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Abstract

Based on large a simulation study, this paper investigates which strategy
to adopt in order to choose the most accurate forecasting model for Mixed
causal-noncausal AutoRegressions (MAR) data generating processes: always
differencing (D), never differencing (L) or unit root pretesting (P). Relying on
recent econometric developments regarding forecasting and unit root testing
in the MAR framework, the main results suggest that from a practitioner’s
point of view, the P strategy at the 10%-level is a good compromise. In fact,
it never departs too much from the best model in terms of forecast accuracy,
unlike the L (respectively D) strategy when the DGP becomes very persistent
(respectively less persistent).
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1 Introduction

Regarding time series forecasting, the question about using a model for the
series in levels or in first differences can be traced back to Box and Jenkins
[1976]. In their popular book, these authors recommend to use the model
in levels unless the root of the process to forecast is close to unity, in which
case the model in first differences would achieve the best forecast accuracy.
The introduction of unit root tests by Dickey and Fuller [1979] and their
application in an influential paper by Nelson and Plosser [1982] gave rise to
a renewed interest in this question. Indeed, from a large set of long historical
time series for the U.S. economy, Nelson and Plosser [1982] conclude that the
null hypothesis that these series contain a unit root cannot be rejected for
most of them. Yet, as emphasized in Dickey, Bell, and Miller [1986], forecasts
of a unit root process are very different from forecasts of a stationary process,
also when the latter is strongly persistent. Hence, beside “always difference”
or “never difference” (denoted respectively D and L hereafter) forecasting
strategies, a third option has emerged: unit-root pretesting (denoted P) and
difference or not accordingly. From Monte-Carlo simulations, evidence in
favour of pretesting strategy was found for the linear autoregressive class of
models by e.g. Campbell and Perron [1991], Stock [1996], Stock and Watson
[1999] or Diebold and Kilian [2000], especially for roots close to unity.

In this paper, we answer the same question for the class of mixed causal-
noncausal autoregressive (MAR) models. These models, introduced decades
ago in statistics, have acquired growing popularity in economics and finance
over the past few years. Development of their econometric theory as well as
applications to macroeconomic or financial time series modelling and fore-
casting can be found in Lanne and Saikkonen [2011], Lanne, Luoma, and
Luoto [2012], Lanne and Saikkonen [2013], Hencic and Gouriéroux [2015],
Gouriéroux and Zakoian [2015], Gouriéroux and Jasiak [2016], Gouriéroux
and Zakoian [2017], Fries and Zakoian [2019], Cavaliere, Nielsen, and Rahbek
[2020] or Hecq and Voisin [2023], among others. The interest in MAR mod-
els, which allow for dependence on both the past and the future — unlike the
well-known backward-looking autoregression which rules out dependence on
future observations — stems mainly from two of their characteristics. First,
they are able to capture epochs of bubble build-up and burst. Second, as
noticed in a previous paper [Bec, Nielsen, and Säıdi, 2020], mixed causal-
noncausal autoregressive models could prove very useful for forecasting as
they can be viewed as very parsimonious representations of more complex
nonlinear DGPs (see also Gouriéroux and Zakoian [2017] on this point). Due
to their dependence on future observations, specific forecasting methods have
been developed for MAR models by Lanne, Luoto, and Saikkonen [2012] and
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Gouriéroux and Jasiak [2016]. Similarly, a specific test for a unit root in the
backward autoregressive polynomial has been proposed by Saikkonen and
Sandberg [2016].

The goal of this paper is twofold: i) to compare the performance of the
forecast methodologies proposed by Lanne, Luoto, and Saikkonen [2012] and
Gouriéroux and Jasiak [2016] and ii) to evaluate the relevance of unit root
pretesting, P, for these MAR models’ forecasting performance, compared to
the D and L strategies. To this end, the recent developments cited above are
used in a large simulation study. Within this methodological framework, a
variety of degrees of persistence, of forecast horizons, of sample sizes as well
as of levels of the test are under scrutiny.

After a brief presentation of the MAR model in Section 2, Section 3
exposes the amended version of Saikkonen and Sandberg [2016] unit root
test proposed in a previous work [Bec, Nielsen, and Säıdi, 2020] in order
to circumvent likelihood bimodality issues involved by the estimation of the
MAR models. Then, Section 4 describes the forecasting methods of Lanne,
Luoto, and Saikkonen [2012] and Gouriéroux and Jasiak [2016]. Section 5
reports results of preliminary simulation exercises which are used to compare
the effectiveness of both methods and to fine-tune the settings of the main
simulation study reported in Section 6. Section 7 provides an empirical
application in terms of the Brent crude oil price, while Section 8 concludes.

2 The MAR Setting

Consider the mixed causal noncausal autoregression, MAR(1,1), as given by

Φ(L)Ψ(L−1)yt = (1− φL)(1− ψL−1)yt = εt, (1)

where εt is assumed i.i.d. with p.d.f. given by g(·; θ) indexed by parameters
in θ. For the data generating process, we consider the case −1 < φ ≤ 1
and −1 < ψ < 1, allowing a unit root in the causal polynomial, Φ(L), see
Saikkonen and Sandberg [2016] for a discussion.

