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Abstract

This paper provides a general method to translate a standard economic model with a large
number of agents into a field-formalism model. This formalism preserves the system’s interac-
tions and microeconomic features at the individual level but reveals the emergence of collective
states.

We apply this method to a simple microeconomic framework of investors and firms. Both
macro and micro aspects of the formalism are studied.

At the macro-scale, the field formalism shows that, in each sector, three patterns of capital
accumulation may emerge. A distribution of patterns across sectors constitute a collective state.
Any change in external parameters or expectations in one sector will affect neighbouring sectors,
inducing transitions between collective states and generating permanent fluctuations in patterns
and flows of capital. Although changes in expectations can cause abrupt changes in collective
states, transitions may be slow to occur. Due to its relative inertia, the real economy is bound
to be more affected by these constant variations than the financial markets.

At the micro-scale we compute the transition functions of individual agents and study their
probabilistic dynamics in a given collective state, as a function of their initial state. We show
that capital accumulation of an individual agent depends on various factors. The probability
associated with each firm’s trajectories is the result of several contradictory effects: the firm
tends to shift towards sectors with the greatest long-term return, but must take into account
the impact of its shift on its attractiveness for investors throughout its trajectory. Since this
trajectory depends largely on the average capital of transition sectors, a firm’s attractiveness
during its relocation depends on the relative level of capital in those sectors. Moreover, the
firm must also consider the effects of competition in the intermediate sectors that tends to
oust under-capitalized firm towards sectors with lower average capital. For investors, capital
allocation depends on their short and long-term returns and investors will tend to reallocate
their capital to maximize both. The higher their level of capital, the stronger the re-allocation
will be.

Key words: Financial Markets, Real Economy, Capital Allocation, Statistical Field Theory,
Background fields, Collective states, Multi-Agent Model, Interactions.
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1 Introduction

In large sets of agents, the dynamics of one agent never occurs in a vacuum, but is impacted by the
whole set of other agents’ trajectories. In such groups, the representative agent is a fiction: the set
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of trajectories gives rise to collective states that will in turn condition individual dynamics. These
collective states can be studied analytically at a higher level by using a statistical-field formalism
(Gosselin, Lotz, Wambst 2020, 2021).

We have shown in previous papers how such a field-formalism allows to derive the possible
collective states of a given economic model while keeping track of distributions and interactions
among agents. It acts as a viability test for a large range of classical model by revealing the
inherent logic of each system, which a standard economic model with representative agents cannot
do. Whereas a standard economic model determines the behavior of optimizing agents, a field
model will reveal how such a behavior, once generalized to a large number of heterogeneous agents,
would imply for the entire society.

The present paper develops and applies this method to a system composed of a large number of
firms and investors spread across numerous sectors and studies the interactions between financial
and physical capital as well as the determinants of capital allocation among firms. Because it keeps
track of interactions at the macro level, the field formalism reveals what would otherwise remain
hidden: capital accumulation is a global mechanism, in which each sector’s average capital and
number of firms depend on neighbouring sectors. These global characteristics are encoded in the
potential collective states of the system, also referred to as background states. Each of these states
computes a possible equilibrium distribution of capital and firms across sectors.

This emphasis on collective states does not hinder the extraction of information about agents’
individual dynamics. On the contrary, as the field formalism captures agents’ interactions at the
micro level, it facilitates the study of their probabilistic behavior within a given collective state
through the so-called transition functions. The field formalism serves a dual purpose by providing
an approach to collective backgrounds arising from agents’ interactions and capturing the diverse
individual dynamics within such background.

At the macro-level, this work shows that collective states depend on external parameters and
expectations, such as short-term and both absolute and relative expected long-term returns. How-
ever, depending on external or historical conditions, the interdependency between sectors induces
multiple collective states: in each sector, three patterns of accumulation emerge, from low to high.
Some are unstable: changes in exogeneous parameters or expectations may induce complete port-
folio reallocations, potentially depleting some sectors. At a macro-timescale, any deviation from an
equilibrium average capital drives the sector towards the next stable equilibrium, including zero, and
if there is none, towards infinity. This notion of instability is sector-relative and context-dependent:
variations of parameters may propagate from one sector to another. Sectors may change pattern
which induces transitions between collective states. The field formalism thus allows to describe
global transitions of the patterns accumulation initiated by one local modification.

To study this systemic instability, we consider a dynamic system involving average capital and
endogenized long-term expected returns, so that average capital per sector interacts both with
neighbouring ones, and long-term expected returns. This dynamic system differs from those in
standard economics: whereas in economics the dynamics are usually studied around static equi-
libria, we consider the dynamic interactions between potential equilibria and expected long-term
returns.

Some solutions are oscillatory: changes in one or several sectors may propagate over the whole
space of sectors. We find, for each sector, the conditions of stable or unstable oscillations for
the system. Depending on the sector’s specific characteristics, oscillations in average capital and
expected long-term returns may dampen or increase. Some types of expectations favour overall
stability in equilibria, and others deter it.

Eventually, fluctuations in financial expectations impose their pace on the real economy. The
combination of expectations both highly sensitive to exogenous conditions and highly reactive to
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variations in capital implies large fluctuations of capital in the system at the possible expense of
the real economy.

At the micro-level, we derive the transition functions for individual agents within a given col-
lective state. These functions describe the probabilistic dynamics of agents in the background field
as a function of their initial state. We demonstrate that several factors influence the probability of
each firm’s relocation path.

First, firms tend to relocate in sectors with highest long-term returns. However, the path followed
by the firm to realocate depends on the characteristics of the transition sectors, that are themselves
determined by the collective state of the system. The attractiveness of the firm during its relocation
process depends on the average capital of the transition sectors it stumbles into. Depending on the
sector, investors may over or underinvest in the firm. An under-capitalized firm may fail to attract
investors in and either end up being stuck in this sector or be repelled to a less attractive one.

Second, competition along the transition sectors, depends on the background state of the system
and impact differently the firm’s level or capital and attractiveness. An overcapitalized firm facing
many less-endowed competitors, will oust them out of the sector. On the contrary, an under-
capitalized firm will be ousted out from its own sector and move towards less-capitalized and
denser sectors in average. A capital gain - or loss - may follow. Under-capitalized firms tend to
move towards lower than average capitalized sectors, while over-capitalized firms tend to move
towards higher than average-capitalized sectors.

Third, investors’ capital allocation depends on short and long-term returns. Yet these returns
are not independent: short-term returns, dividends and stock prices variations are correlated to the
long-term that depend on growth expectations and stock prices expectations. Changes in investors’
capital allocation are therefore directly dependent on stock prices’ volatility and firms’ dividends.
Changes in growth expectations impact stock prices and incite investors to reallocate capital to
maximize their returns. The higher their level of capital, the stronger the reallocation will be.

The paper is organized as follows. The second section is a literature review. In the first part, we
sum up the field theoretic approach to economic models. Section three presents the general method
and translation techniques to turn a microeconomic framework with a large number of agents into
a field model. In section four we expose the use of the field theoretic formalism to compute both
average quantities in the model and the agents’ transitions functions. These functions compute the
probabilities of the model to evolve from an initial to a final state. Section five details technically
the computation of these transition funcions in presence of a given background field. Section six
presents and translates a particular microeconomic framework with two types of agents, firms and
investors into a field model.

The second part of this paper studies the collective aspect of this model. In sections seven,
we describe the resolution of the model and derive the background field for the real economy,
the number of firms par sector, the background field for the financial markets and the number of
investors per sector. Ultimately, we derive the defining equation for average capital per firm per
sector and discuss the main properties of the solution. In section eight, the model is extended to
a dynamic system at the macro-time scale by endogenizing the expected long-term revenue. This
dynamic system presents some oscillatory solutions whose stability depends on the various patterns
of accumulation. Section nine presents, analyses and synthesizes the results.

The third part of this work is devoted to study the individual agents dynamics and interaction
within a given background state. In section 10, we derive the transition functions for one and two
agents in this particular model. The results are presented and discussed in section 11.

The fourth part of the paper consolidates and presents the main findings. Section twelve
discusses our results, their interpretation and their consequences. Section thirteen concludes.
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2 Literature review

Several branches of the economic literature seek to replace the representative agent with a collection
of heterogeneous ones. Among other things, they differ in the way they model this collection of
agents.

The first branch of the literature represents this collection of agents by probability densities.
This is the approach followed by mean field theory, heterogeneous agents new Keynesian (HANK)
models, and the information-theoretic approach to economics.

Mean field theory studies the evolution of agents’ density in the state space of economic vari-
ables. It includes the interactions between agents and the population as a whole but does not
consider the direct interactions between agents. This approach is thus at an intermediate scale
between the macro and micro scale: it does not aggregate agents but replaces them with an overall
probability distribution. Mean field theory has been applied to game theory (Bensoussan et al.
2018, Lasry et al. 2010a, b) and economics (Gomes et al. 2015). However, these mean fields are
actually probability distributions. In our formalism, the notion of fields refers to some abstract
complex functions defined on the state space and is similar to the second-quantized-wave functions
of quantum theory. Interactions between agents are included at the individual level. Densities of
agents are recovered from these fields and depend directly on interactions.

Heterogeneous agents’ new Keynesian (HANK) models use a probabilistic treatment similar to
mean fields theory. An equilibrium probability distribution is derived from a set of optimizing het-
erogeneous agents in a new Keynesian context (see Kaplan and Violante 2018 for an account). Our
approach, on the contrary, focuses on the direct interactions between agents at the microeconomic
level. We do not look for an equilibrium probability distribution for each agent, but rather directly
build a probability density for the system of N agents seen as a whole, that includes interactions,
and then translate this probability density in terms of fields. The states’ space we consider is thus
much larger than those considered in the above approaches. Because it is the space of all paths for
a large number of agents, it allows studying the agents’ economic structural relations and the emer-
gence of the particular phases or collective states induced by these specific micro-relations, that will
in turn impact each agent’s stochastic dynamics at the microeconomic level. Other differences are
worth mentioning. While HANK models stress the role of an infinite number of heterogeneously-
behaved consumers, our formalism dwells on the relations between physical and financial capital1.
Besides, our formalism does not rely on agents’ rationality assumptions, since for a large number
of agents, behaviours, be they fully or partly rational, can be modeled as random.

The information theoretic approach to economics (see Yang 2018) considers probabilistic states
around the equilibrium. It is close to our methodological stance: it replaces the Walrasian equilib-
rium with a statistical equilibrium derived from an entropy maximisation program. Our statistical
weight is similar to the one they use, but is directly built from microeconomic dynamic equations.
The same difference stands for the rational inattention theory (Sims 2006) in which non-gaussian
density laws are derived from limited information and constraints: our setting directly includes
constraints in the random description of an agent (Gosselin, Lotz, Wambst 2020).

The differences highlighted above between these various approaches and our work also manifest
at the micro-scale in the description of agents’ dynamics. Actually, in the field framework, once the
collective states have been found, we can recover both the types of individual dynamics depending
on the initial conditions and the ”effective” form of interactions between two or more agents: At the
individual level, agents are distributed along some probability law. However, this probability law
is directly conditioned by the collective state of the system and the effective interactions. Different

1Note that our formalism could also include heterogeneous consumers (see Gosselin, Lotz, Wambst 2020).
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collective states, given different parameters, yield different individual dynamics. This approach
allows for coming back and forth between collective and individual aspects of the system. Different
categories of agents appear in the emerging collective state. Dynamics may present very different
patterns, given the collective state’s form and the agents’ initial conditions.

A second branch of the literature is closest to our approach since it considers the interacting
system of agents in itself. It is the multi-agent systems literature, notably agent-based models (see
Gaffard Napoletano 2012, Mandel et al. 2010 2012) and economic networks (Jackson 2010).

Agent-based models deal with the macroeconomic level, whereas network models lower-scale
phenomena such as contract theory, behaviour diffusion, information sharing, or learning. In both
settings, agents are typically defined by and follow various sets of rules, leading to the emergence of
equilibria and dynamics otherwise inaccessible to the representative agent setup. Both approaches
are however highly numerical and model-dependent and rely on microeconomic relations - such as
ad-hoc reaction functions - that may be too simplistic. Statistical fields theory on the contrary
accounts for transitions between scales. Macroeconomic patterns do not emerge from the sole
dynamics of a large set of agents: they are grounded in behaviours and interaction structures.
Describing these structures in terms of field theory allows for the emergence of phases at the macro
scale, and the study of their impact at the individual level.

A third branch of the literature, Econophysics, is also related to ours since it often considers the
set of agents as a statistical system (for a review, see Abergel et al. 2011a,b and references therein; or
Lux 2008, 2016). But it tends to focus on empirical laws, rather than apply the full potential of field
theory to economic systems. In the same vein, Kleinert (2009) uses path integrals to model stock
prices’ dynamics. Our approach, in contrast, keeps track of usual microeconomic concepts, such
as utility functions, expectations, and forward-looking behaviours, and includes these behaviours
into the analytical treatment of multi-agent systems by translating the main characteristics of
optimizing agents in terms of statistical systems. Closer to our approach, Bardoscia et al (2017)
study a general equilibrium model for a large economy in the context of statistical mechanics, and
show that phase transitions may occur in the system. Our problematic is similar, but our use of
field theory deals with a large class of dynamic models.

The literature on interactions between finance and real economy or capital accumulation takes
place mainly in the context of DGSE models. (for a review of the literature, see Cochrane 2006;
for further developments see Grassetti et al. 2022, Grosshans and Zeisberger 2018, Böhm et al.
2008, Caggese and Orive, Bernanke e al. 1999, Campello et al. 2010, Holmstrom and Tirole 1997,
Jermann, and Quadrini 2012, Khan Thomas 2013, Monacelli et al. 2011). Theoretical models
include several types of agents at the aggregated level. They describe the interactions between
a few representative agents such as producers for possibly several sectors, consumers, financial
intermediaries, etc. to determine interest rates, levels of production, and asset pricing, in a context
of ad-hoc anticipations.

Our formalism differs from this literature in three ways. First, we consider several groups of
a large number of agents to describe the emergence of collective states and study the continuous
space of sectors. Second, we consider expected returns and the longer-term horizon as somewhat
exogenous or structural. Expected returns are a combination of elements, such as technology,
returns, productivity, sectoral capital stock, expectations, and beliefs. These returns are also a
function defined over the sectors’ space: the system’s background fields are functionals of these
expected returns. Taken together, the background fields of a field model describe an economic
configuration for a given environment of expected returns. As such, expected returns are at first
seen as exogenous functions. It is only in the second step, when we consider the dynamics between
capital accumulation and expectations, that expectations may themselves be seen as endogenous.
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Even then, the form of relations between actual and expected variables specified are general enough
to derive some types of possible dynamics.

Last but not least, we do not seek individual or even aggregated dynamics, but rather back-
ground fields that describe potential long-term equilibria and may evolve with the structural param-
eters. For such a background, agents’ individual typical dynamics may nevertheless be retrieved
through Green functions (see GLW). These functions compute the transition probabilities from
one capital-sector point to another. But backgrounds themselves may be considered as dynamical
quantities. Structural or long-term variations in the returns’ landscape may modify the background
and in turn the individual dynamics. Expected returns themselves depend on and interact with,
capital accumulation.

Field formalism for economic system with
large number of agents and application to a
firms-investors model

In the first part of this work, we describe the field formalism for an economic system, its application
to derive the potential collective states of the system and the individual dynamics within such
collective states. Ultimately we apply this formalism to translate a model with large number of
interacting investors and firms.

3 General method of translation

The formalism we propose transforms an economic model of dynamic agents into a statistical field
model. In classical models, each agent’s dynamics is described by an optimal path for some vector
variable, say Ai (t), from an initial to a final point, up to some fluctuations.

But this system of agents could also be seen as probabilistic: each agent could be described
by a probability density centered around the classical optimal path, up to some idiosyncratic un-
certainties2 3. In this probabilistic approach, each possible trajectory of the whole set of N agents
has a specific probability. The classical model is therefore described by the set of trajectories of
the group of N agents, each one being endowed with its own probability, its statistical weight. The
statistical weight is therefore a function that associates a probability with each trajectory of the
group.

This probabilistic approach can be translated into a more compact field formalism4 that pre-
serves the essential information encoded in the model but implements a change in perspective. A
field model is a structure governed by its own intrinsic rules that encapsulate the economic model
chosen. This field model contains all possible realizations that could arise from the initial economic
model, i.e. all the possible global outcomes, or collective state, permitted by the economic model.
So that, once constructed, the field model provides a unique advantage over the standard economic
model: it allows to compute the probabilities of each of the possible outcomes for each collec-
tive state of the economic model. These probabilities are computed indirectly through the action

2Because the number of possible paths is infinite, the probability of each individual path is null. We, therefore,
use the word ”probability density” rather than ”probability”.

3See Gosselin, Lotz and Wambst (2017, 2020, 2021).
4Ibid.
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functional of the model, a function that assigns a specific value to each realization of the field.
Technically, the random N agents’ trajectories {Ai (t)} are replaced by a field, a random variable
whose realizations are complex-valued functions Ψ of the variables A, and the statistical weight
of the N agents’ trajectories {Ai (t)} in the probabilistic approach is translated into a statistical
weight for each realization Ψ. They encapsulate the collective states of the system.

Once the probabilities of each collective state computed, the most probable collective state
among all other collective states, can be found. In other words, a field model allows to consider
the true global outcome induced by any standard economic model. This is what we will call the
expression of the field model, more usually called the background field of the model.

This most probable realization of the field, the expression or background field of the model,
should not be seen as a final outcome resulting from a trajectory, but rather as its most recurring
realization. Actually, the probability of the realizations of the model is peaked around the expression
of the field. This expression, which is characteristic of the system, will determine the nature of
individual trajectories within the structure, in the same way as a biased dice would increase the
probability of one event. The field in itself is therefore static, insofar as each realization of the
system of agents only contributes to the emergence of the proper expression of the field. However,
studying variations in the parameters of the system indirectly induce a time parameter at the field
or macro level.

