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Based on large a simulation study, this paper investigates which strategy to adopt in order to choose the most accurate forecasting model for Mixed causal-noncausal AutoRegressions (MAR) data generating processes: always differencing (D), never differencing (L) or unit root pretesting (P). Relying on recent econometric developments regarding forecasting and unit root testing in the MAR framework, the main results suggest that from a practitioner's point of view, the P strategy at the 10%-level is a good compromise. In fact, it never departs too much from the best model in terms of forecast accuracy, unlike the L (respectively D) strategy when the DGP becomes very persistent (respectively less persistent).

Introduction

Regarding time series forecasting, the question about using a model for the series in levels or in first differences can be traced back to [START_REF] Box | Time Series Analysis: Forecasting and Control[END_REF]. In their popular book, these authors recommend to use the model in levels unless the root of the process to forecast is close to unity, in which case the model in first differences would achieve the best forecast accuracy. The introduction of unit root tests by [START_REF] Dickey | Distribution of the estimators for autoregressive time series with a unit root[END_REF] and their application in an influential paper by [START_REF] Nelson | Trends and random walks in macroeconmic time series : Some evidence and implications[END_REF] gave rise to a renewed interest in this question. Indeed, from a large set of long historical time series for the U.S. economy, [START_REF] Nelson | Trends and random walks in macroeconmic time series : Some evidence and implications[END_REF] conclude that the null hypothesis that these series contain a unit root cannot be rejected for most of them. Yet, as emphasized in [START_REF] Dickey | Unit roots in time series models: Tests and implications[END_REF], forecasts of a unit root process are very different from forecasts of a stationary process, also when the latter is strongly persistent. Hence, beside "always difference" or "never difference" (denoted respectively D and L hereafter) forecasting strategies, a third option has emerged: unit-root pretesting (denoted P) and difference or not accordingly. From Monte-Carlo simulations, evidence in favour of pretesting strategy was found for the linear autoregressive class of models by e.g. [START_REF] Campbell | Pitfalls and Opportunities: What Macroeconomists Should Know About Unit Roots[END_REF], [START_REF] Stock | VAR, Error Correction and Pretest Forecasts at Long Horizons[END_REF], [START_REF] Stock | A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series[END_REF] or [START_REF] Diebold | Unit-root tests are useful for selecting forecasting models[END_REF], especially for roots close to unity.

In this paper, we answer the same question for the class of mixed causalnoncausal autoregressive (MAR) models. These models, introduced decades ago in statistics, have acquired growing popularity in economics and finance over the past few years. Development of their econometric theory as well as applications to macroeconomic or financial time series modelling and forecasting can be found in [START_REF] Lanne | Noncausal autoregressions for economic time series[END_REF], [START_REF] Lanne | Bayesian model selection and forecasting in noncausal autoregressive models[END_REF], [START_REF] Lanne | Noncausal vector autoregression[END_REF], [START_REF] Hencic | Noncausal autoregressive model in application to bitcoin/usd exchange rates[END_REF], [START_REF] Gouriéroux | On uniqueness of moving average representation of heavy tailed stationary processes[END_REF], [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF], [START_REF] Gouriéroux | Local explosion modelling by noncausal process[END_REF], [START_REF] Fries | Mixed causal-noncausal ar processes and the modelling of explosive bubbles[END_REF], [START_REF] Cavaliere | Bootstrapping noncausal autoregressions: With applications to explosive bubble modeling[END_REF] or [START_REF] Hecq | Predicting crashes in oil prices during the covid-19 pandemic with mixed causal-noncausal models[END_REF], among others. The interest in MAR models, which allow for dependence on both the past and the future -unlike the well-known backward-looking autoregression which rules out dependence on future observations -stems mainly from two of their characteristics. First, they are able to capture epochs of bubble build-up and burst. Second, as noticed in a previous paper [START_REF] Bec | Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing[END_REF], mixed causalnoncausal autoregressive models could prove very useful for forecasting as they can be viewed as very parsimonious representations of more complex nonlinear DGPs (see also [START_REF] Gouriéroux | Local explosion modelling by noncausal process[END_REF] on this point). Due to their dependence on future observations, specific forecasting methods have been developed for MAR models by [START_REF] Lanne | Optimal forecasting of noncausal autoregressive time series[END_REF] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF]. Similarly, a specific test for a unit root in the backward autoregressive polynomial has been proposed by [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF].

The goal of this paper is twofold: i) to compare the performance of the forecast methodologies proposed by [START_REF] Lanne | Optimal forecasting of noncausal autoregressive time series[END_REF] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF] and ii) to evaluate the relevance of unit root pretesting, P, for these MAR models' forecasting performance, compared to the D and L strategies. To this end, the recent developments cited above are used in a large simulation study. Within this methodological framework, a variety of degrees of persistence, of forecast horizons, of sample sizes as well as of levels of the test are under scrutiny.

