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We introduce LEMMA2Jolie, a tool for translating domain models of microservice architectures given in LEMMA into concrete APIs of microservices in the Jolie programming language. Our tool combines the state of the art for the design and implementation of microservices: developers can use Domain-Driven Design (DDD) for the construction of the domain models of a microservice architecture, and then automatically transition to a serviceoriented programming language that provides native linguistic support for implementing the behaviour of each microservice.

applications whose modules cannot be implemented, executed, and deployed independently [START_REF] Dragoni | Microservices: Yesterday, Today, and Tomorrow[END_REF]. However, the adoption of microservices also introduces complexity, a notable example being the structuring of a software architecture into multiple services [START_REF] Soldani | The pains and gains of microservices: A Systematic grey literature review[END_REF].

To cope with this complexity, researchers in software engineering and programming languages recently started to investigate linguistic approaches to microservices. Such approaches propose language frameworks with syntactic constructs that cover microservice-specific concerns on a high level of abstraction. Consequently, these concerns become explicitly addressable, which facilitates the design, development, and operation of MSAs. Here in particular, we are interested in LEMMA1 [START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF] and Jolie2 [START_REF] Fabrizio Montesi | Service-Oriented Programming with Jolie[END_REF]. LEMMA applies Model-Driven Engineering (MDE) [START_REF] Benoit Combemale | Engineering Modeling Languages: Turning Domain Knowledge into Tools[END_REF] to provide a set of integrated modelling languages and model processors that, among others, support the high-level specification and implementation of microservice domain models following Domain-Driven Design (DDD) [START_REF] Evans | Domain-Driven Design[END_REF]. Jolie, on the other hand, is a programming language focusing on the development of microservices, including their configuration and coordination.

This paper presents LEMMA2Jolie: a tool that integrates LEMMA and Jolie by mapping domain models expressed in LEMMA's Domain Data Modelling Language (DDML) to executable Jolie code, based on the encoding specified in [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF]. LEMMA2Jolie brings the following contributions to the field of microservices:

• Support for the refinement of microservices' abstract specifications to implementations by combining MDE and programming abstractions.

• Improvement of DDD adoption in microservice design-in practice, this is frequently perceived complex, given the lack of formal guidelines on how to map domain models to microservice code [START_REF] Bogner | Microservices in Industry: Insights into Technologies, Characteristics, and Software Quality[END_REF].

• Increase of domain models' value by elevating them from documentation to implementation artefacts.

• Fostering the collaboration of domain experts, who can capture domain knowledge using LEMMA's DDML, and microservice developers, who can readily integrate Jolie programs generated from LEMMA domain models with their microservice implementations.

LEMMA2Jolie is an open-source command line application that takes an input file containing a valid LEMMA domain model and, according to the specified encoding [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF], generates an output file with a corresponding Jolie program. To keep LEMMA2Jolie portable, it is implemented as a standalone executable Java application that can also be run in Docker3 containers.

In the context of microservices, there are other approaches to the application of MDE, like MicroBuilder [START_REF] Terzić | Development and evaluation of MicroBuilder: a Model-Driven tool for the specification of REST Microservice Software Architectures[END_REF], MDSL [START_REF] Kapferer | Domain-Driven Service Design[END_REF], and JHipster [START_REF] Jhipster | JHipster Domain Language (JDL)[END_REF], and other programming languages, like Ballerina [START_REF] Oram | Ballerina: A Language for Network-Distributed Applications[END_REF]. We chose LEMMA and Jolie as basis for our work because their independently-developed metamodels are known to be similar [START_REF] Giallorenzo | Jolie and LEMMA: Model-Driven Engineering and Programming Languages Meet on Microservices[END_REF], which not only aids our implementation but also strengthens our confidence in the foundations for LEMMA2Jolie. Additionally, LEMMA has been validated in real-world use cases [START_REF] Sorgalla | Applying Model-Driven Engineering to Stimulate the Adoption of DevOps Processes in Small and Medium-Sized Development Organizations[END_REF][START_REF] Rademacher | Towards an Extensible Approach for Generative Microservice Development and Deployment Using LEMMA[END_REF] and Jolie's abstractions have been found to offer a productivity boost in industry [START_REF] Guidi | A Jolie based platform for speedingup the digitalization of system integration processes[END_REF]. Nevertheless, LEMMA2Jolie is a concrete example of how research on MDE and programming languages for microservices can benefit from each other in general.

