we report our

results in Table 2. There, for each program, we report (left to right): the name of the Choral program,

lines of code, number of roles, number of conditionals (if and switch blocks), lines of code of the

compiled Java code (total for all roles), number of milliseconds to perform type checking, number

of milliseconds to perform the check for projectability, and number of milliseconds to perform the

projection (Section 4.2). All code is well indented and the number of lines just omits empty ones.

We collected times on a machine equipped with an Intel Core i5-3570K 3.4 GHz CPU and 12 GB of

RAM, running macOS 10.15 and Java 17. The reported times are averages of 1000 runs each, after

a warm-up of 1000 prior runs.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

38 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Program C
h
o
r
a
l
(
L
O
C
)

#
R
o
l
e
s

#
C
o
n
d
i
t
i
o
n
a
l
s

J
a
v
a
(
L
O
C
)

S
i
z
e
I
n
c
r
e
a
s
e
(
%
)

T
y
p
e
C
h
e
c
k
i
n
g
(
m
s
)

P
r
o
j
.
C
h
e
c
k
i
n
g
(
m
s
)

P
r
o
j
e
c
t
i
o
n
(
m
s
)

HelloRoles 9 2 0 14 55% 5.915 0.334 0.187

ConsumeItems 16 2 1 49 206% 9.572 0.861 0.607

BuyerSellerShipper 40 3 2 126 215% 8.204 1.274 1.015

DistAuth 56 3 1 137 144% 11.463 9.097 0.986

VitalsStreaming 47 2 1 78 65% 7.864 1.384 0.417

DiffieHellman 26 2 0 36 38% 5.911 0.232 0.152

MergeSort 63 3 4 239 279% 8.517 7.891 3.723

QuickSort 74 3 3 200 170% 7.213 6.204 2.806

Karatsuba 31 3 1 92 196% 6.491 2.566 1.078

DistAuth5 66 5 1 226 242% 10.581 5.573 1.036

DistAuth10 91 10 1 438 381% 10.576 5.643 3.011

Table 2. Performance results for the Choral compiler.

Table 2 reports data for programs shown in this article, plus four other programs: BuyerSeller-

Shipper is inspired by a recurring e-commerce example found in choreography articles [Carbone

et al. 2012; Honda et al. 2016]; the Diffie-Hellman protocol for cryptographic key exchange [Diffie

and Hellman 1976]; and DistAuth5 and DistAuth10, which are variants of the DistAuth class from

Section 3.1, where we respectively add 3 and 7 roles, 2 and 7 channels, and 4 and 14 selections for

coordination.

Our preliminary data from Section 6.2 points out that Choral programs are significantly smaller

than the Java implementations compiled from them. This is good in itself: recall that smaller

codebases typically host fewer bugs [Bessey et al. 2010]. In our microbenchmarks, compilation leads

to an average increase of 181% in codebase size (going from the 38% for DiffieHellman up to 381%
for DistAuth10): the difference between the sizes of the original Choral program and the generated

Java code is a rough approximation of code that the programmer has been spared from writing

manually. Furthermore, our microbenchmarks suggest that two main parameters affect this benefit.

• The number of roles involved in the source choreography. This factor is explained by the

fact that each statement in Choral involving 𝑛 roles corresponds to 𝑛 statements in the

generated Java code – one for each role, implementing what the role has to do to follow the

choreography. For example, a Choral statement invoking a method to communicate data

from A and B would produce a statement in the code for A (for sending) and a statement in

the code for B (for receiving). There are examples of choreographies with many instructions

that involve a single role, like DiffieHellman, which results in a smaller expansion.

• The number of conditionals. Conditionals usually require performing selections to handle

knowledge of choice (Section 2.3). Then, the (code compiled for the) roles receiving selections

has to inspect the type of the received message using a switch statement, which is auto-

matically added by our compiler and is not present in the original Choral code. For example,

MergeSort and QuickSort differ in that the former has 4 conditionals whereas the latter has

3 conditionals, and respectively reach an expansion of 279% and 170%.

As a final remark, we observe that type and projectability checking and projection do not add any

significant delay to the development experience: they respectively average ca. 8.391ms, 3.732ms,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 39

and 1.365ms. These performance match our programming experience with Choral, where the com-

piler managed to feel quite responsive in providing quick feedback while coding. Both operations

are mostly influenced by the number of conditionals and roles, which agrees with our previous

observations.

6.3.2 Runtime Benchmarks. We conclude this section by comparing the execution times of the

Choral and Akka implementations of Karatsuba. We show the results in Figure 10. In the figure, we

report in each of the six plots the average execution time, in nanoseconds, of a sequence of 1000

multiplications. Each quadrant regards a specific ‘tier’ of multiplication, i.e., the 10
9
tier corresponds

to the multiplication of two factors of the shape, e.g., 𝑖 ∗ 105 and 𝑗 ∗ 104, which produce a result

of that tier’s magnitude. All benchmarked implementations use the same inputs: we generated and

used six files, each containing 1000 pairs of random factors. Each file corresponds to a tier. The

considered tiers are: 10
9
, 10

11
, 10

13
, 10

15
, 10

17
, and 10

19
– the latter approximates the maximal values

managed by the Java long data type, but we make sure to never produce overflows. We performed

the benchmarks on the same machine used to benchmark the Choral compiler above, with Java 17

and Akka 2.6.9. For each implementation, we run the benchmark two times in sequence, discarding

the data of the first run to warm up the JVM and provide stabler results.

To benchmark both Akka and Choral implementations, we used in-memory communications.

We wrote an implementation of in-memory channels for Choral, while for Akka we used the default

in-memory channels provided by the framework. In Figure 10, we report the execution times of the

Choral and Akka implementations both including their setup (respectively, ‘ASetup’ and ‘CSetup’)

and without it (respectively, ‘Akka’ and ‘Choral’). The reason to report setup times is to provide

the reader with an indication of the wall-clock times taken by the alternatives. The setup of Akka

regards the creation of the ActorSystem to execute the Karatsuba behaviour and its closure after

having obtained the result. The setup for Choral includes the creation of an Executor pool of three
threads, the creation of the three in-memory channels, and the closure of the pool after having

obtained the result.

The Choral implementation outperforms Akka’s in all quadrants, both with and without the

overhead from the setup – indeed, although with a slight margin, the performance of the ‘Choral’

implementation with the setup times outperforms ‘Akka’ without the corresponding overhead. We

also note that, contrarily to Choral, the wall-clock execution times of Akka are largely dominated

by its setup times. This phenomenon is testified by the ‘ASetup’ bar in Figure 10, which has almost

the same performance irrespective of the magnitude of the computed result, while the alternatives

show longer times for greater magnitudes. We attribute this phenomenon to the different ways in

which the runtimes of the Choral and Akka in-memory implementations manage concurrency and

messaging. Indeed, skimming through the internal code of Akka, we found that the framework puts

in place threading models and advanced messaging systems optimised for the execution of many

actors that communicate in parallel, which can take a high performance toll when implementing

‘lighter’ computations, like the one benchmarked here. In the future, we plan to investigate these

aspects more in-depth, identifying a set of benchmarks sensible to the peculiarities of the chosen

Choral and Akka runtimes and able to help shed light on the trade-offs of either approach.

6.4 Threats to validity
Our evaluation covers a broad range of topics related to applicability and performance, which we

believe indicate that Choral is a promising candidate for the programming of concurrent and dis-

tributed systems based on choreographies. Here, we discuss threats to the validity of our evaluation

and directions for its future extension.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

40 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Choral Akka CSetup ASetup

0

1

2

3

4

5

·106

t
i
m
e
(
n
s
)

Multiplications to 10
9

Choral Akka CSetup ASetup

0

1

2

3

4

5

·106
Multiplications to 10

11

Choral Akka CSetup ASetup

0

1

2

3

4

5

·106
Multiplications to 10

13

Choral Akka CSetup ASetup

0

1

2

3

4

5

·106

t
i
m
e
(
n
s
)

Multiplications to 10
15

Choral Akka CSetup ASetup

0

1

2

3

4

5

·106
Multiplications to 10

17

Choral Akka CSetup ASetup

1

2

3

4

5

·106
Multiplications to 10

19

Fig. 10. Benchmarks of Choral (Choral, CSetup), and Akka (Akka, ASetup) implementations of the Karatsuba
algorithm.

The experiments that we have presented include an algorithm (Karatsuba), a reference archi-

tecture (RetwisJ), one established programming framework (Akka), and several microbenchmarks.

These go on top of the other examples and use cases that we discussed in the previous sections,

which included other concurrent and distributed scenarios.

Regarding Choral’s applicability and usability, we could improve the validity of our evaluation

by considering additional kinds of algorithms, architectures, and popular concurrent programming

frameworks. Comparisons to other programming frameworks might also benefit from including a

wider array of programs. Another interesting direction would be to evaluate Choral’s usability by

conducting user studies that involve practitioners from academia and industry. These user studies

could provide precious input for the future growth and refinement of Choral.

Regarding the performance of Choral’s compiler and generated code, a potential threat is that

there might be performance bottlenecks that are not covered by our set of benchmarks. An interest-

ing future improvement could be to systematically extend this coverage, by developing a tool that

synthesises Choral programs according to different patterns and constraints that are determined by

input parameters – such as those that we considered in Table 2. Another potential threat is that there

might be parameters that significantly influence performance that we did not consider in Table 2. A

tool for synthesising ‘random’ choreographies could be useful in the discovery of such parameters.