After a brief presentation of the MAR model in Section 2, Section 3 exposes the amended version of [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF] unit root test proposed in a previous work [START_REF] Bec | Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing[END_REF] in order to circumvent likelihood bimodality issues involved by the estimation of the MAR models. Then, Section 4 describes the forecasting methods of [START_REF] Lanne | Optimal forecasting of noncausal autoregressive time series[END_REF] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF]. Section 5 reports results of preliminary simulation exercises which are used to compare the effectiveness of both methods and to fine-tune the settings of the main simulation study reported in Section 6. Section 7 provides an empirical application in terms of the Brent crude oil price, while Section 8 concludes.

The MAR Setting

Consider the mixed causal noncausal autoregression, MAR(1,1), as given by

Φ(L)Ψ(L -1 )y t = (1 -φL)(1 -ψL -1 )y t = t , ( 1 
)
where t is assumed i.i.d. with p.d.f. given by g(•; θ) indexed by parameters in θ. For the data generating process, we consider the case -1 < φ ≤ 1 and -1 < ψ < 1, allowing a unit root in the causal polynomial, Φ(L), see [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF] for a discussion. Following [START_REF] Lanne | Noncausal autoregressions for economic time series[END_REF] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF], we define the unobserved component

u t = (1-φL)y t such that (1-ψL -1 )u t = t and u t = (1 -ψL -1 ) -1 t = ∞ j=0 ψ j t+j . ( 2 
)
Using the terminology of [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF], u t is y-causal, as it depends on current and past values of y, and -noncausal, as it depends on current and future values of . For a specified innovation density g(•; θ), the parameters in (1) can be estimated from a sample {y t } T t=1 using approximate maximum likelihood,

( φ, ψ, θ) = arg max φ,ψ,θ T -1 t=2 log g (1 -φL)(1 -ψL -1 )y t ; θ ,
conditional on initial and terminal values, y 1 and y T , see e.g. [START_REF] Breidt | Maximum likelihood estimation for noncausal autoregressive processes[END_REF], and [START_REF] Lanne | Noncausal autoregressions for economic time series[END_REF]. Below, we use a Student's t(0, σ 2 , λ) distribution, such that

g( t ; σ 2 , λ) = Γ( λ+1 2 ) Γ( λ 2 ) πλσ 2 -1 2 1 + 2 t σ 2 λ -λ+1 2 , (3) 
with θ = (σ 2 , λ) containing the degrees of freedom parameter, λ, and the scale, σ 2 .

Unit Root Testing

The unit root test pertaining to the hypothesis H 0 : φ = 1 in the MAR model is considered in [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF]. They show that for g(•; θ) symmetric, the usual one-sided unit-root test statistic,

τ = φ -1 se( φ) , (4) 
where se( φ) is the square root of the relevant entry in the inverse observed information, has a limiting distribution, D τ (ρ), that depends on the nuisance parameter ρ. If g(•; θ) is the Student's t density in (3), with λ > 2, it holds that ρ is a function of λ:

ρ(λ) 2 = (λ -2)(λ + 3) λ(λ + 1) .
For mean-zero data, the critical values are given in [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF] in terms of a response surface approximation, as

cv 1% (λ) = -2.321 -0.492ρ(λ) + 0.251ρ(λ) 2 cv 5% (λ) = -1.639 -0.495ρ(λ) + 0.187ρ(λ) 2 cv 10% (λ) = -1.276 -0.480ρ(λ) + 0.131ρ(λ) 2 ,
where cv x% (λ) is the critical value at the x percent level as a function of λ, and, for example: However, [START_REF] Bec | Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing[END_REF] show that a bimodality issue occurs in the Student's t distributed errors case, which frequently leads to interchanged roots. Indeed, the backward root can be estimated as the forward root and vice versa. Since the unit root test is based on the estimation of the backward root, this can pose a problem. As a consequence, the estimation strategy proposed by [START_REF] Bec | Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing[END_REF] relies on a grid search procedure in order to characterize the entire likelihood surface and list all local maxima. Then, if there are multiple maxima, the maximum with the backward root higher than the forward root ( φ > φ) is selected even if there exists a maximum with a higher likelihood but with φ < φ ≈ 1. This choice stems from the fact that a unit root in the forward component would lack reasonable economic interpretation: It would mean that agents look into the infinite future without discounting. Beside, the test statistic is similar to [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF]'s. Hence, this modified version of [START_REF] Saikkonen | Testing for a unit root in noncausal autoregressive models[END_REF]'s unit root test will be used in the subsequent analysis.

Forecasting

To forecast {y T +h } H h=1 based on the MAR model, we consider the approaches suggested in [START_REF] Lanne | Optimal forecasting of noncausal autoregressive time series[END_REF] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF]. Lanne et al. [2012] start from (2) and simulate future paths { T +k } K k=1 to approximate the conditional expectation E(y T +h | y T ) and the c.d.f. [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF], on the other hand, derive the predictive density p(u T +1 , ..., u T +H | y T ) and use importance sampling to draw from the predictive distibution of {y T +h } H h=1 given y T .