Following Lanne and Saikkonen [2011] and Gouriéroux and Jasiak [2016],
we define the unobserved component ut = (1−φL)yt such that (1−ψL−1)ut =
εt and

ut = (1− ψL−1)−1εt =
∞∑
j=0

ψjεt+j. (2)

Using the terminology of Gouriéroux and Jasiak [2016], ut is y−causal, as it
depends on current and past values of y, and ε−noncausal, as it depends on
current and future values of ε. For a specified innovation density g(·; θ), the
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parameters in (1) can be estimated from a sample {yt}Tt=1 using approximate
maximum likelihood,

(φ̂, ψ̂, θ̂) = arg max
φ,ψ,θ

T−1∑
t=2

log g
(
(1− φL)(1− ψL−1)yt; θ

)
,

conditional on initial and terminal values, y1 and yT , see e.g. Breidt et al.
[1991], and Lanne and Saikkonen [2011]. Below, we use a Student’s t(0,σ2,λ)
distribution, such that

g(εt;σ
2,λ) =

Γ(λ+1
2

)

Γ(λ
2
)

(
πλσ2

)− 1
2

(
1 +

ε2t
σ2λ

)−λ+1
2

, (3)

with θ = (σ2,λ) containing the degrees of freedom parameter, λ, and the
scale, σ2.

3 Unit Root Testing

The unit root test pertaining to the hypothesis H0 : φ = 1 in the MAR model
is considered in Saikkonen and Sandberg [2016]. They show that for g(·; θ)
symmetric, the usual one-sided unit-root test statistic,

τ =
φ̂− 1

se(φ̂)
, (4)

where se(φ̂) is the square root of the relevant entry in the inverse observed
information, has a limiting distribution, Dτ (ρ), that depends on the nuisance
parameter ρ. If g(·; θ) is the Student’s t density in (3), with λ > 2, it holds
that ρ is a function of λ:

ρ(λ)2 =
(λ− 2)(λ+ 3)

λ(λ+ 1)
.

For mean-zero data, the critical values are given in Saikkonen and Sandberg
[2016] in terms of a response surface approximation, as

cv1%(λ) = −2.321− 0.492ρ(λ) + 0.251ρ(λ)2

cv5%(λ) = −1.639− 0.495ρ(λ) + 0.187ρ(λ)2

cv10%(λ) = −1.276− 0.480ρ(λ) + 0.131ρ(λ)2,
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where cvx%(λ) is the critical value at the x percent level as a function of λ,
and, for example:

λ 3 4 5 6 8 10 20 ∞
cv1%(λ) −2.515 −2.551 −2.557 −2.560 −2.561 −2.562 −2.562 −2.562
cv5%(λ) −1.965 −1.964 −1.959 −1.956 −1.952 −1.950 −1.948 −1.947
cv10%(λ) −1.693 −1.663 −1.649 −1.642 −1.634 −1.631 −1.627 −1.625

However, Bec et al. [2020] show that a bimodality issue occurs in the
Student’s t distributed errors case, which frequently leads to interchanged
roots. Indeed, the backward root can be estimated as the forward root and
vice versa. Since the unit root test is based on the estimation of the backward
root, this can pose a problem. As a consequence, the estimation strategy
proposed by Bec et al. [2020] relies on a grid search procedure in order to
characterize the entire likelihood surface and list all local maxima. Then,
if there are multiple maxima, the maximum with the backward root higher
than the forward root (φ̂ > ϕ̂) is selected even if there exists a maximum
with a higher likelihood but with φ̂ < ϕ̂ ≈ 1. This choice stems from the fact
that a unit root in the forward component would lack reasonable economic
interpretation: It would mean that agents look into the infinite future without
discounting. Beside, the test statistic is similar to Saikkonen and Sandberg
[2016]’s. Hence, this modified version of Saikkonen and Sandberg [2016]’s
unit root test will be used in the subsequent analysis.

4 Forecasting

To forecast {yT+h}Hh=1 based on the MAR model, we consider the approaches
suggested in Lanne, Luoto, and Saikkonen [2012] and Gouriéroux and Jasiak
[2016]. Lanne et al. [2012] start from (2) and simulate future paths {εT+k}Kk=1

to approximate the conditional expectation E(yT+h | yT ) and the c.d.f.
Gouriéroux and Jasiak [2016], on the other hand, derive the predictive den-
sity p(uT+1, ...,uT+H | yT ) and use importance sampling to draw from the
predictive distibution of {yT+h}Hh=1 given yT .

4.1 Lanne, Luoto, and Saikkonen [2012] (LLS)

To derive the point forecast, it is used that

E(yT+h | yT ) = φhyT + E(
h−1∑
i=0

φiuT+i+1 | yT ), h = 1, 2, ...,H.
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The infinite sum in (2) is then approximated with a truncated version using

K terms, and based on N simulated paths, {ε(i)T+k}Kk=1 for i = 1, 2, ...,N ,
Lanne et al. [2012] suggests to estimate the conditional expectation as

E(yT+h | yT )

= φhyT + E(
∑h−1

i=0
φiuT+i+1 | yT )

≈ φhyT + E

(∑h−1

i=0
φi
∑K−h

k=0
ψkεt+h+i+k | yT

)

≈ φhyT +

1
N

∑N
i=1

(∑h−1
i=0 φ

i
∑K−h

k=0 ψ
kεt+h+i+k

)
g
(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M); θ

)
1
N

∑N
i=1 g

(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M); θ

) ,(5)

where εT is found as

εT (uT , ε
(i)
T+1, ..., ε

(i)
T+M) = ûT −

K∑
k=1

ψkε
(i)
T+k. (6)

To get also interval forecasts, we evaluate the c.d.f. over a grid x ∈
(x1, ...,xG) using

1
N

∑N
i=1

(
I
(∑h−1

i=0 φ
i
∑K−h

k=0 ψ
kεt+h+i+k ≤ x

))
g
(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M); θ

)
1
N

∑N
i=1 g

(
εT (uT , ε

(i)
T+1, ..., ε

(i)
T+M); θ

) ,

similar to (5) where I(·) is the indicator function.
In the implementation below we chooseK ∈ [Kmin,Kmax], such that ψK <

0.0001 with Kmin = H+5 and Kmax = 200. For the interval forecast, we use a
grid of 1024 equally spaced points in the interval between min(µu−12σu,uT−
σu) and max(µu+12σu,uT +σu), where µu and σ2

u denote the empirical mean
and variance of {ut}Tt=1. These choices ensure that the interval is wide enough
to include most probability mass of the forecast distributions for H = 10.
Specific quantiles are found using linear interpolation.