Software Description

In the following, we describe LEMMA2Jolie's architecture (cf. Sect. 2.1) and functionalities (cf. Sect. 2.2).

Software Architecture

Figure 1 shows the architecture of LEMMA2Jolie as a UML class diagram [START_REF] Omg | OMG Unified Modeling Language (OMG UML) Version 2.5.1[END_REF].

LEMMA provides a model processing framework (MPF) [34] that aims to facilitate the development of model processors, e.g. code generators or static analysers, by MSA engineers without a strong background in MDE. Among others, the MPF has built-in support for parsing models that were constructed with languages based on the Eclipse Modelling Framework [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF]-as is the case for all LEMMA modelling languages including the DDML. Additionally, the MPF prescribes a workflow that consists of steps which are frequent in practical model processing. Due to its popularity in MSA engineering [START_REF] Schermann | All the Services Large and Micro: Revisiting Industrial Practice in Services Computing[END_REF][START_REF] Bogner | Microservices in Industry: Insights into Technologies, Characteristics, and Software Quality[END_REF], the MPF focuses on the Java Virtual Machine (JVM) and is written in Kotlin4 . Furthermore, like the Spring framework5 , which is popular in JVM-based microservice development [START_REF] Bogner | Microservices in Industry: Insights into Technologies, Characteristics, and Software Quality[END_REF], the MPF adopts annotation-based Inversion of Control (IoC) [START_REF] Johnson | Designing Reusable Classes[END_REF]. This approach enables MSA engineers, who want develop model processors, to integrate with the MPF's model processing workflow via Java annotations, and readily focus on the actual processing logic rather than boilerplate code for model parsing, model validation, or code generation.

LEMMA2Jolie is based on LEMMA's MPF. Consequently, the source code of our tool mainly revolves around its actual task, i.e., the translation of LEMMA domain models into Jolie programs, with the MPF abstracting most of the complexity in model processing. As a result, in the implementation of LEMMA2Jolie, we leveraged the mentioned structure and focussed our efforts on the meaningful modules that make up the logic of the tool: the three the classes highlighted in grey in Fig. 1, which we describe below.

The Lemma2Jolie class provides the entrypoint of our LEMMA2Jolie by implementing a static main method as expected by the JVM. The class also extends the MPF's AbstractModelProcessor class and invokes its run method from main, thereby delegating all further execution to the MPF.

As a next step, the MPF will parse the commandline arguments from the args array, and then scan the Java package hierarchy of the model processor following annotation-based IoC for a class that acts as language description provider and implements the LanguageDescriptionProviderI interface. At model processor runtime, the MPF queries the language description provider whenever it requires information about the language of a given model, e.g., for parsing purposes, by invoking the providers getLanguageDescription method. This method must return an instance of the LanguageDescription class that comprises an implementation of the loadModel method (cf. Fig. 1). This method is expected to return an instance of the Resource class, which is EMF's for persistent documents including models [START_REF] Steinberg | EMF: Eclipse Modeling Framework[END_REF].

With the LanguageDescriptionProviderI interface and LanguageDescription class, the MPF abstracts from concrete modelling languages and enables to implement custom loaders for EMF-based modelling techniques. Since LEMMA's modelling languages are based on the Xtext framework6 the MPF already integrates a specialised language description with the Xtext-LanguageDescription class (cf. Fig. 1). LEMMA2Jolie's language description provider in the LangDescriptionProvider class relies on this specialised language description to provide the MPF with all information necessary to parse LEMMA domain models. More precisely, the getLanguageDescription method of LangDescriptionProvider will return an XtextLanguage-Description instance covering LEMMA's DDML whenever the namespace-OrExtension parameter exhibits the value "data", which indicates that the MPF received as commandline argument the path to a LEMMA domain model with the file extension ".data" (cf. Sect. 2.3).

LEMMA's MPF applies the Phased Construction pattern of model transformation design [START_REF] Lano | Model-Transformation Design Patterns[END_REF] to systematize the processing of input models in consecutive phases. AbstractModelProcessingPhase is the base class of all MPF phases (cf. Fig. 1). A concrete phase must implement the process method, which receives phase-specific commandline arguments at runtime. To facilitate the implementation of model processors, the MPF prescribes a workflow of certain phases, e.g., for model parsing and code generation, and thus provides built-in phases such as SourceModelParsingPhase and Code-GenerationPhase (cf. Fig. 1). A phase can specify return values in the form of ReturnParameter instances and also express the expectation of certain return values from previous phases leveraging the ExpectedReturnParameter class. The MPF ensures that phases return values matching the name and type of non-optional ReturnParameter instances so that subsequent phases have guaranteed access to expected values via the PhaseHeap, which is a generic means for phases to share data.