Lanne, Luoto, and Saikkonen [2012] (LLS)

To derive the point forecast, it is used that

E(y T +h | y T ) = φ h y T + E( h-1 i=0 φ i u T +i+1 | y T ), h = 1, 2, ..., H.
The infinite sum in (2) is then approximated with a truncated version using K terms, and based on N simulated paths, {

T +k } K k=1 for i = 1, 2, ..., N , Lanne et al. [2012] suggests to estimate the conditional expectation as

E(y T +h | y T ) = φ h y T + E( h-1 i=0 φ i u T +i+1 | y T ) ≈ φ h y T + E h-1 i=0 φ i K-h k=0 ψ k t+h+i+k | y T ≈ φ h y T + 1 N N i=1 h-1 i=0 φ i K-h k=0 ψ k t+h+i+k g T (u T , (i) 
T +1 , ...,

(i) T +M ); θ 1 N N i=1 g T (u T , (i) 
T +1 , ...,

(i) T +M ); θ , ( 5 
)
where T is found as

T (u T , (i) T +1 , ..., (i) T +M ) = ûT - K k=1 ψ k (i) T +k . (6) 
To get also interval forecasts, we evaluate the c.d.f. over a grid x ∈ (x 1 , ..., x G ) using

1 N N i=1 I h-1 i=0 φ i K-h k=0 ψ k t+h+i+k ≤ x g T (u T , (i) 
T +1 , ...,

(i) T +M ); θ 1 N N i=1 g T (u T , (i) 
T +1 , ...,

T +M ); θ , similar to (5) where I(•) is the indicator function.

In the implementation below we choose K ∈ [K min , K max ], such that ψ K < 0.0001 with K min = H +5 and K max = 200. For the interval forecast, we use a grid of 1024 equally spaced points in the interval between min(µ u -12σ u , u Tσ u ) and max(µ u +12σ u , u T +σ u ), where µ u and σ 2 u denote the empirical mean and variance of {u t } T t=1 . These choices ensure that the interval is wide enough to include most probability mass of the forecast distributions for H = 10. Specific quantiles are found using linear interpolation.

Gouriéroux and Jasiak [2016] (GJ)

To obtain density forecasts for {y T +h } H h=1 conditional on y T , GJ suggest to forecast the -noncausal component {u T +h } H h=1 given y T , and use u t = (1 -φL)y t to construct density forecasts for {y T +h } H h=1 from forecast densities for {u T +h } H h=1 and y T .

To forecast {u T +h } H h=1 , [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF] rewrite the joint predictive density,

p(u T +1 , ..., u T +H | y T ) = p(u T +1 , ..., u T +H | u T ) = p(u T , u T +1 , ..., u T +H ) p(u T ) = p(u T , u T +1 , ..., u T +H-1 | u T +H )p(u T +H ) p(u T ) .
Using estimated versions for {u t } T t=1 , ψ, and θ and estimating the stationary distributions by sample averages, an estimate of the predictive density is given in closed form

p(u T +1 , u T +2 , ..., u T +H | ûT ) = g(u T -ψu T +1 ; θ) • g(u T +1 -ψu T +2 ; θ) • • • g(u T +H-1 -ψu T +H ; θ) × T t=1 g(u T +H -ψû t ; θ) T t=1 g(u T -ψû t ; θ) . ( 7 
)
The closed form for the joint predictive density in ( 7) can be used to simulate paths for {u T +h } H h=1 e.g. using Sampling-Importance-Resampling (SIR), see [START_REF] Rubin | Using the sir algorithm to simulate posterior distributions[END_REF].

Below, we implement SIR based on an importance density, defined by a causal AR(1) with Student's t(0, σ * 2 , λ * ) innovations 1 . We generate candidate forecast paths {u * (i)

T +h } H h=1 , for i = 1, 2, ..., M , conditional on ûT , using the causal AR(1) model

u * (i) T +h = γ * u * (i) T +h-1 + σ * η * (i) T +h , η * (i) T +h ∼ t(0, 1, λ * ), (8) 
with u * (i) T

= ûT , and use the importance density q(u * (i)

T +1 , ..., u * (i) T +H | ûT ) = g * (u * (i) T +H | u * (i) T +H-1 ) • • • g * (u * (i) T +2 | u * (i) T +1 )g * (u * (i) T +1 | ûT ),
where g * (•) is the conditional density for the causal AR(1) model depending on (γ * , σ * , λ * ).

1 We have also considered a recursive version of the SIR algorithm, where we resample the pairs {y

(j) T +h-1 , u (j)
T +h } at each forecast horizon, h = 1, 2, ..., H, but otherwise use the same approach as below. This is computationally more demanding, but could in principle improve the precision because it does not rely on the fit of entire forecast paths. However, 10,000 Monte Carlo replications of a MAR(1,1) DGP with φ = 0.9, ψ = 0.6, σ = 1, λ = 7 and T = 200 revealed no improvement of the forecasts accuracy compared to the SIR approach of GJ or the LLS method. These additional results are available upon request.

For each candidate path, {u * (i)

T +h } H h=1 , we calculate the corresponding importance weight

w (i) = p(u * (i) T +1 , ..., u * (i) T +H | ûT ) q(u * (i) T +1 , ..., u * (i) T +H | ûT ) .
In the resampling step of the SIR algorithm, we draw N forecast paths from the M candidate paths {u * (i)

T +h } H h=1 i = 1, 2, .
.., M , with probabilities given by the normalized importance weights

p (i) = w (i) M i=1 w (i)
.