4.2 Gouriéroux and Jasiak [2016] (GJ)

To obtain density forecasts for {yT+h}Hh=1 conditional on yT , GJ suggest to
forecast the ε−noncausal component {uT+h}Hh=1 given yT , and use ut = (1−
φL)yt to construct density forecasts for {yT+h}Hh=1 from forecast densities for
{uT+h}Hh=1 and yT .
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To forecast {uT+h}Hh=1, Gouriéroux and Jasiak [2016] rewrite the joint
predictive density,

p(uT+1, ...,uT+H | yT ) = p(uT+1, ...,uT+H | uT )

=
p(uT ,uT+1, ...,uT+H)

p(uT )

=
p(uT ,uT+1, ...,uT+H−1 | uT+H)p(uT+H)

p(uT )
.

Using estimated versions for {ut}Tt=1, ψ, and θ and estimating the stationary
distributions by sample averages, an estimate of the predictive density is
given in closed form

p̂(uT+1,uT+2, ...,uT+H | ûT )

= g(uT − ψ̂uT+1; θ̂) · g(uT+1 − ψ̂uT+2; θ̂) · · · g(uT+H−1 − ψ̂uT+H ; θ̂)

×
∑T

t=1 g(uT+H − ψ̂ût; θ̂)∑T
t=1 g(uT − ψ̂ût; θ̂)

. (7)

The closed form for the joint predictive density in (7) can be used to simulate
paths for {uT+h}Hh=1 e.g. using Sampling-Importance-Resampling (SIR), see
Rubin [1988].

Below, we implement SIR based on an importance density, defined by a
causal AR(1) with Student’s t(0,σ∗2,λ∗) innovations1. We generate candi-

date forecast paths {u∗(i)T+h}Hh=1, for i = 1, 2, ...,M , conditional on ûT , using
the causal AR(1) model

u
∗(i)
T+h = γ∗u

∗(i)
T+h−1 + σ∗η

∗(i)
T+h, η

∗(i)
T+h ∼ t(0, 1,λ∗), (8)

with u
∗(i)
T = ûT , and use the importance density

q̂(u
∗(i)
T+1, ...,u

∗(i)
T+H | ûT ) = g∗(u

∗(i)
T+H | u

∗(i)
T+H−1) · · · g

∗(u
∗(i)
T+2 | u

∗(i)
T+1)g

∗(u
∗(i)
T+1 | ûT ),

where g∗(·) is the conditional density for the causal AR(1) model depending
on (γ∗,σ∗,λ∗).

1We have also considered a recursive version of the SIR algorithm, where we resample

the pairs {y(j)T+h−1,u
(j)
T+h} at each forecast horizon, h = 1, 2, ...,H, but otherwise use the

same approach as below. This is computationally more demanding, but could in principle
improve the precision because it does not rely on the fit of entire forecast paths. However,
10,000 Monte Carlo replications of a MAR(1,1) DGP with φ = 0.9, ψ = 0.6, σ = 1, λ = 7
and T = 200 revealed no improvement of the forecasts accuracy compared to the SIR
approach of GJ or the LLS method. These additional results are available upon request.
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For each candidate path, {u∗(i)T+h}Hh=1, we calculate the corresponding im-
portance weight

w(i) =
p̂(u

∗(i)
T+1, ...,u

∗(i)
T+H | ûT )

q̂(u
∗(i)
T+1, ...,u

∗(i)
T+H | ûT )

.

In the resampling step of the SIR algorithm, we draw N forecast paths from
the M candidate paths {u∗(i)T+h}Hh=1 i = 1, 2, ...,M , with probabilities given by
the normalized importance weights

p(i) =
w(i)∑M
i=1w

(i)
.

For M and N large, the final sample paths, {u(j)T+h}Hh=1 j = 1, ...,N , are draws
from the predictive distribution with p.d.f. given by (7).

For the h-step forecast, h = 1, 2, 3, ...,H, the forecast paths are updated
recursively from

y
(j)
T+h = u

(j)
T+h + φy

(j)
T+h−1.

Point forecasts, denoted {ŷT+h}Hh=1, can be derived using a location mea-
sure for the simulated predictive distribution. GJ suggest the pointwise mode
as the most likely outcome; an alternative would be the median or the mean.

The effectiveness of the SIR algorithm depends on the chosen importance
density, and before discussing the effect of unit root pretesting we consider
a small pilot simulation, where we vary (γ∗,σ∗2,λ∗) to ensure a sufficiently
large variation of the candidate paths.

5 Preliminary Simulations

This Section presents the pilot simulations study which aims to compare the
approaches of Lanne et al. [2012] and Gouriéroux and Jasiak [2016] and to
guide the choice of (i) the importance density of the SIR algorithm, (ii)
the location measure for the simulated predictive distribution and (iii) the
forecasting approach2.

In the simulation below we useB simulated MAR(1,1) time series, {y(b)t }T+Ht=1

b = 1, 2, ...,B, with sample length T = 200, and parameters given by φ = 0.9
and ψ = 0.6.

2We have also explored the influence of the number of simulations. To
this end, we have compared forecasts obtained for M and N taking values in
{50000, 20000, 10000, 5000, 1000}. Point forecasts appear to be reliable for quite low num-
ber of simulations. For the chosen setting, interval forecasts appear reliable with values
of N and M larger than 5000-10000. Accordingly, the subsequent simulation study is
conducted for M = N = 10000. These additional results are available upon request.
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To compare point forecasts, we use the mean absolute deviation3 from
the true value of different implementations for each forecast horizon h ∈
{1, 2, 5, 10}, defined as

MAD(h) =
1

B

B∑
b=1

∣∣∣ŷ(b)T+h − y(b)T+h∣∣∣ .
We also consider the 90 percent coverage of the density forecasts, i.e. the
proportion of cases where the actual value of the time series, yT+h, is included
in the 90 percent confidence interval of the forecast. For the pilot simula-
tions, we use M = N = 10000 and B = 10000 replications unless otherwise
mentioned.