3.1 Statistical weight and minimization functions for a classical system

In an economic framework with a large number of agents, each agent is characterized by one or
more stochastic dynamic equations. Some of these equations result from the optimization of one or
several objective functions. Deriving the statistical weight from these equations is straightforward:
it associates, to each trajectory of the group of agents {Ti}, a probability that is peaked around the
set of optimal trajectories of the system, of the form:

W (s ({Ti})) = exp (−s ({Ti})) (1)

where s ({Ti}) measures the distance between the trajectories {Ti} and the optimal ones.
This paper considers two types of agents characterized by vector-variables {Ai (t)}i=1,...N , and

{

Âl (t)
}

i=1,...N̂
respectively, where N and N̂ are the number of agents of each type, with vectors

Ai (t) and Âl (t) of arbitrary dimension. For such a system, the statistical weight writes:

W
(

{Ai (t)} ,
{

Âl (t)
})

= exp
(

−s
(

{Ai (t)} ,
{

Âl (t)
}))

(2)

The optimal paths for the system are assumed to be described by the sets of equations:

dAi (t)

dt
−
∑

j,k,l...

f
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

= ǫi, i = 1...N (3)

dÂl (t)

dt
−
∑

i,j,k...

f̂
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

= ǫ̂l, i = 1...N̂ (4)

where the ǫi and ǫ̂i are idiosynchratic random shocks. These equations describe the general dynamics
of the two types agents, including their interactions with other agents. They may encompass the
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dynamics of optimizing agents where interactions act as externalities so that this set of equations
is the full description of a system of interacting agents56.

For equations (3) and (4), the quadratic deviation at time t of any trajectory with respect to
the optimal one for each type of agent are:





dAi (t)

dt
−
∑

j,k,l...

f
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

(5)

and:




dÂl (t)

dt
−
∑

i,j,k...

f̂
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

(6)

Since the function (2) involves the deviations for all agents over all trajectories, the function

s
(

{Ai (t)} ,
{

Âl (t)
})

is obtained by summing (5) and (6) over all agents, and integrate over t.

We thus find:

s
(

{Ai (t)} ,
{

Âl (t)
})

=

∫

dt
∑

i





dAi (t)

dt
−
∑

j,k,l...

f
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

(7)

+

∫

dt
∑

l





dÂl (t)

dt
−
∑

i,j,k...

f̂
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

There is an alternate, more general, form to (7). We can assume that the dynamical system is
originally defined by some equations of type (3) and (4), plus some objective functions for agents i

and l, and that these agents aim at minimizing respectively:

∑

j,k,l...

g
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

(8)

and:
∑

i,j,k..

ĝ
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

(9)

In the above equations, the objective functions depend on other agents’ actions seen as externali-
ties7. The functions (8) and (9) could themselves be considered as a measure of the deviation of a
trajectory from the optimum. Actually, the higher the distance, the higher (8) and (9).

Thus, rather than describing the systm by a full system of dynamic equations, we can consider
some ad-hoc equations of type (3) and (4) and some objective functions (8) and (9) to write the

5Expectations of agents could be included by replacing dAi(t)
dt

with E
dAi(t)

dt
, where E is the expectation operator.

This would amount to double some variables by distinguishing ”real variables” and expectations. However, for our
purpose, in the context of a large number of agents, at least in this work, we discard as much as possible this
possibility.

6A generalisation of equations (3) and (4), in which agents interact at different times, and its translation in term
of field is presented in appendix 1.

7We may also assume intertemporal objectives, see (GLW).
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alternate form of s
(

{Ai (t)} ,
{

Âl (t)
})

as:

s
(

{Ai (t)} ,
{

Âl (t)
})

(10)

=

∫

dt
∑

i





dAi (t)

dt
−
∑

j,k,l...

f
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

+

∫

dt
∑

l





dÂl (t)

dt
−
∑

i,j,k...

f̂
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

+

∫

dt
∑

i,j,k,l...

(

g
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

+ ĝ
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
))

In the sequel, we will refer to the various terms arising in equation (10) as the ”minimization
functions”, i.e. the functions whose minimization yield the dynamics equations of the system8.

3.2 Translation techniques

Once the statistical weight W (s ({Ti})) defined in (1) iscomputed, it can be translated in terms of
field. To do so, and for each type α of agent, the sets of trajectories {Aαi (t)} are replaced by a field
Ψα (Aα), a random variable whose realizations are complex-valued functions Ψ of the variables Aα

9.
The statistical weight for the whole set of fields {Ψα} has the form exp (−S ({Ψα})). The function
S ({Ψα}) is called the fields action functional. It represents the interactions among different types
of agents. Ultimately, the expression exp (−S ({Ψα})) is the statistical weight for the field10 that
computes the probability of any realization {Ψα} of the field.

The form of S ({Ψα}) is obtained directly from the classical description of our model. For two
types of agents, we start with expression (10). The various minimizations functions involved in

the definition of s
(

{Ai (t)} ,
{

Âl (t)
})

will be translated in terms of field and the sum of these

translations will produce finally the action functional S ({Ψα}). The translation method can itself
be divided into two relatively simple processes, but varies slightly depending on the type of terms
that appear in the various minimization functions.

3.2.1 Terms without temporal derivative

In equation (10), the terms that involve indexed variables but no temporal derivative terms are the
easiest to translate. They are of the form:

∑

i

∑

j,k,l,m...

g
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

These terms describe the whole set of interactions both among and between two groups of agents.
Here, agents are characterized by their variables Ai (t) ,Aj (t) ,Ak (t)... and Âl (t) , Âm (t)... respec-
tively, for instance in our model firms and investors.

8A generalisation of equation (10), in which agents interact at different times, and its translation in term of field
is presented in appendix 1.

9In the following, we will use indifferently the term ”field” and the notation Ψ for the random variable or any of
its realization Ψ.

10In general, one must consider the integral of exp (−S ({Ψα})) over the configurations {Ψα}. This integral is the
partition function of the system.
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In the field translation, agents of type Ai (t) and Âl (t) are described by a field Ψ(A) and Ψ̂
(

Â
)

,

respectively.
In a first step, the variables indexed i such as Ai (t) are replaced by variables A in the expression

of g. The variables indexed j, k, l, m..., such as Aj (t), Ak (t), Âl (t) , Âm (t)... are replaced by A′,A′′,
Â, Â′ , and so on for all the indices in the function. This yields the expression:

∑

i

∑

j,k,l,m...

g
(

A,A′,A′′, Â, Â
′
...
)

In a second step, each sum is replaced by a weighted integration symbol:

∑

i

→
∫

|Ψ(A)|2 dA,
∑

j

→
∫

|Ψ(A′)|2 dA′,
∑

k

→
∫

|Ψ(A′′)|2 dA′′

∑

l

→
∫

∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2

dÂ,
∑

m

→
∫

∣

∣

∣Ψ̂
(

Â′
)∣

∣

∣

2

dÂ′

which leads to the translation:
∑

i

∑

j

∑

j,k...

g
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

→
∫

g
(

A,A′,A′′, Â, Â
′
...
)

|Ψ(A)|2 |Ψ(A′)|2 |Ψ(A′′)|2 × ...dAdA′dA′′... (11)

×
∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2 ∣
∣

∣Ψ̂
(

Â′
)∣

∣

∣

2

× ...dÂdÂ′...

where the dots stand for the products of square fields and integration symbols needed.

3.2.2 Terms with temporal derivative

In equation (10), the terms that involve a variable temporal derivative are of the form:

∑

i





dA
(α)
i (t)

dt
−

∑

j,k,l,m...

f (α)
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

(12)

This particular form represents the dynamics of the α-th coordinate of a variable Ai (t) as a function
of the other agents.

The method of translation is similar to the above, but the time derivative adds an additional
operation.

In a first step, we translate the terms without derivative inside the parenthesis:
∑

j,k,l,m...

f (α)
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)

(13)

This type of term has already been translated in the previous paragraph, but since there is no sum
over i in equation (13), there should be no integral over A, nor factor |Ψ(A)|2.

The translation of equation (13) is therefore, as before:
∫

f (α)
(

A,A′,A′′, Â, Â
′
...
)

|Ψ(A′)|2 |Ψ(A′′)|2 dA′dA′′
∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2 ∣
∣

∣Ψ̂
(

Â′
)∣

∣

∣

2

dÂdÂ′ (14)

A free variable A remains, which will be integrated later, when we account for the external sum
∑

i. We will call Λ(A) the expression obtained:

Λ(A) =

∫

f (α)
(

A,A′,A′′, Â, Â
′
...
)

|Ψ(A′)|2 |Ψ(A′′)|2 dA′dA′′
∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2 ∣
∣

∣Ψ̂
(

Â′
)∣

∣

∣

2

dÂdÂ′ (15)
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In a second step, we account for the derivative in time by using field gradients. To do so, and as a
rule, we replace :

∑

i





dA
(α)
i (t)

dt
−
∑

j

∑

j,k...

f (α)
(

Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...
)





2

(16)

by:
∫

Ψ† (A)

(

−∇
A(α)

(

σ2
A(α)

2
∇

A(α) − Λ(A)

))

Ψ(A) dA (17)

The variance σ2
A(α) reflects the probabilistic nature of the model which is hidden behind the field

formalism. This variance represents the characteristic level of uncertainty of the system’s dynamics.
It is a parameter of the model. Note also that in (17), the integral over A reappears at the end,
along with the square of the field |Ψ(A)|2. This square is split into two terms, Ψ† (A) and Ψ(A),
with a gradient operator inserted in between.

3.3 Action functional

The field description is ultimately obtained by summing all the terms translated above and intro-
ducing a time dependency. This sum is called the action functional. It is the sum of terms of the
form (11) and (17), and is denoted S

(

Ψ,Ψ†).

For example, in a system with two types of agents described by two fields Ψ(A)and Ψ̂
(

Â
)

, the

action functional has the form:

S
(

Ψ,Ψ†) =

∫

Ψ† (A)

(

−∇
A(α)

(

σ2
A(α)

2
∇

A(α) − Λ1(A)

))

Ψ(A) dA (18)

+

∫

Ψ̂†
(

Â
)

(

−∇
Â(α)

(

σ2
Â(α)

2
∇

Â(α) − Λ2(Â)

))

Ψ̂
(

Â
)

dÂ

+
∑

m

∫

gm

(

A,A′,A′′, Â, Â
′
...
)

|Ψ(A)|2 |Ψ(A′)|2 |Ψ(A′′)|2 × ...dAdA′dA′′...

×
∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2 ∣
∣

∣Ψ̂
(

Â′
)∣

∣

∣

2

× ...dÂdÂ′...

where the sequence of functions gm describes the various types of interactions in the system.
Note that the collective states described by the fields are structural states of the system. The

fields have their own dynamics at the macro-scale, which will be discussed later in the paper. This
is why the usual microeconomic time variable used in standard models has disappeared in formula
(18). However, time dependency may at times be required in fields, so that a time variable, written
θ could be introduced by replacing:

Ψ(A) → Ψ(A, θ)

Ψ̂
(

Â
)

→ Ψ̂
(

Â, θ
)

More about this point can be found in appendix 1.

4 Use of the field model

Once the field action functional S is found, we can use field theory to study the system of agents.
This can be done at two levels: the collective and the individual level. At the collective level, the

11



system is described by the background fields of the system that condition average quantities of
economic variables of the system.

At the individual level, the field formalism allows to compute agents’ individual dynamics in
the state defined by the background fields, through the transition functions of the system.

4.1 Collective level: background fields and averages

At the collective level, the background fields of the system can be computed. These background

fields are the particular functions, Ψ(A) and Ψ̂
(

Â
)

, and their adjoints fields Ψ† (A) and Ψ̂†
(

Â
)

,

that minimize the action functional S. Once the background field(s) obtained, the associated
density of agents defined by a given A and a given Â are:

|Ψ(A)|2 = Ψ† (A)Ψ (A) (19)

and:
∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2

= Ψ̂†
(

Â
)

Ψ̂
(

Â
)

(20)

respectively. With these density functions at hand, we can compute various average quantities in

the collective state. Actually, the averages for the system in the state defined by Ψ(A) and Ψ̂
(

Â
)

of components (A)k or
(

Â
)

l
are:

〈(A)k〉 =
∫

(A)k |Ψ(A)|2 dA
∫

|Ψ(A)|2 dA

〈(

Â
)

l

〉

=

∫

(

Â
) ∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2

dÂ

∫

∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2

dÂ

respectively. We can also define both partial densities and averages by integrating some components
and fixing the values of others, as will be detailled in the particular model considered in the next
sections.

4.2 Individual level: agents transition functions and their field expression

4.2.1 Transition functions in a classical framework

In a classical perspective, the statistical weight (57) can be used to compute the transition proba-
bilities of the system, i.e. the probabilities for any number of agents of both types to evolve from

an initial state {Al}l=1,... ,
{

Âl

}

l=1,...
to a final state in a given timespan. These transition functions

describe the dynamic of the agents of the system.
To do so, we first compute the integral of equation (57) over all paths between the initial and

the final points considered. Defining {Al (s)}l=1,...,N and
{

Âl (s)
}

l=1,...,N̂
the sets of paths for agents

of each type, where N and N̂ are the numbers of agents of each type, we consider the set of N + N̂

independent paths written:

Z (s) =

(

{Al (s)}l=1,...,N ,
{

Âl (s)
}

l=1,...,N̂

)

The weight (57) can now be written exp (−W (Z (s))).

12



The transition functions Tt

(

(Z), (Z)
)

compute the probability for the (N, N̂ ) agents to evolve

from the initial points Z (0) ≡ Z to the final points Z (t) ≡ (Z) during a time span t. This probability
is defined by:

Tt

(

Z, (Z)
)

=
1

N

∫

Z(0)≡Z

Z(t)≡(Z)

exp (−W (Z (s)))D (Z (s)) (21)

The integration symbol DZ (s) covers all sets of N×N̂ paths constrained by Z (0) ≡ Z and Z (t) ≡ (Z).
The normalisation factor sets the total probability defined by the weight (57) to 1 and is equal to:

N =

∫

exp (−W (Z (s)))DZ (s)

The interpretation of (21) is straightforward. Instead of studying the full trajectory of one or
several agents, we compute their probability to evolve from one configuration to another, and in
average, the usual trajectory approach remains valid.

Equation (21) can be generalized to define the transition functions for k 6 N and k̂ 6 N̂ agents
of each type. The initial and final points respectively for this set of k + k̂ agents are written:

Z (0)[k,k̂] ≡ Z[k,k̂]

and:

Z (t)[k,k̂] ≡ (Z)
[k,k̂]

The transition function for these agents is written:

Tt

(

(Z)[
k,k̂], (Z)

[k,k̂]
)

and the generalization of equation (21) is:

Tt

(

(Z)[k,k̂], (Z)
[k,k̂]

)

=
1

N

∫

Z(0)[k,k̂]=(Z)[k,k̂]

Z(t)[k,k̂]=(Z)[k,k̂]

exp (−W ((Z (s))))D ((Z (s))) (22)

The difference with (21) is that only k paths are constrained by their initial and final points.

Ultimately, the Laplace transform of Tt

(

(Z)[
k,k̂], (Z)

[k,k̂]
)

computes the - time averaged - tran-

sition function for agents with random lifespan of mean 1
α , up to a factor 1

α , and is given by:

Gα

(

(Z)[
k,k̂], (Z)

[k,k̂]
)

=

∫ ∞

0

exp (−αt)Tt

(

(Z)[
k,k̂], (Z)

[k,k̂]
)

dt (23)

This formulation of the transition functions is relatively intractable. Therefore, we will now propose
an alternative method based on the field model.

4.2.2 Field-theoretic expression

The transition functions (22) and (23) can be retrieved using the field theory transition functions

- or Green functions, which compute the probability for a variable number
(

k, k̂
)

of agents to

transition from an initial state (Z, θ)[k,k̂] to a final state (Z, θ)
[k,k̂]

, where (θ)[k,k̂] and (θ)
[k,k̂]

are

vectors of initial and final times for k + k̂ agents respectively.

13



We will write:

Tt

(

(Z, θ)[
k,k̂], (Z, θ)

[k,k̂]
)

the transition function between (Z, θ)[k,k̂] and (Z, θ)
[k,k̂]

with (θ)i < t, ∀i, and:

Gα

(

(Z, θ)[k,k̂], (Z, θ)
[k,k̂]

)

its Laplace transform. Setting (θ)
i
= 0 and (θ)i = t for i = 1, ..., k + k̂, these functions reduce

to (22) or (23): the probabilistic formalism of the transition functions is thus a particular case
of the field formalism definition. In the sequel we therefore will use the term transition function
indiscriminately.

The computation of the transition functions relies on the fact that exp (−S (Ψ)) itself represents a
statistical weight for the system. Gosselin, Lotz, Wambst (2020) showed that S (Ψ) can be modified
in a straightforward manner to include source terms:

S (Ψ, J) = S (Ψ) +

∫

(

J (Z, θ)Ψ† (Z, θ) + J† (Z, θ) Ψ (Z, θ)
)

d (Z, θ) (24)

where J (Z, θ) is an arbitrary complex function, or auxiliary field.
Introducing J (Z, θ) in S (Ψ, J) allows to compute the transition functions by successive deriva-

tives. Actually, we can show that:

Gα

(

(Z, θ)[k,k̂], (Z, θ)
[k,k̂]

)

=





k
∏

l=1





δ

δJ
(

(Z, θ)
il

)

δ

δJ†
(

(Z, θ)il

)





∫

exp (−S (Ψ, J))DΨDΨ†





J=J†=0

(25)
where the notation DΨDΨ† denotes an integration over the space of functions Ψ(Z, θ) and Ψ† (Z, θ),
i.e. an integral in an infinite dimensional space. Even though these integrals can only be computed

in simple cases, a series expansion of Gα

(

(Z, θ)[
k,k̂], (Z, θ)

[k,k̂]
)

can be found using Feynman graphs

techniques.