7 RELATEDWORK, DISCUSSION, AND FUTUREWORK
Choral is a choreographic programming language, in that it makes the flow of interactions and

their related computations manifest from a global viewpoint [Montesi 2013]. While Choral suffices

already in tackling different kinds of use cases, as we have discussed in this article, the literature

on choreographies is vast. Choral includes and generalises many features found in previous work

on choreographies. There are other features that we have not considered in this work, along with

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 41

open problems that we pointed out when appropriate in the previous sections. We discuss related

work and other potential future developments of Choral in the rest of this section.

Previous implementations of choreographic programming. The idea of synthesising local participant

specifications that comply with choreographies has been a hot research topic for more than 20

years, and work in this line of research is typically based on automata or process calculi abstractions

[Alur et al. 2000; Autili et al. 2018; Basu et al. 2012; Honda et al. 2016; Qiu et al. 2007]. Previous

implementations of choreographic programming consist of Chor [Carbone and Montesi 2013] and

AIOCJ [Dalla Preda et al. 2017], which are based on process calculi and generate executable Jolie

code. Compared to them, Choral solves the modularity problems mentioned in the Introduction,

by revisiting choreographies under the light of mainstream abstractions. Another advantage is

that the types of channels needed by a choreography are made explicit and can be user-defined

[Carbone et al. 2012; Carbone and Montesi 2013; Honda et al. 2016; Qiu et al. 2007].

Other approaches to spatially-distributed programming. The types that support our choreography-
as-objects interpretation have been inspired by ideas found in modal logics for mobile ambients

[Cardelli and Gordon 2000] and, later, in the line of work on multitier programming [Cooper et al.

2006; Liu et al. 2009; Murphy VII et al. 2007, 2004; Neubauer and Thiemann 2005; Serrano et al. 2006;

Weisenburger et al. 2018]. In the words of Murphy VII et al. [2004], these works represent other

approaches to ‘spatially-distributed computation’. For example, in the most recent incarnation

of multitier programming (ScalaLoci, by Weisenburger et al. [2018]), a distributed application

is essentially defined as a single program that composes different functions, each localised at a

single participant. A function can then invoke special primitives to request remote computation by

another participant, whose implementation must always be ready for such requests [Weisenburger

et al. 2020]. Differently from choreographies, this makes the flow of communications implicit and

dependent on an underlying middleware – indeed, multitier programming was not designed to

address the problems of defining choreographies and addressing choreography compliance as an

aim. Choral generalises data types localised at a single participant to data types localised at many

participants (roles), which enables our novel development process for choreography-compliant lib-

raries. Castro-Perez and Yoshida [2020] explored the parallelisation of a simple multitier first-order

functional language, for which they can infer abstract (computation is not included) choreographies

of the communication flows that these programs can enact; Choral could be a candidate imple-

mentation language for this kind of models. Fowler et al. [2019] explored the idea of incorporating

simple choreographic languages (without computation) to ensure that multitier code between two

participants enacts specific protocols.

Choral’s clear relation to the ideas found in logics for mobile ambients has already proven useful.

In particular, Giallorenzo et al. [2021] use Choral to kickstart an investigation of the links and

differences between choreographic and multitier programming, by taking Choral and ScalaLoci

as representative languages. After identifying the core abstractions that differentiate the two ap-

proaches, the authors provide algorithms for translating Choral code into ScalaLoci code and vice

versa. Going from a multitier program to a choreographic one requires synthesising one of the many

possible protocols (a choreography) that implements the necessary communications to execute

the multitier program (which does not specify this aspect). This connection paves the way for joint

research and cross-fertilisation between the two communities [Giallorenzo et al. 2021].

Higher-order choreographies. Interpreting choreographies as objects enables, for the first time,

higher-order composition of choreographies that carry state (the fields of the objects): stateful

choreographies (objects) can be passed as arguments. Stateful choreographies have been invest-

igated before without higher-order composition – see, for example, the works by Carbone et al.

[2012]; Chen and Honda [2012]; Cruz-Filipe and Montesi [2020]. Demangeon and Honda [2012]

studied how parameters that abstract choreographies can be expanded syntactically, but their

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

42 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

choreographies cannot carry state and there must be a role that acts as an orchestrator to ‘enter’

into a choreography (whereas in Choral, control is fully distributed). In the setting of multitier

programming, Weisenburger and Salvaneschi [2019] introduced a module system to write multitier

programs as compositions of submodules. Differently from Choral and the work by Demangeon

and Honda [2012], their approach requires fixing roles statically, whereas in our case roles can be

freely instantiated at runtime – for example, our merge sort example in Section 3.3 exploits this

feature when roles are exchanged in recursive calls. Thus, our new data types might be interesting

in the setting of multitier programming too.

Choral’s principles in other settings. The core idea in Choral’s design is to have data types at multiple

locations (the roles of the choreography): T@(A_1, ... A_n). This information is the compass that

guided us in lifting the various aspects of Java to the choreographic level and in designing our notion

of projection. We believe that this idea can be easily applied to other object-oriented languages

– C#, Kotlin, Scala, etc. – by extending their types in the same way and retracing our steps.

The applicability of this core idea goes even beyond object-oriented languages. Choral’s first

technical report and release [Choral Development Team 2020; Giallorenzo et al. 2020] have already

inspired the investigation of theories and implementations of functional choreographic program-

ming languages [Cruz-Filipe et al. 2022, 2023a; Graversen et al. 2023; Hirsch and Garg 2022; Shen

et al. 2023]. These studies confirm the generality of our approach: just like extending Java types

with roles yields an object-oriented choreographic programming language (Choral), doing the

same to the 𝜆-calculus supports the development of a theory of functional choreographic program-

ming [Cruz-Filipe et al. 2022, 2023a].

Safety and liveness. The theory of choreographic languages comes with strong safety and liveness

properties, which stem from the high-level abstractions provided by choreographies and their

projections to distributed code [Montesi 2023]. Under the same assumptions made (sometimes

implicitly) in these proofs, Choral promises the traditional safety and liveness properties of cho-

reographic programming languages. We discuss these properties and how they relate to Choral’s

modularity and flexibility wrt communication middleware. Furthermore, in the end, we report

useful references and outline future research for the formalisation of these promises.

Choreographic programming languages guarantee communication safety. That is, processes never
try to interact by performing incompatible communication actions – if one action is ‘send’ the

other is a ‘receive’, and the type of the sent message is always (a subtype of) the one expected by

the receiver [Carbone et al. 2012; Montesi 2023]. Proofs of this result rely on the assumption that

communications is reliable (messages are never lost, duplicated, or corrupted) or at least that mes-

sage exchange primitives adopt suitable best-effort and timeout strategies [Montesi 2023; Montesi

and Peressotti 2017]. Furthermore, communication primitives should respect a locality principle:

messages should be dispatched to their intended recipients – and vice versa, receiving from a role

gives a message that was sent by that role [Giallorenzo et al. 2018; Montesi 2013]. In Choral, like in

any previous implementation of choreographic languages, these assumptions form a contract for the

implementation of channels. This contract must be manually enforced, or communication methods

might be ‘wrong’. A trivial example is a channel for communicating integers that always returns

the constant 1 at the receiver. In the future, it would be interesting to explore the formalisation of

contracts for channel middleware and libraries and the development of verified implementations.

Another property of choreographic programming – and probably the most known – is deadlock-
freedom by design: the code compiled from a choreography is deadlock-free, because it is not possible

to write mismatched communications in choreographies [Carbone and Montesi 2013; Dalla Preda

et al. 2017; Hirsch and Garg 2022; Jongmans and van den Bos 2022; Montesi 2023]. The relevant

assumptions, here, are that foreign code (in our case, Java code) used within a choreography always

terminates, and that communication never blocks the sender or receiver indefinitely. In the real

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 43

world, these assumptions usually do not hold, so it is important to adopt timeout and supervision

mechanisms to avoid divergence and deal with failures – as exemplified in Sections 2.5 and 3.2.

Under the same assumptions for deadlock-freedom, a choreography that is tail-recursive gives

the stronger liveness property of starvation-freedom (or livelock-freedom): no role ever gets stuck,

or ‘starves’ [Montesi 2023]. (In deadlock-freedom, it is sufficient that some part of the system keeps

running [Kobayashi 2000].) The same holds for Choral.

Lastly, choreographic programming languages typically guarantee race-freedom, provided that

no role uses the same channel in parallel via internal threads [Carbone et al. 2012; Honda et al.

2016; Lanese et al. 2008; Montesi 2023] – unless the underlying middleware can disambiguate

messages, but this is not often the case. Choral gives finer control over race freedom, thanks to

its expressive (Channel) types (cf. Section 2.4). For example, given a bidirectional channel, we can

pass it as a directed channel in one direction and as a directed channel in the other direction to

two separate threads. The API of directed channels would then allow the two threads to use the

channel, respectively, only for sending or for receiving, which is safe to do in parallel. This control

over channel usage was found to be useful in the choreographic implementation of full-duplex

asynchronous communication (a pattern where roles can freely interleave different requests and

responses in both directions), as found in the IRC client-server protocol. Lugovic and Montesi [2023]

present a detailed discussion of this pattern and an interoperable implementation of IRC in Choral.

Since channel implementations play a key role in the properties discussed above, these implement-

ations should ideally be simple, well-tested, or even verified. Choral’s features allow for encapsulat-

ing more sophisticated interaction behaviour as choreographies. Lugovic and Montesi [2023] started

this activity, offering a reusable Choral library for programming asynchronous reactive protocols.