In order to choose the importance density of the SIR algorithm, we con-
duct a simulation study for various values of (γ∗,σ∗2,λ∗). First, we consider
γ∗ ∈ {γ̃, 1}, where γ̃ is the OLS estimate obtained from a causal AR(1)
model for {ût}Tt=1. For the scale we consider σ∗2 = cσ̃2, where σ̃2 is the
OLS estimate and where c ∈ {1, 4} potentially inflates the variance. Finally,
we take λ∗ ∈ {λ̂, 3, 100}, where λ̂ is the MLE from the MAR model4. The
forecast accuracy performances of these various calibrations, as measured by
the MAD(h) and the 90%-coverage, are reported in Table 1 (columns (1) to
(8)), and the following preliminary conclusions emerge:

1. Regarding the location measure, it appears that the mode is always
dominated by the mean and the median, the last two ones giving very
similar MAD’s. This could be due to the well-known noise of the mode
estimates. We have considered different versions of mode estimates,
and for the present case the maximum of the estimated kernel density
(using a Gaussian kernel with 128 steps to 2 percent trimmed data) per-
forms better than the half-sample median, see e.g. Bickel and Frühwirth
[2006]. In the subsequent simulation study, we will focus on the median
which may be more robust for low values of λ.

2. The coverage rates, given in the last four lines of Table 1, are generally
excellent indicating that the density forecast may not be too sensitive
to the precise implementation.

3The MAD is preferred to the more popular (R)MSE because the latter may be sensitive
to a few very large realizations of the |ε|’s, which can occur when working with fat-tailed
distributed errors. The tail dependence of the forecasts distribution is also the reason why
Gouriéroux and Jasiak [2016] prefer to measure the central tendency of the forecasts by
the “mode” rather than by the more conventional “mean” forecast.

4It is well-known that the effectiveness of importance sampling requires that the effec-
tive support of the proposal distributions is at least as big as the target distribution.
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3. The differences between MAD based on different importance densities
are generally small for the present case. Overall, the preferred is case
(5) based on a unit root in the candidate model given in Equation (8):
this is the one retained for the subsequent simulation study.

4. The last column of Table 1 reports the forecast performance based on
LLS approach. It is worth noticing that the differences between the
MAD’s and 90%-coverages obtained from LLS and GJ methods are
generally very small. Since the latter i) gives the full distribution of
the forecasts conditional on the past and ii) does not require to forecast
the ε’s far in the future as the persistence gets strong, it is retained in
the subsequent work.

6 Main Simulation Study

Tables 2 to 3 below, and A1 to A2 in the appendix, compare the forecast
accuracy reached for T ∈ {100, 200, 400} by five different strategies for the
choice of the forecasting model: the one called L refers to the model in levels;
the next three ones correspond to the pretest P strategy at the 10%-, 5%-
and 1%-levels respectively; the last one, D, corresponds to the model in first
differences. In this baseline MAR(1,1) DGP, the forward root parameter is
fixed to ψ = 0.6 while the degrees of freedom of the Student distribution is set
to λ = 7. Finally, the backward root takes value in {0.9, 0.95, 0.975, 0.99, 1},
reported in columns (1) to (5).

Table 2 gives the levels of the MADs measures for T = 100. Unsurpris-
ingly, the forecast accuracy decreases as the forecast horizon h increases5:
the MAD values obtained for h = 1 range from 0.936 to 0.953 whereas the
ones found for h = 10 lie between 4.50 and 6.96.

Table 3 (respectively A1 and A2 in the appendix) reports the percent
deviation of the MADs from the one of the best model, for T = 100 (re-
spectively 200 and 400). It can be seen from Tables 2 and 3 that the best
strategy to choose the forecasting model depends heavily on the size of the
backward root φ. Indeed, for values up to 0.95, the L strategy outperforms
all other ones, all the more so as h increases. For this range of φ values,
the second best strategy is P at the 10%-level: the percent deviation from
the L strategy in terms of MAD ranges from 0.6% for h = 1 to 6.9% for
h = 10 when T = 100. It ranges from 0% (h = 1) to 2.4% (h = 10) when

5This finding is confirmed for T = 200 and 400, as can be seen from Tables A1 and A2
in the appendix. The tables giving the levels of the MAD for these sample sizes are not
reported to save space, but are available upon request.
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Table 2: Forecasting Results for T=100.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.941 0.942 0.943 0.943 0.945
MAD(2) L 1.70 1.75 1.77 1.79 1.80
MAD(5) L 3.32 3.66 3.85 3.97 4.07
MAD(10) L 4.50 5.48 6.11 6.58 6.96

MAD(1) P10% 0.947 0.947 0.945 0.942 0.938
MAD(2) P10% 1.72 1.77 1.78 1.78 1.78
MAD(5) P10% 3.44 3.77 3.89 3.93 3.94
MAD(10) P10% 4.81 5.80 6.24 6.48 6.57

MAD(1) P5% 0.948 0.947 0.945 0.942 0.938
MAD(2) P5% 1.73 1.77 1.78 1.78 1.78
MAD(5) P5% 3.49 3.79 3.89 3.92 3.94
MAD(10) P5% 4.98 5.86 6.25 6.46 6.56

MAD(1) P1% 0.952 0.948 0.943 0.940 0.937
MAD(2) P1% 1.75 1.77 1.77 1.77 1.77
MAD(5) P1% 3.56 3.80 3.88 3.92 3.94
MAD(10) P1% 5.14 5.91 6.25 6.45 6.54