In MDE terms, LEMMA2Jolie is a code generator that produces Jolie code from LEMMA domain models. Hence, it integrates with the MPF's phase for code generation whose execution is controlled by the CodeGenerationPhase class. This class relies on the notion of code generation module to enable implementers the organisation of code generation steps, e.g., by the kinds of processed models or produced artefacts. The code generation phase scans the Java package hierarchy of MPF-model processors for implementations of the AbstractCodeGenerationModule class (cf. Fig. 1). A concrete code generation module specifies a name, and receives the path to the model-File it shall process as well as the corresponding EMF resource of the parsed model. The code generation phase will only invoke those modules on a given model file for which the return value of getLanguageNamespace matches the namespace of the parsed model as identified by the language the model was constructed with. For the DDML and LEMMA domain models constructed with it, only code generation modules targeting the namespace de.fhdo.lemma.data are applicable. A code generation module is expected to implement the execute method and return a Java Map instance7 that determines per file path the content and character set of the generated file.

The GenerationModule class realises the code generation module of LEM-MA2Jolie (cf. Fig. 1). Each method of the module with the prefix generate is responsible for mapping a certain kind of LEMMA domain model element to corresponding Jolie code following the specified encoding [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF]. For example, generateComplexType maps a domain concept specified in a LEMMA domain model [START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF] to the corresponding Jolie type. The generateInterface method, on the other hand, produces code for Jolie interfaces from a given LEMMA structure type. According to the specified encoding [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF], each LEMMA structure receives a Jolie interface consisting of request-response operations derived from LEMMA domain operations by the generateOperation method of the GenerationModule class (cf. Fig. 1).

Software Functionalities

We describe the functionalities of LEMMA2Jolie along with its usage workflow shown in Fig. 2 as a UML activity diagram [START_REF] Omg | OMG Unified Modeling Language (OMG UML) Version 2.5.1[END_REF].

LEMMA2Jolie's usage workflow consists of the following steps:

S1. Domain Model Construction: This step covers the construction of the LEMMA domain model to be processed by LEMMA2Jolie. This may be a new model or an existing model that is adapted to cope with newly discovered facts about the application domain [START_REF] Evans | Domain-Driven Design[END_REF]. For guided 

Sample Code Snippets

In the following, we describe the implementation of LEMMA2Jolie's core components which account for the realisation of the workflow steps that exhibit the LEMMA2Jolie annotation [START_REF] Omg | OMG Unified Modeling Language (OMG UML) Version 2.5.1[END_REF] in the UML activity diagram in Fig. 2. We orient the description towards the ordering of the annotated activities. LEMMA2Jolie was written in the Xtend Java dialect 9 and its complete source code can be found in the accompanying code repository.

Domain Model Parsing

As described in Sect. 2.1, LEMMA's MPF is capable of parsing domain models expressed in the DDML. In order to delegate parsing to the MPF, a model processor like LEMMA2Jolie must provide a language description provider and specify the Java package to scan for that provide following annotation-based IoC. Listing 1 shows the implementation of the Lemma2-Jolie class. It is the programmatic entrypoint of LEMMA2Jolie and specifies the Java package for the MPF to search for annotated classes. In Line 2, the class configures the MPF to search for annotated classes in the "lemma2jolie" Java package by passing the package name to the constructor of the AbstractModelProcessor class (cf. Sect. 2.1). Line 3 implements the entrypoint method of LEMMA2Jolie and delegates execution to the MPF by calling the run method inherited from the AbstractModelProcessor.

The execution of run results in the MPF to first parse the commandline arguments in the args array and then scan the "lemma2jolie" Java package for a language description provider. Listing 2 shows an excerpt of the Lang-DescriptionProvider class, which implements LEMMA2Jolie's language description provider.