Once Gα

(

(Z, θ)[
k,k̂], (Z, θ)

[k,k̂]
)

is computed, the expression of Tt

(

(Z, θ)[
k,k̂], (Z, θ)

[k,k̂]
)

can be

retrieved in principle by an inverse Laplace transform. In field theory, formula (25) shows that the
transition functions (23) are correlation functions of the field theory with action S (Ψ).

5 Field-theoretic computations of transition functions

The formula (25) provides a precise and compact definition of the transition functions for multiple
agents in the system. However, in practice, this formula is not directly applicable and does not shed
much light on the connection between the collective and microeconomic aspects of the considered
system. To calculate the dynamics of the agents, we will proceed in three steps.

Firstly, we will minimize the system’s action functional and determine the background field,
which represents the collective state of the system. Once the background field is found, we will
perform a series expansion of the action functional around this background field, referred to as the
effective action of the system. It is with this effective action that we can compute the transition
functions for the state defined by the background field. We will discover that each term in this
expansion has an interpretation in terms of a transition function.

Instead of directly computing the transition functions, we can consider a series expansion of the
action functional around a specific background field of the system.
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5.1 Step 1: finding the background field

For a particular type of agent, background fields are defined as the fields Ψ0 (Z, θ) that maximize
the statistical weight exp (−S (Ψ)) or, alternatively, minimize S (Ψ):

δS (Ψ)

δΨ
|Ψ0(Z,θ)= 0,

δS
(

Ψ†)

δΨ† |
Ψ†

0(Z,θ)
= 0

The field Ψ0 (Z, θ) represents the most probable configuration, a specfic state of the entire system
that influences the dynamics of agents. It serves as the background state from which probability
transitions and average values can be computed. As we will see, the agents’ transitions explicitely
depend on the chosen background field Ψ0 (Z, θ), which represents the macroeconomic state in which
the agents evolve.

When considering two or more types of agents, the background field satisfies the following
condition:

δS
(

Ψ, Ψ̂
)

δΨ
| Ψ0(Z,θ) = 0,

δS
(

Ψ, Ψ̂
)

δΨ† |
Ψ

†
0(Z,θ)

= 0

δS
(

Ψ, Ψ̂
)

δΨ̂
| Ψ̂0(Z,θ) = 0,

δS
(

Ψ, Ψ̂
)

δΨ̂†
|
Ψ̂

†
0(Z,θ)

= 0

5.2 Step 2: Series expansion around the background field

In a given background state, the effective action11 is the series expansion of the field functional
S (Ψ) around Ψ0 (Z, θ). We will present the expansion for one type of agent, but generalizing it to
two or several agents is straightforward.

The series expansion around the background field simplifies the computations of transition
functions and provides an interpretation of these functions in terms of individual interactions
within the collective state. To perform this series expansion, we decompose Ψ as:

Ψ = Ψ0 +∆Ψ

and write the series expansion of the action functional:

S (Ψ) = S (Ψ0) +

∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))∆Ψ (Z, θ) (26)

+
∑

k>2

∫ k
∏

i=1

∆Ψ† (Zi, θ)Ok (Ψ0 (Z, θ) , (Zi))

k
∏

i=1

∆Ψ(Zi, θ)

The series expansion can be interpreted economically as follows. The first term, S (Ψ0), describes
the system of all agents in a given macroeconomic state, Ψ0. The other terms potentially describe all
the fluctuations or movements of the agents around this macroeconomic state considered as given.
Therefore, the expansion around the background field represents the microeconomic reality of a
historical macroeconomic state. More precisely, it describes the range of microeconomic possibilities
allowed by a macroeconomic state.

The quadratic approximation is the first term of the expansion and can be written as:

S (Ψ) = S (Ψ0) +

∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))∆Ψ (Z, θ) (27)

11Actually, this paper focuses on the classical effective action, which is an approximation sufficient for the compu-
tations at hand.
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It will allow us to find the transition functions of agents in the historical macro state, where all
interactions are averaged. The other terms of the expansion allow us to detail the interactions
within the nebula, and are written as follows:

∑

k>2

∫ k
∏

i=1

∆Ψ† (Zi, θ)Ok (Ψ0 (Z, θ) , (Zi))

k
∏

i=1

∆Ψ(Zi, θ)

They detail, given the historical macroeconomic state, how the interactions of two or more agents
can impact the dynamics of these agents. Mathematically, this corresponds to correcting the
transition probabilities calculated in the quadratic approximation.

Here, we provide an interpretation of the third and fourth-order terms.
The third order introduces possibilities for an agent, during its trajectory, to split into two,

or conversely, for two agents to merge into one. In other words, the third-order terms take into
account or reveal, in the historical macroeconomic environment, the possibilities for any agent to
undergo modifications along its trajectory. However, this assumption has been excluded from our
model.

The fourth order reveals that in the macroeconomic environment, due to the presence of other
agents and their tendency to occupy the same space, all points in space will no longer have the
same probabilities for an agent. In fact, the fourth-order terms reveal the notion of geographical or
sectoral competition and potentially intertemporal competition. These terms describe the interac-
tion between two agents crossing paths, which leads to a deviation of their trajectories due to the
interaction.

We do not interpret higher-order terms, but the idea is similar. The even-order terms (2n)
describe interactions among n agents that modify their trajectories. The odd-order terms modify
the trajectories but also include the possibility of agents reuniting or splitting into multiple agents.
We will see in more detail how these terms come into play in the transition functions.

5.3 Step 3: Computation of the transition functions

5.3.1 Quadratic approximation

In the first approximation, transition functions in a given background field Ψ0 (Z, θ) can be computed
by replacing S (Ψ) in (25), with its quadratic approximation (27). In formula (27), O (Ψ0 (Z, θ))

is a differential operator of second order. This operator depends explicitly on Ψ0 (Z, θ). As a
consequence, transition functions and agent dynamics explicitly depend on the collective state of
the system. In this approximation, the formula for the transition functions (25) becomes:

Gα

(

(Z, θ)[k], (Z, θ)
[k]
)

=





k
∏

l=1





δ

δJ
(

(Z, θ)
il

)

δ

δJ†
(

(Z, θ)il

)



 (28)

×
∫

exp

(

−
∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))∆Ψ (Z, θ)

)

DΨDΨ†
]

J=J†=0

Using this formula, we can show that the one-agent transition function is given by:

Gα

(

(Z, θ)[1], (Z, θ)
[1]
)

= O−1 (Ψ0 (Z, θ))
(

(Z, θ)[1], (Z, θ)
[1]
)

(29)

where:
O−1 (Ψ0 (Z, θ))

(

(Z, θ)
[1]
, (Z, θ)

[1]
)
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is the kernel of the inverse operator O−1 (Ψ0 (Z, θ)). It can be seen as the
(

(Z, θ)
[1]
, (Z, θ)

[1]
)

matrix

element of O−1 (Ψ0 (Z, θ))
12.

More generally, the k-agents transition functions are the product of individual transition func-
tions:

Gα

(

(Z, θ)[k], (Z, θ)
[k]
)

=
k
∏

i=1

Gα

(

(Z, θ)i
[1], (Z, θ)i

[1]
)

(30)

The above formula shows that in the quadratic approximation, the transition probability from
one state to another for a group is the product of individual transition probabilities. In this
approximation, the trajectories of these agents are therefore independent. The agents do not
interact with each other and only interact with the environment described by the background field.

The quadratic approximation must be corrected to account for individual interactions within
the group, by including higher-order terms in the expansion of the action.

5.3.2 Higher-order corrections

To compute the effects of interactions between agents of a given group, we consider terms of order
greater than 2 in the effective action. These terms modify the transition functions. Writing the
expansion:

exp (−S (Ψ)) = exp

(

−
(

S (Ψ0) +

∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))

))



1 +
∑

n>1

An

n!





where:

A =
∑

k>2

∫ k
∏

i=1

∆Ψ† (Zi, θ)O (Ψ0 (Z, θ) , (Zi))

k
∏

i=1

∆Ψ(Zi, θ)

is the sum of all possible interaction terms, leads to the series expansion of (25):

Gα

(

(Z, θ)[k], (Z, θ)
[k]
)

=





k
∏

l=1





δ

δJ
(

(Z, θ)
il

)

δ

δJ†
(

(Z, θ)il

)



 (31)

∫

exp

(

−
∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))∆Ψ (Z, θ)

)



1 +
∑

n>1

An

n!



DΨDΨ†





J=J†=0

These corrections can be computed using graphs’ expansion.
More precisely, the first term of the series:





k
∏

l=1





δ

δJ
(

(Z, θ)
il

)

δ

δJ†
(

(Z, θ)il

)





∫

exp

(

−
∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))∆Ψ (Z, θ)

)

DΨDΨ†





J=J†=0

(32)
is a transition function in the quadratic approximation. The other contributions of the series
expansion correct the approximated n agents transtns functions (30).

12The differential operator O (Ψ0 (Z, θ)) can be seen as an infinite dimensional matrix indexed by the double

(infinite) entries
(

(Z, θ)[1], (Z, θ)
[1]
)

. With this description, the kernel O−1 (Ψ0 (Z, θ))
(

(Z, θ)[1], (Z, θ)
[1]
)

is the
(

(Z, θ)[1], (Z, θ)
[1]
)

element of the inverse matrix.
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Typically a contribution:

Gα

(

(Z, θ)
[k]
, (Z, θ)

[k]
)

=





k
∏

l=1





δ

δJ
(

(Z, θ)
il

)

δ

δJ†
(

(Z, θ)il

)



 (33)

∫

exp

(

−
∫

∆Ψ† (Z, θ)O (Ψ0 (Z, θ))∆Ψ (Z, θ)

)

An

n!
DΨDΨ†

]

J=J†=0

can be depicted by a graph. The power An

n! translates that agents interact n times along their path.
The trajectories of each agent of the group is broken n times between its initial and final points.
At each time of interaction the trajectories of agents are deviated. To such a graph is associated a
probility that modifies the quadratic approximation transition functions.

In the sequel we will only focus on the first order corrections to the two-agents transition
functions.

6 Application to a microeconomic framework

We will now present the microeconomic framework that will be turned into a field model using our
general method. We first describe the microeconomic model, then derive the associated minimiza-
tion function and the statistical weight associated to the N agents’ set of trajectories. We will then
translate the minimization functions into an action functional and obtain the statitical weight for
the field model associated to the initial microeconomic framework.

6.1 Microeconomic setup

To picture the interactions between the real and the financial economy, we will consider two groups
of agents, producers, and investors. In the following, we will refer to producers or firms i indistinc-
tively, and use the upper script ˆ for variables describing investors.

6.1.1 Firms

Producers are a set of firms operating each in a single sector, so that a single firm with subsidiaries
in different countries and/or offering differentiated products can be modeled as a set of independent
firms. Similarly, a sector refers to a set of firms with similar productions, so that sectors can be
decomposed into sectors per country to account for local specificities, or in several sectors.

Firms move across a vector space of sectors, which is of arbitrary dimension. Firms are defined
by their respective sector Xi and physical capital Ki, two variables subject to dynamic changes.
They may change their capital stocks over time or altogether shift sectors.

Each firm produces a single differentiated good. However, in the following, we will merely
consider the return each producer may provide to its investors.

The return of producer i at time t, denoted ri, depends on Ki, Xi and on the level of competition
in the sector. It is written:

ri = r (Ki, Xi)− γ
∑

j

δ (Xi −Xj)
Kj

Ki
(34)

where δ (Xi −Xj) is the Dirac δ function which is equal to 0 for Xi 6= Xj . The first term in
formula (34) is an arbitrary function that depends on the sector and the level of capital per firm
in this sector. It represents the return of capital in a specific sector Xi under no competition. We
deliberately keep the form of r (Ki, Xi) unspecified, since most of the results of the model rely on the
general properties of the functions involved. When needed, we will give a standard Cobb-Douglas
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form to the returns r (Ki, Xi). The second term in (34) is the decreasing return of capital. In any
given sector, it is proportional to both the number of competitors and the specific level of capital
per firm used.

We also assume that, for all i, firm i has a market valuation defined by both its price, Pi, and the
variation of this price on financial markets, Ṗi. This variation is itself assumed to be a function of
an expected long-term return denoted Ri, or more precisely the relative return R̄i of firm i against
the whole set of firms:

Ṗi

Pi
= F1

(

R̄i,
K̇i

Ki

)

(35)

Formula (35) includes the main features of models of price dynamics. In this equation, the time
dependency of variables is implicit. Formula (35) reflects the impact of capital and location on the
price of the firm through its expected returns. It also reflects how variations in capital impact its
growth prospects, through competition and dividends (see (34)). Actually, the higher the capital
of the firm, the lower impact of competition and the higher the dividends.

We assume Ri to have the general form:

Ri = R (Ki, Xi)

Expected long-term returns depend on the capital and sector in which the firm operates, but also
on external parameters, such as technology, ... which are encoded in the shape of R (Ki, Xi).

The relative return R̄i arising in (35) is defined by:

R̄i = R̄ (Ki, Xi) =
Ri
∑

l Rl
(36)

The function F1 in (35) is arbitrary and reflects the preferences of the market relatively to the
firm’s relative returns. We assume that firms relocate in the sector space according to returns, in
the direction of the gradient of the expected long-term returns R (Ki, Xi), so that they chose the
location Xi that minimizes at each continuous time t the objective function:

Li

(

Xi, Ẋi

)

=
(

Ẋi −∇XRiH (Ki)
)2

+ τ
KXi

Ki

∑

j

δ (Xi −Xj) (37)

where Ẋi stands for the continuous version of the discrete variation, Xi (t+ 1)−Xi (t), and δ (Xi −Xj)

is again the Dirac-δ-function. KXi
is the average capital per firm in sector Xi. The constant τ

measures the level of competition between firms, and describes the cost incured to settling in a new

sector13. The inclusion of the factor
KXi
Ki

models that the lower a firm’s capital is compared to the
sector average, the stronger the effect of competition

Actually, when τ = 0, there are no repulsive forces and the move towards the gradient of R is
given by the expression:

13Formula (37) represents the continuous version of the following objective function, where the firm aims to maxi-
mize its expected long-term revenue at each period:

L = R (Ki, Xi)−R (Ki, Xi − δXi)−
1

2

(

1

H (Ki)
δXi

)2

+ τ
KXi

Ki

∑

j

δ (Xi −Xj) (38)

Here, Xi−δXi denotes the position of the agent in the previous period. The term
(

1
H(Ki)

δXi

)2

represents the cost of

changing sector. The function H (Ki) is increasing with Ki, so that the higher the firm’s capital, the larger the shift.
The term τ

∑

j
δ (Xi −Xj) represents an externality increasing the cost of shifting proportionally to the number of

firms in sector Xi. The accumulation of agents at any point in the space creates a repulsive force that slows down
the shift. In continuous time, formula (38) becomes equivalent to formula (37), up to a constant term.
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Ẋi = ∇Xi
RiH (Ki)

When τ 6= 0, repulsive forces deviate the trajectory. The dynamic equation associated to the mini-
mization of (37) is given by the general formula of the dynamic optimization:

d

dt

∂

∂Ẋi

Li

(

Xi, Ẋi

)

=
∂

∂Xi
Li

(

Xi, Ẋi

)

(39)

This last equation does not need to be developed further, since formula (37) is sufficient to switch
to the field description of the system.

6.1.2 Investors

Each investor j is defined by his level of capital K̂j and his position X̂j in the sector space. Investors
can invest in the entire sector space, but tend to invest in sectors close to their position.

Besides, investors tend to diversify their capital: each investor j chose to allocate parts of his
entire capital K̂j between various firms i. The capital allocated by investor j to firm i is denoted
K̂

(i)
j , and given by:

K̂
(i)
j (t) =

(

F̂2

(

Ri, X̂j

)

K̂j

)

(t) (40)

where:

F̂2

(

Ri, X̂j

)

=
F2 (Ri)G

(

Xi − X̂j

)

∑

l F2 (Rl)G
(

Xl − X̂j

) (41)

The function F2 is arbitrary. It depends on the expected return of firm i and on the distance between

sectors Xi and X̂j. The function F̂2

(

R (Ki, Xi) , X̂j

)

is the relative version of F2 and translates the

dependency of investments on firms’ relative attractivity. Equation (40) is a general form of risk
averse portfolio allocation14.