While, in principle, composing choreographies in Choral preserves safety and liveness, one

must pay attention to the interplay with local code. Most notably, local code is free to compose

and intertwine multiple instances of the same or different choreographies, as we exemplified in

Section 3.2. This flexibility makes it possible to write two local programs that instantiate two cho-

reographies and try to communicate with each other in incompatible orders, share the same channel

across different instances of the same choreography running in parallel, etc. Doing so can create

communication errors and make choreographies trivially timeout and fail. This problem can be

tackled in several ways, which we leave to future work. Briefly, one option is to devise middleware

for making local programs agree on which choreography they want to engage in at any time. One

such middleware can avoid some incompatibilities, create dedicated channels, or, in general, throw

a runtime exception in case of disagreements. Other potential solutions include devising static or

runtime checks for how local code composes instances of choreographies. Options for these checks

encompass constraints such as keeping the graph of connections among local programs acyclic;

making (projections of) choreographies that run in parallel have dedicated channels; ensuring that

call to different methods of different choreographic objects follow compatible orderings; and/or

synthesising an overall choreography that describes the collective behaviour of how local programs

combine their (sub)choreographies, thereby providing a witness of safety and liveness [Carbone

and Montesi 2013; Coppo et al. 2016; Cruz-Filipe et al. 2017; Honda et al. 2016; Jacobs et al. 2022;

Lange et al. 2015; Montesi and Yoshida 2013; Voinea et al. 2020]. Some of these methods could be

applied via structured concurrency libraries backed by middleware.

‘Bad’ programming of code that interacts with projections of choreographies is not a new issue,

as it was already present in previous implementations of choreographic languages [Carbone and

Montesi 2013; Dalla Preda et al. 2017; Montesi 2013; Scalas et al. 2017]. In fact, this is a general

issue when composing code from libraries that engage in communications, even if these are not

generated from choreographies. At the very least, Choral already guarantees type safety: the APIs

of choreography projections are always respected.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

44 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Formalising Choral’s ideas, implementation, and guarantees is an interesting area of research.

As already mentioned, the principles of compiling terms and data types equipped with roles as

in Choral have been studied in the simple setting of the 𝜆-calculus [Graversen et al. 2023; ?]. The
proofs in these models are not machine-checked. Mechanisation could be achieved by building

on the existing formalisations of the foundations of choreographic languages made with theorem

provers [Castro-Perez et al. 2021; Cruz-Filipe et al. 2021a,b, 2023c; Hirsch and Garg 2022; Pohjola

et al. 2022]. These efforts are still focused on choreographic programming languages that are far

less expressive than Choral, which by contrast is a large programming language that inherits all

the complexities of both choreographic and object orientation.

Selection inference. Choral requires the programmer to insert the necessary selections to achieve

knowledge of choice (Section 2.3). Developing techniques for inferring these selections automatic-

ally is an ongoing research topic. Typically, these techniques either modify the source choreography

to include extra selections or inject hidden communications in the generated endpoint code [Basu

and Bultan 2016; Cruz-Filipe and Montesi 2020; Dalla Preda et al. 2017; Jongmans et al. 2015; Lanese

et al. 2013]. However, there is no silver bullet.

(1) In general, it is unfeasible to detect automatically what the optimal selection strategy is. This

is a problem for both approaches (modifying the source choreography or injecting hidden

communications in the generated code). Say that A needs to inform B and C of a choice by
using point-to-point channels. Should A send the first selection to B or to C? That might

depend on whether B has a longer task to perform in reaction to the selection compared to

C, or vice versa. (Whichever has the longest task to start should get the selection first, to

increase parallelism.) Then, what if multiple channels are available? For example, if A shares

a fast channel with B but not with C, and B shares a fast channel with C, then it might be

good that A informs B and subsequently B informs C (instead of A informing C directly). These
issues become even more sophisticated when considering choreographies with more complex

network topologies, scatter-gather channels, recursion, etc.

(2) If a compiler injects hidden communications in the generated code, then the source choreo-

graphy program does not faithfully represent the communications enacted by the system any

more. This makes the choreography less useful when reasoning about, for example, efficiency

– network communications like selections are especially a huge performance factor – and

security – hidden extra communications might leak information in ways not intended by

the designer of the original protocol.

Since both issues are still the object of active investigation, we decided that the first version of Choral

should be a base that future work can use to explore their design spaces. A promising compromise

could be a hybrid, assisted way. That is, the programmer should be able to write a choreography in-

cluding some selections deemed important, but also potentially missing some necessary other selec-

tions; then, a tool should detect themissing selections and propose a solution. The programmer could

thus decide whether to accept the proposal or improve it manually to achieve their requirements.

In general, we believe that there is a lot of potential in future research on how to optimise

communications in Choral. New algorithms might leverage annotations of channels, static analysis,

and profiling data. Some algorithms might choose simpler approaches at the expense of parallelism,

whereas others might take a more decentralised approach to spreading knowledge of choice to

favour parallelism or energy saving (in the Internet of Things, spreading battery consumption

evenly or in a focused way might be an advantage depending on the scenario).

Expressivity. We discuss a few interesting directions for future work regarding the expressivity of

Choral and its type system. In general, we believe that our choreographic interpretation of OOP

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 45

allows for importing established techniques from type theory to reason statically about roles in

useful ways.

Choral can capture a variety of interaction patterns, like scatter-gather and producers-consumers

with races. Nevertheless, there are cases where our types can be coarse. For instance, the following

could be an interface of a channel where two receivers, B and C, race to consume a message.

interface RaceDiChannel(A,B,C)<T@X> {
<S@Y extends T@Y> DPair@(B,C)<Optional<S>,Optional<S>> com(S@A m);

}

The return type of method com above guarantees that both receivers will have a value of type

Optional<S> located at them. However, depending on the behaviour that the programmer wishes

to model, the interface above could be an over-approximation. For example, implementations that

simply discard the message sent from A or that deliver the message to both B and C will satisfy the

return type. Currently, we cannot express the type of a channel that forbids such implementations,

e.g., a channel guaranteeing that exactly one between B and C will obtain the message. This means

that, in such cases, we have to ‘pollute’ the continuation of the choreography with local checks

at both potential receivers.

A way to achieve a more specific type for races could be to extend Choral types with existential

quantification over role parameters. For example, we could write

S@D with D in [B,C]

to express an instance of S located at some role D in the list [B,C] (i.e., S@D can be either S@B or
S@C). With this type, we can write a more specific signature: method com returns a value of type
S@B or of type S@C, but we cannot statically know which of the two types.

interface RaceDiChannel(A,B,C)<T@X> { <S@Y extends T@Y> S@D with D in [B,C] com(S@A m); }

Although there is some work on the use of existential quantification in simple choreography

languages [Jongmans and Yoshida 2020], its application and integration with a general-purpose

language like Choral poses some challenges and design choices. For instance, should roles that

lose the race in method com be blocked? If so, is this specific to this method or the standard in-

terpretation of every method with an existential return type? These and similar questions beg

for a thorough investigation and go beyond Choral. In fact, a satisfactory and general handling

of races in choreographic programming languages is still missing. In addition to the ideas just

proposed, useful inspiration to address this aspect might come from nondeterministic choice in

choreographies [Lanese et al. 2008; Montesi 2023] and choreographic languages for the verification

of message-passing parallel programs [Vasconcelos et al. 2022].

Another limitation of the current type system is that the number of role parameters of a cho-

reography is fixed. This limitation is common to many choreographic languages. [Deniélou and

Yoshida 2011] developed a theory for parameterising choreographies over ‘collections of roles’,

whose sizes are determined at runtime. All roles in the same collection must be treated uniformly

(e.g., broadcast). We can import that feature to Choral by allowing for role parameters to be col-

lections. For example, we could prefix a role parameter declaration with *, as in *Ds, to specify

that it is a collection of roles. Then, we can write the type of a channel for broadcasting data from

A to all roles in the collection Ds as follows.

interface BroadcastDiChannel(A, *Ds)<T@X> { /* ... */ }

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

46 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

The method com for this channel should take a value of type S@A and return a value of type S@D
for every role D in the collection Ds. This would require investigating how Choral can be extended

with types for distributed data collections, as well.

Error handling. Choral supports exception handling at a single role, which can then propagate errors

to others via knowledge of choice. However, in our experience, it is more convenient to represent fail-

ures in return types, like we did in Section 3.1 by using Optional. The channel APIs that we showed
in this paper are implemented by performing automatic retries. These APIs also have equivalent ver-

sions that wrap results in Result objects – essentially sum types of the transmitted value type and

an error type, as in Go and Rust. Choosing among these implementations is up to the choreography

programmer, and programmers might also devise channel implementations with their strategies

(e.g., exponential backoff with a bound on the number of retries). Our compiler can, in principle, be

extended to synthesise coordination for distributed exceptions, theorised by Carbone et al. [2008].

Type and role inference. Choral’s intended audience consists of developers familiar with object-

oriented programming (OOP) and, more specifically, Java. For example, our syntax extends that of

Java and our library of channels follows common OOP practices, like coding to interfaces [Gamma

et al. 1995]. Our design choices rely heavily on generics to achieve reusability, similar to what is done

in the standard Java Collections framework [Naftalin and Wadler 2006]. However, this comes at the

cost of requiring that programmers have experience with generics and additional parameters in code.