Listing 2: Xtend excerpt of LEMMA2Jolie's language description provider. The MPF identifies LangDescriptionProvider to constitute LEMMA-2Jolie's language description provider by the @LanguageDescriptionProvider annotation (cf. Line 1). As described in Sect. 2.1, the class's getLan-guageDescription method returns an XtextLanguageDescription whenever LEMMA2Jolie received a LEMMA domain model file, recognized by the ".data" extension, as input model (cf. Lines 4 to 6).

Template Execution

Listing 3 shows selected code generation templates of LEMMA2Jolie. All code generation templates are located in methods with the generate prefix in LEMMA2Jolie's code generation module implemented by the GenerationModule class (cf. Sect. 2.1). To make a code generation module recognizable at runtime by the MPF, its class must be augmented with the @CodeGenerationModule annotation as shown in Line 1. Lines 5 to 16 illustrate the realisation of code generation templates in Xtend by the gen-erateContext and generateComplexType methods. An Xtend template is enclosed by three consecutive apostrophes ('''). Within a template, Xtend treats all strings outside a pair of guillemets as static template parts. For example, the string "///@beginCtx(" in Line 6 is a static part, whereas the following statement «context.name» constitutes a dynamic part that Xtend replaces at runtime with the value in the name attribute of the context parameter (cf. Line 5), i.e., the name of the processed bounded context from the given LEMMA domain model [START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF].

For each data structure in a bounded context of a LEMMA domain model, generateContext delegates to generateComplexType to generate the Jolie code for the structure (cf. Line 7). According to the previously specified encoding [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF], a LEMMA data structure will be mapped to a Jolie type by invoking the generateType method of the GenerationModule class (cf. Line 12 and Fig. 1). Furthermore, in case the structure does not only define data field but also operations, LEMMA2Jolie will derive a Jolie interface for the structure [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF] (cf. Lines 13 to 15).

Serialisation

Next to template execution, the GenerationModule class is also responsible for providing the MPF with the generated Jolie code to serialise as files on the user's hard drive. Listing 4 shows the corresponding excerpt from the implementation of the GenerationModule class.

The execute method is the entrypoint of MPF code generation modules, from which the in-memory object graph of the parsed model (cf. Fig. 2) is accessible via the inherited resource attribute. Line 7 of LEMMA2Jolie's code generation module retrieves the root of the parsed LEMMA domain model as an instance of the DataModel concept of the DDML's metamodel [START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF]. Next, the module calls the template method generateContext (cf. Listing 3) for each parsed Context instance under the domain model root and gathers the generated Jolie code as a list of strings in the generatedContexts variable (cf. Line 8).

Finally, the module determines the path of the file for the generated Jolie code which will be created in the given target folder and with the same base name as the input LEMMA domain model but with the extension "ol" (cf. Lines 9 and 10). The serialisation of the generated Jolie code is triggered by invoking the inherited MPF method withCharset. The method expects a map of file paths and contents, and the target character set as argument. For LEMMA2Jolie's code generation module, the first argument associates the previously assembled path of the file for the generated Jolie code with the generated code concatenated in a string separated by line breaks (cf. Line 11). The second argument of withCharset determines the character set of the generated code, i.e., UTF-8 (cf. Line 12).

Illustrative Examples

We exemplify the main functions of LEMMA2Jolie (cf. Sect. 2.2) by an excerpt of a case study for booking parking spaces with charging stations for electric vehicles. The case study was introduced by a previous paper [START_REF] Rademacher | Towards an Extensible Approach for Generative Microservice Development and Deployment Using LEMMA[END_REF] and also used to illustrate our encoding of LEMMA domain models into Jolie programs [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF]. The complete case study, including a description of its processing with LEMMA2Jolie, can be found in the accompanying code repository. Additionally, we provide a video showing the practical usage of LEMMA2Jolie on the case study 10 .

Next, we describe LEMMA2Jolie's application on the selected excerpt of the case study following the structure of the workflow in Fig. 2.

Domain Model Construction

Figure 3 exemplifies the construction of a LEMMA domain model using the Eclipse plugin for the DDML. The complete model can be found in the accompanying code repository The domain model specifies the BookingManagement bounded context [START_REF] Evans | Domain-Driven Design[END_REF][START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF]. The context comprises the ParkingSpaceBooking structure which is a DDD aggregate and entity. As a result, instances of the structure resemble object graphs that must maintain a consistent state when being fetched from and stored to a database [START_REF] Evans | Domain-Driven Design[END_REF].