We now define ε the time scale for capital accumulation. The variation of capital of investor
j between t and t + ε is the sum of two terms: the short-term returns ri of the firms in which j

invested, and the stock price variations of these same firms:

K̂j (t+ ε)− K̂j (t) =
∑

i

(

ri +
Ṗi

Pi

)

K̂
(i)
j =

∑

i

(

ri + F1

(

R̄i,
K̇i (t)

Ki (t)

))

K̂
(i)
j (43)

Incidentally, note that in equation (37), the time scale of motions within the sectors space was
normalized to one. Here, on the contrary, we define this motion time scale as ε, and assume ε << 1:
the mobility in the sector space is lower than capital dynamics. To rewrite (43) on the same
time-span as dXi

dt , we write:

14Actually, an investor allocating capital exclusively in a sector Xi and optimizing the function:

Ri
∑

l
Rl

sj − s
2
jV ar

(

Ri
∑

l
Rl

)

(42)

where the share sj satisfies
∑

sj = 1, will set sj = Ri
∑

l
Rl

. If we were to introduce the possibility of investing in

multiple sectors and consider more general preferences than this simple quadratic function, we should introduce the

functions G
(

Xi − X̂j

)

and F2 (Ri) in the solutions of (42), leading to (40).
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K̂j (t+ 1)− K̂j (t) =

1
ε
∑

k=1

K̂j (t+ kε)− K̂j (t)

=

1
ε
∑

k=1

∑

i

(

ri +
Ṗi

Pi

)

K̂
(i)
j (t+ kε)

≃ 1

ε

∑

i

(

ri + F1

(

R̄i,
K̇i (t)

Ki (t)

))

K̂
(i)
j

where the quantities in the sum have to be understood as averages over the time span [t, t+ 1].
Using equation (35), equation (43) becomes in the continuous approximation:

d

dt
K̂j =

1

ε

∑

i

(

ri + F1

(

Ri
∑

l δ (Xl −Xi)Rl
,
K̇i

Ki

))

F̂2

(

Ri, X̂j

)

K̂j (44)

where d
dtK̂j (t) = K̂j (t+ 1)− K̂j (t) is now normalized to the time scale of dXi

dt , i.e. 1.

6.1.3 Link between financial and physical capital

The entire financial capital is, at any time, completely allocated by investors between firms. For
producers, there is no alternative source of financing. Self-financing is discarded, since it would
amount to considering a producer and an investor as a single agent. The physical capital of a
any given firm is thus the sum of all capital allocated to this specific firm by all its investors.
Physical capital entirely depends on the financial arbitrage of the financial sector. Firms do not
own their capital: they return it fully at the end of each period with a dividend, though possibly
negative. Investors then entirely reallocate their capital between firms at the beginning of the next
period. This generalisation of the dividend irrelevance theory may not be fully accurate in the
short-run but holds in the long-run, since physical capital cannot last long without investment.
When investors choose not to finance a firm, this firm is bound to disappear in the long run. Under
these assumptions, the following identity holds:

Ki (t+ ε) =
∑

j

K̂
(i)
j =

∑

j

F̂2

(

Ri, X̂j (t)
)

K̂j (t) (45)

where Ki stands for the physical capital of firm i at time t, and
∑

j K̂
(i)
j for the sum of capital

invested in firm i by investors j. Recall that the parameter ε accounts for the specific time scale
of capital accumulation. It differs from that of mobility within the sector space (37), which is
normalized to one.

The dynamic equation (45) rewrites:

Ki (t+ ε)−Ki (t)

ε
=

1

ε





∑

j

F̂2

(

Ri, X̂j (t)
)

K̂j (t)−Ki (t)



 (46)

Using the same token as in the derivation of (44), its continuous approximation becomes:

d

dt
Ki (t) +

1

ε



Ki (t)−
∑

j

F̂2

(

Ri, X̂j (t)
)

K̂j (t)



 = 0 (47)

where d
dtKi (t) stands for Ki (t+ 1)−Ki (t).
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6.1.4 Capital allocation dynamics

Investors allocate their capital among sectors, and may adjust their portfolio to the returns of the
sector or firms they are invested in. This is modelled by a move along the sectors’ space in the
direction of the gradient of R (Ki, Xi).

Investor j capital reallocation is described by a dynamic equation for X̂j :

d

dt
X̂j −

1
∑

i δ
(

Xi − X̂j

)

∑

i

(

∇X̂F0

(

R
(

Ki, X̂j

))

+ ν∇X̂F1

(

R̄
(

Ki, X̂j

)

,
K̇i

Ki

))

= 0 (48)

The factor
∑

i δ
(

Xi − X̂j

)

is the firms’ density in sector X̂j. The more competitors in a sector, the

slower the reallocation. The term ∇X̂F0

(

R
(

Ki, X̂j

))

models the investors’ propensity to reallocate

in sectors with highest long-term returns. The term ν∇X̂F1

(

R̄
(

Ki, X̂j

))

describes the investors’

preference for stocks displaying the highest price’s increase15.

Remark on the model Note that consumers do not appear in this framework. This choice
of a partial model is deliberate and aims to focus solely on the allocation of capital among a large
number of investors and firms.

In the framework of the representative agent, this choice of a partial, consumer-free model
could be problematic. A model with a single firm and one investor would be useless: capital would
be invested in the single firm and would grow through dividends. In this context, introducing a
consumer that can arbitrage between consumption and long-term returns becomes relevant.

Here we rather study how investment varies and how capital is allocated among multiple firms
under varying exogeneous conditions, for which our partial model will provide ample results16.

6.2 Minimization functions

To find the statistical weight associated to the trajectories of the system, we must write the min-
imization functions of the system’s equations. Recall that they are functions whose minimization
yields the dynamic equations of the system.

We have seen that the dynamics of the variable Xi comes from the minimization of the function:

(

dXi

dt
−∇XR (Ki, Xi)H (Ki)

)2

+ τ
KXi

Ki

∑

j

δ (Xi −Xj)

We simply re-use this function and sum over the whole set of agents and yield the minimization
function for the capital allocation dynamics:

s1 =
∑

i

(

dXi

dt
−∇XR (Ki, Xi)H (Ki)

)2

+
∑

i

τ
KXi

Ki

∑

j

δ (Xi −Xj) (49)

The dynamics of Ki, K̂i et X̂i are not the result of a minimization, but their associated quadratic
functions (10) can easily be found and yield the following minimization functions:

15As for (37), equation (48) can be justified by an objective function that would depend on returns and that
includes a cost for any sector shift, to translate the loss of information and connections induced by the shift.

16Adding a consumer would modify the model by introducing in (40) a factor lower than one and depending on
the sector long-term returns. This factor directly arises from the arbitrage between investment and consumption, but
appears irrelevant in the present context. Additionally, the firm’s dividend would be influenced by the consumption
of the good produced by the firm. Once again, a general model would deviate from our intended purpose.
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for the physical capital Ki:

s2 =
∑

i





d

dt
Ki +

1

ε



Ki −
∑

j

F̂2

(

R (Ki (t) , Xi (t)) , X̂j (t)
)

K̂j (t)









2

(50)

for the financial capital K̂i:

s3 =
∑

j

(

d

dt
K̂j −

1

ε

(

∑

i

(

ri + F1

(

R (Ki, Xi)
∑

l δ (Xl −Xi)R (Kl, Xl)
,
K̇i (t)

Ki (t)

))

F̂2

(

R (Ki (t) , Xi (t)) , X̂j (t)
)

K̂j

))2

(51)
and ultimately, for financial capital allocation X̂i:

s4 =
∑

i





d

dt
X̂j −

1
∑

i δ
(

Xi − X̂j

)

∑

i

(

∇X̂F0

(

R
(

Ki, X̂j

))

+ ν∇X̂F1

(

R̄
(

Ki, X̂j

)))





2

(52)

As a consequence, the statistical weight associated to the trajectories is simply:

W
(

{Ki (t) , Xi (t)} ,
{

K̂i (t) , X̂j (t)
})

= exp

(

−
∫

dt (s1 + s2 + s3 + s4)

)

(53)

6.3 Translation in terms of fields

To translate the previous microeconomic framework into a field model, we must translate the
minimization functions (49), (50) for the firms, and (51) and (52) for investors in terms of four
functionals of the fields 17. The sum of these four functionals is the ”field action functional”18 that
determine the statistical weight for the field.

We will apply the general method developed in section 3 and start with firms, by translating
first (49) and (50).

6.3.1 Real Economy

In both capital allocation dynamics (49) and capital accumulation dynamics (50), time derivatives
appear. However, one of them, equation (49), includes time-independent terms and is thus of the
form (10), the other, equation (49) is of the type (??). Based on the translation rules, appendix
1.3 computes the translation of the various minimization functions.

Using the translation (15) of (13)-type term, the minimization function of physical capital
allocation (49) translates into:

S1 = −
∫

Ψ† (K,X)∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

Ψ(K,X)dKdX (54)

+τ
KX

K

∫

|Ψ(K ′, X)|2 |Ψ(K,X)|2 dK ′dKdX

where KX is the average capital per firm in sector X. We show below that KX has the field
expression:

KX =

∫

K |Ψ(K,X)|2 dK
‖Ψ(X)‖2

17The term functional refers to a function of a function, i.e. a function whose argument is itself a function.
18Details about the probabilistic step will be given as a reminder along the text and in appendix 1.
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Similarly, the minimization function of the physical capital (50), translates into:

S2 = −
∫

Ψ† (K,X)∇K

(

σ2
K

2
∇K +

1

ε

(

K −
∫

F̂2

(

R (K,X) , X̂
)

K̂
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

dK̂dX̂

))

Ψ(K,X)

(55)
with:

F̂2

(

R (K,X) , X̂
)

=
F2 (R (K,X))G

(

X − X̂
)

∫

F2 (R (K ′, X ′))G
(

X ′ − X̂
)

|Ψ(K ′, X ′)|2 d (K ′, X ′)
(56)

6.3.2 Financial markets

The financial capital dynamics (51) and the financial capital allocation (52) both include a time
derivative and are thus of type (12). The application of the translation rules is straightforward.

Using the general translation formula of expression (16) in (17), the minimization function (51)
for the financial capital dynamics translates into:

S3 = −
∫

Ψ̂†
(

K̂, X̂
)

∇K̂

(

σ2
K̂

2
∇K̂ − K̂

ε

∫

(

r (K,X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K

(57)

+F1

(

R̄ (K,X) ,Γ (K,X)
))

F̂2

(

R (K,X) , X̂
)

‖Ψ(K,X)‖2 d (K,X)
)

Ψ̂
(

K̂, X̂
)

where:

R̄ (K,X) =
R (K,X)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
(58)

Γ (K,X) =

∫

F̂2

(

R (K,X) , X̂
)

K̂
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

dK̂dX̂

K
− 1 (59)

and the function for financial capital allocation (52) translates into:

S4 = −
∫

Ψ̂†
(

K̂, X̂
)

(60)

×






∇X̂σ2

X̂
∇X̂ −

∫







∇X̂F0

(

R
(

K, X̂
))

+ ν∇X̂F1

(

R̄ (K,X) ,Γ (K,X)
)

∫

∥

∥

∥
Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′







∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

dK






Ψ̂
(

K̂, X̂
)

6.3.3 Fields action functional and statistical weight

We can now find the statistical weight of any realization of the fields. Actually, the action functional
of the system is the sum of the contributions (54),(55),(57),(60):

S
(

Ψ, Ψ̂
)

= S1 + S2 + S3 + S4

and the field statistical weight for the realization
(

Ψ, Ψ̂
)

is:

exp
(

−S
(

Ψ, Ψ̂
))

With no loss of generality, we can find a more compact form for the action S by assuming that
investors invest in only one sector, so that:

G
(

X − X̂
)

= δ
(

X − X̂
)

(61)
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We can thus write the action functional S:

S = −
∫

Ψ† (K,X)

(

∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

− τ
KX

K

(∫

|Ψ(K ′, X)|2 dK ′
)

(62)

+ ∇K

(

σ2
K

2
∇K + u

(

K,X,Ψ, Ψ̂
)

))

Ψ(K,X)dKdX

−
∫

Ψ̂†
(

K̂, X̂
)

(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂,Ψ, Ψ̂
)

)

+∇X̂

(

σ2
X̂

2
∇X̂ − g

(

K,X,Ψ, Ψ̂
)

))

Ψ̂
(

K̂, X̂
)

where each line corresponds to one Si and where, to simplify, we have defined:

u
(

K,X,Ψ, Ψ̂
)

=
1

ε

(

K −
∫

F̂2 (R (K,X)) K̂
∣

∣

∣Ψ̂
(

K̂,X
)∣

∣

∣

2

dK̂

)

(63)

f
(

X̂,Ψ, Ψ̂
)

=
1

ε

∫

(

r (K,X)− γ
∫

K ′ |Ψ(K,X)|2
K

+ F1

(

R̄ (K,X) ,Γ (K,X)
)

)

(64)

×F̂2 (R (K,X))
∣

∣

∣Ψ
(

K, X̂
)∣

∣

∣

2

dK (65)

g
(

K, X̂,Ψ, Ψ̂
)

=

∫ ∇X̂F0

(

R
(

K, X̂
))

+ ν∇X̂F1

(

R̄
(

K, X̂
)

,Γ (K,X)
)

∫

∣

∣

∣Ψ
(

K ′, X̂
)∣

∣

∣

2

dK ′

∣

∣

∣Ψ
(

K, X̂
)∣

∣

∣

2

dK (66)

The expression for R̄ (K,X) is still given by (58). Under our assumption, the functions F̂2 and Γ

become:

F̂2 (R (K,X)) =
F2 (R (K,X))

∫

F2 (R (K ′, X)) |Ψ(K ′, X)|2 dK ′
(67)

Γ (K,X) =

∫

F̂2 (R (K,X)) K̂
∣

∣

∣
Ψ̂
(

K̂,X
)∣

∣

∣

2

dK̂

K
− 1 (68)

Despite its compact and abstract form, equation (62) encompasses the main elements of our
microeconomic framework. Recall that function H (KX) encompasses the determinants of the firms’
mobility across the sector space. We will specify this function below as a function of expected long
term-returns and capital.

Function u describes the evolution of capital of a firm, located at X. This dynamics depends on
the relative value of a function F2 that is itself a function of the firms’ expected returns R (K,X).
Investors allocate their capital based on their expectations of the firms’ long-term returns.

Function f describes the returns of investors located at X̂, and investing in sector X a capital
K. These returns depend on short-term dividends r (K,X), the field-equivalent cost of capital
γ
∫

K′‖Ψ(K,X)‖2
K , and a function F1 that depends on firms’ expected long-term stock valuations. These

valuations themselves depend on the relative attractivity of a firm expected long-term returns vis-
a-vis its competitors.

Function g describes investors’ shifts across the sectors’ space. They are driven by the gradient
of expected long-term returns and stocks valuations, who themselves depend on the firms’ relative
expected long-term returns.

Note that we do not introduce a time variable at this stage. Our purpose is to find the collective
states of the system, which can be considered as static in a first step. It is only when we will study
the impact of exogeneous parameters on the collective states that we will introduce a macro time
scale.
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6.4 Field model and averages

As detailed above, once the field action functional S is found, we can use field theory to study
the system of agents, both at the collective and individual levels. At the collective level we can
compute the averages of the system in a given background field. The individual level, described by
the transition functions will be studied in the third part.

Recall that the background fields emerging at the collective level are particular functions,

Ψ(K,X) and Ψ̂
(

K̂, X̂
)

, and their adjoints fields Ψ† (K,X) and Ψ̂†
(

K̂, X̂
)

, that minimize the func-

tional S.
Once the background fields are obtained, the associated number of firms and investors per sector

for a given average capital K can be computed. They are given by:

|Ψ(K,X)|2 = Ψ† (K,X)Ψ (K,X) (69)

and:
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

= Ψ̂†
(

K̂, X̂
)

Ψ̂
(

K̂, X̂
)

(70)

With these two density functions at hand, various average quantities in the collective state can be
computed.

The number of producers ‖Ψ(X)‖2 and investors
∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

in sectors are computed using the

formula:

‖Ψ(X)‖2 ≡
∫

|Ψ(K,X)|2 dK (71)

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

≡
∫

∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

dK̂ (72)

The total invested capital K̂X in sector X is defined by a partial average:

K̂X̂ =

∫

K̂
∣

∣

∣Ψ̂
(

K̂,X
)∣

∣

∣

2

dK̂ =

∫

K̂
∣

∣

∣Ψ̂
(

X̂
)∣

∣

∣

2

dK̂ (73)

and the average invested capital per firm in sector X defined by:

KX =

∫

K̂
∣

∣

∣Ψ̂
(

K̂,X
)∣

∣

∣

2

dK̂

‖Ψ(X)‖2
(74)

Note that, given our assumptions, the total physical capital is equal to the total capital invested:

∫

K |Ψ(K,X)|2 dK =

∫

K̂
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

dK̂

so that KX is also equal to the average physical capital per firm for sector X, i.e. :

KX =

∫

K |Ψ(K,X)|2 dK
‖Ψ(X)‖2

(75)

In the following, we will use both expressions (74) or (75) alternately for KX .

Ultimately, the distributions of invested capital per investor and of capital per firm, given a

collective state and a sector X, are
|Ψ̂(K̂,X)|2
‖Ψ̂(X̂)‖2 and |Ψ(K,X)|2

‖Ψ(X)‖2 , respectively.
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Gathering equations (71), (72) and (74), each collective state is singularly determined by the
collection of data that characterizes each sector: the number of firms, investors, the average capital,
and the distribution of capital. All these quantities allow the study of capital allocation among
sectors and its dependency in the parameters of the system, such as expected long-term and short-
term returns, and any other parameter. This ”static” point of view, will be extended by introducing
some fluctuations in the expectations, leading to a dynamic of the average capital at the macro-
level. In the following, we solve the system for the background fields and compute the average
associated quantities.

System at the macro level: background fields
and equilibria

In this part, we consider the study of our economic framework at the macro-scale. Starting with the

action functional (62), we derive the background fields Ψ(K,X) and Ψ̂
(

K̂, X̂
)

, and their adjoints

fields Ψ† (K,X) and Ψ̂†
(

K̂, X̂
)

, that minimize the functional S. This allow to derive the potential

equilibria of the system. We show that at each point of the sector space, several patterns of
accumulation may appear, leading to an infinite number of potential background states. Thes
pattern are not independent, and describe the system as a whole that may experience global
transitions in patterns of accumulation

7 Resolution

Now that the initial framework has been translated into a proper field formalism, we can solve the
field model. Average capital per sector (defined in (74) and (73)) depends on the background fields

Ψ(K,X) and Ψ̂
(

K̂,X
)

and their conjugate Ψ† (K,X) and Ψ̂†
(

K̂, X̂
)

that minimize the field action
S.