For M and N large, the final sample paths, {u

T +h } H h=1 j = 1, ..., N , are draws from the predictive distribution with p.d.f. given by ( 7).

For the h-step forecast, h = 1, 2, 3, ..., H, the forecast paths are updated recursively from y (j)

T +h = u (j) T +h + φy (j) 
T +h-1 . Point forecasts, denoted {ŷ T +h } H h=1 , can be derived using a location measure for the simulated predictive distribution. GJ suggest the pointwise mode as the most likely outcome; an alternative would be the median or the mean.

The effectiveness of the SIR algorithm depends on the chosen importance density, and before discussing the effect of unit root pretesting we consider a small pilot simulation, where we vary (γ * , σ *2 , λ * ) to ensure a sufficiently large variation of the candidate paths.

Preliminary Simulations

This Section presents the pilot simulations study which aims to compare the approaches of Lanne et al. [2012] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF] and to guide the choice of (i) the importance density of the SIR algorithm, (ii) the location measure for the simulated predictive distribution and (iii) the forecasting approach 2 .

In the simulation below we use B simulated MAR(1,1) time series, {y

(b) t } T +H t=1 b = 1, 2, .
.., B, with sample length T = 200, and parameters given by φ = 0.9 and ψ = 0.6.

To compare point forecasts, we use the mean absolute deviation3 from the true value of different implementations for each forecast horizon h ∈ {1, 2, 5, 10}, defined as

M AD(h) = 1 B B b=1 ŷ(b) T +h -y (b)
T +h .

We also consider the 90 percent coverage of the density forecasts, i.e. the proportion of cases where the actual value of the time series, y T +h , is included in the 90 percent confidence interval of the forecast. For the pilot simulations, we use M = N = 10000 and B = 10000 replications unless otherwise mentioned.

In order to choose the importance density of the SIR algorithm, we conduct a simulation study for various values of (γ * , σ * 2 , λ * ). First, we consider γ * ∈ {γ, 1}, where γ is the OLS estimate obtained from a causal AR(1) model for {û t } T t=1 . For the scale we consider σ * 2 = cσ 2 , where σ2 is the OLS estimate and where c ∈ {1, 4} potentially inflates the variance. Finally, we take λ * ∈ { λ, 3, 100}, where λ is the MLE from the MAR model4 . The forecast accuracy performances of these various calibrations, as measured by the MAD(h) and the 90%-coverage, are reported in Table 1 (columns (1) to (8)), and the following preliminary conclusions emerge:

1. Regarding the location measure, it appears that the mode is always dominated by the mean and the median, the last two ones giving very similar MAD's. This could be due to the well-known noise of the mode estimates. We have considered different versions of mode estimates, and for the present case the maximum of the estimated kernel density (using a Gaussian kernel with 128 steps to 2 percent trimmed data) performs better than the half-sample median, see e.g. [START_REF] Bickel | On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications[END_REF]. In the subsequent simulation study, we will focus on the median which may be more robust for low values of λ.

2. The coverage rates, given in the last four lines of Table 1, are generally excellent indicating that the density forecast may not be too sensitive to the precise implementation.

Table 1: Performance of Implementations of Forecasts.

(1)

(2) 10 3. The differences between MAD based on different importance densities are generally small for the present case. Overall, the preferred is case (5) based on a unit root in the candidate model given in Equation ( 8): this is the one retained for the subsequent simulation study.

(3) (4) (5) (6) (7) (8) 
4. The last column of Table 1 reports the forecast performance based on LLS approach. It is worth noticing that the differences between the MAD's and 90%-coverages obtained from LLS and GJ methods are generally very small. Since the latter i) gives the full distribution of the forecasts conditional on the past and ii) does not require to forecast the 's far in the future as the persistence gets strong, it is retained in the subsequent work.

Main Simulation Study

Tables 2 to 3 below, and A1 to A2 in the appendix, compare the forecast accuracy reached for T ∈ {100, 200, 400} by five different strategies for the choice of the forecasting model: the one called L refers to the model in levels; the next three ones correspond to the pretest P strategy at the 10%-, 5%and 1%-levels respectively; the last one, D, corresponds to the model in first differences. In this baseline MAR(1,1) DGP, the forward root parameter is fixed to ψ = 0.6 while the degrees of freedom of the Student distribution is set to λ = 7. Finally, the backward root takes value in {0.9, 0.95, 0.975, 0.99, 1}, reported in columns (1) to (5).

Table 2 gives the levels of the MADs measures for T = 100. Unsurprisingly, the forecast accuracy decreases as the forecast horizon h increases5 : the MAD values obtained for h = 1 range from 0.936 to 0.953 whereas the ones found for h = 10 lie between 4.50 and 6.96.