Standard remedies to the verbosity of generics include shorthands like the diamond notation and

type inference [Stadelmeier et al. 2022]. We plan to lift these features to Choral and expect that the

standard solutions adopted for Java will be applicable in scenarios where roles are known, without

major modifications. For example, with such facilities, we could rewrite method consumeItems
from Section 2.3 by removing all generic instantiations in its body, as follows.

1 consumeItems(DiChannel@(A,B)<Item> ch, Iterator@A<Item> it, Consumer@B<Item> consumer) {
2 if (it.hasNext()) {
3 ch.select(Choice@A.GO);
4 it.next() >> ch::com >> consumer::accept;
5 consumeItems(ch, it, consumer);
6 } else {
7 ch.select(Choice@A.STOP);
8 }
9 } Choral Code

Similarly to generics, role parameterisation adds crucial flexibility at the cost of added verbosity.

It would therefore be interesting to explore inference mechanisms for role parameters, as well, in

order the lighten the syntax of Choral even further. At a basic level, programmers would be able

to omit roles when these can be unambiguously determined from the context, e.g., in assignments

and some method invocations. The next snippets exemplify the potential gain in simplicity from

the current situation (left) to one with this feature (right).

1 // Without inference
2 List@A<String> l =
3 List@A.<String>of("Yes"@A, "No"@A);
4 String@A x = l.get(0@A);

1 // With inference
2 List@A<String> l =
3 List.of("Yes", "No");
4 var x = l.get(0);

We conjecture that this feature can be achieved by machinery similar to that already used for

inferring generic parameters because role information is available from type declarations and the

typing context without ambiguity.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 47

At a more advanced level, we could allow programmers to delegate to the Choral compiler

decisions on the placement of data and computation. Consider the snippet below.

1 int@C m(int@A x, int@B y) {
2 int z = x + y;
3 return z;
4 }

Since x and y reside at different roles, the location of z is ambiguous. Even more, performing the

addition at Line 2 requires communication, which the compiler would need to infer and inject by

appropriately using channels available from the context. This faces similar challenges to the ones

previously discussed for selection inference. We believe that exploring methods for the synthesis

of communication strategies in choreographies is an interesting research line in general, with a

scope that goes beyond that of Choral’s.

Other features from Java. There are other features provided by Java (or other object-oriented lan-

guages) that Choral could benefit from. We do not discuss them in detail, because we do not expect

that lifting them to choreographies would pose significant challenges. For example, we believe that

adding wildcard types (?) would be a natural adaptation of Java’s mechanism.

The patterns and libraries that support idiomatic Java programming, like streams (from the pack-

age java.util.stream), are immediately available in Choral thanks to our lifting of Java types to

Choral types with a single role. In some cases, it can be interesting to generalise these patterns to

multiple roles. For example, a possible interpretation of a ‘choreographic stream’ at two roles A and

B could be that of a stream of elements distributed at these roles (Stream@(A, B)<T@(C, D)>).
Methods for stream operations would then take choreographies at A and B as input. Whether these

choreographies would perform communications between the two roles or not would be left to the

implementor and is irrelevant to the implementation of the stream.

Asynchronous programming. The choreographies that we presented here use channel APIs as if they
were blocking. This does not mean that an endpoint must dedicate a thread for participating in a cho-

reography: future versions of Java will include fibers and the asynchronous execution of blocking

APIs (reactor pattern) [OpenJDK 2020]. Choral is compatible with this direction. Should program-

mers want to program a choreography explicitly for asynchronous execution by using continuation-

passing style, our channel APIs can be extended to take choreographic continuations as parameters.

Fluid APIs from choreographic specifications. As we mentioned and discussed in Section 1, previous

work explored the automatic generation of fluid APIs that enforce the code to follow a choreographic

specification [Scalas et al. 2017]. Such a choreographic language cannot include computation, so it

cannot express any of our use cases, and its approach does not support modularity and API control,

as we discussed more in detail in the Introduction. Thus, Choral brings two improvements. First, our

APIs are more reusable: they change only if the source API is changed, not if the communication

behaviour of a method is simply updated. Second, the APIs of our compiled Java code are more

idiomatic: they are plain object APIs that look like the typical task-oriented APIs distributed by

cloud vendors [Murty 2008; Wilder 2012], which makes Choral a candidate drop-in replacement

for current development practices.

Choreography-based verification and testing. Choreographic languages that are less expressive than
Choral (e.g., they cannot include computation) have been used also to verify that interactions among

objects respect a protocol. This is obtained by statically checking method invocations, either by us-

ing typestates [Kouzapas et al. 2018] or model checking [Scalas et al. 2019]. As noted by Hirsch and

Garg [2022], choreographic programming offers a simpler development method. Indeed, verification

approaches require the programmer to design both a choreographic specification and then manu-

ally take care of writing a correct implementation of the projection of each role. On the contrary,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

48 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

choreographic programming (and hence Choral) generates the latter automatically. Additionally,

since our approach is based on compilation instead of verification, we can provide a more expressive

choreographic language and apply formal reasoning techniques at the level of choreographies

as e.g., [Cruz-Filipe et al. 2023b; Jongmans and van den Bos 2022]. Because choreographies elicit

interactions, carrying out verification at this level avoids the cost of reconstructing interactions

from endpoint implementations which usually leads to a combinatorial explosion in cases.

Choreographic languages without computation have been used also in a tool for testing abstract

specifications of components given as labelled transition systems [Coto et al. 2021]. The purpose,

there, is to test that the communication behaviour of a component (given as a labelled transition

system) complies with a choreography. By contrast, our testing tool is the first aimed at testing

the functional correctness of a choreography and its generated implementation. Choral’s capability

of expressing internal computation is important to this end since it allows us to write arbitrary

checks on the distributed state of the system.

8 CONCLUSION
With the increased adoption of cloud computing, edge computing, the Internet of Things, and

microservices, the need for libraries that implementors can use to participate correctly in cho-

reographies is growing steadily [Atzori et al. 2010; Dragoni et al. 2017; Murty 2008; Wilder 2012].

Building on previous results on the theory of choreographies, choreographic programming came

with the promise of aiding in the implementation of choreography-compliant concurrent and

distributed software [Montesi 2015]. While the approach has been successfully applied in principle

to different scenarios [Cruz-Filipe and Montesi 2016; Dalla Preda et al. 2017; Lluch-Lafuente et al.

2015; López and Heussen 2017; López et al. 2016], the link between choreographic programming

and mainstream programming has remained unexplored until now (all implementations rely on

the Jolie programming language [Montesi et al. 2014], which is based on the theory of CCS [Milner

1980]). Among the most important consequences, none of the implementations of the paradigm

so far properly supported modularity – generating reusable libraries and controlling their APIs.

In this article, we have taken a fundamental step in the pursuit of the choreographic program-

ming agenda. We have also shown that choreographies can be modelled by extending mainstream

abstractions (in our case, objects) and that this leads to a choreographic programming language

that supports modularity and can integrate with existing Java code. Choral is sufficiently expressive

to capture use cases of different kinds, discussed the design of our compiler, and performed a first

evaluation which points out that the approach is promising. It is thus a step towards equipping

programmers with a tool that safely ferries them from the design of choreographies to compliant

implementations at the press of the proverbial button.

In the future, Choral could also be a useful vector for the application of research on choreograph-

ies based on other paradigms (automata, processes, etc.): researchers could develop translations

of their choreography models to Choral, and then leverage our compiler to obtain library imple-

mentations that can be used in mainstream software (in Java). Hopefully, this will lead to more

implementations of choreography theories, allowing for their evaluation [Ancona et al. 2016].

ACKNOWLEDGMENTS
This work was partially supported by Villum Fonden, grant no. 29518.

REFERENCES
Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2000. Inference of message sequence charts. In Proceedings of the

22nd International Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000, Carlo Ghezzi,

Mehdi Jazayeri, and Alexander L. Wolf (Eds.). ACM, 304–313. https://doi.org/10.1145/337180.337215

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/337180.337215

Choral: Object-Oriented Choreographic Programming 49

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay,

Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral Types

in Programming Languages. Foundations and Trends in Programming Languages 3, 2-3 (2016), 95–230.
Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things: A survey. Computer networks 54, 15 (2010),

2787–2805.

Marco Autili, Paola Inverardi, and Massimo Tivoli. 2018. Choreography Realizability Enforcement through

the Automatic Synthesis of Distributed Coordination Delegates. Sci. Comput. Program. 160 (2018), 3–29.

https://doi.org/10.1016/j.scico.2017.10.010

Samik Basu and Tevfik Bultan. 2016. Automated Choreography Repair. In Fundamental Approaches to Software Engineering -
19th International Conference, FASE 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9633), Perdita
Stevens and Andrzej Wasowski (Eds.). Springer, 13–30. https://doi.org/10.1007/978-3-662-49665-7_2

Samik Basu, Tevfik Bultan, and Meriem Ouederni. 2012. Deciding choreography realizability. In Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 191–202. https://doi.org/10.1145/2103656.2103680

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak,

and Dawson Engler. 2010. A few billion lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (2010), 66–75.

