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Stability analysis of quasilinear systems on time scale based on
a new estimation of the upper bound of the time scale matrix
exponential function

Serhii Babenko, Michael Defoort, Mohamed Djemai, Serge Nicaise, Valerii
Hrytsenko

• In this paper, we have studied the matrix exponential function eA(t, t0),
where A is an arbitrary matrix, t, t0 ∈ T, T is an arbitrary nonempty
closed subset of R, which is called a time scale. This function gener-
alizes the usual matrix exponential eA(t−t0) as well as the m-th power
(I + A)m for an arbitrary time scale.

• Using the time scale theory, we have proposed new estimations of
∥eA(t, t0)∥ in the following form:

∥eA(t, t0)∥ ≤ Keα(t, t0), ∀t, t0 ∈ T(t ≥ t0),

where T is an arbitrary time scale, K,α are known parameters and
eα(t, t0) is a scalar exponential function. This estimation is more accu-
rate than known ones.

• It is shown that the proposed estimation can be used for stability anal-
ysis of dynamic equations on a time scale.
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Abstract

In this paper, we analyze the stability of quasilinear systems on time scale
based on a new estimation of the upper bound of the time scale matrix
exponential function. First, some upper bounds for the norm of the matrix
exponential function eA(t, t0) are derived, where A is a regressive square
matrix, t, t0 ∈ T, T being an arbitrary nonempty closed subset of the set
of real numbers R, which is called a time scale. The matrix exponential
function generalizes the usual matrix exponential as well as the integer power
of a matrix: if T = R and A is a constant matrix, then eA(t, t0) = eA(t−t0),
while if T = Z and I + A is invertible, then eA(t, t0) = (I + A)(t−t0). Using
Putzer algorithm and estimating the maximum value of a function defined
and bounded on a time scale T, we derive an upper bound for eA(t, t0) in the
form: ∥eA(t, t0)∥ ≤ Keα(t, t0), where t, t0 ∈ T, K is a positive constant, α(t)
is a function defined on T and eα(t, t0) is a scalar exponential function. One
of the upper bounds is used for stability investigation of quasilinear systems
on a time scale.
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1. Introduction

Time scale theory, initiated by Stefan Hilger in his PhD thesis in 1988, is
a promising area of mathematical science whose topic of study is functions
defined on an arbitrary nonempty closed subset of the set of real numbers
R. In this theory, this subset is called a time scale. The main tasks of
this theory are to unify concepts and results from continuous and discrete
analysis and generalize the ones for any time scale. Differential equations
from continuous analysis and difference equations from discrete analysis can
be unified by time scale dynamic equations using time scale theory.

Many famous results from the theory of ordinary differential equations,
calculus of variations, theory of difference equations have been generalized
using the time scale theory in [1, 2, 3, 4, 5]. Recently, many experts in
the time scale theory are interested in the study of the stability of solutions
of dynamic equations on a time scale as well as the stabilization problem
on a time scale. In particular, in [6, 7, 8] various properties of solutions of
dynamic equations on time scales, such as stability, positivity, controllability,
are investigated. The monograph [5] has investigated different approaches for
stability analysis of time scale dynamic equations: i) approaches based on
dynamic integral inequalities; ii) approaches based on a generalization of
the direct Lyapunov method for equations on time scales; iii) approaches
which are an adaptation of the comparison method which is well-known for
continuous-time and discrete-time systems. In [9, 10, 11, 12] the stability of
switched systems on a time scale was studied. In [13, 14, 15], the control
design for dynamic equations on time scales was studied. In the papers
[16, 17, 18, 19, 20] the consensus problem for multi-agent systems using time
scale theory was investigated.

When investigating the stability of solutions of dynamic equations on a
time scale, it is often necessary to estimate the norm of the matrix exponential
function eA(t, t0), which unifies the usual matrix exponential eA(t−t0) from
continuous analysis and the integer power of (I + A) from discrete analysis.
In the literature, one can find solutions for the problem of estimating the
norm eA(t, t0) for some particular cases. For instance, in [21], when A is
diagonal, the upper bound of the norm of eA(t, t0) is obtained in the form:

∥eA(t, t0)∥ ≤ Keα(t, t0), ∀t, t0 ∈ T(t ≥ t0), (1)

where T is an arbitrary time scale, K,α are known parameters and eα(t, t0)
is a scalar exponential function. If A is a Jordan block, a similar estimation
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is also obtained. However, for this case, the formula for calculating K in
explicit form is not given.

In [10], for an arbitrary matrix A, another estimation for ∥eA(t, t0)∥ of
the form (1) is obtained and the formula for calculating the constant K is
proposed. According to that formula, one has to solve a maximum problem
on the unbounded subset of the time scale T, which can be a very difficult
task in practice. In the recent paper [22] the estimation (1) with K = 1 and
α = m(A, t) is obtained, where m(A, t) denotes a specific matrix measure (in
the paper, it is called ”initial growth rate”) of A.

In the present paper, a new upper bound for ∥eA(t, t0)∥ of the form (1)
is obtained and new formulas for calculating constant K are proposed. The
new bound is applied for stability investigation of quasilinear systems on a
time scale. The novelties of this paper are as follows:

• The estimation holds for an arbitrary matrix A and any time scale T.

• The proposed formulas allow to calculate K by solving a maximum
problem on the bounded or even finite subset of T.

• The proposed estimation of ∥eA(t, t0)∥ is more accurate than the one
from the paper[22].

• It is shown that the proposed estimation can be used for stability anal-
ysis of dynamic equations on a time scale.

The paper is organized as follows. Section 2 contains mainly basic facts
from the calculus on time scale. In Section 3, we deduce three upper bounds
for the norm of the matrix exponential function. The first one has the form
of a product of the exponential function and some ∆-differentiable function.
The two other bounds have the form of the right hand part of inequality
(1). In Section 4, one of the bounds is used for stability investigation of
quasilinear systems on a time scale.

Some mathematical notations are used throughout this paper. For a
square matrix A of size n× n, let SpA be the spectrum of A and let λi(A),
i = 1, · · · , n be the eigenvalues of A repeated according to its multiplicity.
∥ · ∥ denotes the spectral norm of a square matrix, i.e. ∥A∥ =

√
λmax(ATA),

where λmax(A
TA) = max

i=1,··· ,n
λi(A

TA). As usual, In ∈ Rn×n is the identity

matrix.
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2. Preliminary results

In this section, we give some facts from calculus on time scales and pro-
pose few concepts which will be needed to state our main result. More
information on this topic can be found in [2, 3, 5].