MAD(1) D 0.953 0.945 0.941 0.939 0.936
MAD(2) D 1.76 1.77 1.77 1.77 1.77
MAD(5) D 3.64 3.81 3.88 3.91 3.92
MAD(10) D 5.39 5.98 6.26 6.43 6.52

Unit root test ERF 10% 64.6 40.3 24.2 14.9 7.9
Unit root test ERF 5% 43.7 23.4 13.2 7.7 4.1
Unit root test ERF 1% 18.7 9.0 4.7 2.8 1.7

Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1.
The forecasts are based on M = N = 10000 draws and the results are
based on B = 10000 Monte Carlo replications. ERF x% denotes the
empirical rejection frequency of the null at the x% level.
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Table 3: Results for T=100. Deviation from Best
Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.2 0.4 1.0
MAD(2) L 0.0 0.0 0.0 1.1 1.7
MAD(5) L 0.0 0.0 0.0 1.5 3.8
MAD(10) L 0.0 0.0 0.0 2.3 6.7

MAD(1) P10% 0.6 0.5 0.4 0.3 0.2
MAD(2) P10% 1.2 1.1 0.6 0.6 0.6
MAD(5) P10% 3.6 3.0 1.0 0.5 0.5
MAD(10) P10% 6.9 5.8 2.1 0.8 0.8

MAD(1) P5% 0.7 0.5 0.4 0.3 0.2
MAD(2) P5% 1.8 1.1 0.6 0.6 0.6
MAD(5) P5% 5.1 3.6 1.0 0.3 0.5
MAD(10) P5% 10.7 6.9 2.3 0.5 0.6

MAD(1) P1% 1.2 0.6 0.2 0.1 0.1
MAD(2) P1% 2.9 1.1 0.0 0.0 0.0
MAD(5) P1% 7.2 3.8 0.8 0.3 0.5
MAD(10) P1% 14.2 7.8 2.3 0.3 0.3

MAD(1) D 1.3 0.3 0.0 0.0 0.0
MAD(2) D 3.5 1.1 0.0 0.0 0.0
MAD(5) D 9.6 4.1 0.8 0.0 0.0
MAD(10) D 19.8 9.1 2.5 0.0 0.0

Unit root test ERF 10% 64.6 40.3 24.2 14.9 7.9
Unit root test ERF 5% 43.7 23.4 13.2 7.7 4.1
Unit root test ERF 1% 18.8 9.0 4.7 2.8 1.7

Note: The data generating process has ψ = 0.6, λ = 7, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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T = 200 and is 0% for all horizons when T = 400. For backward root values
up to 0.95, the worst strategy is D. For instance, Table A1 in the appendix
indicates that this strategy’s percent deviation from the L strategy in terms
of MAD ranges from 0.9% for h = 1 to 20.3% for h = 10 when T = 200.

By contrast, when φ approaches 1 from below, i.e. local alternatives for
the unit root pretest, the D strategy is the best one, the strategy P being
the second best again at the 10%-level. These conclusions hold for larger
sample sizes, see Tables A1 and A2 in the Appendix, and provide support
to Box and Jenkins [1976]’s recommendation. Furthermore, a closer look at
Tables 3, A1 and A2, also reveals that the forecast performance deterioration
of the L strategy when φ approaches 1 (first four lines of columns (3) to (5))
is much weaker than the one of the D strategy when φ is well below unity
(last four lines of columns (1) to (2)), all the more so as the sample size
increases6. This finding would support the L strategy. Nevertheless, from
a practitioner’s point of view, as values of φ > 0.95 are typically found for
quarterly and monthly macroeconomic data, see Diebold and Kilian [2000],
the P strategy at the 10%-level seems to be a good compromise. In fact, as
stressed earlier, its performance is similar to the one of the L strategy for
backward root values far from unity — especially for T > 100 — while it
deteriorates in general less than the one of the L strategy for backward root
values as φ approaches 1 from below. Indeed, looking at columns (3) to (5)
of e.g. Table 3, it can be seen that the percent deviations of the L strategy
from the best model lie between 0% (h = 2) and 6.7% (h = 10) whereas the
ones of the P10% range from 0.2% (h = 1) to 2.1% (h = 10).

The same conclusions hold for a smaller value of the forward root, i.e.
ψ = 0.3 as reported in Table A3 in the appendix, or for fatter tails in the
errors Student’s t distribution, namely λ = 3 as reported in Table A3. As a
matter of fact, the relative performance of the P10% is even improved.

Results obtained from demeaned and detrended data — reported in Ta-
bles A5 and A6 in the appendix — are more mitigated. They also support
the choice of the P strategy at the 10%-level, for the same reasons as above,
but for horizons h = 1, 2 only. Indeed, for longer forecast horizons, the dete-
rioration of its performance is more sizeable than the one of the L strategy.
This stems from the fact that in presence of a deterministic component, the
P strategy suffers from higher critical values as well as from one or two more
parameters to estimate for demeaning or detrending. As a consequence, the
power of the unit root test decreases noticeably: For φ = 0.9, the empirical
rejection frequency (ERF) at the 5%-level drops from 87.2% (Table A1) to
34.3% in the demeaned case (Table A5) and 18% in the detrended case (Table

6This outcome emphasizes the importance of the power of the unit root test.
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A6). It is worth noticing that in these demeaned and detrended cases, the
unit root test is undersized, as can be seen from the last two lines, column
(5), of the corresponding tables. This suggests that for forecast horizons
greater than 2, a modified pretest strategy should be considered such as one
relying on a higher nominal level than 10%, e.g. 20%, or one where the de-
terministic component coefficients would be estimated following the lines of
Elliott et al. [1996], namely using local-to-unity GLS instead of OLS. We
leave this analysis for further research.