The structure consists of the following data fields:

• bookingID: The field is of LEMMA's primitive type long [START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF] and enables to distinguish ParkingSpaceBooking instances.

• parkingSpace: The field allows storing information about the booked parking space together with a ParkingSpaceBooking instance. Therefore, parkingSpace is modelled as an aggregate part that, according to DDD, is only valid and accessible from the root of its enclosing aggregate [START_REF] Evans | Domain-Driven Design[END_REF].

• driver, timeSlot: These fields enable storing information about the driver of an electric vehicle who made a certain parking booking and the time slot for which this booking is valid together with the booking. As for the same reason as parkingSpace, both fields are modelled as parts of the ParkingSpaceBooking aggregate.

• priceInEuro: The field is of LEMMA's primitive type double and receives the price for the parking space booking in the Euro currency.

Next to the data fields, the structure also specifies the signature of the priceInDollars function which is responsible for converting the value in the priceInEuro field to the Dollar currency.

LEMMA2Jolie

The domain model in Fig. 3 can be transformed into the corresponding Jolie program by executing LEMMA2Jolie from its Java archive or Docker image. To this end, the user invokes LEMMA2Jolie from the commandline as shown in Listing 5. docker run \ -u 'id -u':'id -g' \ -v /home/user:/home/user \ lemma2jolie:latest \ -s /home/user/sample.data \ -t /home/user

Program Refinement

The execution of LEMMA2Jolie on the LEMMA domain model (cf. Listing 5) in the file sample.data (cf. Fig. 3) results in a Jolie program file sample.ol. As depicted in Fig. 4, this file can be refined, e.g., by a microservice developer, using the Jolie extension for Visual Studio Code. We provide the complete source code of the sample.ol file in the accompanying code repository Following the specified encoding [START_REF] Giallorenzo | Model-Driven Generation of Microservice Interfaces: From LEMMA Domain Models to Jolie APIs[END_REF], LEMMA2Jolie transformed the Book-ingManagement bounded context introduced by the LEMMA domain model (cf. Fig. 3) into a Jolie documentation comment starting with @beginCtx (cf. Line 1). In addition, the tool mapped the ParkingSpaceBooking structure to a Jolie type consisting of fields the correspond to those in the input LEMMA structure (cf. Lines 4 to 14). The priceInDollars function was however transformed into a request-response operation of the Jolie interface for the ParkingSpaceBooking structure (cf. Lines 18 to 21). The operation expects an instance of the priceInDollars_type (cf. Lines 15 to 17) as input, thereby, following the encapsulation principle of object-oriented programming, allowing implementers to access the ParkingSpaceBooking instance for which the operation was invoked.

Conclusion: Impact and Future Plans

LEMMA2Jolie demonstrates how the ecosystems of Model-Driven Engineering (MDE), Domain-Driven Design (DDD), and service-oriented programming can be successfully integrated, using in particular LEMMA and Jolie. The immediate benefit is providing an automatic transition from DDD (in LEMMA) to the implementation of each service (in Jolie), including informative annotations in the generated Jolie code that come from the domain models.

In general, our approach paves the way for the future exploration of synergies between the abstraction facilities of MDE/DDD and service-oriented programming languages. We mention five interesting directions for future investigations.

First, LEMMA2Jolie could be extended to cover all phases of MSA engineering, from domain-driven service design to implementation and deployment. For example, we plan to extend LEMMA2Jolie to cover also the deployment configuration of MSAs. A promising option is leveraging the toolchain presented in [START_REF] Fabrizio Montesi | Sliceable Monolith: Monolith First, Microservices Later[END_REF] for automatically slicing a codebase consisting of many Jolie services into separate codebases, each with its own configuration for containerisation, and a deployment configuration for a container orchestrator (e.g., Docker Swarm, Kubernetes). In the same spirit, we plan on integrating LEMMA, Jolie, and deployment languages more closely, by supporting development environments where the languages can be used together with a unified view. This is in line with corresponding research on software language composition [START_REF] Erdweg | Language Composition Untangled[END_REF][START_REF] Deantoni | Modeling the Behavioral Semantics of Heterogeneous Languages and their Coordination[END_REF][START_REF] Butting | Modeling Language Variability with Reusable Language Components[END_REF]. For example, we could use quasi-quotation mechanisms to enable layering the languages and expose information about the domain model to the implementation in Jolie and the deployment configurations such that mismatches across these boundaries could be detected.