Mario Bravetti and Gianluigi Zavattaro. 2007. Towards a Unifying Theory for Choreography Conformance and Contract

Compliance. In Software Composition, 6th International Symposium, SC 2007, Braga, Portugal, March 24-25, 2007, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 4829), Markus Lumpe and Wim Vanderperren (Eds.). Springer,

34–50. https://doi.org/10.1007/978-3-540-77351-1_4

Marco Carbone. 2009. Session-based Choreography with Exceptions. Electron. Notes Theor. Comput. Sci. 241 (2009), 35–55.
https://doi.org/10.1016/j.entcs.2009.06.003

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2008. Structured Interactional Exceptions in Session Types. In

CONCUR 2008 - Concurrency Theory, 19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008.
Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer,

402–417. https://doi.org/10.1007/978-3-540-85361-9_32

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2012. Structured Communication-Centered Programming for Web

Services. ACM Trans. Program. Lang. Syst. 34, 2 (2012), 8:1–8:78. https://doi.org/10.1145/2220365.2220367

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multiparty asynchronous global programming. In

The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - Janu-
ary 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 263–274. https://doi.org/10.1145/2429069.2429101

Luca Cardelli and Andrew D. Gordon. 2000. Anytime, Anywhere: Modal Logics for Mobile Ambients. In POPL 2000, Proceed-
ings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Massachusetts, USA,
January 19-21, 2000, Mark N. Wegman and Thomas W. Reps (Eds.). ACM, 365–377. https://doi.org/10.1145/325694.325742

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2011. On global types and multi-party sessions.

In Formal Techniques for Distributed Systems. Springer, 1–28.
David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021. Zooid: a DSL for certified multiparty

computation: from mechanised metatheory to certified multiparty processes. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 237–251. https://doi.org/10.1145/3453483.3454041

David Castro-Perez and Nobuko Yoshida. 2020. Compiling first-order functions to session-typed parallel code. In CC ’20:
29th International Conference on Compiler Construction, San Diego, CA, USA, February 22-23, 2020, Louis-Noël Pouchet
and Alexandra Jimborean (Eds.). ACM, 143–154. https://doi.org/10.1145/3377555.3377889

Tzu-Chun Chen and Kohei Honda. 2012. Specifying Stateful Asynchronous Properties for Distributed Programs. In

CONCUR 2012 - Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September
4-7, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7454), Maciej Koutny and Irek Ulidowski (Eds.). Springer,

209–224. https://doi.org/10.1007/978-3-642-32940-1_16

Choral Development Team. 2020. Choral Language Website. https://www.choral-lang.org.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In Formal
Methods for Components and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Netherlands, November
7-10, 2006, Revised Lectures (Lecture Notes in Computer Science, Vol. 4709), Frank S. de Boer, Marcello M. Bonsangue,

Susanne Graf, and Willem P. de Roever (Eds.). Springer, 266–296. https://doi.org/10.1007/978-3-540-74792-5_12

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global progress for dynamically in-

terleaved multiparty sessions. Math. Struct. Comput. Sci. 26, 2 (2016), 238–302. https://doi.org/10.1017/S0960129514000188

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1016/j.scico.2017.10.010
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1016/j.entcs.2009.06.003
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/325694.325742
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3377555.3377889
https://doi.org/10.1007/978-3-642-32940-1_16
https://www.choral-lang.org
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1017/S0960129514000188

50 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Alex Coto, Roberto Guanciale, and Emilio Tuosto. 2021. An abstract framework for choreographic testing. J. Log. Algebraic
Methods Program. 123 (2021), 100712. https://doi.org/10.1016/j.jlamp.2021.100712

Luís Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi, and Marco Peressotti. 2022. Functional Choreographic

Programming. In Theoretical Aspects of Computing - ICTAC 2022 - 19th International Colloquium, Tbilisi, Georgia,
September 27-29, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13572), Helmut Seidl, Zhiming Liu, and

Corina S. Pasareanu (Eds.). Springer, 212–237. https://doi.org/10.1007/978-3-031-17715-6_15

Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti. 2023a. Modular Compilation

for Higher-Order Functional Choreographies. In 37th European Conference on Object-Oriented Programming (ECOOP
2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 7:1–7:37. https://doi.org/10.4230/LIPIcs.ECOOP.2023.7

Luís Cruz-Filipe, Eva Graversen, Fabrizio Montesi, and Marco Peressotti. 2023b. Reasoning About Choreographic Programs.

In Coordination Models and Languages (Lecture Notes in Computer Science, Vol. 13908), Sung-Shik Jongmans and Antónia

Lopes (Eds.). Springer, 144–162. https://doi.org/10.1007/978-3-031-35361-1_8

Luís Cruz-Filipe, Kim S. Larsen, and Fabrizio Montesi. 2017. The Paths to Choreography Extraction. In Foundations
of Software Science and Computation Structures - 20th International Conference, FOSSACS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings (Lecture Notes in Computer Science, Vol. 10203), Javier Esparza and Andrzej S. Murawski (Eds.). 424–440.

https://doi.org/10.1007/978-3-662-54458-7_25

Luís Cruz-Filipe and Fabrizio Montesi. 2016. Choreographies in Practice. In Formal Techniques for Distributed Objects,
Components, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016,
Proceedings (Lecture Notes in Computer Science, Vol. 9688), Elvira Albert and Ivan Lanese (Eds.). Springer, 114–123.

https://doi.org/10.1007/978-3-319-39570-8_8

Luís Cruz-Filipe and Fabrizio Montesi. 2020. A core model for choreographic programming. Theor. Comput. Sci. 802 (2020),
38–66. https://doi.org/10.1016/j.tcs.2019.07.005

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021a. Certifying Choreography Compilation. In Theoretical
Aspects of Computing - ICTAC 2021 - 18th International Colloquium, Virtual Event, Nur-Sultan, Kazakhstan, September
8-10, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12819), Antonio Cerone and Peter Csaba Ölveczky (Eds.).

Springer, 115–133. https://doi.org/10.1007/978-3-030-85315-0_8

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021b. Formalising a Turing-Complete Choreographic Language

in Coq. In 12th International Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy
(Virtual Conference) (LIPIcs, Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 15:1–15:18. https://doi.org/10.4230/LIPIcs.ITP.2021.15

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2023c. A Formal Theory of Choreographic Programming. Journal
of Automated Reasoning 67, 21 (2023), 1–34. https://doi.org/10.1007/s10817-023-09665-3

Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. 2017. Dynamic Choreographies:

Theory And Implementation. Logical Methods in Computer Science 13, 2 (2017).
Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In CONCUR 2012 - Concurrency

Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceed-
ings (Lecture Notes in Computer Science, Vol. 7454), Maciej Koutny and Irek Ulidowski (Eds.). Springer, 272–286.

https://doi.org/10.1007/978-3-642-32940-1_20

Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
Thomas Ball and Mooly Sagiv (Eds.). ACM, 435–446. https://doi.org/10.1145/1926385.1926435

Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography. IEEE Trans. Inf. Theory 22, 6 (1976), 644–654.

https://doi.org/10.1109/TIT.1976.1055638

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara, Fabrizio Montesi, Ruslan Mustafin, and

Larisa Safina. 2017. Microservices: Yesterday, Today, and Tomorrow. In Present and Ulterior Software Engineering, Manuel

Mazzara and Bertrand Meyer (Eds.). Springer, 195–216. https://doi.org/10.1007/978-3-319-67425-4_12

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional asynchronous session types: session

types without tiers. Proc. ACM Program. Lang. 3, POPL (2019), 28:1–28:29. https://doi.org/10.1145/3290341

Erich Gamma and Kent Beck. 2006. JUnit.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. 1995. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley. ISBN-10: 0201633612 ISBN-13: 978-0201633610.

Saverio Giallorenzo, Fabrizio Montesi, and Maurizio Gabbrielli. 2018. Applied Choreographies. In Formal Techniques for
Distributed Objects, Components, and Systems - 38th IFIP WG 6.1 International Conference, FORTE 2018, Held as Part of
the 13th International Federated Conference on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1016/j.jlamp.2021.100712
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://doi.org/10.1007/978-3-031-35361-1_8
https://doi.org/10.1007/978-3-662-54458-7_25
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1007/s10817-023-09665-3
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1145/3290341

Choral: Object-Oriented Choreographic Programming 51

18-21, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10854), Christel Baier and Luís Caires (Eds.). Springer,

21–40. https://doi.org/10.1007/978-3-319-92612-4_2

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Choreographies as Objects. CoRR abs/2005.09520 (2020).

arXiv:2005.09520v1 https://arxiv.org/abs/2005.09520v1 Version 1.

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger.

2021. Multiparty Languages: The Choreographic and Multitier Cases. In 35th European Conference on Object-Oriented
Programming (ECOOP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 194), Anders Møller

and Manu Sridharan (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 22:1–22:27.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.22

Saverio Giallorenzo, Fabrizio Montesi, Larisa Safina, and Stefano Pio Zingaro. 2019. Ephemeral Data Handling in

Microservices. In 2019 IEEE International Conference on Services Computing, SCC 2019, Milan, Italy, July 8-13, 2019,
Elisa Bertino, Carl K. Chang, Peter Chen, Ernesto Damiani, Michael Goul, and Katsunori Oyama (Eds.). IEEE, 234–236.

https://doi.org/10.1109/SCC.2019.00048

Paul A Grassi, James L Fenton, EM Newton, RA Perlner, AR Regenscheid, WE Burr, JP Richer, NB Lefkovitz, JM Danker,

Yee-Yin Choong, et al. 2017. NIST Special Publication 800-63b: Digital Identity Guidelines. Enrollment and Identity
Proofing Requirements. url: https://pages. nist. gov/800-63-3/sp800-63a. html (2017).

Eva Graversen, Andrew K. Hirsch, and Fabrizio Montesi. 2023. Alice or Bob?: Process Polymorphism in Choreographies.