According to [2], a time scale T is an arbitrary nonempty closed subset
of the set of real numbers R. For any t ∈ T, the forward jump operator σ
is defined by σ(t) = inf{s ∈ T : s > t}. For each t ∈ T, µ(t) = σ(t) − t
is called the graininess of time scale T. Let µ∗ and µ∗ denote sup

t∈T
µ(t) and

inf
t∈T

µ(t), respectively. Further, let us recall the definitions of ∆-derivative,

regressivity and exponential function.

Definition 1. [5, Def. 1.2.1] A function f : T → R is said to be ∆-
differentiable at the point t ∈ T if there exists α ∈ R such that for any
ε > 0, there exists a neighborhood U of t such that the inequality

| [f(σ(t))− f(s)]− α[σ(t)− s] |< ε | σ(t)− s |

holds for all s ∈ U . In this case, we denote f∆(t) = α. If f : T → R is ∆−
differentiable at any t ∈ T, then it is called ∆− differentiable.

In [2, 5] and other monographs on time scales calculus one can find the
properties of ∆-derivative. Based on them, the following formula for calcu-
lating of ∆-derivative can be obtained:

f∆(t) = lim
τ→µ(t)+0

f(t+ τ)− f(t)

τ
. (2)

Definition 2. [5, Def. 1.4.1] A rd-continuous function p : T → R is said to
be regressive and we write p ∈ R if 1 + µ(t)p(t) ̸= 0 for all t ∈ T. Moreover,
p is called positively regressive and we write p ∈ R+ if 1 + µ(t)p(t) > 0 for
all t ∈ T.

If a real number a satisfies the condition 1+µ(t)a > 0, for all t ∈ T, then
we will write similarly: a ∈ R+.

Denote by R(T;C) the space of rd-continuous, regressive mappings from
T to C, where C denotes the set of complex numbers.

The generalized exponential function of scalar function p ∈ R is defined
hereafter.
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Definition 3. [5, Def. 1.4.3] For p ∈ R and s ∈ T, the exponential function
ep(·, s) is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
, t ∈ T,

where ξh is a cylindric transformation defined by the formula

ξh(z) =

{
1
h
Log(1 + zh), if h > 0,

z, if h = 0,
(3)

where Log is the principal logarithm function.

Here,
b∫
a

f(t)∆t denotes the Cauchy integral of f , defined on a time scale.

Further, the matrix exponential function is defined.

Definition 4. [5, Def. 1.5.2] A rd-continuous n×n-matrix-valued function
A(t) is called regressive if In + µ(t)A(t) is invertible for all t ∈ T. The class
of such matrices A is denoted by R = R(T) = R(T,Rn×n).

Definition 5. [2, Def. 5.18] Let t0 ∈ T and assume that A ∈ R is n × n-
matrix-valued function. The unique matrix-valued solution of the initial value
problem

Y ∆ = A(t)Y, Y (t0) = In,

is called the matrix exponential function (at t0), and it is denoted by eA(·, t0).

Example 1. [2, Example 5.19] Assume that A is a constant n × n-matrix.
If T = R, then eA(t, t0) = eA(t−t0), while if T = Z and I + A is invertible,
then eA(t, t0) = (I + A)(t−t0).

The next theorem gives us an algorithm to compute the matrix exponen-
tial function:

Theorem 1. [2, Thm 5.35] Let A ∈ R be a constant n×n-matrix. Suppose
t0 ∈ T. If λ1, λ2, ..., λn are the eigenvalues of A, then

eA(t, t0) =
n−1∑
i=0

ri+1(t)Pi, (4)

5



where r(t) := (r1(t), r2(t), ..., rn(t))
T is the solution of the initial value prob-

lem

r∆ =


λ1 0 0 · · · 0

1 λ2 0
. . .

...

0 1 λ3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 λn

 r, r(t0) =


1
0
0
...
0

 , (5)

and the P -matrices P0, P1, ..., Pn are recursively defined by P0 = In and
Pk+1 = (A− λk+1In)Pk, for 0 ≤ k ≤ n− 1.

The following lemma gives us the estimation of the norm of eAt.

Lemma 2. [23, Lemma 10.2.1] If νi are the eigenvalues of a matrix A and
Λ = max

i
ℜ(νi), then

∥eAt∥ ≤ eΛt
n−1∑
k=0

(2t∥A∥)k

k!
, t ≥ 0. (6)

The following functions, called generalized polynomials, are defined in [2]
recursively as follows:

h0(t, s) ≡ 1, ∀s, t ∈ T, (7)

and given hk for k ∈ N0, the function hk+1 is

hk+1(t, s) =

t∫
s

hk(τ, s)∆τ, s, t ∈ T. (8)

In [2] the functions hk(t, s) are explicitly given for the cases T = R and
T = Z, namely:

• if T = R, then hk(t, s) =
(t−s)k

k!
for all s, t ∈ R;

• if T = Z, then hk(t, s) = Ck
t−s for all s, t ∈ Z, where Ck

m with k ∈ N0,

m ∈ R, denotes the general binomial coefficient m(m−1)·...·(m−k+1)
k!

.

Following [2], let us introduce a notion, which plays a significant role to
obtain our main result.
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Definition 6. Given a function λ ∈ R(T;C) such that 1+µ(t)λ(t) ̸= 0, for
all t ∈ T, then

ℜµ(t)(λ) = lim
s→µ(t)+0

|1 + sλ(t)| − 1

s
(9)

for t ∈ T is the Hilger real part of λ.

Note, that for any complex number z, ℜ0(z) = ℜ(z), where ℜ(z) denotes
the real part of z.

3. Estimation of the matrix exponential function on a time scale

In this section, we deduce the upper bounds for the norm of the matrix
exponential function. This will be done according to the following steps:

1) using formula (4) from Theorem 1 (Putzer algorithm), we estimate
the norm of the matrix exponential function eA(t, t0) by the product
eη2(t, t0)f(t, t0), where η2 characterizes the spectrum of matrix A and
f(·, t0) is a ∆− differentiable function.

2) considering an arbitrary ε > 0 and rewriting the obtained estimation
in the form eη2⊕ε(t, t0)e⊖ε(t, t0)f(t, t0), we prove that for positive values
of ε the function F (t) = e⊖ε(t, t0)f(t, t0) is bounded on [t0,+∞). We
estimate from above the maximum value of F (t) and, as a result, obtain
an upper bound for ∥eA(t, t0)∥.

The next theorem investigates the first point of this scheme. In Theorem
4, the second point is deduced. Theorem 5 gives a modification of the result
obtained in Theorem 4.

Theorem 3. Let A ∈ Rn×n be a matrix. If there exist real numbers η1, η2 ∈
R+ such that η1 < η2 and the following conditions are satisfied:

(i) η1 ≤ ℜµ(t)(λi(A)) ≤ η2, ∀t ∈ T, for each eigenvalue λi(A);

(ii) η := min {1 + µ∗η1, 1 + µ∗η1} > 0.