7 The Case of Brent Crude Oil Prices

In this section, we focus on the oil price data for two reasons. The first one
is that most empirical work focusing on oil price forecasting compare various
approaches — relying on e.g. AR, ARIMA, VAR, Time Varying Parameters
models, on oil futures markets or survey forecasts — with conventional no-
change forecasts. Indeed, the latter are considered as a benchmark since they
are difficult to beat in out-of-sample oil price forecasting exercises7. The no-
change forecasting approach assumes that the oil price follows a random walk
process. Basically, it implies that the forecasts for the next few months or
quarters are simply set to the last observed value. Hence, it amounts to
always difference the series. The second reason is that oil prices have been
found to be well represented by a MAR model in e.g. Hecq and Voisin [2023].

Here, the monthly Brent crude oil price data are studied from January
2004 to April 2023. This series comes from the Federal Reserve Bank of
Saint-Louis FRED database and is plotted in Figure 1 (A). All estimations
are performed until June 2022 so as to keep ten observations for the out-of-
sample forecasting exercise.

It turns out that two lags in a linear AR model are enough to eliminate
any serial correlation in the residuals up to order 24. Moreover, the Jarque
and Bera test statistics strongly rejects the null of Gaussian-distributed errors
with a p-value lower than 0.01%, which is important as non-Gaussianity is
required for the identification of MAR models. Using the Bec et al. [2020]’s
unit root test against a MAR(1,1) stationary alternative, a value of -2.92 is
obtained: as the 5 and 10% critical values are -2.74 and -2.43 respectively,
the unit root null is rejected. Following the strategy stemming from the
simulation study presented in the previous section, the forecasts should be
done from the MAR model in levels. For comparison purpose, a MAR in first

7See, amongst others, Alquist et al. [2013], Baumeister and Kilian [2015], Baumeister
et al. [2022], Ellwanger and Snudden [2023] and the numerous references therein.
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Figure 1: Brent crude oil prices January 2004 to April 2023 (US Dollars
per Barrel) in panel (A), and a comparison of forecasts from MAR, DMAR

and Random Walk model in panel (B).

differences — denoted DMAR hereafter — is also considered. Both models’
estimates are reported in Table 4.

The last ten observations in our sample (July 2022-April 2023) are then
used to compare the forecasting accuracy of the MAR and DMAR mod-
els. Panel (B) of Figure 1 reports median forecasts obtained from the MAR
(MAR F, red line) and the DMAR (DMAR F, blue line) models together
with the actual observations (black line). As a benchmark, the forecasts
from a simple random walk (RW F, green line) are also considered.

Obviously, the forecasts computed from the MAR model in levels out-
perform the ones obtained from the MAR in first differences and from the
random walk. It is also worth noticing that the 95% confidence band asso-
ciated to DMAR forecasts (dotted blue lines) is wider than the one of the
MAR forecasts (dotted red lines) and includes the actual value of the oil price
only at horizons 8 to 10, namely from February to April 2023. The median
forecast of the MAR in levels is closer to the actual value than the median
forecast of the DMAR. The Diebold-Mariano test confirms the superiority of
the MAR median forecasts compared to the DMAR median forecasts with a
t-statistic of -3.94 and a p-value of 0.003, and to the random walk forecasts
with a t-statistic of -2.88 and a p-value of 0.016. Hence, in this particu-
lar case, the pretesting strategy suggested above would have led to the best
forecasts for the period considered.

Finally Figure 2 presents the forecast densities of MAR and DMAR for
forecast horizons h ∈ {1, 2, 5, 10}. For short forecasting horizons, the differ-
ence is minor in this example, but for the larger horizons, in particular for
the last observed oil price, April 2023, the differences in density forecasts are
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Table 4: Estimation Results, Crude Oil Price.

MAR DMAR

Estimate s.e. t-ratio Estimate s.e. t-ratio

ψ 0.433 0.070 6.102 0.363 0.065 5.623
φ 0.915 0.028 31.607 — — —
λ 4.423 1.488 2.972 5.051 1.795 2.814
σ2 21.421 3.879 5.522 23.917 4.089 5.846

Log-likelihood -701.347 -706.771

Note: ψ, φ, λ and σ2 denote the forward root, the backward root, the number
of degrees of freedom and the scale of the Student-t distribution, respectively.
The estimation sample is January 2004 to June 2022.

pronounced. Also note that the dispersion of the density forecast is markedly
lower for the MAR forecast for larger forecast horizons, by construction.

8 Concluding Remarks

Our paper’s goal was to investigate which strategy to adopt in order to choose
the best forecasting model — in terms of accuracy — for MAR(1,1) DGPs:
always differencing (D), never differencing (L) or unit root pretesting (P).

As a by-product of our analysis, a preliminary simulations study has
revealed that for the MAR(1,1) models considered here, (i) the importance
density of the SIR algorithm should retain a unit root in the candidate model,
(ii) the median should be the location measure for the simulated predictive
distribution and (iii) the Lanne et al. [2012] and Gouriéroux and Jasiak
[2016] forecasting approaches produce very similar forecasts accuracy.

The main results obtained here from a large simulation study support
Box and Jenkins [1976]’s recommendation to use the model in levels unless
the root of the process to forecast is close to unity. Moreover, they confirm
the ones obtained in favour of the pretesting strategy by e.g. Campbell
and Perron [1991], Stock [1996], Stock and Watson [1999] or Diebold and
Kilian [2000] for the linear autoregressive class of models. Extending these
works by considering a mixed causal-noncausal autoregressive DGP as well
as various levels of the unit root pretest strategy, it turns out that from a
practitioner’s point of view, the P strategy at the 10%-level seems to be a
good compromise for MAR(1,1) models. Indeed, it never departs too much
from the best model, unlike the L (respectively D) strategy when the DGP
becomes very persistent (respectively with little persistence).
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Figure 2: Density forecasts for crude oil prices by MAR and DMAR
models for forecasting horizons h ∈ {1, 2, 5, 10}. The vertical lines indicate

the observed oil price.