To study the influence of investment and financial allocation on the dynamics of the real econ-
omy, we must express the quantities relevant to firms as functions of financial quantities.

The order of resolution will thus be the following: we will first minimize the (K,X) part of the
fields action (62), i.e. S1 + S2, to find the real economy background fields Ψ(K,X) and Ψ† (K,X)

and the number of firms |Ψ(K,X)|2 as functions of the financial sectors’ background fields Ψ† (K,X)

and Ψ̂†
(

K̂, X̂
)

and investors’ variables. We will then minimize S3 + S4, and find the minimal

configuration of the investors’ field Ψ̂
(

K̂, X̂
)

and Ψ̂†
(

K̂, X̂
)

.

7.1 Background field for the real economy

To compute19 the field of the real economy Ψ(K,X) as a function of the field of the financial sector

Ψ̂
(

K̂, X̂
)

. We first minimize S1 + S2, i.e. the real economy part of equation (62):

S1 + S2 = −
∫

Ψ† (K,X)

(

∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

− τ
KX

K

(∫

|Ψ(K ′, X)|2 dK ′
)

(76)

+ ∇K

(

σ2
K

2
∇K + u

(

K,X,Ψ, Ψ̂
)

))

Ψ(K,X) dKdX

19For detailed computations of this subsection, see appendix 2.
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Since, in this second part of the paper, we are interested in studying the collective states, we
will consider that in first approximation KX

K ≃ 1. This corresponds to consider that in average
the fluctuations of capital in one sector X is relatively low with respect to the average KX . This
assumptions will be removed in the third part, when we consider individual dynamics. As a
consequence, we consider the replacement:

τ
KX

K
→ τ

For relatively slow fluctuations in X, and up to an exponential change of variable in the fields,
we show in appendix 2.1 that the background fields Ψ(K,X) and Ψ† (K,X) decompose as a product:

Ψ(K,X) = Ψ† (K,X) = Ψ (X)Ψ1 (K −KX) (77)

where KX , the average invested capital per firm in sector X, is given by (75) and the functions
Ψ(X) and Ψ1 (K −KX) satisfy the following differential equations:

0 =

(

−σ2
X

2
∇2

X +
(∇XR (X)H (KX))

2

2σ2
X

+
∇2

XR (K,X)

2
H (K) + 2τ |Ψ(X)|2

)

Ψ(X) (78)

+D
(

‖Ψ‖2
)

(∫

‖Ψ(X)‖2 −N

)

+

∫

µ (X) ‖Ψ(X)‖2

for Ψ(X), and:

0 = −∇2
KΨ1 (K −KX) +

(

K − F2 (R (K,X))KX

F2 (R (KX , X))

)2

Ψ1 (K −KX) + γ (X)Ψ1 (K −KX) (79)

for Ψ1 (K −KX).

The constants D
(

‖Ψ‖2
)

, µ (X) and γ (X) arising in (78) and (79) are Lagrange multipliers20

that implement the constraints:
∫

‖Ψ(X)‖2 = N , ‖Ψ(X)‖2 > 0, ‖Ψ1 (K −KX)‖2 = 1

where N is the total number of firms of the system.

The intuition that the background field can be decomposed as a product, presented in equation
(77), is straightforward: in the space of sectors, firms relocate more slowly than capital accumulates,
so that firms are first described the position X of their sector, and second, their capital in this sector,
distributed around the average capital of the sector, KX . This is translated in the decomposition
(77) of Ψ(K,X) by the two factors Ψ(X) and Ψ1 (K −KX).

The function Ψ1 (K −KX), involved in the definitions (77) of the background fields Ψ(K,X)

describes the fluctuations of capital in a given sector X around an average value KX
21:

Ψ1 (K −KX) = N exp

(

−
(

K − F2 (R (K,X))KX

F2 (R (KX , X))

)2
)

(80)

where N is a normalization factor. The capital accumulated by a firm in a sector X is centered
around the average capital KX in this sector, weighted by a factor F2(R(K,X))

F2(R(KX ,X)) . This factor depends

20Incidentally, note that, to keep track of the dependency of the Lagrange multiplier in ‖Ψ‖2 in the above, we have
chosen the notation D

(

‖Ψ‖2
)

.
21It is computed in appendix 2.1.2.
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on the firm’s expected long-term return. It is relative to the average expected long-term return of
the whole sector X described by the function F2 (R (KX , X))22.

Equation (78) can be solved for the X-dependent part of the background field Ψ(X)23. From
this solution, we can deduce the number of firms ‖Ψ(X)‖2 in sector X. However, when fluctuations
in capital allocation σ2

X are small, we can express directly ‖Ψ(X)‖2 as a function of the financial
variables.

This number of firms is given by:

‖Ψ(X)‖2 =
D
(

‖Ψ‖2
)

2τ
− 1

4τ

(

(∇XR (X))
2
+

σ2
X∇2

XR (KX , X)

H (KX)

)



1−
H ′
(

K̂X

)

KX

H
(

K̂X

)



H2 (KX) (81)

provided that the rhs of equation (81) is positive. It is 0 otherwise.

The Lagrange multiplier D
(

‖Ψ‖2
)

is obtained by integration of (78) and yields:

ND
(

‖Ψ‖2
)

= 2τ

∫

|Ψ(X)|4 + 1

2

∫

(∇XR (X)H (KX))
2 ‖Ψ(X)‖2 (82)

Formula (81) will be used extensively in the sequel to compute KX , the average physical capital
per firm in sector X.

7.2 Background field for the financial markets

We have computed the background fields for firms, Ψ(K,X) and Ψ† (X,K), and the number of firms

by minimizing S1 + S2. We can now compute the background fields Ψ̂
(

K̂, X̂
)

and Ψ̂†
(

K̂, X̂
)

for

investors along with the number of investors
∣

∣

∣Ψ̂
(

X̂, K̂
)∣

∣

∣

2

by minimizing S3 + S4.

We first rewrite the field action for investors, S3 + S4. Inserting the number of firms ‖Ψ(X)‖2,
formula (81), reduces S3 + S4 to:

S3 + S4 = −
∫

Ψ̂†
(

K̂, X̂
)

(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂
)

)

+∇X̂

(

σ2
X̂

2
∇X̂ − g

(

X̂
)

))

Ψ̂
(

K̂, X̂
)

(83)

where f
(

KX̂ , X̂
)

is the short-term return24:

f
(

KX̂ , X̂
)

=
1

ε

(

r
(

KX̂ , X̂
)

− γ
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ F1

(

R̄
(

KX̂ , X̂
))

)

(84)

and g
(

KX̂ , X̂
)

describes investors capital reallocation:

g
(

KX̂ , X̂
)

=
(

∇X̂F0

(

R
(

KX̂ , X̂
))

+ ν∇X̂F1

(

R̄
(

KX̂ , X̂
)))

(85)

which depends on long-term returns R
(

KX̂ , X̂
)

and their relative value R̄
(

KX̂ , X̂
)

given by:

R̄
(

KX̂ , X̂
)

=
R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′) ‖Ψ(X ′)‖2 dX ′

(86)

22See discussion below equation (40).
23A method of resolution of (78) and two examples for particular forms of the function H (K) are presented in

appendix 2.2.
24See appendix 3.1.1.
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Recall that F1 measures the share of capital reallocation that depends on stock prices variation:

F1

(

R̄
(

KX̂ , X̂
))

= F1

(

R̄
(

KX̂ , X̂
)

,Γ = 0
)

(87)

In the sequel, any function h
(

KX̂ , X̂
)

and its partial derivatives h
(

KX̂ , X̂
)

will be written h
(

X̂
)

,

∇K
X̂
h
(

X̂
)

and ∇X̂h
(

X̂
)

, respectively.

Using a change of variable:

Ψ̂ → exp

(

1

σ2
X̂

∫

g
(

X̂
)

dX̂ +
K̂2

σ2
K̂

f
(

X̂
)

)

Ψ̂

the minimization of S3 + S4, equation (83) yields25 the equation for Ψ̂:

0 =







σ2
X̂
∇2

X̂

2
−

(

g
(

X̂
))2

2σ2
X̂

−
∇X̂g

(

X̂
)

2






Ψ̂ +

(

∇K̂

(

σ2
K̂
∇K̂

2
− K̂f

(

X̂
)

)

− F
(

X̂
)

K̂ − λ̂

)

Ψ̂ (88)

and the equation for its conjugate Ψ̂†:

0 =







σ2
X̂
∇2

X̂

2
−

(

g
(

X̂
))2

2σ2
X̂

−
∇X̂g

(

X̂
)

2






Ψ̂† +

((

σ2
K̂
∇K̂

2
+ K̂f

(

X̂
)

)

∇K̂ − F
(

X̂
)

K̂ − λ̂

)

Ψ̂† (89)

with:

F
(

X̂
)

= ∇K
X̂







(

g
(

X̂
))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂
)

+ f
(

X̂
)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 +

〈

K̂2
〉

X̂
∇K

X̂
f2
(

X̂
)

σ2
K̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 (90)

where
〈

K̂2
〉

X̂
denotes the average of K̂2 in sector X̂ (see appendix 3.1.2) and

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

=
∫

∣

∣

∣Ψ̂
(

X̂, K̂
)∣

∣

∣

2

dK̂.

A Lagrange multiplier λ̂ has been included in the system of equations (88) and (89) to implement
the constraint for Ψ̂ and Ψ̂†:

∫

∣

∣

∣Ψ̂
(

X̂, K̂
)∣

∣

∣

2

dX̂dK̂ = N̂ (91)

Incidentally, note that the function F
(

X̂,KX̂

)

arising in the minimization equations (88) and

(89) describes the impact of individual variations on the collective state (the field Ψ̂). It can be
neglected in first approximation.

Appendix 3.1.3 computes the solutions for the investors’ background fields (equations (88)
and (89)). We find an infinite number of solutions for Ψ̂λ̂ and Ψ̂†

λ̂
parametrized by λ̂ ∈ R, which

translates the fact that S3 + S4 has an infinite number of local minima.
However, the eigenvalue

∣

∣

∣λ̂
∣

∣

∣ computed in appendix 3.1.4.2 has a lower bound M26 defined by:

M = max
X̂

(

A
(

X̂
))

(92)

25See appendix 3.1.2.
26This lower bound is reminiscent of the fact that the Lagrange multiplier λ is the eigenvalue of the second order

operator arising in equation (89), and that this operator is bounded from below.

30



where:

A
(

X̂
)

=

(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂
)

−
σ2
K̂
F 2
(

X̂
)

2f2
(

X̂
) (93)

and that Ψ̂−M is the global minimum of S3 + S4. The background fields are thus Ψ̂−M and its
adjoint Ψ̂†

−M .
For these background fields, the number of agents with capital K̂ invested in sector X̂ is:

∣

∣

∣Ψ̂−M

(

K̂, X̂
)∣

∣

∣

2

= Ψ̂†
−M

(

X̂, K̂
)

Ψ̂−M

(

K̂, X̂
)

We find:

∣

∣

∣Ψ̂−M

(

K̂, X̂
)∣

∣

∣

2

≃ C (p̄) exp



−σ2
XK̂4 (f ′ (X))

2

96σ2
K̂

∣

∣

∣f
(

X̂
)∣

∣

∣



D2
p(X̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂
)

f2
(

X̂
)













(94)

where Dp is the parabolic cylinder function with parameter p
(

X̂
)

and:

p
(

X̂
)

=
M −A

(

X̂
)

√

f2
(

X̂
)

(95)

The constant C (p̄) ensures that the constraint (91) is satisfied27.

Section 9.2 will show that p
(

X̂
)

encompasses the relative expected returns of sector X vis-à-vis

its neighbouring sectors.

7.3 Average capital per firm per sector

Now that the number of firms and investors per sector are computed, we can determine the average
capital invested per firm in sector X̂, i.e. KX̂ .

We first rewrite the defining equation of KX̂ (74) as:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

=

∫

K̂
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

dK̂ (96)

and evaluate this equation for the background field (94):

KX ‖Ψ(X)‖2 =

∫

K̂
∣

∣

∣
Ψ̂−M

(

K̂, X̂
)∣

∣

∣

2

dK̂ (97)

Equation (97) allows to find the average capital KX̂ . Actually, both the densities of agents
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

and
∣

∣

∣Ψ̂−M

(

K̂, X̂
)∣

∣

∣

2

, equations (81) and (94), are functions of KX̂ , so that equation (97)

is itself an equation for KX̂ .

From this general equation, we can find the average capital at point X̂. Appendix 3.1.4.2
computes the integral (97) using the financial background field (94).

In the sequel, we will write p
(

X̂
)

defined in (95) as:

p ≡ p
(

X̂
)

(98)

27Its expression is given in appendix 3.1.3.
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and equation (97) becomes ultimately:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂
Γ̂

(

p+
1

2

)

(99)

with:

Γ̂

(

p+
1

2

)

= exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






(100)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

−
(

Γ
(

− p
2

))2

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

−
(

Γ
(

− p−1
2

))2

2p+1Γ (−p) Γ (−p+ 1)

)

and where Γ is the Gamma function.

This final form of the capital equation, (99), will be central to our following computations.
However, it involves some functions, such as f , that have a general form, and functions of the
unknown variable KX̂ (see for instance equation (84)). Thus, it cannot, in general, be solved
analytically.

7.4 Solving for average capital

Except for some particular cases, the final form of the capital equation (99) cannot be solved
analytically. Several approaches can nonetheless be used to approximate its solutions and study
their behaviours. The detailed results and their derivation are given in appendix 4.

A first and most general approach studies, for each sector, the variation of average capital per
firm KX̂ with respect to any parameter of the system. This is done by studying the differential
form of the capital equation (99) while keeping very general forms for the parameter-functions f

and g. This approach allows to study, on a sector, the influence of its neighbours. It is depicted
by the variation of KX̂ with respect to the sector’s relative expected returns. It reveals stable and
unstable equilibria in the system but does not yield the sectors’ precise levels of capital.

A second approach expands the capital equation (99) around particular solutions. These partic-
ular solutions are the average capital in sectors where accumulation is the strongest. This approach
confirms the existence of both stable and unstable equilibria, which correspond to several possi-
ble average capital in a given sector: depending on initial configurations, an infinite number of
collective states may arise28.

A third approach provides approximate solutions to the capital equation (99) for standard
forms of the parameter-functions. The existence of multiple solutions is confirmed, along with the
associated stability analysis. Combined, these three approaches confirm and complete each other.

Equation (99) has in general several solutions per sector that can be ranked by their level of
average capital; low average, high or very high. For each of these levels of capital, the solutions
of equation (99) may be stable or unstable. A stable average capital is one that, when slightly
modified, comes back to its initial values, wheras an unstable solution does not. An unstable
average capital may be interpreted as a threshold of capital accumulation for firms in the sector.
The solutions of (99) depend on short-term returns, long-term returns, absolute and relative, and
the dependency of the solutions of (99) depends on the stability of this solution.This results will
be interpreted in section 9.

28This point will be developed in section 8.
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8 Dynamic average capital

So far, we have determined and studied how average capital per firm and per sector react to changes
in parameters. However these same parameters may vary over time, and so should average capital
values. We thus introduce a macro timescale and design a dynamic model in which average capital
and expectations in long-term returns interact and vary over time.

8.1 Average capital and long-run expected returns

We consider how modifications in parameters generate the dynamics for KX̂ . Assuming that some
time-dependent parameters modify expected long-term returns R (X), average capital KX̂ becomes
a function of the time variable θ. To find how the average physical capital per firm in sector X̂, KX̂ ,
evolves over time, we must define the equation for KX̂ , (99), and compute its variation with respect

to θ, using the fact that the functions
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

and Γ̂
(

p+ 1
2

)

both depend on time θ through KX̂

and R (X). The variations of these two functions with respect to the dynamic variables KX̂ and
R (X) are computed in appendix 5.1. We show that, when C (p̄) constant, the variation of (99)
writes:
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where coefficients k, l, m and n are computed in appendix 5.1.
To make the system self-consistent, and since KX̂ already depends on R, we merely need to

introduce an endogenous dynamics for R.
To do so, we assume that R depends on KX̂ , X̂ and ∇θKX̂ , and that this dependency has the

form of a diffusion process29. This leads to write R as a function R
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)
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+f
(

X̂
)

∇2
X̂

(

∇θR
(

θ, X̂
))

+ h
(

X̂
)

∇2
θ

(

∇θR
(

θ, X̂
))

+u
(

X̂
)

∇X̂∇θ

(

∇θKX̂

)

+ v
(

X̂
)

∇X̂∇θ

(

∇θR
(

θ, X̂
))

We can also assume that the coefficients in the expansion are slowly varying, since they are obtained
by computing averages.

The dynamics (102) corresponds to a diffusion process: expected returns in one sector depend
on the variations of capital and returns in neighbouring sectors.

To find the intrinsic dynamics for KX̂ , we assume that the exogenous variation
∇θr(X̂)
r(KX̂

,X̂)
is null,

and that the system of equations (23) and (102) yields the dynamics for ∇θKX̂ and ∇θR
(

θ, X̂
)

.

Approximating these dynamics to the first order in derivatives, we find in appendix 5.2 the following
matricial equation:

0 = M1
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∇θR

)

−M2

(

∇θKX̂

∇θR

)

−M3
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)

(103)

29See appendix 5.2.
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8.2 Oscillatory solutions

We look for oscillating solutions of (103) of the type:
(
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∇θR
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)

)

= exp
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iΩ
(
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)

θ + iG
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)
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)

(

∇θK0
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(104)

with slowly varying G
(

X̂
)

and Ω
(

X̂
)

. We are then led to the relation between Ω
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)

and G
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)
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eΩ2 + fG2 + vΩG
)

We will limit our study to the first order terms which yields the expression for Ω as a function of
the parameters involved in (101) and (102). Appendix 5.3 computes the expression of Ω.