Then the following estimation holds for all t0, t ∈ T

∥eA(t, t0)∥ ≤ eη2(t, t0)
n−1∑
k=0

(
2∥A∥
η

)k

hk(t, t0), (10)

where t ≥ t0 and the functions hk are defined by formulas (7) and (8).
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Proof. In order to prove Theorem 3, we propose to use the representation
of the matrix exponential function from Theorem 1 and the idea of deducing
the estimation (6) from Lemma 2. From formula (4) we get the estimation:

∥eA(t, t0)∥ ≤
n−1∑
k=0

|rk+1(t, t0)| ∥Pk∥, (11)

where rk+1(t, t0) denotes rk+1(t) from formula (4). To deduce (10) from (11)
let us estimate |rk(t, t0)| and ∥Pk∥ from above. To estimate |rk(t, t0)|, let us
prove the following estimate:

|eλk
(t, t0)| ≤ eη2(t, t0), ∀t ≥ t0, k = 1, ..., n. (12)

According to Definition 3 of the exponential function, the following for-
mula holds for all t ≥ t0 and k = 1, 2, ..., n:

|eλk
(t, t0)| =

∣∣∣∣exp(∫ t

t0

ξµ(τ)(λk)∆τ

)∣∣∣∣
= exp

(∫ t

t0

ℜ
(
ξµ(τ)(λk)

)
∆τ

)
,

(13)

where ξµ(τ)(λk) is the cylindric transformation defined by (3). From (3) we
get the formulas:

ℜ
(
ξµ(τ)(λk)

)
=

{
ℜ
(
Log(1+µ(τ)λk)

µ(τ)

)
, ifµ(τ) > 0,

ℜ(λk), ifµ(τ) = 0.

=

{
ln |1+µ(τ)λk|

µ(τ) , ifµ(τ) > 0,

ℜ(λk), ifµ(τ) = 0.

(14)

which hold for all τ ∈ T and k = 1, 2, ..., n. According to condition (i) of the
present theorem ℜµ(t)(λk) ≤ η2 for all t ∈ T and for any k = 1, 2, ..., n. Using
this property, Definition 6 of the Hilger real part ℜµ(t)(λ) and the positive
regressivity of η2 ∈ R+, we obtain from (14) the following estimation:

ℜ
(
ξµ(τ)(λk)

)
≤

{
ln(1+µ(τ)η2)

µ(τ)
, ifµ(τ) > 0,

η2, ifµ(τ) = 0.

=

{
Log(1+µ(τ)η2)

µ(τ)
, ifµ(τ) > 0,

η2, ifµ(τ) = 0.
= ξµ(τ)(η2),

(15)
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for all τ ∈ T and k = 1, 2, ..., n. Consequently, using properties of an integral
on time scale (see Theorem 1.3.3 in [5]), from (13) and (15) we get (12).

For the next step we show that (12) implies the following estimation of
the function |rk(t, t0)|:

|rk(t, t0)| ≤ eη2(t, t0)
hk−1(t, t0)

ηk−1
, (16)

which holds for all t ≥ t0 from T and k = 1, 2, ..., n. The proof of (16) is made
by induction on k. Let k = 1, then according to formula (5) the function
r1(t, t0) is a solution of the initial value problem:

r∆1 = λ1r1, r1(t0) = 1. (17)

As it is known (see Theorem 2.33 from [2]), this solution can be presented in
the form r1(t, t0) = eλ1(t, t0). Then, (12) implies the estimation:

|r1(t, t0)| = |eλ1(t, t0)| ≤ eη2(t, t0) = eη2(t, t0)h0(t, t0)
1

η0
,

which means that estimation (16) holds for k = 1.
Now, we assume that (16) holds for some arbitrary natural number l

(1 ≤ l ≤ n− 1), i.e.

|rl(t, t0)| ≤ eη2(t, t0)
hl−1(t, t0)

ηl−1
, (18)

and prove that estimation (16) holds for l+ 1. According to formula (5) the
function rl+1(t, t0) is a solution of the initial value problem:

r∆l+1 = rl + λl+1rl+1, rl+1(t0) = 0. (19)

The solution of problem (19) is found by the formula of variation of constants
(see Theorem 2.77 from [2]):

rl+1(t, t0) =

t∫
t0

eλl+1
(t, σ(τ))rl(τ, t0)∆τ.

Taking into account property (vii) from Theorem 1.4.2 given in [5], the last
identity can be written in the form:

rl+1(t, t0) =

t∫
t0

eλl+1
(t, τ)

1 + µ(τ)λl+1

rl(τ, t0)∆τ. (20)
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From condition (i) and Definition (6) of the Hilger real part, it follows that

|1 + µ(τ)λl+1| ≥ 1 + µ(τ)η1,

for all τ ∈ T. Using this estimation and condition (ii), we obtain the following
estimation for the denominator of the integrand of the last integral in (20):

|1 + µ(τ)λl+1| ≥ η > 0, ∀τ ∈ T. (21)

Then, using (12), (18) and (21) we deduce from (20) the following estimation:

|rl+1(t, t0)| ≤
t∫

t0

∣∣∣ eλl+1
(t,τ)

1+µ(τ)λl+1
rl(τ, t0)

∣∣∣∆τ

≤
t∫

t0

eη2 (t,τ)

η
eη2(τ, t0)

hl−1(τ,t0)

ηl−1 ∆τ

=
eη2 (t,t0)

ηl

t∫
t0

hl−1(τ, t0)∆τ =
eη2 (t,t0)

ηl
hl(t, t0),

which proves that the estimation (16) holds for all t ≥ t0 and k = 1, 2, ..., n.
Now, let us estimate ∥Pk∥ from above. As it is known, max

i=1,n
|λi| ≤ ∥A∥.

Consequently,

∥Pk∥ = ∥(A− λkIn)Pk−1∥ ≤ ∥A− λkIn∥∥Pk−1∥
≤ (∥A∥+ |λk|)∥Pk−1∥ ≤ 2∥A∥∥Pk−1∥,

(22)

for all k = 1, 2, ..., n. Since ∥P0∥ = ∥In∥ = 1, then (22) implies:

∥Pk∥ ≤ (2∥A∥)k, (23)

for all k = 1, 2, ..., n. Thereby, using estimations (16) and (23) we obtain
from inequality (11) the estimation (10). The proof is completed.

Example 2. It is easy to check that Lemma 2 is a corollary of Theorem 3.
Let us set

T = R, η1 = min
i

ℜ(λi(A)),

η2 = max
i

ℜ(λi(A)), t0 = 0.
(24)

Then, all conditions of Theorem 3 hold. Using Example 1, we get from these
assumptions:

eA(t, t0) = eAt, eη2(t, t0) = eη2t,

hk(t, t0) =
tk

k!
, η = 1.