Table 3 (respectively A1 and A2 in the appendix) reports the percent deviation of the MADs from the one of the best model, for T = 100 (respectively 200 and 400). It can be seen from Tables 2 and3 that the best strategy to choose the forecasting model depends heavily on the size of the backward root φ. Indeed, for values up to 0.95, the L strategy outperforms all other ones, all the more so as h increases. For this range of φ values, the second best strategy is P at the 10%-level: the percent deviation from the L strategy in terms of MAD ranges from 0.6% for h = 1 to 6.9% for h = 10 when T = 100. It ranges from 0% (h = 1) to 2.4% (h = 10) when T = 200 and is 0% for all horizons when T = 400. For backward root values up to 0.95, the worst strategy is D. For instance, Table A1 in the appendix indicates that this strategy's percent deviation from the L strategy in terms of MAD ranges from 0.9% for h = 1 to 20.3% for h = 10 when T = 200. By contrast, when φ approaches 1 from below, i.e. local alternatives for the unit root pretest, the D strategy is the best one, the strategy P being the second best again at the 10%-level. These conclusions hold for larger sample sizes, see Tables A1 andA2 in the Appendix, and provide support to [START_REF] Box | Time Series Analysis: Forecasting and Control[END_REF]'s recommendation. Furthermore, a closer look at Tables 3, A1 and A2, also reveals that the forecast performance deterioration of the L strategy when φ approaches 1 (first four lines of columns (3) to ( 5)) is much weaker than the one of the D strategy when φ is well below unity (last four lines of columns ( 1) to ( 2)), all the more so as the sample size increases6 . This finding would support the L strategy. Nevertheless, from a practitioner's point of view, as values of φ > 0.95 are typically found for quarterly and monthly macroeconomic data, see [START_REF] Diebold | Unit-root tests are useful for selecting forecasting models[END_REF], the P strategy at the 10%-level seems to be a good compromise. In fact, as stressed earlier, its performance is similar to the one of the L strategy for backward root values far from unity -especially for T > 100 -while it deteriorates in general less than the one of the L strategy for backward root values as φ approaches 1 from below. Indeed, looking at columns (3) to ( 5) of e.g. Table 3, it can be seen that the percent deviations of the L strategy from the best model lie between 0% (h = 2) and 6.7% (h = 10) whereas the ones of the P 10% range from 0.2% (h = 1) to 2.1% (h = 10).

The same conclusions hold for a smaller value of the forward root, i.e. ψ = 0.3 as reported in Table A3 in the appendix, or for fatter tails in the errors Student's t distribution, namely λ = 3 as reported in Table A3. As a matter of fact, the relative performance of the P 10% is even improved.

Results obtained from demeaned and detrended data -reported in Tables A5 and A6 in the appendix -are more mitigated. They also support the choice of the P strategy at the 10%-level, for the same reasons as above, but for horizons h = 1, 2 only. Indeed, for longer forecast horizons, the deterioration of its performance is more sizeable than the one of the L strategy. This stems from the fact that in presence of a deterministic component, the P strategy suffers from higher critical values as well as from one or two more parameters to estimate for demeaning or detrending. As a consequence, the power of the unit root test decreases noticeably: For φ = 0.9, the empirical rejection frequency (ERF) at the 5%-level drops from 87.2% (Table A1) to 34.3% in the demeaned case (Table A5) and 18% in the detrended case (Table A6). It is worth noticing that in these demeaned and detrended cases, the unit root test is undersized, as can be seen from the last two lines, column (5), of the corresponding tables. This suggests that for forecast horizons greater than 2, a modified pretest strategy should be considered such as one relying on a higher nominal level than 10%, e.g. 20%, or one where the deterministic component coefficients would be estimated following the lines of [START_REF] Elliott | Efficient tests for an autoregressive unit root[END_REF], namely using local-to-unity GLS instead of OLS. We leave this analysis for further research.

The Case of Brent Crude Oil Prices

In this section, we focus on the oil price data for two reasons. The first one is that most empirical work focusing on oil price forecasting compare various approaches -relying on e.g. AR, ARIMA, VAR, Time Varying Parameters models, on oil futures markets or survey forecasts -with conventional nochange forecasts. Indeed, the latter are considered as a benchmark since they are difficult to beat in out-of-sample oil price forecasting exercises7 . The nochange forecasting approach assumes that the oil price follows a random walk process. Basically, it implies that the forecasts for the next few months or quarters are simply set to the last observed value. Hence, it amounts to always difference the series. The second reason is that oil prices have been found to be well represented by a MAR model in e.g. [START_REF] Hecq | Predicting crashes in oil prices during the covid-19 pandemic with mixed causal-noncausal models[END_REF].

Here, the monthly Brent crude oil price data are studied from January 2004 to April 2023. This series comes from the Federal Reserve Bank of Saint-Louis FRED database and is plotted in Figure 1 (A). All estimations are performed until June 2022 so as to keep ten observations for the out-ofsample forecasting exercise.

It turns out that two lags in a linear AR model are enough to eliminate any serial correlation in the residuals up to order 24. Moreover, the Jarque and Bera test statistics strongly rejects the null of Gaussian-distributed errors with a p-value lower than 0.01%, which is important as non-Gaussianity is required for the identification of MAR models. Using the [START_REF] Bec | Mixed Causal-Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing[END_REF]'s unit root test against a MAR(1,1) stationary alternative, a value of -2.92 is obtained: as the 5 and 10% critical values are -2.74 and -2.43 respectively, the unit root null is rejected. Following the strategy stemming from the simulation study presented in the previous section, the forecasts should be done from the MAR model in levels. For comparison purpose, a MAR in first differences -denoted DMAR hereafter -is also considered. Both models' estimates are reported in Table 4.