It also derives the condition of stability for the oscillations. When:
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oscillations are dampened and return to the steady state. Otherwise, oscillations are diverging:
the system settles on another steady state, i.e. another background state. Appendix 5.4 studies

the condition (106) as a function of the parameter functions f
(

X̂
)

and R
(

X̂
)

, the level of average

capital KX̂ , and the coefficients arising in the expectations formations. The results are presented
in the next section.

9 Results and nterpretations

For each sector, the equation defining its average capital, equation (99), accepts several solutions,
so that each sector could present several average capital. We will discuss the stability of these
solutions, before detailing the determinants of average capital, and number of firms and investors
per sector. We will then describe the three patterns of capital accumulation that emerge and
their possible transitions. Ultimately we will study how average capital per sector interacts with
endogeneized long-term returns expectations. We will end up this section by providing a synthesis
of the main results.

9.1 Stability of average capital

Each average value of capital solving equation (99) can be either stable or unstable. A stable average
capital, when modified, will naturally return to its initial value. An unstable one will not: it will
merely act as a potentially varying capital accumulation threshold. Once modified, an unstable
average capital will settle at another equilibrium level.

The average capital per firm per sector defined in equation (99) acts as a fixed point of a
dynamic equation3031 whose (in)stability depends the sector’s parameters. An unstable average

30The definitions of the parameters are given in appendix 4.1.1.1.
.
31See section 7.2.1.2 and appendix 4.1.1.1
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capital will act as a potential threshold for capital accumulation in a sector: any deviation in this
threshold will set firms above or below the threshold, initiate a path towards a new equilibrium
and ultimately shift average capital. There is therefore an intrinsic transition dynamics of average
capital per sector that is driven by instability and exogenous variations in the system’s parameters.

Average capital is potentially unstable in a sector when the following condition is met:
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This instability depends on the four parameters of
∣
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∣: directly through short-term returns,

dividends and price fluctuations,
∂ ln f(X̂,K

X̂)
∂K

X̂
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;

indirectly through a change in the background field induced either by a variation in short-term re-

turns f
(

X̂
)

via l
(

X̂,KX̂

)

, or by the modification of the relative return of sector X̂ which depends

on the shape of the returns around X̂ via k (p) ∂p
∂K

X̂
. Any variation in these parameters will affect

the system as a whole and may reshape the collective state through a change in the background
field. Altogether, these modifications may magnify or dampen changes in a sector’s average capital
and impact the stability of the system.

9.2 Determinants of capital accumulation

We will describe the determinants of capital accumulation, before studying the number of firms
and investors per sector.

9.2.1 Average capital per sector

The average capital in a sector X̂ is determined by short-term returns, f
(

X̂
)

- dividends and

price fluctuations - and by the growth prospects of the firm, its expected long-term returns, R
(

X̂
)

.

These returns are not fully independent since the price fluctuations in short-term returns are driven
by expected long-term returns.

Besides, average capital in a sector depends on expected long-term returns of neighbouring

sectors. This dependency is measured by p
(

X̂
)

defined in (95)32. For positive short-term returns,

which is the case here33, it writes:
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Except for the normalization by the short-term return f
(

X̂
)

of sector X̂, the function p(X̂) is

composed of three terms.

The two first terms,
(g(X̂))2

σ2
X̂

34 and ∇X̂g
(

X̂
)

35, measure the variations of expected returns across

sectors, i.e. the value of expected returns in sector X̂ relative to its neighbours. The last term,

32See explanation and derivation in appendix 4.1.1.
33See explanation in appendix 4.1.3.2.
34This term is directly proportional to the gradient of expected long-term returns ∇R

(
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)

. See the definition of

the parameter function g, equation (85), and (86).
35This term is proportional to the second derivative ∇2R

(

X̂
)

of R
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.
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σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
, is a smoothing factor between neighbours’ sectors. It can be neglected in the first

approximation36. The parameter p(X̂) is a local maximum when R
(

X̂
)

is itself a local maximum37,

so that it describes the expected long-term returns of a sector relative to its neighbours. The higher

p
(

X̂
)

, the more attractive is sector X̂ relative to its neighbours38.

Taken altogether, the three parameters R
(

X̂
)

, f
(

X̂
)

, p
(

X̂
)

are the main determinants of

average capital in a sector. However, their influence on capital will depend on the stability of the
sector. In stable sectors, average capital values can be understood as equilibria. In unstable ones,
they are potential thresholds for the capital accumulation of individual firms. In stable sectors,

average capital is increasing in short-term returns f
(

X̂
)

, expected long-term returns R
(

X̂
)

, and

in the sector’s relative attractivity p
(

X̂
)

, respectively. The higher the short and long-term returns,

the higher the capital accumulation. Besides, any increase in relative returns will attract capital
from neighbouring sectors and increases the sector average capital. In unstable sectors, average
capital is decreasing in these same variables, and any increase in short- or expected long-term,
be they absolute or relative, returns reduces the amount of capital required to initiate the capital
accumulation process for the individual firms.

9.2.2 Firms per sector

Various parameters determine how firms and investors shift across the sectors’ space.
The number of firms per sector defined in equation (81) depends on expected long-term returns:

V (X) = (∇XR (X))
2
+

σ2
X∇2

XR (X)

H (KX)

where∇XR (X) is the gradient of expected long-term returns along the sectors space, and∇2
XR (KX , X)

is the Laplacian, i.e. the generalisation of the second derivative of R (KX , X) with respect to the
sectors’ space. The number of firms is a decreasing function of V (X)39.

When expected returns are minimal, ∇XR (X) = 0 and ∇2
XR (KX , X) > 0, average capital is low,

and a large number of small firms provide short-term returns through dividends.
When returns in sector X, R (X), are at a local maximum, ∇XR (X) = 0 and ∇2

XR (KX , X) < 0,
the sector exhibit both a large number of firms and a high level of capital KX per firm, but this
equilibrium is unstable.

Incidentally, competition ensures that sectors with low or minimal expected returns are not
completely depleted.

When ∇XR (X) 6= 0, the sector is ”transitory”. It is surrounded by neighbouring sectors, with
both lower and higher expected returns. Firms head towards sectors with higher returns. The
greater the discrepancy between neighbouring returns ∇XR (X), the faster firms leave the sector.

36See the discussion following equation (90). This term will also be discussed in section 7.2.2.
37Actually, p(X̂) is maximal for sectors such that ∇R

(

X̂
)

= 0 and ∇2R
(

X̂
)

< 0. It is thus

38Note that the parameter p
(

X̂
)

is normalized by short-term returns. It computes the ratio of relative attractivity

to short-term returns. This allows to consider these two variables separately.
39See equation (81).
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9.2.3 Investors per sector

The average number of investors in a sector40 is an increasing function of the sector short-term
returns and relative long-term attractivity p41. All else equal, an increase in short-term returns
or an improvement of the sector’s relative long-term attractivity increases the number of investors
and, in turn, firms’ disposable capital.

The number of investors in a given sector increases with its relative attractivity p
(

X̂
)

defined

in equation (95). The first term in (95) is the sector’s relative attractivity towards its neighbours,

normalized by its short-term returns f
(

X̂
)

. The second term is a factor that smoothes differences

between sectors. It is negatively correlated to the variations of the sectors’ relative attractivity.
Investors and capital will increase in sectors surrounded by significantly more attractive sectors,
i.e. sectors with higher average capital and investors42: the whole system tends to reach stable
configurations, and capital discrepancies are reduced between close neighbours43.

9.3 Capital accumulation

In each sector, several average capital may exist, and three patterns of capital accumulation arise,
defined by their average capital, number of firms, and long- and short-term returns. These param-
eters will determine the stability of the pattern. Shocks will shift unstable patterns to another
one. Any deviation of average capital above or below an unstable equilibrium value will drive firms
away from this equilibrium and ultimately shift average capital towards another equilibrium. These
transitions provide bridges between patterns of capital. Due to a change in external conditions,
sectors may move from one pattern to another.

9.3.1 First pattern: low capital, high short-term returns driven by dividends only

These are sectors where growth prospects are subdued, with a relatively large number of low-
capitalized firms. Because firms are small, marginal productivity is high and firms attract capital
with short-term returns through dividends, but lack the capital to move towards growth sectors.

These sectors are stable to small fluctuations in growth prospects: any increase in expected
long-term returns will only shift moderately investment and average capital. They are unstable

to short-term returns: any increase in f
(

X̂
)

will drive dividends higher and attract investors.

Average capital will accumulate and reach a stable pattern-2 equilibrium, with more firms and a
higher average capital.

However, an adverse shock lowering short-term returns will increase the threshold of capital
accumulation and drive the equilibrium towards 0. Producers remain in the sector, but their very
lack of capital will prevent them to shifting towards more attractive sectors in the long run (see
appendix 3.3).

40See formula (94).
41See equation (98).
42A close inspection of equation (90) reveals that this term contains the -squared- contributions of short-term

returns, f
(

X̂
)

, and the sector’s relative attractivity:
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2σ2
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+ 1
2
∇X̂g

(

X̂
)

. Both contributions are proportional

to the gradient of R with respect to KX̂ . When this gradient is non-zero, indicating that an increase in capital

may enhance either the sector’s relative attractiveness or short-term returns, the correction
σ2
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F2(X̂)

2σ2

X̂
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√

f2(X̂)
)

3 amplifies

A(X̂)
f(X̂)

, and consequently KX̂ , in most cases.

43Derivation of the minimization equation in appendix 3.1.2 shows that the term F
(

X̂
)

arises as a backreaction

of the whole system with respect to modifications at one point of the thread.
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9.3.2 Second pattern: intermediate-to-high level of capital, short-term returns, long-
term expectations

These sectors have moderate growth prospects, so that any increase in short-term, i.e. dividends

and stock prices or long-term returns, increases their relative attractivity p
(

X̂
)

and attracts in-

vestors and capital. Locally, the higher the relative attractivity of the sector, the higher the capital
accumulation. The relatively high number of firms in the sector is a decreasing function of average
capital: competition favours higher average capital, and concentration of firms. This is the most
standard pattern of capital allocation. It is stable to variations in average capital, except when
average capital is high and the firms’ density is low.

In this case, any deviation of average capital above its equilibrium increases the threshold and
drives the sector backward to a stable pattern 2 equilibrium, i.e. a sector with a large number of
average capitalized firms. The lower capital per firm reduces competition and attracts new firms
into the sector.

On the contrary, any deviation of average capital below its equilibrium reduces the threshold
and favours capital accumulation. The sector is driven towards a stable pattern 3 equilibrium, with
a small number of very capitalized firms (see description of this pattern below).

9.3.3 Third pattern: high capital, long-term returns, and relative attractivity

These are sectors where growth prospects are extremely high. Capital accumulation is driven by
expectations of long-term returns sustained by ever-higher levels of investment. These are the most
attractive sectors. Two cases arise.

When expected long-term returns are not maximal, the sector stabilizes with very few firms
with very high capital arises. This extension of pattern 2 corresponds to a few large oligopolistic
groups.

When expected long-term returns are maximal, the sector’s attractivity allows a large number
of firms with high capital to coexist. All else equal, these firms could grow indefinitely, so that such
equilibria are bound to be unstable44.This describes bubble-like, unstable sectors.

An adverse shock drives these unstable sectors towards a stable pattern 3: average capital is
approximatively maintained, but an increase in competition evicts the less capitalized firms and
the total number of firms is reduced to a small set.

On the contrary, a positive shock reduces the threshold of capital accumulation. Most firms can
accumulate without bound, which attracts even higher capital. Capital accumulation is modified in
all sectors, which may transform the whole economic landscape. Total available capital is reduced,
which modifies the stability conditions for all sectors. Low-capitalized sectors may become unstable
and disappear, whereas others may accumulate capital. All in all, the system may end with a
reduced sectors space45.

Global instability

Another source of instability stems from the constraint imposed by the model on the total number
of investors.

In our model, we have assumed a fixed number of agents, that are spread across sectors. This
hypothesis binds the dynamics of the whole set of sectors. If this constraint were to be lifted, the

44See appendix 4.1.
45See appendix 4.3 for technical details.
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sectors would be independent and could each reach a stable average capital, given their own short
and expected long-term returns.

However, the number of agents in a sector is dependent on the whole system’s characteristics.
Thus there can only be global equilibria for the system. Any change in the parameters induces a

perturbation δΨ
(

X̂,KX̂

)

that destabilizes the whole system as a whole: the equilibrium is globally

unstable46. Relaxing the condition on the number of agents amounts to replacing the average
capital equation (99) by47:
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This equation has at least one locally stable solution. The solutions of the modified average capital
equation (109) do no longer directly depend on a sector’s relative characteristics, but rather on the

returns f
(

X̂
)

and on the number of firms in the sector,
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
4849.

9.4 Dynamic capital accumulation

The dynamic system (103) propagates shocks in capital and expectations across the system50:
assuming a shock on average capital or long-term returns in a given sector, the interactions between
average capital and expected long-term returns induce some volatility around the equilibrium values

KX̂ and R
(

X̂
)

. The fluctuations of long-term returns directly impact average capital and expected

return in neighbouring sectors through the induced variation of relative expected returns, which
initiates the propagation of the initial perturbation to the whole system.

This propagation is described by the oscillating solutions (104). For a given sector X̂, the
velocity of oscillations in average capital and expected returns are measured by the frequency

Ω
(

X̂
)

, that depends on the sector’s characteristics, These oscillations may be dampening (stable

oscillations) or widening (unstable oscillations). Three main parameters determine which type of
oscillations a sector may experience51.

1. The elasticity of expected long-term returns with respect to variations of capital, c, that
arises in equation (102), determines two relevant forms of expectations. When expectations
are highly reactive to variations of capital, c > 0, and when expected long-term returns
increase with any acceleration in capital accumulation, expected long-term returns depend
positively on the variations of average capital KX̂ . When expectations are moderately reactive
to variations in the capital, c < 0, expected long-term returns depend negatively on the
variations of average capital KX̂ .

2. The neighbouring sectors’ discrepancy in capital fluctuations at a given time, G. It arises in
the oscillatory solutions (104) and measures the inhomogeneity between sectors.

46The mechanism of this instability is detailed in appendix 3.3.1.
47The derivation is given in appendix 4.1.2.
48An intermediate situation between (99) and (109) could also be considered: it would be to assume a constant

number of agents in some regions of the sector space.
49Alternatively, limiting the number of investors per sector can be achieved through some public regulation to

maintain a constant flow of investment in the sector.
50See appendix 5.3.
51We have already given the condition for dampening oscillations in (106). See appendix 5.4.

39



3. Last but not least, the sector average level of capital KX̂ impacts the type of fluctuations
experienced by the sector.

Our results are the following.

9.4.1 Low average capital sectors

When average capital is very low in a sector, the sole relevant parameter to the fluctuations is the

reactivity c of the expected return R
(

X̂
)

to an increase in capital52.

Two cases arise.
When long-term returns strongly react to capital fluctuations, c > 0, oscillations are unstable.

When they react mildly, c < 0, oscillations are stable.
In the first case, expected long-term returns and average capital variations are positively corre-

lated, and any increase in capital will amplify expected returns that will in turn increase capital. In
the second case, expected long-term returns and average capital variations are negatively correlated,
which will induce dampening oscillations and stabilize the system.

These results show that for expectations mildly reactive to variations of capital, some equilibria
with relatively low capital are possible and resilient to oscillations in expectations, a niche effect
may exist for some sectors.

9.4.2 High average capital sectors

In high average capital sectors, be they stable or unstable, here again only expectations reactivity
to capital increase, i.e. c, matters. Oscillations are dampening for c > 0 and explosive for c < 0.
Highly reactive expectations, c > 0, will amplify fluctuations of capital and expected returns:

In the stable case, fluctuations that would otherwise be destabilizing for sectors with low capital
may stabilize or maintain sectors with both stable and high levels of capital. A large reactivity
between expectations and capital will allow for an intrinsic high level of capital to consolidate.
Fluctuations will moderately impact these high-capitalized sectors: for instance, considering an

initial increase in returns only, i.e. δR
(

X̂
)

> 0, will induce a net outflow of capital towards

less capitalized sectors with an higher increase in relative returns, while a decreasing return, i.e.

δR
(

X̂
)

< 0, will induce a net inflow of capital dampening the sector’s fluctuations.

In the unstable case, an initial increase in capital increases expected long-term returns, while
at the same time, the negative correlation between variations in investment and expected return
lowers the average capital. An increase in capital will improve the sector profitability, lowering the
capital threshold in capital. To put it differently, an initial increase in the average capital amplifies
the expected return, which reduces KX̂ and offsets the initial increase in capital.

When expectations are mildly reactive, i.e. c < 0, the mechanism of dampening oscillations that
arises for c > 0 is impaired. In the unstable case, for instance, an initial increase in the threshold
KX̂ , impacts only moderately the sector expected returns, and does not offset the initial increase
in capital.

9.4.3 Intermediate average capital sectors

In intermediate capital sectors, oscillations depend both on the reactivity of expectations to an
increase in capital, c, and discrepancy between sectors, G53.

52See appendix 5.4.
53See appendix 5.4.2.
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Midly reactive expectations, c < 0, and a moderate discrepancy between neighbouring sectors,
G << 1, oscillations are dampening for sectors with relatively low average capital. The analy-
sis of the first case applies to the extent that indeed some homogeneity in capital between the
neighbouring sectors exists.