(25)

Finally, from (10), we get (6).
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Example 3. Let us set

T = Z, η1 = min
i

|1 + λi(A)| − 1,

η2 = max
i

|1 + λi(A)| − 1,
(26)

and assume that 1+η1 > 0. Then, all conditions of Theorem 3 hold. Denoting
t− t0 = m and using Example 1, we get from these assumptions:

eA(t, t0) = (I + A)m,
eη2(t, t0) = (max

i
|1 + λi(A)|)m,

η = min
i

|1 + λi(A)|, hk(t, t0) = Ck
m.

(27)

Taking into account the last formulas, we get from (10) the following estima-
tion:

∥(I + A)m∥ ≤
(
max

i
|1 + λi(A)|

)m
×

n−1∑
k=0

Ck
m

(
2∥A∥

min
i

|1+λi(A)|

)k

,∀m ∈ N.
(28)

The next theorem gives another estimation for the norm of the matrix ex-
ponential function. This estimation has a form: ∥eA(t, t0)∥ ≤ Mεeη2⊕ε(t, t0),
where ε and Mε are positive constants. Before formulating the next theorem,
let us introduce the function ωε(µ):

ωε(µ) =
1

ε

n−2∑
k=0

(1 + µε)
k

n−1 , ∀ε > 0, (29)

and the functions defined for all t0 ∈ T by the following formulas:

t1(t0) = inf

{
s ∈ T : s ≥ t0 +

(n− 1)η

2∥A∥

}
, (30)

t(t0) = sup {s ∈ T : s ≤ t0 + ωε(µ∗)} ,
t(t0) = inf {s ∈ T : s ≥ t0 + ωε(µ

∗)} ,
(31)

φ(t) =
n−1∑
k=0

(
2∥A∥
η

)k

hk(t, t0), ∀t ∈ T, t ≥ t0. (32)
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Theorem 4. Let A ∈ Rn×n be a matrix such that there exist real numbers
η1, η2 ∈ R+ with η1 < η2 such that the conditions (i) and (ii) from Theorem
3 are satisfied. Then, for an arbitrary t0 ∈ T and a real number ε > 0 such
that:

ωε(µ∗) ≥ t1(t0)− t0, (33)

and for any t ≥ t0 from the scale T, the following estimate holds:

∥eA(t, t0)∥ ≤ L(ε)eη2⊕ε(t, t0), (34)

where the positive constant L(ε) is given by:

L(ε) = max
{
φ(t1(t0)),

n(2∥A∥/η)n−1

(n−1)!

× max
s∈[t(t0),t(t0)]

((s− t0)
n−1e⊖ε(s, t0))

}
.

(35)

Proof. As all conditions of Theorem 3 are satisfied, estimation (10)
holds. Let us take an arbitrary t0 ∈ T and consider ε > 0 which satisfies
condition (33) (it is not difficult to see that such a number exists, indeed
from (29) we see that for any µ ≥ 0, lim

ε→0+
ωε(µ) = +∞, consequently, for an

arbitrary t1(t0)− t0 there exists ε > 0 such that ωε(µ) ≥ t1(t0)− t0). Then,
(10) can be written in the following form:

∥eA(t, t0)∥ ≤ eη2(t, t0)eε(t, t0)e⊖ε(t, t0)φ(t)
= eη2⊕ε(t, t0)e⊖ε(t, t0)φ(t).

(36)

The main idea is to estimate the function e⊖ε(t, t0)φ(t) from the right-hand
side of (36), by a constant from above. As we will show, this function is
bounded, so such a constant exists. The best constant is clearly the maxi-
mum value of the mentioned function on the interval [t0,+∞), which appears
to be very difficult to compute. Indeed, for the specific time scale T = R,
e⊖ε(t, t0)φ(t) is a real-valued function of a real variable. Hence, to find its
maximum value one can apply the theory of extrema from classical anal-
ysis. But in practice, the maximum point of that function can be found
only approximately by numerically solving the algebraic equation of the n-th
degree.

In the case of an arbitrary time scale, we will be faced with more dif-
ficulties in finding the maximum value of e⊖ε(t, t0)φ(t). These difficulties
are caused by the following facts. Firstly, Ferma’s theorem (also known as

12



interior extremum theorem) does not hold for functions defined on a time
scale. Namely, in general, if a function has a local extremum at some point
of a time scale and is ∆-differentiable there, then its ∆-derivative at that
point is not necessarily equal to zero 1. Second, for an arbitrary time scale
the function φ(t) is not, in general, a polynomial, but has a more complex
structure.

In order to overcome these difficulties, we estimate the function φ(t) from
above by the simplest power function of the form C(t − t0)

n−1, where C is
a constant. The advantage of this estimate is that the maximum problem
of the function C(t − t0)

n−1e⊖ε(t, t0) on the interval [t0,+∞), as it will be
shown, can be reduced to the problem of maximizing the same function on
a subset which is finite or at least bounded.

Following the steps above, let us show by induction that the functions
hk(t, t0) satisfy the following estimation:

hk(t, t0) ≤
(t− t0)

k

k!
, ∀t ≥ t0, t ∈ T, (37)

for all k = 0, 1, 2, ..., n− 1.

As h0(t, t0) ≡ 1 ≤ (t−t0)0

0!
, (37) clearly holds for k = 0. Now, we assume

that (37) holds for some arbitrary natural number l (0 ≤ l ≤ n− 2), i.e.:

hl(t, t0) ≤
(t− t0)

l

l!
, ∀t ≥ t0, t ∈ T, (38)

and prove that (37) holds for l+1. According to this assumption and formula
(8), we have:

hl+1(t, t0) =

t∫
t0

hl(s, t0)∆s ≤
t∫

t0

(s− t0)
l

l!
∆s. (39)

It is easy to show that

(s− t0)
l

l!
≤
(
(s− t0)

l+1

(l + 1)!

)∆

, ∀s ∈ [t0, t] ∩ T. (40)

1To see this, consider the function F (t) = (t− 0.1)2 defined on a time scale T = Z. At
the points t = 0 and t = 1 from the time scale the function has a minimum on T, however
f∆(0) = f(0 + 1)− f(0) = 0.8 ̸= 0 as well as f∆(1) = f(1 + 1)− f(1) = 2.8 ̸= 0.

13



Indeed, using the formula (2) for calculating the ∆-derivative, we obtain:

[
(s−t0)l+1

(l+1)!

]∆
=

lim
τ→µ(s)+0

[
(s+τ−t0)

l+1−(s−t0)
l+1

τ

]
(l+1)!

=

[
(l+1)(s−t0)l+

l+1∑
k=2

Ck
l+1(s−t0)l+1−kµk−1(s)

]
(l+1)!