The last ten observations in our sample (July 2022-April 2023) are then used to compare the forecasting accuracy of the MAR and DMAR models. Panel (B) of Figure 1 reports median forecasts obtained from the MAR (MAR F, red line) and the DMAR (DMAR F, blue line) models together with the actual observations (black line). As a benchmark, the forecasts from a simple random walk (RW F, green line) are also considered.

Obviously, the forecasts computed from the MAR model in levels outperform the ones obtained from the MAR in first differences and from the random walk. It is also worth noticing that the 95% confidence band associated to DMAR forecasts (dotted blue lines) is wider than the one of the MAR forecasts (dotted red lines) and includes the actual value of the oil price only at horizons 8 to 10, namely from February to April 2023. The median forecast of the MAR in levels is closer to the actual value than the median forecast of the DMAR. The Diebold-Mariano test confirms the superiority of the MAR median forecasts compared to the DMAR median forecasts with a t-statistic of -3.94 and a p-value of 0.003, and to the random walk forecasts with a t-statistic of -2.88 and a p-value of 0.016. Hence, in this particular case, the pretesting strategy suggested above would have led to the best forecasts for the period considered.

Finally Figure 2 presents the forecast densities of MAR and DMAR for forecast horizons h ∈ {1, 2, 5, 10}. For short forecasting horizons, the difference is minor in this example, but for the larger horizons, in particular for the last observed oil price, April 2023, the differences in density forecasts are pronounced. Also note that the dispersion of the density forecast is markedly lower for the MAR forecast for larger forecast horizons, by construction.

Concluding Remarks

Our paper's goal was to investigate which strategy to adopt in order to choose the best forecasting model -in terms of accuracy -for MAR(1,1) DGPs: always differencing (D), never differencing (L) or unit root pretesting (P). As a by-product of our analysis, a preliminary simulations study has revealed that for the MAR(1,1) models considered here, (i) the importance density of the SIR algorithm should retain a unit root in the candidate model, (ii) the median should be the location measure for the simulated predictive distribution and (iii) the Lanne et al. [2012] and [START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF] forecasting approaches produce very similar forecasts accuracy.

The main results obtained here from a large simulation study support [START_REF] Box | Time Series Analysis: Forecasting and Control[END_REF]'s recommendation to use the model in levels unless the root of the process to forecast is close to unity. Moreover, they confirm the ones obtained in favour of the pretesting strategy by e.g. [START_REF] Campbell | Pitfalls and Opportunities: What Macroeconomists Should Know About Unit Roots[END_REF], [START_REF] Stock | VAR, Error Correction and Pretest Forecasts at Long Horizons[END_REF], [START_REF] Stock | A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series[END_REF] or [START_REF] Diebold | Unit-root tests are useful for selecting forecasting models[END_REF] for the linear autoregressive class of models. Extending these works by considering a mixed causal-noncausal autoregressive DGP as well as various levels of the unit root pretest strategy, it turns out that from a practitioner's point of view, the P strategy at the 10%-level seems to be a good compromise for MAR(1,1) models. Indeed, it never departs too much from the best model, unlike the L (respectively D) strategy when the DGP becomes very persistent (respectively with little persistence). For the Brent crude oil price series, an out-of-sample forecasting exercise conducted from July 2022 until April 2023 illustrates that the P strategy suggested in this paper would have led to the best forecasts. Table A3: Results for T=200 and ψ = 0.3. Deviation from Best Forecast in Percent.

( Table A4: Results for T=200 and λ = 3. Deviation from Best Forecast in Percent.
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(3) (4) (5) Table A6: Results for T=200. Detrended data. Deviation from Best Forecast in Percent.
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Note:

  The data generating process has φ = 0.9, ψ = 0.6, σ = 1, λ = 7 and T = 200. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications.Local maxima with φ > ψ were chosen in 10.75 percent of the cases, while 6.65 percent still has φ < ψ.

Figure 1 :

 1 Figure 1: Brent crude oil prices January 2004 to April 2023 (US Dollars per Barrel) in panel (A), and a comparison of forecasts from MAR, DMAR and Random Walk model in panel (B).

Figure 2 :

 2 Figure 2: Density forecasts for crude oil prices by MAR and DMAR models for forecasting horizons h ∈ {1, 2, 5, 10}. The vertical lines indicate the observed oil price.

  The data generating process has ψ = 0.6, λ = 7, and σ = 1. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.

  The data generating process has ψ = 0.6, λ = 3, and σ = 1. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.

  The data generating process has ψ = 0.6, λ = 7, and σ = 1. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.

  The data generating process has ψ = 0.6, λ = 7, and σ = 1. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.

Table 2 :

 2 Forecasting Results for T=100. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.
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Table 3 :

 3 Results for T=100. Deviation from Best Forecast in Percent.
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Table 4 :

 4 Estimation Results, Crude Oil Price.Note: ψ, φ, λ and σ 2 denote the forward root, the backward root, the number of degrees of freedom and the scale of the Student-t distribution, respectively. The estimation sample is January 2004 to June 2022.