Second, LEMMA2Jolie offers the possibility to study approaches to roundtrip engineering (RTE) [START_REF] Selic | The pragmatics of model-driven development[END_REF], i.e., the bidirectional synchronisation of LEMMA models and Jolie code. RTE support for LEMMA2Jolie would improve interaction between domain experts and microservice developers. Each stakeholder would use their views of interest (model vs implementation) to understand, build, and modify a given architecture and LEMMA2Jolie would keep those views consistent. In this way, LEMMA2Jolie would support RTE by reflecting changes done by developers on the Jolie codebase on its companion domain models and, vice versa, keep the codebase on par when experts change the domain models.

Third, we envision that LEMMA2Jolie could also stimulate research concerning the specification of coordinated microservice behaviour following the paradigm of Choreographic Programming (CP) [START_REF] Montesi | Choreographic Programming[END_REF][START_REF] Montesi | Introduction to Choreographies[END_REF]. CP formally models how distributed components coordinate with each other via communication as artifacts called choreographies, which are then compiled to correct-byconstruction implementations of communication behaviours for the components. CP guarantees quality attributes such as compliance (the components interact as expected) and deadlock-freedom [START_REF] Carbone | Deadlock-freedom-by-design: multiparty asynchronous global programming[END_REF][START_REF] Dalla | Dynamic Choreographies: Theory And Implementation[END_REF][START_REF] Saverio Giallorenzo | Object-Oriented Choreographic Programming[END_REF][START_REF] Montesi | Introduction to Choreographies[END_REF]. Choreography, in the sense of distributed coordination, is the de-facto best practice for the composition of microservices [START_REF] Newman | Building Microservices: Designing Fine-Grained Systems[END_REF]. CP facilitates the writing of choreographies and their correct implementation, giving a high potential for impact. However, while there exist early works on the application of CP to microservices in Jolie [START_REF] Carbone | Deadlock-freedom-by-design: multiparty asynchronous global programming[END_REF][START_REF] Giallorenzo | On the Move to Meaningful Internet Systems[END_REF], there are still no tools that enable domain experts to participate in the specification of domain aspects in choreographies. This could be achieved, e.g., by providing abstract textual or graphical representations of choreographies that correspond to choreographies in CP. In this spirit, MSDL (Microservice Domain-Specific Language) includes a textual language for expressing integration flows, but it is not integrated with CP [START_REF] Zimmermann | Patterns for API Design: Simplifying Integration with Loosely Coupled Message Exchanges[END_REF].

Fourth, there is potential in exploring the connection between architectural and API patterns for microservices in MDE and their implementation in Jolie. For example, the application of reusable infrastructural components (like circuit breakers) and patterns for API control has been investigated in both the realms of MDE and Jolie [START_REF] Zimmermann | Patterns for API Design: Simplifying Integration with Loosely Coupled Message Exchanges[END_REF][START_REF] Dalla | Interface-Based Service Composition with Aggregation[END_REF][START_REF] Dalla | Service integration via target-transparent mediation[END_REF][START_REF] Montesi | Circuit Breakers, Discovery, and API Gateways in Microservices[END_REF][START_REF] Montesi | From the decorator pattern to circuit breakers in microservices[END_REF][START_REF] Chandramouli | Security Strategies for Microservices-based Application Systems[END_REF]. While these aspects are interesting for both communities, they have never been integrated to support, e.g., the application of infrastructural and API management components starting from domain models.

Finally, following the approach of Software Architecture Reconstruction [1] (SAR), LEMMA supports the model-based reconstruction of microservice architectures for which no documentation exists or whose documentation is outdated [START_REF] Rademacher | A Modeling Method for Systematic Architecture Reconstruction of Microservice-Based Software Systems[END_REF]. Currently, we are working on automating model-based SAR with LEMMA [START_REF] Wizenty | Towards Viewpoint-Based Microservice Architecture Reconstruction[END_REF]. In combination with LEMMA2Jolie, automated SAR with LEMMA provides an opportunity for studying the semi-automated migration of microservices from general-purpose programming languages, such as Java or C# [START_REF] Schermann | All the Services Large and Micro: Revisiting Industrial Practice in Services Computing[END_REF], to Jolie with the aim of raising service implementation quality by relying on service-oriented primitives that, e.g., ensure the correctness of concurrent service execution.