= (s−t0)l

l!
+

l+1∑
k=2

Ck
l+1

(l+1)!
(s− t0)

l+1−kµk−1(s) ≥ (s−t0)l

l!
,

for all s ∈ [t0, t] ∩ T. Thus, using (40) in estimate (39) we get:

hl+1(t, t0) ≤
t∫

t0

(
(s−t0)l+1

(l+1)!

)∆
∆s = (t−t0)l+1

(l+1)!
, (41)

which is (37) for l + 1. We then conclude that estimation (37) holds for all
k = 0, 1, 2, ..., n− 1. Then (37) implies the following estimation for φ(t):

φ(t) ≤
n−1∑
k=0

(
2∥A∥
η

)k
(t−t0)k

k!
=

n−1∑
k=0

(
2∥A∥(t−t0)

η

)k
1
k!
. (42)

Let us continue to estimate the function φ(t) from above. Obviously, for a
fixed k ∈ N, the inequality(

2∥A∥(t− t0)

η

)k
1

k!
≤
(
2∥A∥(t− t0)

η

)k+1
1

(k + 1)!

holds for t ≥ t0 +
(k+1)η
2∥A∥ . Hence, for all t ≥ t0 +

(n−1)η
2∥A∥ , the inequality(

2∥A∥(t− t0)

η

)k
1

k!
≤
(
2∥A∥(t− t0)

η

)n−1
1

(n− 1)!

holds for all k = 0, 1, ..., n− 1. Using this estimate, we obtain from (42):

φ(t) ≤ n

(n− 1)!

(
2∥A∥(t− t0)

η

)n−1

, (43)

for all t ≥ t1(t0), t ∈ T (recalling that t1(t0) is defined by (30)).
At the same time, since

φ∆(t) =
n−1∑
k=0

[
2∥A∥
η

]k
h∆
k (t, t0) =

n−1∑
k=0

[
2∥A∥
η

]k
hk−1(t, t0)
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and hk(t, t0) > 0 for all k ∈ N0 and t ≥ t0 from the time scale, φ(t) increases
on the set [t0,+∞) ∩ T. It implies the following estimation of φ(t) on the
interval [t0, t1(t0)] of the time scale:

φ(t) ≤ φ(t1(t0)). (44)

Estimations (43) and (44) can be combined into one formula, in which the
functions on the right are defined on T:

φ(t) ≤

φ(t1(t0)), t ∈ [t0, t1(t0)],

n
(n−1)!

(
2∥A∥(t−t0)

η

)n−1

, t ≥ t1(t0).
(45)

This estimation will allow us to estimate the function f(t) = e⊖ε(t, t0)φ(t)
appropriately.

Since ε > 0, then according to the property (x) of the exponential func-
tion from Theorem 1.4.2 given in [5], we obtain eε(t, t0) > 0. Next, accord-
ing to the property (viii) from the same Theorem, we get that e∆ε (t, t0) =
εeε(t, t0) > 0, i.e. the function eε(t, t0) increases with respect to variable t on
the interval [t0,+∞) of the time scale T. Therefore eε(t, t0) ≥ eε(t0, t0) = 1
and e⊖ε(t, t0) = 1

eε(t,t0)
≤ 1, for all t ≥ t0 from the time scale. Taking into

account this estimation as well as the estimation (45), the function f(t) can
be estimated from above as follows:

f(t) ≤ φ(t1(t0)), (46)

for all t ∈ [t0, t1(t0)] from the time scale T. Let us estimate f(t) from above
on the interval [t1(t0),+∞) of the time scale T. From (45), we obtain:

f(t) ≤ n

(n− 1)!

(
2∥A∥(t− t0)

η

)n−1

· e⊖ε(t, t0), (47)

for all t ∈ [t1(t0),+∞) from the time scale T. Consider the function f1(t) =
(t− t0)

n−1e⊖ε(t, t0). Using formula (2), property (3) from Theorem 1.2.2 and
properties (iii) and (viii) from Theorem 1.4.2 given in [5], we can find its
∆-derivative:

f∆
1 (t) =

(
(t− t0)

n−1
)∆

e⊖ε(σ(t), t0) + (t− t0)
n−1e∆⊖ε(t, t0)

= e⊖ε(t,t0)
1+µ(t)ε

(
(t− t0) lim

s→µ(t)+0

1− n−1√1+sε
s + 1

)
×

n−2∑
k=0

(t− t0 + µ(t))n−2−k
(
(t− t0)

n−1
√

1 + µ(t)ε
)k

.
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One can calculate the limits from the last expression: lim
s→µ(t)+0

1− n−1√1+sε
s

=

− 1
ωε(µ(t))

. Consequently,

f∆
1 (t) = e⊖ε(t,t0)

1+µ(t)ε

(
t0−t

ωε(µ(t))
+ 1
)

×
n−2∑
k=0

(t− t0 + µ(t))n−2−k
(
(t− t0)

n−1
√
1 + µ(t)ε

)k
.

Let us investigate increasing and decreasing intervals of the function f1.
From formula (29), we obtain:

ωε(µ∗) ≤ ωε(µ(t)) ≤ ωε(µ
∗), ∀t ∈ T. (48)

If t ∈ [t1(t0), t0 + ω(µ∗)] ∩ T, then:

− t−t0
ωε(µ(t))

≥ − t0+ωε(µ∗)−t0
ωε(µ(t))

= −ωε(µ∗)
ωε(µ(t))

≥ −ωε(µ∗)
ωε(µ∗)

= −1.

Hence, f∆
1 (t) ≥ 0, for all t ∈ [t1(t0), t0 + ωε(µ∗)] ∩ T, and:

f∆
1 (t) ≥ 0, ∀t ∈ [t1(t0), t(t0)] ∩ T.

Due to properties of ∆-derivative and integral on the time scale, the last
inequality means that the function f1(t) is increasing on [t1(t0), t(t0)]:

f1(t) ≤ f1(t(t0)), ∀t ∈ [t1(t0), t(t0)] ∩ T. (49)

It is similarly proved, that:

f∆
1 (t) ≤ 0, ∀t ∈ [t(t0),+∞) ∩ T,

which means that f1(t) is decreasing on t ∈ [t(t0),+∞):

f1(t) ≤ f1(t(t0)), ∀t ∈ [t(t0),+∞) ∩ T. (50)

From (49) and (50) we obtain:

f1(t) ≤ max
s∈[t(t0),t(t0)]

f1(s), ∀t ∈ [t1(t0),+∞) ∩ T. (51)

Hence, taking into account (47), we get:

f(t) ≤ n
(n−1)!