			MAR	DMAR
		Estimate	s.e. t-ratio	Estimate	s.e. t-ratio
	ψ	0.433 0.070 6.102	0.363 0.065 5.623
	φ	0.915 0.028 31.607	-	-	-
	λ	4.423 1.488 2.972	5.051 1.795 2.814
	σ 2	21.421 3.879 5.522	23.917 4.089 5.846
	Log-likelihood	-701.347	-706.771

Table A1 :

 A1 Results for T=200. Deviation from Best Forecast in Percent. Note: The data generating process has ψ = 0.6, λ = 7, and σ = 1. The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.

			(1) (2)	(3)	(4) (5)
	φ		0.9 0.95 0.975 0.99 1
	MAD(1)	L	0.0 0.0	0.0	0.3 0.5
	MAD(2)	L	0.0 0.0	0.0	0.0 1.1
	MAD(5)	L	0.0 0.0	0.0	0.5 2.0
	MAD(10)	L	0.0 0.0	0.0	0.0 3.5
	MAD(1)	P 10%	0.1 0.2	0.3	0.3 0.1
	MAD(2)	P 10%	0.6 0.6	1.1	0.0 0.6
	MAD(5)	P 10%	0.6 1.1	1.3	0.8 0.2
	MAD(10)	P 10%	1.1 2.4	3.0	0.9 0.5
	MAD(1)	P 5%	0.4 0.5	0.4	0.2 0.1
	MAD(2)	P 5%	1.2 1.1	1.1	0.0 0.6
	MAD(5)	P 5%	1.8 2.2	1.6	0.3 0.2
	MAD(10)	P 5%	3.6 5.3	4.1	0.6 0.2
	MAD(1)	P 1%	1.2 1.0	0.5	0.1 0.0
	MAD(2)	P 1%	2.4 1.7	1.1	0.0 0.6
	MAD(5)	P 1%	5.4 3.8	1.6	0.0 0.0
	MAD(10)	P 1%	11.4 9.0	4.6	0.3 0.0
	MAD(1)	D	1.8 0.9	0.3	0.0 0.0
	MAD(2)	D	3.5 2.3	1.1	0.0 0.0
	MAD(5)	D	9.2 4.1	1.3	0.0 0.0
	MAD(10)	D	20.3 10.3 4.5	0.2 0.0
	Unit root test ERF 10% 96.4 84.4 51.8 23.2 8.0
	Unit root test ERF 5% 87.2 57.3 26.2 10.1 3.4
	Unit root test ERF 1% 42.6 14.0 4.5	1.4 0.5

Table A2 :

 A2 Results for T=400. Deviation from Best Forecast in Percent.

			(1) (2)	(3)	(4) (5)
	φ		0.9 0.95 0.975 0.99 1
	MAD(1)	L	0.0 0.0	0.0	0.2 0.3
	MAD(2)	L	0.0 0.0	0.0	0.0 0.6
	MAD(5)	L	0.0 0.0	0.0	0.0 1.0
	MAD(10)	L	0.0 0.0	0.0	0.0 2.0
	MAD(1)	P 10%	0.0 0.0	0.1	0.3 0.1
	MAD(2)	P 10%	0.0 0.0	0.0	0.6 0.0
	MAD(5)	P 10%	0.0 0.0	0.3	0.8 0.3
	MAD(10)	P 10%	0.0 0.0	1.0	1.4 0.3
	MAD(1)	P 5%	0.0 0.0	0.3	0.2 0.0
	MAD(2)	P 5%	0.0 0.0	0.0	0.6 0.0
	MAD(5)	P 5%	0.0 0.3	0.8	0.8 0.0
	MAD(10)	P 5%	0.2 0.2	2.4	1.6 0.2
	MAD(1)	P 1%	0.1 0.3	0.3	0.0 0.0
	MAD(2)	P 1%	0.0 0.6	1.2	0.0 0.0
	MAD(5)	P 1%	0.6 1.7	2.4	0.8 0.0
	MAD(10)	P 1%	0.9 3.8	5.4	1.7 0.0
	MAD(1)	D	1.7 0.8	0.2	0.0 0.0
	MAD(2)	D	4.2 1.8	0.6	0.0 0.0
	MAD(5)	D	10.8 5.4	2.4	0.5 0.0
	MAD(10)	D	22.1 12.0 5.9	1.6 0.0
	Unit root test ERF 10% 99.8 99.8 91.3 47.7 9.4
	Unit root test ERF 5% 99.3 98.9 75.4 27.2 4.4
	Unit root test ERF 1% 96.		

  The forecasts are based on M = N = 10000 draws and the results are based on B = 10000 Monte Carlo replications. ERF x% denotes the empirical rejection frequency of the null at the x% level.