CoRR abs/2303.04678 (2023). https://doi.org/10.48550/arXiv.2303.04678 arXiv:2303.04678

Martin Grotzke. acc. May 2020. Kryo. https://github.com/EsotericSoftware/kryo.

Paul Hamill. 2004. Unit test frameworks: tools for high-quality software development. O’Reilly Media, Inc.

Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proc. ACM Program.
Lang. 6, POPL (2022), 1–27. https://doi.org/10.1145/3498684

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1 (2016),

9. https://doi.org/10.1145/2827695 Also: POPL, pages 273–284, 2008.

Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S—A publish/subscribe protocol for Wireless

Sensor Networks. In 2008 3rd International Conference on Communication Systems Software and Middleware and
Workshops (COMSWARE’08). IEEE, 791–798.

Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous,

Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of

Session Types and Behavioural Contracts. ACM Comput. Surv. 49, 1 (2016), 3:1–3:36. https://doi.org/10.1145/2873052

Intl. Telecommunication Union. 1996. Recommendation Z.120: Message Sequence Chart.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Connectivity graphs: a method for proving deadlock freedom

based on separation logic. Proc. ACM Program. Lang. 6, POPL (2022), 1–33. https://doi.org/10.1145/3498662

Sung-Shik Jongmans and Petra van den Bos. 2022. A Predicate Transformer for Choreographies - Computing Preconditions

in Choreographic Programming. In Programming Languages and Systems - 31st European Symposium on Programming,
ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer, 520–547.

https://doi.org/10.1007/978-3-030-99336-8_19

Sung-Shik Jongmans and Nobuko Yoshida. 2020. Exploring Type-Level Bisimilarity towards More Expressive Multiparty

Session Types. In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,
April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 251–279.

https://doi.org/10.1007/978-3-030-44914-8_10

Sung-Shik T. Q. Jongmans, Francesco Santini, and Farhad Arbab. 2015. Partially distributed coordination with Reo and

constraint automata. Serv. Oriented Comput. Appl. 9, 3-4 (2015), 311–339. https://doi.org/10.1007/s11761-015-0177-y

Anatolii Alekseevich Karatsuba and Yu P Ofman. 1962. Multiplication of many-digital numbers by automatic computers.

In Doklady Akademii Nauk, Vol. 145. Russian Academy of Sciences, 293–294.

Donald Knuth. 1998. Section 5.2. 4: Sorting by merging. The Art of Computer Programming 3 (1998), 158–168.

Naoki Kobayashi. 2000. Type Systems for Concurrent Processes: From Deadlock-Freedom to Livelock-Freedom,

Time-Boundedness. In Theoretical Computer Science, Exploring New Frontiers of Theoretical Informatics, International
Conference IFIP TCS 2000, Sendai, Japan, August 17-19, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1872),
Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu Ito (Eds.). Springer, 365–389.

https://doi.org/10.1007/3-540-44929-9_27

Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2018. Typechecking protocols with Mungo and StMungo:

A session type toolchain for Java. Sci. Comput. Program. 155 (2018), 52–75. https://doi.org/10.1016/j.scico.2017.10.006

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the Gap between Interaction- and

Process-Oriented Choreographies. In Sixth IEEE International Conference on Software Engineering and Formal Methods,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1007/978-3-319-92612-4_2
https://arxiv.org/abs/2005.09520v1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1109/SCC.2019.00048
https://doi.org/10.48550/arXiv.2303.04678
https://github.com/EsotericSoftware/kryo
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/3498662
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1007/s11761-015-0177-y
https://doi.org/10.1007/3-540-44929-9_27
https://doi.org/10.1016/j.scico.2017.10.006

52 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

SEFM 2008, Cape Town, South Africa, 10-14 November 2008, Antonio Cerone and Stefan Gruner (Eds.). IEEE Computer

Society, 323–332. https://doi.org/10.1109/SEFM.2008.11

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2013. Amending Choreographies. In Proceedings 9th International
Workshop on Automated Specification and Verification of Web Systems, WWV 2013, Florence, Italy, 6th June 2013 (EPTCS,
Vol. 123), António Ravara and Josep Silva (Eds.). 34–48. https://doi.org/10.4204/EPTCS.123.5

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From Communicating Machines to Graphical Choreographies.

In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 221–232.

https://doi.org/10.1145/2676726.2676964

Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of

Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems. In Proc. of ASPLOS. 517–530.
Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. 2009. Fabric: a platform for secure

distributed computation and storage. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009,
SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM,

321–334. https://doi.org/10.1145/1629575.1629606

Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis Nielson. 2015. Discretionary Information Flow Control for

Interaction-Oriented Specifications. In Logic, Rewriting, and Concurrency (Lecture Notes in Computer Science, Vol. 9200).
Springer, 427–450.

Hugo A. López and Kai Heussen. 2017. Choreographing cyber-physical distributed control systems for the energy sector.

In SAC. ACM, 437–443.

Hugo A. López, Flemming Nielson, and Hanne Riis Nielson. 2016. Enforcing Availability in Failure-Aware Communicating

Systems. In FORTE (Lecture Notes in Computer Science, Vol. 9688). Springer, 195–211.
Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from mistakes: a comprehensive study on real

world concurrency bug characteristics. In Proc. of ASPLOS. 329–339.
Lovro Lugovic and Fabrizio Montesi. 2023. Real-World Choreographic Programming: An Experience Report. CoRR

abs/2303.03983 (2023). https://doi.org/10.48550/arXiv.2303.03983 arXiv:2303.03983

Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92. Springer.

https://doi.org/10.1007/3-540-10235-3

Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT University of Copenhagen.

http://www.fabriziomontesi.com/files/choreographic_programming.pdf.

Fabrizio Montesi. 2015. Kickstarting Choreographic Programming. InWeb Services, Formal Methods, and Behavioral Types
- 11th International Workshop, WS-FM 2014, Eindhoven, The Netherlands, September 11-12, 2014, and 12th International
Workshop, WS-FM/BEAT 2015, Madrid, Spain, September 4-5, 2015, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 9421), Thomas T. Hildebrandt, António Ravara, Jan Martijn E. M. van der Werf, and Matthias Weidlich

(Eds.). Springer, 3–10. https://doi.org/10.1007/978-3-319-33612-1_1

Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2014. Service-Oriented Programming with Jolie. In

Web Services Foundations, Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel (Eds.). Springer, 81–107.

https://doi.org/10.1007/978-1-4614-7518-7_4

Fabrizio Montesi and Marco Peressotti. 2017. Choreographies meet Communication Failures. CoRR abs/1712.05465 (2017).

arXiv:1712.05465 http://arxiv.org/abs/1712.05465

Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional Choreographies. In CONCUR 2013 - Concurrency Theory
- 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 8052), Pedro R. D’Argenio and Hernán C. Melgratti (Eds.). Springer, 425–439.

https://doi.org/10.1007/978-3-642-40184-8_30

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Generics of a higher kind. In Proceedings of the 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2008, October
19-23, 2008, Nashville, TN, USA, Gail E. Harris (Ed.). ACM, 423–438. https://doi.org/10.1145/1449764.1449798

Tom Murphy VII, Karl Crary, and Robert Harper. 2007. Type-Safe Distributed Programming with ML5. In Trustworthy
Global Computing, Third Symposium, TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 4912), Gilles Barthe and Cédric Fournet (Eds.). Springer, 108–123.

https://doi.org/10.1007/978-3-540-78663-4_9

Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. 2004. A Symmetric Modal Lambda Calculus for

Distributed Computing. In 19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland,
Proceedings. IEEE Computer Society, 286–295. https://doi.org/10.1109/LICS.2004.1319623

James Murty. 2008. Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB. "O’Reilly Media, Inc.".

Maurice Naftalin and Philip Wadler. 2006. Java generics and collections. "O’Reilly Media, Inc.".

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.4204/EPTCS.123.5
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1145/1629575.1629606
https://doi.org/10.48550/arXiv.2303.03983
https://doi.org/10.1007/3-540-10235-3
http://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-1-4614-7518-7_4
http://arxiv.org/abs/1712.05465
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1145/1449764.1449798
https://doi.org/10.1007/978-3-540-78663-4_9
https://doi.org/10.1109/LICS.2004.1319623

Choral: Object-Oriented Choreographic Programming 53

Matthias Neubauer and Peter Thiemann. 2005. From sequential programs to multi-tier applications by program

transformation. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, Jens Palsberg and Martín Abadi (Eds.). ACM, 221–232.

https://doi.org/10.1145/1040305.1040324

Sam Newman. 2021. Building microservices. "O’Reilly Media, Inc.".

Rumyana Neykova and Nobuko Yoshida. 2017. Let it recover: multiparty protocol-induced recovery. In Proceedings of
the 26th International Conference on Compiler Construction, Austin, TX, USA, February 5-6, 2017, Peng Wu and Sebastian

Hack (Eds.). ACM, 98–108. http://dl.acm.org/citation.cfm?id=3033031

Object Management Group. 2011. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/.

Peter W. O’Hearn. 2018. Experience Developing and Deploying Concurrency Analysis at Facebook. In Static Analysis -
25th International Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11002), Andreas Podelski (Ed.). Springer, 56–70. https://doi.org/10.1007/978-3-319-99725-4_5

OpenID Foundation. 2014. OpenID Specification. https://openid.net/developers/specs/.

OpenJDK. acc. May 2020. Loom - Fibers, Continuations and Tail-Calls for the JVM. https://openjdk.java.net/projects/loom/.