(
2∥A∥
η

)n−1

× max
s∈[t(t0),t(t0)]

((s− t0)
n−1e⊖ε(s, t0)) ,

(52)
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for all t ≥ t1(t0) from the time scale T. Combining estimations (46) and
(52), from inequality (36) we get the estimation (34), where L(ε) is defined
by (35). Theorem 4 is proved.

Theorem 5. Let A ∈ Rn×n be a matrix. If there exist real numbers η1, η2 ∈
R+ with η1 < η2 such that conditions (i) and (ii) from Theorem 3 are satis-
fied. Then, for an arbitrary t0 ∈ T and a real number ε > 0 such that (33)
is fulfilled and for any t ≥ t0 from the scale T, the following estimate holds:

∥eA(t, t0)∥ ≤ L′(ε)eη2⊕ε(t, t0), (53)

where the positive constant L′(ε) is given by:

L′(ε) = max
{ n−1∑

k=0

(
2∥A∥(t1(t0)−t0)

η

)k
1
k! ,

n
(n−1)!

(
2∥A∥
η

)n−1

× max
s∈[t(t0),t(t0)]

(
(s− t0)

n−1e⊖ε(s, t0)
)}

.
(54)

Proof. The proof of this theorem is the same as the one of Theorem 4.
The only difference is to obtain the constant L′(ε), instead of estimation (44)
the following estimation is proposed:

φ(t) ≤
n−1∑
k=0

(
2∥A∥(t1(t0)− t0)

η

)k
1

k!
,

for all t ∈ [t0, t1(t0)] from T, which holds due to (42) and (44).
The following proposition gives a specific way to find η1, η2, which satisfy

conditions (i) and (ii) of Theorem 3.

Proposition 1. For a matrix A ∈ Rn×n let us set:

η1 = min
i=1,n

ℜµ∗(λi(A)), η2 = max
i=1,n

ℜµ∗(λi(A)). (55)

If η1, η2 ∈ R+ and, besides, η1 satisfies condition (ii) from Theorem 3, then
for an arbitrary t0 ∈ T and real ε > 0 such that (33) is fulfilled, estimates
(34)-(35) and (53)-(54) hold for any t ≥ t0 from T.

Proof. Let us check condition (i) of Theorem 3 for the values η1, η2
defined by (55). For this purpose, let us prove for any real numbers µ1, µ2 ≥ 0
and z ∈ C, the following statement is true:

ℜµ1(z) ≤ ℜµ2(z) whenever µ1 < µ2. (56)
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Suppose 0 ≤ µ1 < µ2 and consider arbitrary z ∈ Z and real numbers s1, s2
such that s2 > s1 > 0. Then, we obtain

|1+zs1|−1
s1

=
∣∣∣ 1s1 + z

∣∣∣− 1
s1

=
∣∣∣ 1s1 + z + 1

s2
− 1

s2

∣∣∣− 1
s1

≤
∣∣∣ 1s2 + z

∣∣∣+ ( 1
s1
− 1

s2

)
− 1

s1
=
∣∣∣ 1s2 + z

∣∣∣− 1
s2

= |1+zs2|−1
s2

.

Taking in both sides of the inequality the limit as s1 → µ1+0 and s2 → µ2+0,
we obtain (56).

From inequality (56), we obtain the following inequalities:

η1 = min
i=1,n

ℜµ∗(λi(A)) ≤ ℜµ∗(λj(A)) ≤ ℜµ(t)(λj(A))

≤ ℜµ∗(λj(A)) ≤ max
i=1,n

ℜµ∗(λi(A)) = η2,

for all j = 1, n. Consequently, condition (i) of Theorem 3 holds. Now, we can
conclude that all conditions of Theorems 4 and 5 are satisfied, i.e. estimates
(34)-(35) and (53)-(54) hold for any t ≥ t0 from T. Theorem is proved.

Remark 1. It is easy to check that L(ε) ≤ L′(ε), for all ε > 0, i.e. the esti-
mation (53) is rougher than (34). However, for specific time scales estimating
L′(ε) is simpler than L(ε), because in (54), we do not need to calculate the
value of the function hk(t, t0). In such cases, it is better to use the estimation
(53).

Remark 2. In the cases T = R or T = hZ (h > 0), the time scale interval
[t(t0), t(t0)] from the formula (35) degenerates to one or two points. In such
cases, the problem of calculating the maximum of this formula becomes trivial.
Indeed, if T = R, then µ(t) ≡ 0 on T and µ∗ = µ∗ = 0, so ωε(µ∗) = ωε(µ

∗) =
ωε(0) = n−1

ε
. Then t(t0) = t(t0) = t0 + ωε(0) = t0 +

n−1
ε
. Hence, in the

formula (35) we get:

max
s∈[t(t0),t(t0)]

(
(s− t0)

n−1e⊖ε(s, t0)
)
=

(t(t0)− t0)
n−1e⊖ε(t(t0), t0) = (t(t0)− t0)

n−1e⊖ε(t(t0), t0).

If T = hZ, then µ(t) ≡ h on T and µ∗ = µ∗ = h, so ωε(µ∗) = ωε(µ
∗) = ωε(h).

Further two cases are possible. If t0 + ωε(h) ∈ hZ, then t(t0) = t(t0) =
t0 + ω(h). If t0 + ωε(h) /∈ hZ, then t(t0) < t(t0), and between t(t0) and t(t0)
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there is no point from the scale hZ. In the last case, in the formula (35) we
get:

max
s∈[t(t0),t(t0)]

((s− t0)
n−1e⊖ε(s, t0))

= max
{
(t(t0)− t0)

n−1e⊖ε(t(t0), t0),

(t(t0)− t0)
n−1e⊖ε(t(t0), t0)

}
.

Remark 3. If T is a time scale, which has bounded graininess function µ(t)
and consists of isolated points only, then the segment [t(t0), t(t0)] consists of a
finite set of points of the scale. Therefore, in this case the maximum problem
from (35) is simple.

Based on Remark 2, we obtain the following corollaries from Theorem 5.

Corollary 1. For any matrix A ∈ Rn×n and positive real number ε > 0 such
that ε < 2∥A∥, the following estimation holds for all t ∈ R+:

∥eAt∥ ≤ max

{
n−1∑
k=0

(n−1)k

k! , n
(n−1)!

(
2∥A∥(n−1)

εe

)n−1
}

×e
(max

i
ℜ(λi(A))+ε)t

.

(57)

Proof. Making assumptions (24), we obtain (25) and, besides,

η = 1, t1 =
(n−1)
2∥A∥ , t = t = n−1

ε
, φ(t) =

n−1∑
k=0

(2∥A∥t)k
k!

.

Then, the estimation (34) becomes (57).