			) (2)	(3)	(4) (5)
	φ		0.9 0.95 0.975 0.99 1
	MAD(1)	L	0.0 0.0	0.0	0.1 0.6
	MAD(2)	L	0.0 0.0	0.0	0.0 1.3
	MAD(5)	L	0.0 0.0	0.0	0.0 2.2
	MAD(10)	L	0.0 0.0	0.0	0.0 3.6
	MAD(1)	P 10%	0.0 0.2	0.2	0.1 0.1
	MAD(2)	P 10%	0.7 0.7	0.7	0.0 0.0
	MAD(5)	P 10%	0.4 0.8	1.5	0.7 0.7
	MAD(10)	P 10%	0.4 1.8	2.6	1.0 0.5
	MAD(1)	P 5%	0.1 0.5	0.4	0.1 0.1
	MAD(2)	P 5%	0.7 1.4	0.7	0.0 0.0
	MAD(5)	P 5%	0.4 2.0	1.9	0.4 0.4
	MAD(10)	P 5%	0.7 4.1	3.9	1.0 0.2
	MAD(1)	P 1%	0.9 1.0	0.4	0.0 0.1
	MAD(2)	P 1%	2.1 2.0	1.3	0.0 0.0
	MAD(5)	P 1%	3.9 4.3	2.2	0.0 0.4
	MAD(10)	P 1%	6.7 8.8	4.5	0.5 0.0
	MAD(1)	D	2.6 1.0	0.2	0.0 0.0
	MAD(2)	D	4.9 2.7	1.3	0.0 0.0
	MAD(5)	D	10.8 5.1	1.9	0.0 0.0
	MAD(10)	D	21.6 10.8 4.5	0.5 0.0
	Unit root test ERF 10% 99.9 91.5 59.6 27.0 9.3
	Unit root test ERF 5% 98.8 75.5 36.7 13.7 4.6
	Unit root test ERF 1% 78.3 29.0 8.2	2.4 0.8
	Note: The data generating process has ψ = 0.3, λ = 7, and
	σ = 1.				

Table A5 :

 A5 Results for T=200. Demeaned Data. Deviation from Best Forecast in Percent.

			(1) (2)	(3)	(4) (5)
	φ		0.9 0.95 0.975 0.99 1
	MAD(1)	L	0.0 0.0	0.0	0.5 1.1
	MAD(2)	L	0.0 0.0	0.0	0.6 1.7
	MAD(5)	L	0.0 0.0	0.0	1.8 4.0
	MAD(10)	L	0.0 0.0	0.0	2.3 5.9
	MAD(1)	P 10%	1.2 0.6	0.3	0.2 0.1
	MAD(2)	P 10%	1.8 1.1	0.6	0.0 0.6
	MAD(5)	P 10%	4.8 3.0	0.5	0.5 0.8
	MAD(10)	P 10%	9.1 6.3	2.3	0.6 0.8
	MAD(1)	P 5%	1.5 0.9	0.2	0.1 0.0
	MAD(2)	P 5%	2.4 1.1	0.6	0.0 0.6
	MAD(5)	P 5%	5.7 3.2	0.3	0.3 0.5
	MAD(10)	P 5%	11.7 7.4	2.3	0.3 0.5
	MAD(1)	P 1%	1.7 0.7	0.1	0.1 0.0
	MAD(2)	P 1%	2.9 1.1	0.6	0.0 0.0
	MAD(5)	P 1%	7.4 3.5	0.3	0.0 0.3
	MAD(10)	P 1%	15.2 7.8	2.1	0.2 0.2
	MAD(1)	D	2.0 0.7	0.1	0.0 0.0
	MAD(2)	D	3.5 1.7	0.6	0.0 0.0
	MAD(5)	D	8.9 3.5	0.0	0.0 0.0
	MAD(10)	D	18.8 8.3	1.9	0.0 0.0
	Unit root test ERF 10% 51.6 23.9 10.9 6.5 5.7
	Unit root test ERF 5% 34.3 12.1 5.1	3.0 2.7
	Unit root test ERF 1% 12.		

We have also explored the influence of the number of simulations. To this end, we have compared forecasts obtained for M and N taking values in {50000, 20000, 10000, 5000, 1000}. Point forecasts appear to be reliable for quite low number of simulations. For the chosen setting, interval forecasts appear reliable with values of N and M larger than 5000-10000. Accordingly, the subsequent simulation study is conducted for M = N = 10000. These additional results are available upon request.

The MAD is preferred to the more popular (R)MSE because the latter may be sensitive to a few very large realizations of the | |'s, which can occur when working with fat-tailed distributed errors. The tail dependence of the forecasts distribution is also the reason why[START_REF] Gouriéroux | Filtering, prediction and simulation methods for noncausal processes[END_REF] prefer to measure the central tendency of the forecasts by the "mode" rather than by the more conventional "mean" forecast.

It is well-known that the effectiveness of importance sampling requires that the effective support of the proposal distributions is at least as big as the target distribution.

This finding is confirmed for T = 200 and 400, as can be seen from TablesA1 and A2in the appendix. The tables giving the levels of the MAD for these sample sizes are not reported to save space, but are available upon request.

This outcome emphasizes the importance of the power of the unit root test.

See, amongst others, Alquist et al. [2013],[START_REF] Baumeister | Forecasting the real price of oil in a changing world: A forecast combination approach[END_REF],[START_REF] Baumeister | Energy Markets and Global Economic Conditions[END_REF],[START_REF] Ellwanger | Forecasts of the real price of oil revisited: Do they beat the random walk[END_REF] and the numerous references therein.
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