Tomas Petricek and Jon Skeet. 2009. Real World Functional Programming: With Examples in F# and C. Manning Publications

Co.

Johannes Åman Pohjola, Alejandro Gómez-Londoño, James Shaker, and Michael Norrish. 2022. Kalas: A Verified,

End-To-End Compiler for a Choreographic Language. In 13th International Conference on Interactive Theorem Proving, ITP
2022, August 7-10, 2022, Haifa, Israel (LIPIcs, Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 27:1–27:18. https://doi.org/10.4230/LIPIcs.ITP.2022.27

Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. 2007. Towards the theoretical foundation of choreography.

InWWW. IEEE Computer Society Press, United States, 973–982.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty Sessions

for Safe Distributed Programming. In 31st European Conference on Object-Oriented Programming, ECOOP 2017, June
19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

24:1–24:31. https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying message-passing programs with dependent behavioural

types. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 502–516.

https://doi.org/10.1145/3314221.3322484

Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop: a language for programming the web 2.0. In Companion
to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 975–985.

https://doi.org/10.1145/1176617.1176756

Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All (Functional

Pearl). CoRR abs/2303.00924 (2023). https://doi.org/10.48550/arXiv.2303.00924 arXiv:2303.00924

Manu Sporny, Toby Inkster, Henry Story, Bruno Harbulot, and Reto Bachmann-Gmür. 2011. Webid 1.0: Web identification

and discovery. W3C Editors Draft (2011).
Andreas Stadelmeier, Martin Plümicke, and Peter Thiemann. 2022. Global Type Inference for Featherweight Generic

Java. In 36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany
(LIPIcs, Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 28:1–28:27.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.28

K. Narendra Swaroop, Kavitha Chandu, Ramesh Gorrepotu, and Subimal Deb. 2019. A health monitoring system for vital

signs using IoT. Internet of Things 5 (2019), 116 – 129. https://doi.org/10.1016/j.iot.2019.01.004

Vasco T. Vasconcelos, Francisco Martins, Hugo-Andrés López, and Nobuko Yoshida. 2022. A Type Discipline for Message

Passing Parallel Programs. ACM Trans. Program. Lang. Syst. 44, 4 (2022), 26:1–26:55. https://doi.org/10.1145/3552519

A. Laura Voinea, Ornela Dardha, and Simon J. Gay. 2020. Typechecking Java Protocols with [St]Mungo. In Formal Techniques
for Distributed Objects, Components, and Systems - 40th IFIP WG 6.1 International Conference, FORTE 2020, Held as Part
of the 15th International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12136), Alexey Gotsman and Ana Sokolova (Eds.).

Springer, 208–224. https://doi.org/10.1007/978-3-030-50086-3_12

W3C. 2004. WS Choreography Description Language. http://www.w3.org/TR/ws-cdl-10/.

Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed system development with ScalaLoci. Proc.
ACM Program. Lang. 2, OOPSLA (2018), 129:1–129:30. https://doi.org/10.1145/3276499

Pascal Weisenburger and Guido Salvaneschi. 2019. Multitier Modules. In 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:29. https://doi.org/10.4230/LIPIcs.ECOOP.2019.3

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/1040305.1040324
http://dl.acm.org/citation.cfm?id=3033031
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1007/978-3-319-99725-4_5
https://openid.net/developers/specs/
https://openjdk.java.net/projects/loom/
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/1176617.1176756
https://doi.org/10.48550/arXiv.2303.00924
https://doi.org/10.4230/LIPIcs.ECOOP.2022.28
https://doi.org/10.1016/j.iot.2019.01.004
https://doi.org/10.1145/3552519
https://doi.org/10.1007/978-3-030-50086-3_12
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3

54 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A Survey of Multitier Programming. ACM Comput.
Surv. 53, 4 (2020), 81:1–81:35. https://doi.org/10.1145/3397495

Bill Wilder. 2012. Cloud architecture patterns: using microsoft azure. "O’Reilly Media, Inc.".

Derek Wyatt. 2013. Akka Concurrency. Artima Incorporation, Sunnyvale, CA, USA.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/3397495

Choral: Object-Oriented Choreographic Programming 55

A PROJECTION TO JAVA
A.1 Projection
We omit modifiers (MD) and annotations (AN), they are rendered by the projection as they are.

(Enum) Lenum·id@A·{id}M = enum·id·{id}

(Interface) Linterface·id@(A)·⟨FTP⟩·extends·TE·&·TE·{MDef ;}M =[
interface·name(id, A, A)·⟨LFTPM⟩·extends·LTEMA·&·LTEMA·{LMDef MA;}

��� A ∈ A
]

(Class) Lclass·id@(A)·⟨FTP⟩·extends·TE·implements·TE,TE {CField CConst MDef ;

MDef {Stm}}M =
[
class·name(id, A, A)·extends·LTEMA·implements·LTEMA·,·LTEMA

{LCFieldMA LCConstMA LMDef MA; LMDef MA{[[LStmMA]]}}
��� A ∈ A

]
(FTP) Lid@(A)·extends·TE·,·TEM =

{
[id_A·extends·LTEMA·&·LTEMA | A ∈ A] if |A| ≥ 1

id·extends·LTEMA otherwise

(TE) LvoidMA = void

L𝑖𝑑@(B)<TE>MA =


𝑖𝑑<LTEMA> B = A
𝑖𝑑_𝐴′<LTEMA> A is the 𝑖-th element of B and roleName(𝑖𝑑, 𝑖) = 𝐴′

Unit otherwise

(MDef) L⟨FTP⟩·TE·id·(TE·id)MA = ⟨LFTPM⟩·LTEMA·id·(LTE·idMA)

(CField) LTE·id;MA =

{
LTEMAid; if A ∈ rolesOf (TE)
[𝑏𝑙𝑎𝑛𝑘] otherwise

(CConst) Lid·(TE·id){Stm}MA = id_A(LTE·idMA){[[LStmMA]]}

(Stm) L𝑛𝑖𝑙MA = L[𝑏𝑙𝑎𝑛𝑘]MA = [𝑏𝑙𝑎𝑛𝑘]

Lreturn·Exp;MA = return·LExpMA;

LExp;StmMA =



switch(LExpMA){
case·𝑖𝑑3->{LStmMA}
default->{throw ...}}

if typeOf (Exp) <: Enum@A,
Exp = Exp′ .⟨TE⟩id1 (id2@A′ .id3) and
@SelectionMethod ∈ annotOf(id1)

LExpMA;LStmMA if A ∈ rolesOf (Exp)
LStmMA otherwise

LTE·id=Exp;StmMA =


LTEMA=LExpMA;LStmMA if A ∈ rolesOf (TE)
LExpMA;LStmMA if A ∈ rolesOf (Exp) \ rolesOf (TE)
LStmMA otherwise

LExp
1
·AsgOp·Exp

2
;StmMA =


LExp

1
MAAsgOpLExp

2
MA;LStmMA if A ∈ rolesOf (typeOf (Exp))

LExp
1
MA.id(LExp

2
MA);LStmMA if A ∈ rolesOf (Exp

1
, Exp

2
)

LStmMA otherwise

Lif(Exp){Stm1}else{Stm2}StmMA =

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

56 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti{
if(LExpMA){LStm1MA}else{LStm2MA}LStmMA if typeOf (Exp) = boolean@A
LExpMA;

{
[[L𝑆𝑡𝑚1MA]] ⊔ [[L𝑆𝑡𝑚2MA]]

}
L𝑆𝑡𝑚MA otherwise

L{Stm1}Stm2MA = {LStm1MA}LStm2MA

Ltry{Stm}catch(TE·id){Stm} StmMA = try{LStmMA}Lcatch(TE·id){Stm}MA LStmMA

Lcatch(TE·id){Stm}MA =

{
catch(LTEMA·id){LStmMA} if A ∈ rolesOf (TE)
[𝑏𝑙𝑎𝑛𝑘] otherwise

(Exp) LlitMA =

{
𝑙 if lit = 𝑙@(B) and A ∈ B
Unit.id otherwise

LExp BinOp Exp′MA =



L𝐸𝑥𝑝MABinOp LExp′MA if

(
BinOp ∈ {&&, ||}
∧ rolesOf (Exp′) = {A}

)
∨

(
BinOp ∉ {&&, ||}
∧ A ∈ rolesOf (typeOf (Exp))

)
Unit.id(LExpMA, LExp′MA) if

(
BinOp ∈ {&&, ||}
∧ rolesOf (Exp′) = {A'}

)
∨BinOp ∉ {&&, ||}

let head(Exp.Exp′) = Expℎ, rest(Exp.Exp′) = Exp𝑟

LExp.Exp′MA =


LExpℎM

A.id(LExp𝑟 MA) if LExpℎM
A ∈ {Unit.•}

Unit.id(LExpℎMA).Exp1 if LExp𝑟 M
A ∈ {Unit.Exp

1
}

LExpℎM
A .LExp𝑟 MA otherwise

L⟨TE⟩𝑖𝑑 (Exp)MA =

{
⟨LTEMA⟩𝑖𝑑 (LExpMA) if A ∈ rolesOf (typeOf (⟨TE⟩𝑖𝑑 (Exp)))
Unit.id(L𝐸𝑥𝑝MA) otherwise