Corollary 2. For any matrix A ∈ Rn×n and positive real number ε > 0 such
that min

i=1,n
|1 + λi(A)| > 0 and ω1 < ωε(1), the following estimation holds for

all m ∈ N:

∥(I +A)m∥ ≤ max
i=1,3

Li ·
[
(1 + ε)max

i
|1 + λi(A)|

]m
, (58)
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where

L1 =
n−1∑
k=0

Ck
ω1

(
2∥A∥

min
i

|1+λi(A)|

)k

,

L2 =
n

(n−1)!(1+ε)ω

(
2∥A∥ω

min
i

|1+λi(A)|

)n−1

,

L3 =
n

(n−1)!(1+ε)ω

(
2∥A∥ω

min
i

|1+λi(A)|

)n−1

,

ω1 = inf

{
s ∈ Z : s ≥

(n−1)min
i

|1+λi(A)|

2∥A∥

}
,

ω = sup {s ∈ Z : s ≤ ωε(1)} , ω = inf {s ∈ Z : s ≥ ωε(1)} .

Proof. Making assumptions (26) and denoting t − t0 = m, we obtain
(27) and, besides,

t1 = inf

{
s ∈ Z : s ≥ t0 +

(n−1)min
i

|1+λi(A)|
2∥A∥

}
= t0 + ω1,

t = sup {s ∈ Z : s ≤ t0 + ωε(1)} = t0 + ω,

t = inf {s ∈ Z : s ≥ t0 + ωε(1)} = t0 + ω,

φ(t) =
n−1∑
k=0

Ck
m

(
2∥A∥

min
i

|1 + λi(A)|

)k

.

Then the estimation (34) becomes (58).
The following example shows the advantage of the estimations we propose

over the ones proposed in [22].
Example 4 Let us consider the matrixA, which is a 4-dimensional Jordan

block, whose diagonal is filled with 2. The objective is to derive estimations
of ∥eA(t, t0)∥ for the cases T = R and T = Z using Corollaries 1 and 2.

It is easy to check, that ∥A∥ ≈ 2.85. Setting ε = 0.2, one can check
that conditions of Corollaries 1 and 2 are satisfied. Hence, calculating the
constants in formulas (57) and (58), we obtain the following estimations for
∥eA(t, 0)∥ for time scales T = R (formula (59)) and T = Z (formula (60)):

∥eA(t, 0)∥ = ∥eAt∥ ≤ 20772 · e2.2t,∀t ∈ R+, (59)

∥eA(t, 0)∥ = ∥(I + A)t∥ ≤ 1015 · 3.6t,∀t ∈ N. (60)
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It should be emphasized that these estimations are particular cases of the
same formula (34).

As it was noted in the Introduction, in the paper [22] another approach
to estimate ∥eA(t, t0)∥ is proposed. Applying this approach, we obtain the
following estimation of ∥eA(t, t0)∥ in case T = R (formula (61)) and T = Z
(formula (62)):

∥eA(t, 0)∥ = ∥eAt∥ ≤ e2.81t, ∀ t ∈ R+. (61)

∥eA(t, 0)∥ = ∥(I + A)t∥ ≤ ∥I + A∥t ≤ 3.84t, (62)

for all t ∈ N ∪ {0}.
In Figure 1, the graphs of the common logarithms of the estimations

from (59) and (61), as well as ∥eAt∥ are presented. Such a representation
via logarithm is used in order to show the behaviour of these functions on a
large time interval

Figure 1: Logarithms of the function f1(t) = ∥eAt∥ (red line) and its estimations f2(t)
from (59) (blue line) and f3(t) from (61) (black line).

As we can see, for time scales T = R and T = Z, our estimations are
more precise than estimations obtained from the approach proposed in [22].

4. Stability analysis of quasilinear systems on a time scale

There are many publications devoted to stability investigation of quasi-
linear systems on a time scale. A review of the papers [24, 25, 5, 26, 22]
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on the stability investigation of quasilinear systems by the method of inte-
gral inequalities shows that all stability conditions obtained in these papers
contain so-called growth constants K and α from estimation (1). This fact
demonstrates the importance of the estimation (1). In this section we show
how the estimations (34)-(35) and (53)-(54) that we have proposed, allow to
investigate exponential stability of quasilinear systems on a time scale.

Let us consider the following system:

x∆(t) = Ax(t) + f(t, x), (63)

where x : T → Rn is the unknown, A is n × n regressive matrix, the vector
function f : T × Rn → Rn is an rd-continuous function on T, satisfying
f(t, x) = 0 if and only if x = 0 for all t ∈ T.

According to Definition 2.2.1 from [5] the solution x = 0 of system (63)
is exponentially stable, uniformly with respect to t if there exist constants
γ, λ > 0 (−λ ∈ R+) such that for any t0 ∈ T and x0 ∈ Rn, for the so-
lutions x(t; t0, x0) of system (63) the following holds for all t ≥ t0 ∈ T:
∥x(t; t0, x0)∥ ≤ ∥x(t0)∥γe−λ(t, t0). In [5] it is proved (see Theorem 2.4.3)
that as soon as system (63) satisfies the following conditions:

1) the state x = 0 of the system x∆(t) = Ax(t) is exponentially stable,
i.e. there exist numbers L, λ > 0 (−λ ∈ R+) such that ∥eA(t, t0)∥ ≤
Le−λ(t, t0), for all t ≥ t0;

2) there exists a constant γ > 0 such that ∥f(t, x)∥ ≤ γ∥x∥, for all (t, x) ∈
T× S, where S is defined as S = {x ∈ Rn : ∥x∥ < H,H = const > 0};

3) λ− γL > 0,

then the solution x = 0 of system (63) is exponentially stable on T.
Since our Proposition 1 provides an appropriate procedure to check con-

dition 1) and estimate the involved constants L and λ, it is a powerful tool
to obtain some exponential stability results for system (63). Let us illustrate
this tool by the following example.

Example 5. Let us consider system (63), whereA =

 0 2.65 1.5
0 −1.165 0.85

−0.2 −1.2485 −1.235

,

f(t, x) = 5·10−6·x sin t, x = (x1, x2, x3)
T , with the time scale T = P{tσk ,tk+1} =

∞⋃
k=0

[
k + k

2k+1
, k + 1

]
(see Example 3.11 in [10]), and check if the solution
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x = 0 is exponentially stable. For this aim let us first find estimation of
∥eA(t, t0)∥, using Theorem 5 and Proposition 1. Indeed, let us set ε = 0.1
and find some bounds on the constants ∥A∥, µ∗, µ

∗, η, ωε(µ∗), t1(t0), t(t0),
t(t0), which is necessary to get the estimation. Since

µ(t) =

{
k

2k+1
if t = k,

0, if t ∈
[
k + k

2k+1
, k + 1

)
,

then µ∗ = inf
t∈T

µ(t) = 0, µ∗ = sup
t∈T

µ(t) = 1
2
. Besides, ∥A∥ ∈ [3.5366, 3.5368]

and SpA = {−0.4,−1− i,−1 + i}. According to formulas (55):

η1 = min
i=1,3

ℜ(λi(A)) = −1, η2 = max
i=1,3

ℜ0.5(λi(A)) = −0.4.