For the Brent crude oil price series, an out-of-sample forecasting exercise
conducted from July 2022 until April 2023 illustrates that the P strategy
suggested in this paper would have led to the best forecasts.
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Appendix: Additional Simulation Results

Table A1: Results for T=200. Deviation from
Best Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.3 0.5
MAD(2) L 0.0 0.0 0.0 0.0 1.1
MAD(5) L 0.0 0.0 0.0 0.5 2.0
MAD(10) L 0.0 0.0 0.0 0.0 3.5

MAD(1) P10% 0.1 0.2 0.3 0.3 0.1
MAD(2) P10% 0.6 0.6 1.1 0.0 0.6
MAD(5) P10% 0.6 1.1 1.3 0.8 0.2
MAD(10) P10% 1.1 2.4 3.0 0.9 0.5

MAD(1) P5% 0.4 0.5 0.4 0.2 0.1
MAD(2) P5% 1.2 1.1 1.1 0.0 0.6
MAD(5) P5% 1.8 2.2 1.6 0.3 0.2
MAD(10) P5% 3.6 5.3 4.1 0.6 0.2

MAD(1) P1% 1.2 1.0 0.5 0.1 0.0
MAD(2) P1% 2.4 1.7 1.1 0.0 0.6
MAD(5) P1% 5.4 3.8 1.6 0.0 0.0
MAD(10) P1% 11.4 9.0 4.6 0.3 0.0

MAD(1) D 1.8 0.9 0.3 0.0 0.0
MAD(2) D 3.5 2.3 1.1 0.0 0.0
MAD(5) D 9.2 4.1 1.3 0.0 0.0
MAD(10) D 20.3 10.3 4.5 0.2 0.0

Unit root test ERF 10% 96.4 84.4 51.8 23.2 8.0
Unit root test ERF 5% 87.2 57.3 26.2 10.1 3.4
Unit root test ERF 1% 42.6 14.0 4.5 1.4 0.5

Note: The data generating process has ψ = 0.6, λ = 7, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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Table A2: Results for T=400. Deviation from
Best Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.2 0.3
MAD(2) L 0.0 0.0 0.0 0.0 0.6
MAD(5) L 0.0 0.0 0.0 0.0 1.0
MAD(10) L 0.0 0.0 0.0 0.0 2.0

MAD(1) P10% 0.0 0.0 0.1 0.3 0.1
MAD(2) P10% 0.0 0.0 0.0 0.6 0.0
MAD(5) P10% 0.0 0.0 0.3 0.8 0.3
MAD(10) P10% 0.0 0.0 1.0 1.4 0.3

MAD(1) P5% 0.0 0.0 0.3 0.2 0.0
MAD(2) P5% 0.0 0.0 0.0 0.6 0.0
MAD(5) P5% 0.0 0.3 0.8 0.8 0.0
MAD(10) P5% 0.2 0.2 2.4 1.6 0.2

MAD(1) P1% 0.1 0.3 0.3 0.0 0.0
MAD(2) P1% 0.0 0.6 1.2 0.0 0.0
MAD(5) P1% 0.6 1.7 2.4 0.8 0.0
MAD(10) P1% 0.9 3.8 5.4 1.7 0.0

MAD(1) D 1.7 0.8 0.2 0.0 0.0
MAD(2) D 4.2 1.8 0.6 0.0 0.0
MAD(5) D 10.8 5.4 2.4 0.5 0.0
MAD(10) D 22.1 12.0 5.9 1.6 0.0

Unit root test ERF 10% 99.8 99.8 91.3 47.7 9.4
Unit root test ERF 5% 99.3 98.9 75.4 27.2 4.4
Unit root test ERF 1% 96.9 78.4 27.5 5.0 0.5

Note: The data generating process has ψ = 0.6, λ = 7, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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Table A3: Results for T=200 and ψ = 0.3.
Deviation from Best Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.1 0.6
MAD(2) L 0.0 0.0 0.0 0.0 1.3
MAD(5) L 0.0 0.0 0.0 0.0 2.2
MAD(10) L 0.0 0.0 0.0 0.0 3.6

MAD(1) P10% 0.0 0.2 0.2 0.1 0.1
MAD(2) P10% 0.7 0.7 0.7 0.0 0.0
MAD(5) P10% 0.4 0.8 1.5 0.7 0.7
MAD(10) P10% 0.4 1.8 2.6 1.0 0.5

MAD(1) P5% 0.1 0.5 0.4 0.1 0.1
MAD(2) P5% 0.7 1.4 0.7 0.0 0.0
MAD(5) P5% 0.4 2.0 1.9 0.4 0.4
MAD(10) P5% 0.7 4.1 3.9 1.0 0.2

MAD(1) P1% 0.9 1.0 0.4 0.0 0.1
MAD(2) P1% 2.1 2.0 1.3 0.0 0.0
MAD(5) P1% 3.9 4.3 2.2 0.0 0.4
MAD(10) P1% 6.7 8.8 4.5 0.5 0.0

MAD(1) D 2.6 1.0 0.2 0.0 0.0
MAD(2) D 4.9 2.7 1.3 0.0 0.0
MAD(5) D 10.8 5.1 1.9 0.0 0.0
MAD(10) D 21.6 10.8 4.5 0.5 0.0

Unit root test ERF 10% 99.9 91.5 59.6 27.0 9.3
Unit root test ERF 5% 98.8 75.5 36.7 13.7 4.6
Unit root test ERF 1% 78.3 29.0 8.2 2.4 0.8