Strongly reactive expectations, c > 0, and a large discrepancy between neighbouring sectors,
G >> 1, oscillations are dampening for relatively high average capital sectors. The analysis of the
second case applies to a locally dominating sector.

9.4.4 The role of expectations in average capital fluctuations

For each sector, the threshold between dampening and explosive oscillations depends on the param-
eters of the system. Mildly reactive expectations only favour low- to high-capital sectors (patterns
1 and 2). Very reactive expectations will only favour very high-capital sectors (pattern 3) where
oscillations will be felt as relatively weak, in absolute value, attracting further capital.

Recall that in extreme cases of pattern 3, both maximal capital and returns act as thresholds
that repel low-capital firms and propel high-capital firms to ever higher accumulation. Oscillations
in these thresholds generate a high global instability: a constantly oscillating threshold crowds
firms out of the sector.

To conclude, the dynamics for average capital and expected returns merely reflect fluctuations
in the background fields i.e. the collective states. These fluctuations may destabilize the patterns
in some sectors and ultimately switch the collective state and modify the patterns’ landscape.

9.5 Synthesis of the results

Let us briefly synthesize our results before discussing them. They can be regrouped along three
main axes.

9.5.1 Capital allocation

We have shown that capital allocation by producers and investors differ and interact: these interac-
tions impact the form of the collective state and average capital per sector. The main determinants
of capital allocation are short-term returns, expected long-term returns and the sector’s relative at-
tractivity. Short-term returns are composed of dividends, and are driven by marginal productivity
and variations in stock prices, themselves driven by expectations of long-term returns. Expected
long-term returns describe growth prospects, and.the sector’s relative attractivity measures the
growth prospects of a sector relative to its neighbouring sectors.

Firms tend to relocate in sectors with relatively higher long-term returns at a speed that depends
on their capital endowment. However, they can be crowded out by competitors. The higher the
firm’s capital, the higher the power to overcome competitors. Eventually, firms with the highest
capital concentrate in sectors that have the highest expected long-term returns, while the rest
relocates in neighbouring and likely lowest expected-return sectors.

Capital allocation depends on short-term returns, dividends and price fluctuations, and expected
long-term returns. But since price fluctuations are driven by expected long-term returns, short and
long-term returns are not independent. The financial capital allocation also depends on the sector’s
relative attractivity, which measures the expected returns of a sector relative to its neighbours.
However financial capital is volatile. High short-term returns are an incentive, but the relative
attractivity of sectors lures investors. Financial capital allocation thus depends on the ratio of
sectors’ relative attractivity to short-term returns. Since this ratio depends on expectations, it is
subject to fluctuations, which in turn impact the collective state.

41



9.5.2 Capital accumulation

Three stationary54 patterns of capital accumulation may emerge in each sector. A pattern is
characterized by the combination of the firms’ average capitalization, the number of firms in the
sector, and the type of returns these firms may provide to their investors. The emergence of a given
pattern depends on the parameters of this sector:

The first pattern associates a large number of low-capitalised firms. Dividends are determi-
nant in this pattern; the lack of capital, combined with the prospects of competition with better-
capitalized firms prevent firms to shift to neighbouring and more profitable sectors.

The second pattern associates a relatively high number of average-to-high capitalised firms and
a combination of short and long-term returns. This combination lures intermediate-to-high capital
investors in the sector.

In the third pattern, high expected long-term returns generate massive inflows of capital toward
highly-capitalized firms. In this pattern, firms with the highest expected returns could theoretically
accumulate endlessly. Actually, this accumulation is limited by the amount of available capital.

In each pattern, some sectors are stable, others are unstable. Transitions between patterns
occur through exogenous shocks. In pattern 1, some sectors may disappear, whereas in pattern
3, some may grow endlessly and the large amounts of capital they drive may modify the whole
system’s landscape.

9.5.3 Collective states

We have shown how statistical field theory can describe a microeconomic framework in terms of
collective states of sectors composed of a large number of firms.

Each collective state encodes the data characterizing each sector: number of firms, number of
investors, average capital, and distribution of capital. These data are theoretical averages over
long-term periods, not instantaneous empirical averages.

The collective states are not arbitrary: they directly result from the agents’ interactions, and
are the most likely stable states of the system. Other states do exist, but they are unstable. A
particular collective state can be described by its distribution into patterns of capital accumulation
- type 1, 2, or 3 - across sectors. Besides, sectors are connected and benefit from the relative
attractiveness of their neighbours: this smoothing effect between sectors materialises in mergers
and acquisitions.

The multiple combinations of accumulation patterns in each sector may yield an infinite number
of possible collective states. It does not follow that all combinations are possible: sector patterns
depend on the relative attractivity of both the sector and its neighbours’. There are also constraints:
for instance, massive inflows of capital are needed for the emergence of the pattern 3, which is only
driven by high expected long-term returns, while niche effects merely occur for relatively highly
productive firms. However, a potentially infinite range of collective states may exist.

The selection of a particular collective state and its sectoral patterns is ultimately determined
by exogenous conditions. Structural changes, such as an extra-loose monetary policy or the choice
of a pension system are external conditions that modify collective states.

The existence of multiple collective states has a dynamic implication. When parameters vary,
a given collective state may switch to another: a change in expectations may, for instance, induce
variations in average capital and in turn, induce changes in sectors’ patterns of capital accumulation.
To study these possible switches, we introduced a dynamic interaction between average capital and

54The values of average capital are stationary results: agents accumulate and shift from sectors to other ones, but,
in average, the density of firms and average capital per firm per sector are constant.
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expected long-term returns, now endogenized. This dynamic interaction depends both on the
patterns of accumulation and the way expectations are formed.

In this dynamics system, average capital and expectations present some oscillatory patterns
that may dampen equilibria or drive them towards other equilibria. Expectations highly reactive
to capital variations stabilize high-capital configurations. They drive low-to-moderate capital sec-
tors towards zero or higher capital, depending on their initial conditions. Inversely, expectations
moderately reactive to capital variations stabilize low-to-moderate capital configurations, and drive
high-capital sectors towards lower capital equilibria. Amplifying oscillations may modify some sec-
tors’ pattern: the ensuing reallocation of capital across the whole sectors’ space may initiate a
transition in collective states. The mechanism of transition and its implications are discussed
below.

System at the individual level: effective
action and transition functions

This third part focuses on the micro-scale of the system. In a given background state, we can derive
the individual dynamics for agents, firms and investors. This approach stresses the dependence of
individual dynamics in the collective states described by the background fields.

10 Computation of transition functions

We use the results of section 5 to compute the agents’ transition functions. To do so, we compute
the effective action of the system which is given by the series expansion of the action around the
background fields. These background fields where computed in the second part of this work (see
sections 7.1 and 7.2).

10.1 Effective action expansion

10.1.1 Second-order expansion of effective action

Consider the field action:
S = S1 + S2 + S3 + S4

where the Si are defined by equations (54),(55),(57) and (60)55. Expanding the action S to the
second-order around the background field will allow us to compute the transition functions of
individual agents in the background, without taking into account individual interactions. We can
rewrite the fields as follows:

Ψ(K,X) = Ψ0 (K,X) + ∆Ψ (Z, θ)

Ψ̂
(

K̂, X̂
)

= Ψ̂0

(

K̂, X̂
)

+∆Ψ̂ (Z, θ)

where Ψ0 (K,X) , Ψ̂0

(

K̂, X̂
)

are the background fields. This yields the quadratic approximation:

S
(

Ψ, Ψ̂
)

= S
(

Ψ0, Ψ̂0

)

+

∫

(

∆Ψ† (Z, θ) ,∆Ψ̂† (Z, θ)
)

(Z, θ)O (Ψ0 (Z, θ))

(

∆Ψ(Z, θ)

∆Ψ̂ (Z, θ)

)

(110)

55Recall that at the individual level, we use again the full interaction term τ
KX

K
.
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with:

O (Ψ0 (Z, θ)) =





δ2S(Ψ)

δΨ†δΨ

δ2S(Ψ)

δΨ†(Z,θ)δΨ̂
δ2S(Ψ)

δΨ̂†δΨ

δ2S(Ψ)

δΨ̂†δΨ̂





Ψ(Z,θ)=Ψ0(Z,θ)

Ψ̂(Z,θ)=Ψ̂0(Z,θ)

(111)

The anti-diagonal terms in equation (111) involve crossed derivatives with respect to both the fields
of the real economy and the financial economy. These terms represent the interactions between
the two economies. However, as explained in (Gosselin Lotz Wambst 2022), the cross-dependency
between Ψ(Z, θ) and Ψ̂ (Z, θ) is relatively weak, since these interactions are taken into account by
the background fields. In first approximation, the minimization of S (Ψ) can be separated between
S1 + S2 and S3 + S4. Therefore, we can write:

O (Ψ0 (Z, θ)) ≃
(

δ2(S1+S2)

δΨ†δΨ
0

0 δ2(S3(Ψ)+S4(Ψ))

δΨ̂†δΨ̂

)

Ψ(Z,θ)=Ψ0(Z,θ)

Ψ̂(Z,θ)=Ψ̂0(Z,θ)

(112)

The second-order expansion then becomes:

S
(

Ψ, Ψ̂
)

= S
(

Ψ0, Ψ̂0

)

+∆S2

(

Ψ, Ψ̂
)

(113)

= S
(

Ψ0, Ψ̂0

)

+

∫

∆Ψ† (K,X)
δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
∆Ψ (K, θ)

+

∫

∆Ψ̂† (Z, θ)
δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)
∆Ψ̂ (Z, θ)

Computing the second order derivatives involved in (113), and using the definition of the background
fields (see appendix 6) leads to the formulas:

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
= −σ2

X

2
∇2

X − σ2
K

2
∇2

K +

(

D
(

‖Ψ‖2
)

+ 2τ
|Ψ(X)|2 (KX −K)

K

)

+
1

2σ2
K

(

K − F̂2 (R (K,X))KX

)2

+
1−∇K F̂2 (R (K,X))KX

2

δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)

=









−
σ2
X̂

2
∇2

X̂
+

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

σ2
X̂

√

f2
(

X̂
)

−
σ2
K̂

2

√

f2
(

X̂
)

∇2
K̂
+











√

f2
(

X̂
)

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2

4σ2
K̂





















10.1.2 Fourth-order corrections

Calculating the fourth-order corrections to the effective action is sufficient for deriving the main
aspects of the interactions in a given background field. We show in appendix 7 that the third-order
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terms can be neglected, and that the series expansion of the action to the fourth-order writes:

S
(

Ψ, Ψ̂
)

= S
(

Ψ0, Ψ̂0

)

(114)

+

∫

∆Ψ† (K,X)
δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
∆Ψ (K, θ)

+

∫

∆Ψ̂† (Z, θ)
δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)
∆Ψ̂ (Z, θ) + ∆S4

(

Ψ, Ψ̂
)

with:

∆S4

(

Ψ, Ψ̂
)

(115)

≃ 2τ

∫

|∆Ψ(K ′, X)|2 dK ′ |∆Ψ(K,X)|2 dKdX

−∆Ψ† (K,X)∆Ψ† (K ′, X ′)∇K

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
∆Ψ (K ′, X ′)∆Ψ (K,X)

−∆Ψ† (K, θ)∆Ψ̂†
(

K̂, θ
)

∇K

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
)∆Ψ̂

(

K̂, θ
)

∆Ψ(K, θ)

−∆Ψ̂†
(

K̂, X̂
)

∆Ψ† (K ′, θ)







∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
+∇X̂

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)







∆Ψ(K ′, X ′)∆Ψ̂
(

K̂, X̂
)

Computing the terms involved in (115) (see appendix 7) allows us to interpret the various terms
arising in the correction to the action.

The first term in the right-hand side of (115) describes the direct repulsive interaction between
firms due to competition in a given sector.

The second term describes the indirect competition between firms through capital allocation by
investors, since:

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
= −1

ε
F̂2 (s,R (K,X)) F̂2 (s,R (K ′, X ′)) K̂X (116)

and this term involves the relative attractiveness of two firms with capital K and K ′ respectively
in sector X.

The third term represents the firms-investors direct interactions through investment, since:

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
) =

1

ε
F̂2 (s,R (K,X)) K̂ (117)

is the relative attractiveness of a firm with capital K ′ at sector X.
The last term describes the variation of investement due to the relative short-term and long-term

return of a given firm. Specifically, we have:

δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
≃ 1

ε

(

∆f
(

K ′, X̂,Ψ, Ψ̂
)

− γ
K ′

KX

)

(118)

and:
δ2g

(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
=

1
∫

∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′
∆
(

g
(

K ′, X̂,Ψ, Ψ̂
))

(119)
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with:
∆f

(

K ′, X̂,Ψ, Ψ̂
)

= f
(

K ′, X̂,Ψ, Ψ̂
)

− f
(

X̂,Ψ, Ψ̂
)

and:
∆g
(

K ′, X̂,Ψ, Ψ̂
)

= g
(

K ′, X̂,Ψ, Ψ̂
)

− g
(

X̂,Ψ, Ψ̂
)

are the relative short-term return and long-term return for firm with capital K ′ at sector X̂ respec-
tively.

10.2 One agent transition functions

Following section 5.3.1, we consider first the ”free” transition functions that are given by the inverse
operator of:

(O (Ψ0 (Z, θ)) + α)
−1 (120)

Given (112), the inverse (120) reduces to:







(

δ2(S1+S2)

δΨ†δΨ
+ α

)−1

0

0
(

δ2(S3(Ψ)+S4(Ψ))

δΨ̂†δΨ̂
+ α

)−1







Ψ(Z,θ)=Ψ0(Z,θ)

Ψ̂(Z,θ)=Ψ̂0(Z,θ)

This implies that the transition functions can be computed independently for the individual firms
and investors. We will write:

G1 ((Kf , Xf ) , (Xi,Ki) , α)

the transition probability for a firm between an initial state (Xi,Ki) and a final state (Kf , Xf )

during an average timespan α−1 and:

G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, α
)

the transition probability for a firm between an initial state
(

X̂i, K̂i

)

and a final state
(

K̂f , X̂f

)

average timespan α−1. Appendix 8 computes these transition functions. We find the following
results.

One firm transition function

G1 ((Kf , Xf) , (Xi,Ki)) (121)

= exp









D ((Kf , Xf) , (Xi,Ki))− αeff (Ψ, (Kf , Xf ) , (Xi,Ki))

√

√

√

√ (Xf −Xi)
2

2σ2
X

+

(

K ′
f −K ′

i

)2

2σ2
K









where:
D ((Kf , Xf) , (Xi,Ki)) = D1 +D2 +D3 (122)

with:

D1 =

∫ Xf

Xi

∇XR (KX , X)

σ2
X

H (KX) (123)

D2 = −
∫ Kf

Ki

(

K − F̂2

(

s,R
(

K, X̄
))

KX̄

)

dK (124)
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D3 =

∫ Kf

Ki

((

Xf −Xi

2

)

∇X F̂2

(

s,R
(

K, X̄
))

KX̄

)

dK (125)

αeff (Ψ, (Kf , Xf ) , (Xi,Ki)) (126)

= α+D
(

‖Ψ‖2
)

+ τ





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
− |Ψ(Xi)|2

(

KXi
−Ki

)

Ki



+
σ2
K

2
K ′

fK
′
i

and:

K ′
i = Ki − F̂2

(

s,R
(

KXi
, Xi

))

KXi

K ′
f = Kf − F̂2

(

s,R
(

KXf
, Xf

))

KXf

One investor transition function

G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

(127)

= exp
(

D′
((

K̂f , X̂f

)

,
(

X̂i, K̂i

)))

× exp



−α′
eff

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

∣

∣

∣

∣

∣

∣



K̂f +
σ2
K̂
F
(

X̂f ,KX̂f

)

f2
(

X̂f

)



−



K̂i +
σ2
K̂
F
(

X̂i,KX̂i

)

f2
(

X̂i

)





∣

∣

∣

∣

∣

∣





with:

D′
((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

=
1

σ2
X̂

∫ X̂f

X̂i

g
(

X̂
)

dX̂ +
K̂2

f

σ2
K̂

f
(

X̂f

)

− K̂2
i

σ2
K̂

f
(

X̂i

)

(128)

and:

α′
eff

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

(129)

=



α+
σ2
X̂

2



K̂f +
σ2
K̂
F
(

X̂f ,KX̂f

)

f2
(

X̂f

)







K̂i +
σ2
K̂
F
(

X̂i,KX̂i

)

f2
(

X̂i

)









√

√

√

√

√

∣

∣

∣

∣

f

(

X̂f+X̂i

2

)∣

∣

∣

∣

2σ2
X̂

+ g(R)
(

X̂
)

with:

g(R)
(

X̂
)

=

∫ X̂f

X̂i

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

∥

∥

∥X̂f − X̂i

∥

∥

∥σ2
X̂

√

f2
(

X̂
)

10.3 Two agents transition functions and Interactions between agents

To study the agents interactions within the background field we consider the two-agent transition
functions. There are three of them. One for two firms:

G11

([

(Kf , Xf) , (Kf , Xf )
′] ,
[

(Xi,Ki) , (Xi,Ki)
′])

one for one firm and one investor:

G12

([

(Kf , Xf) ,
(

K̂f , X̂f

)]

,
[

(Xi,Ki) ,
(

X̂i, K̂i

)])
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and one for for two investors:

G22

([

(

K̂f , X̂f

)

,
(

K̂f , X̂f

)′]

,

[

(

X̂i, K̂i

)

,
(

X̂i, K̂i

)′])

If we neglect the terms of order greater than 2 in the effective action, the transition functions reduce
to simple products:

G11

([

(Kf , Xf ) , (Kf , Xf)
′]
,
[

(Xi,Ki) , (Xi,Ki)
′])

= G1 ((Kf , Xf) , (Xi,Ki))G1

(

(Kf , Xf)
′
, (Xi,Ki)

′)

G12

([

(Kf , Xf ) ,
(

K̂f , X̂f

)]

,
[

(Xi,Ki) ,
(

X̂i, K̂i

)])

= G1 ((Kf , Xf) , (Xi,Ki))G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

G22

([

(

K̂f , X̂f

)

,
(

K̂f , X̂f

)′]

,

[

(

X̂i, K̂i

)

,
(

X̂i, K̂i

)′])

= G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

G2

(

(

K̂f , X̂f

)′
,
(

X̂i, K̂i

)′)

In first approximation, agents behave independently, solely influenced by the given background
state.