Using η1, we obtain that η = 0.5 > 0. According to formula (29), ωε(µ) =
1+

√
1+µε
ε

. Then:
ωε(µ∗) = 20, ωε(µ

∗) = 20 + δ,

where δ = 10(
√
1.05 − 1). Let us go on with t1(t0). Due to formula (30)

t1(t0) = inf {s ∈ T : s ≥ t0 + η/∥A∥}. If t0 ∈ [k + 1− η
∥A∥ , k + 1] for k ∈ N0,

then t0 +
η

∥A∥ ∈ [k + 1, k + 1 + η
∥A∥ ]. Due to the fact that η

∥A∥ ≈ 0.5
3.5367

≈
0.14, and the length of each ”gap” of T is larger than 1

3
, we conclude that

t0 +
η

∥A∥ ∈ [k + 1, k + 1 + k+1
2k+3

], which implies that t1(t0) = k + 1 + k+1
2k+3

.

For the remaining values of t0 it can be seen that t0 +
η

∥A∥ is an interior

point for one of the segments
[
k + k

2k+1
, k + 1

]
, which implies that in this case

t1(t0) = t0 +
η

∥A∥ . Based on the analysis of t1(t0), we obtain the following
estimation:

t1(t0)− t0 ≤
1

2
+

η

∥A∥
. (64)

In order to calculate L we have also to estimate t(t0) as well as t(t0). Since
ωε(µ∗) = 20 and ωε(µ

∗) = 20 + δ, then according to formula (31) we get:

t(t0) = sup {s ∈ T : s ≤ t0 + 20} ,
t(t0) = inf {s ∈ T : s ≥ t0 + 20 + δ} . (65)

Using formulas (65), we can calculate t(t0) and t(t0) and then use these
numbers for calculating L′(ε) by formula (54). Since t(t0) and t(t0) depend
on t0, L

′(ε) also depends on t0. This is an obstacle to the application of
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conditions 1)-3), which guarantee the exponential stability of the solution
x = 0, since in 1) and 3) L is a constant. To avoid this obstacle let us estimate
L′(ε) from above. Firstly, we estimate the maximum from the formula (54):

max
s∈[t(t0),t(t0)]

((s− t0)
2e⊖ε(s, t0))

≤ max
s∈[t(t0),t(t0)]

(s− t0)
2 · max

s∈[t(t0),t(t0)]
e⊖ε(s, t0)

≤ (t(t0)− t0)
2e⊖ε(t(t0), t0).

(66)

Here we used the fact that the function e⊖ε(·, t0) decreases on the set [t0,+∞)∩
T. Now we estimate each of the multipliers from the last line of (66). For
this aim we have to find estimations for t(t0) and t(t0). Due to δ < 0.25 we
obtain that if t0 ∈ [k + k

2k+1
, k + 1] for some k ∈ N0, then t0 + 20 + δ <

k + 21 + k+21
2k+43

∈ T, which allows us to conclude that t(t0) ≤ k + 21 + k+21
2k+43

in accordance with (65). Similarly, from the inequality t0 + 20 > k + 20 the
following estimation is obtained: t(t0) ≥ k+20. Now we are able to estimate
each multiplier in the inequality (66). For the first one we get:

(t(t0)− t0)
2

≤
(
k + 21 + k+21

2k+43
−
(
k + k

2k+1

))2
< 484.

(67)

Now let us estimate e⊖ε(t(t0), t0) from above. Using Theorem 1.4.2 from
[5] on properties of the exponential function, we obtain: e⊖ε(t(t0), t0) =
e⊖ε(t(t0), 0)e⊖ε(0, t0). Then, according to those properties and Remark 1.3.1
from [5], we conclude that function e⊖ε(t, s) increases with respect to the first
argument t and decreases with respect to the second one s. Since t0 ≤ k + 1
and t(t0) ≥ k + 20, the following estimation holds:

e⊖ε(t(t0), t0) ≤ e⊖ε(k + 20, k + 1). (68)

Now, let us estimate e⊖ε(k+20, k+1). Due to properties of the exponential
function and specifics of the time scale T, we obtain the following estimation:

e⊖ε(k + 20, k + 1) =
k+19∏
i=k+1

e⊖ε(i+ 1, i) =

=
k+19∏
i=k+1

1
eε(i+1,i)

=
k+19∏
i=k+1

1

eε(i+1,i+ i
2i+1)eε(i+

i
2i+1

,i)
.

Let us consider segments
[
i, i+ i

2i+1

]
and estimate eε

(
i+ i

2i+1
, i
)
. Based on

the structure of the time scale T from the present example, we can conclude
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that only ends of this segment belong to T and besides i+ i
2i+1

= σ(i). Hence,

eε
(
i+ i

2i+1
, i
)
= eε (σ(i), i) = 1 + µ(i)ε = 1 + iε

2i+1
> 1, for all i ∈ N.

Similarly, let us consider segments
[
i+ i

2i+1
, i+ 1

]
and estimate eε

(
i+ 1, i+ i

2i+1

)
.

All points of that segment are the points from T. Consequently, eε
(
i+ 1, i+ i

2i+1

)
=

e(1−
i

2i+1)ε = e(
i+1
2i+1)ε > e

ε
2 , for all i ∈ N.

From the estimate (68) and the calculations that follow it, we obtain the
following estimation:

e⊖ε(t(t0), t0) <
k+19∏
i=k+1

1

1·e
ε
2
= e−

19ε
2 = e−0.95. (69)

Finally, using the estimations (66), (67) and (69), from (53) and (54), we
obtain the following estimation:

∥eA(t, t0)∥ ≤ 56192 · e−0.3(t, t0).

From this inequality one can conclude that condition 1) from above holds with
L = 56192 and λ = −0.3. Since f(t, x) = 5 · 10−6 · x sin t, then ∥f(t, x)∥ ≤
5 · 10−6∥x∥. It is now easy to verify that conditions 2)-3) also hold. Hence,
the solution x = 0 of system (63) is exponentially stable.

5. Conclusion

In this paper, we have studied the matrix exponential function on time
scale. This function generalizes the usual matrix exponential eA(t−t0) as well
as the m-th power (I + A)m for an arbitrary time scale. Using the time
scale theory, we have proposed new estimations of the norm of the matrix
exponential function. It is shown that such an estimation can be used for
stability investigation of dynamic equations on a time scale.
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