Note: The data generating process has ψ = 0.3, λ = 7, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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Table A4: Results for T=200 and λ = 3.
Deviation from Best Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.8 0.0
MAD(2) L 0.0 0.0 0.0 0.4 0.4
MAD(5) L 0.0 0.0 0.0 0.0 1.9
MAD(10) L 0.0 0.0 0.0 0.0 2.9

MAD(1) P10% 0.0 0.0 0.8 0.8 0.0
MAD(2) P10% 0.0 0.4 0.4 0.4 0.0
MAD(5) P10% 0.5 0.4 0.8 0.2 0.4
MAD(10) P10% 1.0 0.5 1.2 0.5 0.6

MAD(1) P5% 0.0 0.0 0.0 0.8 0.0
MAD(2) P5% 0.0 0.4 0.4 0.0 0.0
MAD(5) P5% 0.5 0.8 1.0 0.2 0.2
MAD(10) P5% 1.0 1.2 1.9 0.7 0.2

MAD(1) P1% 0.0 0.0 0.8 0.0 0.0
MAD(2) P1% 0.5 0.9 0.4 0.0 0.0
MAD(5) P1% 1.1 2.1 2.0 0.2 0.0
MAD(10) P1% 2.1 3.5 3.4 0.8 0.0

MAD(1) D 1.7 0.8 0.8 0.0 0.0
MAD(2) D 4.6 2.2 0.9 0.0 0.0
MAD(5) D 12.2 5.6 2.8 0.2 0.0
MAD(10) D 21.9 10.4 4.9 0.7 0.0

Unit root test ERF 10% 98.0 95.2 77.4 42.3 9.9
Unit root test ERF 5% 97.5 89.0 61.3 25.9 4.8
Unit root test ERF 1% 92.0 63.7 28.8 7.9 0.8

Note: The data generating process has ψ = 0.6, λ = 3, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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Table A5: Results for T=200. Demeaned Data.
Deviation from Best Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.5 1.1
MAD(2) L 0.0 0.0 0.0 0.6 1.7
MAD(5) L 0.0 0.0 0.0 1.8 4.0
MAD(10) L 0.0 0.0 0.0 2.3 5.9

MAD(1) P10% 1.2 0.6 0.3 0.2 0.1
MAD(2) P10% 1.8 1.1 0.6 0.0 0.6
MAD(5) P10% 4.8 3.0 0.5 0.5 0.8
MAD(10) P10% 9.1 6.3 2.3 0.6 0.8

MAD(1) P5% 1.5 0.9 0.2 0.1 0.0
MAD(2) P5% 2.4 1.1 0.6 0.0 0.6
MAD(5) P5% 5.7 3.2 0.3 0.3 0.5
MAD(10) P5% 11.7 7.4 2.3 0.3 0.5

MAD(1) P1% 1.7 0.7 0.1 0.1 0.0
MAD(2) P1% 2.9 1.1 0.6 0.0 0.0
MAD(5) P1% 7.4 3.5 0.3 0.0 0.3
MAD(10) P1% 15.2 7.8 2.1 0.2 0.2

MAD(1) D 2.0 0.7 0.1 0.0 0.0
MAD(2) D 3.5 1.7 0.6 0.0 0.0
MAD(5) D 8.9 3.5 0.0 0.0 0.0
MAD(10) D 18.8 8.3 1.9 0.0 0.0

Unit root test ERF 10% 51.6 23.9 10.9 6.5 5.7
Unit root test ERF 5% 34.3 12.1 5.1 3.0 2.7
Unit root test ERF 1% 12.9 3.5 1.5 1.0 0.9

Note: The data generating process has ψ = 0.6, λ = 7, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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Table A6: Results for T=200. Detrended data.
Deviation from Best Forecast in Percent.

(1) (2) (3) (4) (5)

φ 0.9 0.95 0.975 0.99 1

MAD(1) L 0.0 0.0 0.0 0.6 0.9
MAD(2) L 0.0 0.0 0.0 1.1 1.7
MAD(5) L 0.0 0.0 0.5 3.0 3.7
MAD(10) L 0.0 0.0 1.4 5.4 7.1

MAD(1) P10% 1.8 1.0 0.2 0.1 0.1
MAD(2) P10% 3.0 1.7 0.0 0.6 0.0
MAD(5) P10% 6.6 3.2 0.3 0.2 0.2
MAD(10) P10% 11.4 4.7 0.5 0.5 0.3

MAD(1) P5% 2.0 1.0 0.2 0.1 0.1
MAD(2) P5% 3.6 2.3 0.0 0.6 0.0
MAD(5) P5% 7.5 3.5 0.3 0.0 0.0
MAD(10) P5% 13.0 5.0 0.2 0.2 0.1

MAD(1) P1% 2.3 1.1 0.1 0.0 0.0
MAD(2) P1% 4.1 2.3 0.0 0.0 0.0
MAD(5) P1% 9.0 3.5 0.0 0.0 0.0
MAD(10) P1% 15.3 5.2 0.0 0.0 0.1

MAD(1) D 2.6 1.1 0.1 0.0 0.1
MAD(2) D 4.7 2.3 0.0 0.6 0.0
MAD(5) D 10.2 3.8 0.0 0.0 0.0
MAD(10) D 17.1 5.4 0.0 0.0 0.0

Unit root test ERF 10% 28.5 11.5 6.2 4.4 4.0
Unit root test ERF 5% 18.0 6.4 3.3 2.4 2.3
Unit root test ERF 1% 7.1 2.3 1.4 1.1 1.1

Note: The data generating process has ψ = 0.6, λ = 7, and
σ = 1. The forecasts are based on M = N = 10000 draws and the
results are based on B = 10000 Monte Carlo replications. ERF
x% denotes the empirical rejection frequency of the null at the x%
level.
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