Listing 1 :

 1 Programmatic entrypoint of LEMMA2Jolie written in Xtend. class Lemma2Jolie extends AbstractModelProcessor { new() { super("lemma2jolie") } def static void main(String[] args) { new Lemma2Jolie().run(args) } }

Listing 4 :

 4 Xtend excerpt of LEMMA2Jolie's code generation module responsible for Jolie code serialisation. @CodeGenerationModule(name="main", ...) class GenerationModule extends AbstractCodeGenerationModule { ... override getLanguageNamespace() { return DataPackage.eNS_URI } override execute(String[] phaseArguments, String[] moduleArguments) { val model = resource.contents.get(0) as DataModel val generatedContexts = model.contexts.map[it.generateContext] val baseFileName = FilenameUtils.getBaseName(modelFile) val targetFile = '''«targetFolder»«File.separator»«baseFileName».ol''' return withCharset(#{targetFile -> generatedContexts.join("\n")}, StandardCharsets.UTF_8.name) } / * cf. Listing 3 * / private def generateContext(Context context) { ... } private def dispatch generateComplexType(DataStructure structure) { ... } }

Figure 3 :

 3 Figure 3: Construction of a LEMMA domain model using LEMMA's Eclipse plugin for the DDML.

Listing 5 :

 5 Execution of LEMMA2Jolie with (a) Java and (b) Docker. (a) java -jar lemma2jolie.jar \ -s /home/user/sample.data \ -t /home/user (b)

Figure 4 :

 4 Figure 4: Refinement of a Jolie program, which was derived from a LEMMA domain model by LEMMA2Jolie, using the Jolie extension for Visual Studio Code.

  Usage workflow of LEMMA2Jolie as a UML activity diagram[START_REF] Omg | OMG Unified Modeling Language (OMG UML) Version 2.5.1[END_REF].domain model construction including syntax highlighting, code completion, and interactive model validation, the user may apply LEMMA's Eclipse plugin for the DDML[33]. While LEMMA2Jolie does not assume a certain kind of user for domain model construction, this step is usually performed by domain experts, possibly in collaboration with microservice developers[START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF].S2. Domain ModelParsing: LEMMA2Jolie performs this step after the user invoked the tool on the previously constructed domain model. LEMMA2Jolie evaluates each template and replaces the dynamic variables with actual values from the in-memory object graph resulting from Step S2. For example, the template that maps a bounded context in a LEMMA domain model to the corresponding Jolie code [16] is located in the generateContext method of LEMMA2Jolie's GenerationModule class (cf. Sect. 2.1) and starts with the statement ///@beginCtx(«context.name»). The guillemets enclose the dynamic part of the template to be evaluated at runtime. All other parts of the statement are static and thus invariant at runtime (cf. Sect. 2.3). The Template Execution step produces an in-memory representation of the target Jolie program as a single string consisting of Jolie statements resulting from template evaluations. S4. Serialisation: This step stores the in-memory representation of the target Jolie program in a file with the extension ".ol" as expected by the Jolie interpreter [24]. The file path and name can be specified by the user upon invocation of LEMMA2Jolie in Step S1. S5. Program Refinement: In this optional step, the user, usually a service developer, can refine the serialised Jolie program, e.g., to add additional documentation. For this purpose, the user can rely on the Jolie extension for Visual Studio Code 8 . Like the Eclipse plugins for LEMMA's modelling languages, the extension supports Jolie programming with syntax highlighting, code completion, and interactive validation.
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More precisely, the SourceModelParsingPhase class of LEMMA's MPF (cf. Sect. 2.1) accounts for this step, which will result in an in-memory object graph of the parsed model. Specifically, this graph is an instance of the DDML metamodel

[START_REF] Rademacher | Graphical and Textual Model-Driven Microservice Development[END_REF][START_REF] Giallorenzo | Jolie and LEMMA: Model-Driven Engineering and Programming Languages Meet on Microservices[END_REF]

.

S3. Template Execution: LEMMA2Jolie relies on template-based code generation

[START_REF] Benoit Combemale | Engineering Modeling Languages: Turning Domain Knowledge into Tools[END_REF] 

to transform LEMMA domain models into Jolie programs. A template is a specification consisting of static Jolie statements and dynamic variables pointing to concepts from the metamodel of LEMMA's DDML. At runtime,
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