L𝑖𝑑@(B).⟨TE⟩𝑖𝑑 (Exp)MA =

{
Lid@(B)MA.⟨LTEMA⟩id(LExpMA) A ∈ B
Unit.id(L𝐸𝑥𝑝MA) otherwise

Lnew·⟨TE⟩𝑖𝑑 ⟨TE⟩(Exp)MA =

{
new·⟨LTEMA⟩Lid@(B)⟨TE⟩MA(LExpMA) A ∈ B
Unit.id(L𝐸𝑥𝑝MA) otherwise

(FAcc) L𝑖𝑑MA =

{
𝑖𝑑 A ∈ rolesOf (𝑖𝑑)
Unit.id otherwise

L𝑖𝑑@(B).𝑓 MA =

{
Lid@(B)MA.𝑓 A ∈ rolesOf (𝑓)
Unit.id otherwise

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

Choral: Object-Oriented Choreographic Programming 57

A.2 Merging

¤⊔ Stm = ¤⊔(Stm1, · · · , Stm𝑛) = [[Stm1]] ⊔ · · · ⊔ [[𝑆𝑡𝑚𝑛]]

Statements

return·Exp ⊔ return·Exp′ = return·Exp ⊔ Exp′

TE·id; Stm ⊔ TE·id; Stm′ = TE·id; (Stm ⊔ Stm′)

(Exp
1
·AsgOp·Exp

2
; Stm) ⊔ (Exp′

1
·AsgOp·Exp′

2
; Stm′)

= (Exp
1
⊔ Exp′

1
)·AsgOp·(Exp

2
⊔ Exp′

2
); (Stm ⊔ Stm′)

(Exp; Stm) ⊔ (Exp′; Stm′) = (Exp ⊔ Exp′); (Stm ⊔ Stm′)

{Stm1}·Stm2 ⊔ {Stm′
1
}·Stm′

2
= {Stm1 ⊔ Stm′

1
}·(Stm2 ⊔ Stm′

2
)

if(Exp){Stm1}else{Stm2}Stm ⊔ if(Exp′){Stm′
1
}else{Stm′

2
}Stm′

= if(Exp ⊔ Exp′){Stm1 ⊔ Stm′
1
}else{Stm2 ⊔ Stm′

2
}(Stm ⊔ Stm′)

switch·(Exp){
case·id𝑎->{Stm𝑎}
· · ·
case·id𝑥->{Stm𝑥 }
case·id𝑦->{Stm𝑦}
default->{Stm𝑑1}

}·Stm

⊔

switch·(Exp){
case·id𝑎->{Stm′

𝑎}
· · ·
case·id𝑥->{Stm′

𝑥 }
case·id𝑧->{Stm𝑧}
default->{Stm𝑑2}

}·Stm′

=

switch·(Exp ⊔ Exp′){
case·id𝑎->{Stm𝑎 ⊔ Stm′

𝑎}
· · ·
case·id𝑥->{Stm𝑥 ⊔ Stm′

𝑥 }
case·id𝑦->{Stm𝑦}
case·id𝑧->{Stm𝑧}
default->{Stm𝑑1 ⊔ Stm𝑑2}

}·Stm ⊔ Stm′

try·{Stm1}·catch·(TE·id)·{Stm}·Stm2 ⊔ try·{Stm3}·catch·(TE·id)·{Stm′}·Stm4

= try·{Stm1 ⊔ Stm3}·catch·(TE·id)·{Stm ⊔ Stm′}·Stm2 ⊔ Stm4

Expressions

let • ∈ {𝑛𝑖𝑙, [𝑏𝑙𝑎𝑛𝑘], null, this, super, id}, • ⊔ • = •

let • ∈ {new·id·⟨TE⟩, id·⟨TE⟩·}, •·(Exp) ⊔ •·(Exp′) = •·(Exp ⊔ Exp′)

(Exp
1
·BinOp·Exp

2
) ⊔ (Exp′

1
·BinOp·Exp′

2
;) = (Exp

1
⊔ Exp′

1
)·BinOp·(Exp

2
⊔ Exp′

2
)

Exp
1
.Exp

2
⊔ Exp

3
.Exp

4
= (Exp

1
⊔ Exp

3
) (.Exp

2
⊔ .Exp

4
)

.𝑖𝑑 ⊔ .𝑖𝑑 = .𝑖𝑑 .𝑖𝑑 ⟨TE⟩(Exp) ⊔ .𝑖𝑑 ⟨TE⟩(Exp′) = .𝑖𝑑 ⟨TE⟩(Exp ⊔ Exp′)

.Exp
1
.Exp

2
⊔ .Exp

3
.Exp

4
= (.Exp

1
⊔ .Exp

3
) (.Exp

2
⊔ .Exp

4
)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

58 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti

A.3 Normaliser

Statements

[[𝑛𝑖𝑙]] = 𝑛𝑖𝑙 [[return·Exp;]] = return·[[Exp]]; [[TE·id; Stm]] = TE·id; [[Stm]]

[[Exp·AsgOp·Exp′; Stm]] = [[Exp]]·AsgOp·[[Exp′]]; [[Stm]]

[[{Stm}·Stm]] = {[[Stm]]}·[[Stm]]

noop(Exp) =
{
[𝑏𝑙𝑎𝑛𝑘] if Exp ∈ {Unit.id, 𝑖𝑑 .𝑖𝑑, this, null}
Exp otherwise

[[Exp; Stm]] =

{
[[Stm]] if noop([[Exp]]) = [𝑏𝑙𝑎𝑛𝑘]
[[Exp]]; [[Stm]] otherwise

[[if(Exp){Stm1}else{Stm2}Stm]] = if([[Exp]]){[[Stm1]]}else{[[Stm2]]}[[Stm]]

[[switch(Exp){case·id->{Stm}·default->Stm′}·Stm]]

= switch([[Exp]]){case·id->{[[Stm]]}·default->[[Stm′
]]}·[[Stm]]

[[try·{Stm}·catch·(TE·id)·{Stm}·Stm]] = try·{[[Stm]]}·catch·(TE·id)·{[[Stm]]}·[[Stm]]

Expressions

[[null]] = null [[null]]★ = ⟨false, null⟩ [[this]] = this [[this]]★ = ⟨false, this⟩

[[𝑖𝑑]] = 𝑖𝑑 [[𝑖𝑑]]★ = ⟨false, 𝑖𝑑⟩ let [[𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]]★ = ⟨•,⋄⟩, [[𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]] = ⋄

let [[𝐸𝑥𝑝]]★ = ⟨•,⋄⟩, [[𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]]★ = ⟨∨ •, 𝑖𝑑 ⟨𝑇𝐸⟩(⋄)⟩

let [[new·𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]]★ = ⟨•,⋄⟩, [[new·𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]] = ⋄

let [[𝐸𝑥𝑝]]★ = ⟨•,⋄⟩, [[new·𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]]★ = ⟨∨ •, new·𝑖𝑑 ⟨𝑇𝐸⟩(⋄)⟩

[[Exp·BinOp·Exp′]] = [[Exp]]·BinOp·[[Exp′]]

let [[Exp.Exp′]]★ = ⟨•,⋄⟩, [[Exp.Exp′]] =
{
[[⋄]] if • = true

⋄ otherwise

[[Exp.Exp′]]★ =



⟨true, Unit.id(Exp)⟩ if Exp.Exp′ = Unit.id.id(Exp)
⟨true, Exp⟩ if Exp.Exp′ = Unit.id(Exp)
⟨false, Unit.id⟩ if Exp = Unit and [[.Exp′]]★ = ⟨•, [𝑏𝑙𝑎𝑛𝑘]⟩
⟨• ∨ •′,⋄ ⋄′⟩ otherwise, let [[Exp]]★ = ⟨•,⋄⟩

and [[.Exp′]]★ = ⟨•′,⋄′⟩
[[.𝑖𝑑]]★ = ⟨false, .𝑖𝑑⟩ let [[.Exp]]★ = ⟨•,⋄⟩, [[.𝑖𝑑 .Exp]]★ = ⟨•, .𝑖𝑑 ⋄⟩

let [[Exp]]★ = ⟨•,⋄⟩, [[.𝑖𝑑 (Exp)]]★ =


⟨∨ •, .𝑖𝑑 (⋄)⟩ if .𝑖𝑑 ≠ .id
⟨true, [𝑏𝑙𝑎𝑛𝑘]⟩ if noop(⋄) = [𝑏𝑙𝑎𝑛𝑘]
⟨∨ • ∨ |⋄| ≠ |★|, .id(★)⟩ otherwise, let noop(⋄) = ★

let [[.𝑖𝑑 ⟨𝑇𝐸⟩(Exp)]]★ = ⟨•,⋄⟩ and [[.Exp]]★ = ⟨•′,⋄′⟩,

[[.𝑖𝑑 ⟨𝑇𝐸⟩(Exp).Exp]]★ = ⟨• ∨ •′,⋄ ⋄′⟩

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: November 2023.

	Abstract
	1 Introduction
	2 Choral in Practice
	2.1 Roles and data types
	2.2 Interaction
	2.3 Knowledge of choice
	2.4 The family of Choral channels
	2.5 Handling exceptions
	2.6 What goes in a choreography?

	3 Use cases
	3.1 Distributed authentication
	3.2 A use case from healthcare: handling streams of sensitive vitals data
	3.3 Merge sort

	4 Implementation
	4.1 Language
	4.2 Compiler

	5 Testing
	6 Evaluation
	6.1 From Java to Choral
	6.2 Programming paradigms: Choral and Akka
	6.3 Microbenchmarks
	6.4 Threats to validity

	7 Related Work, Discussion, and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Projection to Java
	A.1 Projection
	A.2 Merging
	A.3 Normaliser