To take into account agents interactions we write the expansion:

exp (−S (Ψ)) = exp
(

−
(

S
(

Ψ0, Ψ̂0

)

+∆S2

(

Ψ, Ψ̂
)))



1 +
∑

n>1

(

−∆S4

(

Ψ, Ψ̂
))n

n!





as explained in section 5.3.2, the series produces corrective terms to the transition functions. Ap-
pendix 9 presents the computations and compute the transitions in the approximations of paths
that cross each other one time at some X. In this approximation, we find the following formula:

10.3.1 Firm-firm transition function:

G11

([

(Kf , Xf ) , (Kf , Xf )
′]
,
[

(Xi,Ki) , (Xi,Ki)
′]) (130)

≃ G1 ((Kf , Xf ) , (Xi,Ki))G1

(

(Kf , Xf )
′
, (Xi,Ki)

′)

−



2τ −∇K

δ2u
(

K̄, X̄,Ψ, Ψ̂
)

δΨ
(

K̄ ′, X̄
)

δΨ†
(

K ′, X̄
)



 Ĝ1 ((Kf , Xf) , (Xi,Ki)) Ĝ1

(

(Kf , Xf )
′
, (Xi,Ki)

′)

10.3.2 Firm-investor transition function:

G12

([

(Kf , Xf) ,
(

K̂f , X̂f

)′]

,

[

(Xi,Ki) ,
(

X̂, K̂i

)′])

(131)

≃ G1 ((Kf , Xf ) , (Xi,Ki))G2

(

(

K̂f , X̂f

)′
,
(

X̂, K̂i

)′)

+



∇K

δ2u
(

K̄, X̄,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
) +∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δΨ
(

K ′, X
)

δΨ† (K ′, X
) +∇X̂

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X)δΨ†
(

K ′, X
)





×Ĝ1 ((Kf , Xf) , (Xi,Ki)) Ĝ2

(

(

K̂f , X̂f

)′
,
(

X̂, K̂i

)′)
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10.3.3 Investor-investor transition function:

G22

([

(

K̂f , X̂f

)

,
(

K̂f , X̂f

)′]

,

[

(

X̂, K̂i

)

,
(

X̂, K̂i

)′])

(132)

≃ G2

((

K̂f , X̂f

)

,
(

X̂, K̂i

))

G2

(

(

K̂f , X̂f

)′
,
(

X̂, K̂i

)′)

with:

(

X̄, K̄
)

=
(Kf , Xf) + (Xi,Ki)

2
(

X̄, K̄
)′

=
(Kf , Xf)

′
+ (Xi,Ki)

′

2

The derivatives are given in (116), (117), (118), (119) and:

Ĝi ((Kf , Xf) , (X,K)) Ĝj

(

(Kf , Xf )
′
, (X,K)

′)

is the transition function computed on paths that cross once.

11 Results and interpretations

11.1 One-agent transition functions

We present a synthesis of the results for firms and investors transition functions. Some technical
details are given in appendix 10.

11.1.1 Firms transition function

For a given background state, the probability of transition for a firm between two states Ki, Xi

and Kf , Xf , over an average time of 1/α, is given by G1 (see 121). This formula computes the
probability that a firm initialy endowed with a capital Ki in sector Xi will relocate to sector Xf

with capital Kf . The transition probability is the result of competing effects, as it is composed of
several interdependent terms of similar magnitude. Firm transitions occur over the medium to long
term but at a slower time scale than transitions for investors. Firms remain in each transitory sector
long enough to resettle, and for investors to adjust the capital allocated between firms. Thus, in
each transitory sector, firm capital evolves depending on the characteristics of the firm, the sector,
and investors expectations.

Attractiveness and sectors shifts The drift term D in formula (122) is the average transition
of a firm between its initial and final points (Xi,Ki) and (Kf , Xf ), respectively. This term is usually
different from zero because firms tend to shift sectors, and their capital evolves. This tendency for
a firm to evolve depends both on the transitory sectors and the background field, i.e., the entire
landscape in which the transition occurs. In addition, fluctuations around the drift term can alter
a firm’s trajectory, contributing to the probabilistic nature of the transition.

The drift term of equation (122) is composed of three interacting contributions, D1, D2 and
D3.

The first component D1 shows that firms tend to relocate to sectors with higher long-term
returns, shifts which in turn modify their present and future attractiveness to investors.

The second component D2 shows that the shift alters the capital of the firm. Specifically, the
amount of investment that investors are willing to make in the firm, F̂2

(

R
(

K, X̄
))

KX̄ depends on
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three key parameters: the average capital of the new sector, KX̄ , the absolute average return on
capital in the sector, R

(

K, X̄
)

, and the propensity of investors, F̂2 to invest in the firm based on
its given capital compared to the average capital of firms in the sector.

When a firm begins the process of relocating to a nearby sector, its capitalization may differ
from that of firms already present in that sector, which in turn affects its attractiveness to investors,
represented by F̂2. The shape of F̂2 reflects the propensity of investors to invest in the firm. When
F̂2 is concave, this propensity marginally decreases, while a convex shape results in a marginal
increase.

The equilibrium capital of the firm in the new sector is F̂2

(

s,R
(

K, X̄
))

KX̄ . When a firm relo-
cates, its capital may turn out to be below or above this equilibrium level. For each of these cases,
two possibilities arise depending on the shape s of F̂2.

If F̂2 is concave, the marginal propensity of investors to invest is decreasing: once the firm has
entered the sector, its capital will converge towards the sector’s average capital. It will either increase
or decrease, depending on whether its initial level of capital is above or below the equilibrium
capital, respectively. If F̂2

(

s,R
(

K, X̄
))

is convex, the marginal propensity of investors to invest
is increasing: the dynamics of its capital accumulation is unstable. Investors will tend to over or
underinvest in the firm.

The third contribution D3 reflects the firm’s relative attractiveness in different transition sectors.
If the the firm’s relative attractiveness is reduced during the shift, such that it attracts less capital
than the average capital of the transition sector, it may become stuck in an intermediate sector.

Impact of competition The coefficient αeff defined in equation (126) represents the inverse
of the average mobility of a firm. This mobility depends on the competition in transitional sectors
which is captured by the two first terms on the right-hand side of (126).

The first term, D
(

‖Ψ‖2
)

is a constant that characterizes the background state of the firms and

is correlated with the total number of firms in the space of sectors. As competition increases, αeff

rises and firms’ mobility decreases.
The second term measures the local competition that firms face as they move through the

sector space. It is determined by the density of agents in the sector, multiplied by the variation,
along the path, of the firm’s excess capital with respect to the average capital of the sector. A
well-capitalized firm facing many less-capitalized competitors will repel them and create its own
market share. Relocation will occur towards sectors that are denser and less capitalized. Under-
capitalized firms will be forced out of their sectors and into denser, less capitalized sectors. The
relocation process may result in a capital gain or loss. However, holding capital constant, initially
under-capitalized firms will tend to move towards sectors with lower average capital, whereas over-
capitalized firms tend to move towards sectors with higher average capital.

Stabilization terms: The square-rooted term multiplying αeff is written:

√

√

√

√ (Xf −Xi)
2

2σ2
X

+

(

K̃f − K̃i

)2

2σ2
K

(133)

and the last term in the right-hand side of equation (122) both describe random oscillations around
a path of zero marginal capital demand. Changes in equity, investments, for instance, may modify

(133). and the oscillations are of magnitude
σ2
K
2 . However, these oscillations do not necessarily

imply a return to the initial point. The larger the deviation from the average, the more likely firms
are to deviate from the average, and possibly shift to a new trajectory. Therefore, a capital increase
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above the average may induce a shift in sector, which in turn may modify the firm’s accumulation
and prospects. Thus, oscillations do not prevent trends and may even initiate them. However, such
”random shifts” may prove disadvantageous as they could harm the firm’s position and reduce its
capital compared to the sector.

Possible paths Overall, what are the possible dynamics for a firm in terms of capital and sector?
If a firm experiences capital growth in a sector where the investor propensity, F2, is concave, the
accumulation of its capital could cause the firm to shift to a higher-return sector, but this may
result in the firm being perceived as less attractive by investors in this new sector.

This shift can lead to a change in the firm’s attractiveness to investors, F2. The growth or decline
of the firm in the new sector will depend on both its capital level and the shape of F2. These factors
will also determine the speed of this change. If the firm’s capital level gradually declines, it may
have time to react and reposition itself. However, if the decline in capital is sudden, the firm may
not have enough resources to reposition itself. The new sector may turn out to be a capital trap.

The patterns of possible trajectories are various and may be irregular, with some transitions
occurring at a constant rate, while others may involve discontinuities and sudden increases or
reductions in capital, depending on the characteristics of the landscape such as expected returns
in sectors, density of firms, and other background factors.

11.1.2 Investors transition functions

Drift term Short-term and long-term returns are the two parameters that determine investors’
capital allocation. Short-term returns include the firm’s dividends and increase with the value of
its shares, while long-term returns reflect the market’s expectations for the firm’s future growth
potential, which in turn affect expectations for higher dividends and share price appreciation. Both
types of returns are captured in the drift term D′, which is defined in equation (128). The most
likely paths are those that maximize both short-term and long-term returns.

However, these returns are not independent, since faltering share prices in the short-term impact
long-term returns expectations, and vice versa.

Ideally, to maximize their capital, investors seek both higher short-term and long-term returns.
Therefore, capital allocation within and across sectors will depend on firms share prices volatility
and dividends.

A sector in which share prices increase tends to attract capital, since investors can maximize
both short-term and long-term returns: an increase in share prices sustains the firm’s growth ex-
pectations. Investors tend to move towards the next local maximum of long-term returns while also
maximizing their short-term return. In this case, there is no trade-off between the two objectives.

In a sector where stock prices fall or remain stagnant, investors are faced with a trade-off between
short- and long-term returns. When stock prices no longer support long-term earnings expectations,
capital allocation is determined by short-term dividends. Capital reallocation will depend on the
level of capital held by investors. While investors may consider long-term expectationsthey must
also generate short-term returns to maintain their capital. An investor who ignores dividends in
a context of falling share prices would eventually see his capital depleted, which could hinder or
impair his ability to reallocate capital in the long term.

Stabilization terms: Similarly to firms, investors have an effective inverse mobility α′
eff , defined

in equation (129). This formula shows that mobility 1
α′
eff

decreases with the average short-term

return along the path : the higher the returns, the lower the incentive to switch from one sector to
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another. Similarly, mobility increases with g(R)
(

X̂
)

, which measures the relative long-term return

of the sectors along the path. The higher this relative return, the lower the incentive to switch to
another sector.

Moreover, 1
α′
eff

decreases with the final level of capital K̂f increases, impairing the firm’s capacity

to reach high levels of capital. Conversely, 1
α′
eff

decreases with the initial capital K̂i decreases,

indicating that investors with high capitalization are less likely to experience significant capital
losses. This is supported by the factor multiplying α′

eff :

∣

∣

∣

∣

∣

∣



K̂f +
σ2
K̂
F
(

X̂f ,KX̂f

)

f2
(

X̂f

)



−



K̂i +
σ2
K̂
F
(

X̂i,KX̂i

)

f2
(

X̂i

)





∣

∣

∣

∣

∣

∣

As a result, the probability for an investor to deviate significantly from its initial capital value,
apart from the smoothing term which can be neglected, is relatively low.

11.2 Two-agent transition functions

First, it should be noted that the transition function G22, as defined in equation (132), does not
include any interaction corrections. Specifically, the transition probability for two investors is
simply the product of their individual transition probabilities. In our model, investors do not
directly interact with each other, but only through their investments in various firms. Only two
transition functions are affected by these indirect interactions.

11.2.1 Firm-firm interactions

First the transition G11 is modified by the term:

I = 2τ −∇K

δ2u
(

K̄, X̄,Ψ, Ψ̂
)

δΨ
(

K̄ ′, X̄
)

δΨ† (K ′, X̄
)

The interaction I measures the interactions between two firms in the same sector. The first contri-
bution to I describes a direct competition between firms in a given sector, whereas the second term
describes the competition of the firms to attract investors that share their investments between the
two firms. Given that the 2-agents transition functions are modified by (see (130)):



2τ −∇K

δ2u
(

K̄, X̄,Ψ, Ψ̂
)

δΨ
(

K̄ ′, X̄
)

δΨ† (K ′, X̄
)



 Ĝ1 ((Kf , Xf ) , (Xi,Ki)) Ĝ1

(

(Kf , Xf )
′
, (Xi,Ki)

′)

and since I > 0, the contribution to the green function of paths crossing at some point are under-
weighted. The competition between the two firms repell them from the sector where they interact.
If we consider that the competion factor τ is capital-dependent (see (??)), the less capitalized firm
is relatively more repelled than the more capitalized one.

11.2.2 Firm-investor interactions

Second, the firm-investor transition function G12 is modified by the term:



∇K

δ2u
(

K̄, X̄,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
) +







∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δΨ
(

K ′, X
)

δΨ†
(

K ′, X
) +∇X̂

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X)δΨ† (K ′, X
)










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Given (117), (??), (119), this term depends mainly on three contributions:

∇K
F2 (s,R (K ′, X)) K̂

∫

F2 (s,R (K ′, X)) ‖Ψ(K ′, X)‖2 dK ′

∇K̂∆f
(

K ′, X̂,Ψ, Ψ̂
)

∇X̂∆
(

g
(

K ′, X̂,Ψ, Ψ̂
))

each of this contribution describes the relative perspectives of the firm in his path through the
sectors.

The first one represents the gradient of firm”s attractiveness with respect to capital. The
investor willl decide to invest or not depending on the marginal gain of long term returns of the
firm.

The second term represents the marginal short-term return of an investment of the firm, and
the third one measures the reltive attractiveness of the firm with respect to his neighbours (see
Gosselin Lotz Wambst 2022).

The interaction between the firm and the investor is a combination of these three quantities.
When the combination of these term is positive, the firm has positive perspective either in terms

of short or long term returns, or relatively to his neighbors.
In this case the associated corrections to the path crossing at some points is positive and this

paths will be overweighted: in probability, this translates by the fact that paths in which a firm
presents above average perspectives in his capital accumaltion and shift in sectors, will be favoured
by an increase in investment. The firm will take advantage from its interaction with the investor,
except if this one experiences, for any reason, an decrease of capital. On the contrary, a firm per-
ceived as moving toward lower perspective will experience in average a decrease in investment. This
decrease will be dampened if its investor has itself low capital to invest. Some mixed situation may
arise: good short term perspective, but uncertain long term expectations may cancel or compensate
each other.

Discussion of the main outcomes

Field formalism presents an alternate point of view about the economic reality that surround us.
In such a formalism, representative agents do not exist, only collective states do. They emerge
from the interactions of a large number of agents, and condition the behaviours and the economic
activity. In this context, agents only randomly carry out the possible trajectories authorized by
the system.

Collective states can be multiple and present transitions. The economic dynamic is not limited
to fluctuations around an average trajectory which would be a dynamic equilibrium, but rather
by dynamic transitions between collective states, which completely condition the fluctuations. ap-
parent individual dynamics. The collective states dynamics depend on the form of short-term and
long-term return functions, that are exogenous, and more broadly on a whole landscape of tech-
nological and economic conditions. But as a system, they have their own internal dynamics: the
system is not inert. We have considered these two types of variations in the paper.

First, collective states are sensitive to structural changes. Any such change in expectations,
economic and/or monetary conditions may alter expected returns and in turn impact the collective
state. Unstable type-3 sectors are particularly sensitive to these changes in long-term growth,
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inflation, and interest rates. Higher expectations in these sectors attract investment which in turn
increase expectations. This seemingly endless expected growth spirals until the outlook flattens
or deteriorates. This would be the growth model of a company whose ever-broadening range of
products fuels higher expected long-term returns and stock price increases. Type-1 and -2 sectors
attract capital through dividends and, although only partially and for high capital type-2 sectors,
expected returns. Under higher expectations, these sectors are relatively less attractive than the
nearby type-3 sector. They may nonetheless survive in the long-term provided their short-term
returns and dividends are high enough. This may be done by cutting costs or investment, at the
expense of future growth. Moreover, advert signaling may emerge: an increase in dividends can be
interpreted as faltering growth prospects. Conversely, any increase in long-term uncertainty impact
expected returns and drive sector-3 capital towards other patterns. External shocks, inflation, and
monetary policy impact expectations, reduce long-term investment and either drive capital out of
sectors 3 to sector 1 or 2 or favour other pattern-3 sectors.

Second, any deviation of capital from its equilibrium value may initiate oscillations in the
collective state of the entire system. A temporary deviation will induce an unstable redistribution
of capital, growth expectations and returns, and generate intersectoral capital reallocation and
global oscillations that can either dampen or drive the system toward a new collective state. There
are thus potential transitions between collective states, which occur at a slower, larger timescale
than that of market fluctuations. In the long run, once the transition has occured, both sectors’
averages and patterns may have changed: pattern 2 may morph in, say, pattern 3 stable or unstable,
or sectors may simply disappear. Concretely, any significant modification in average capital in a
sector could induce oscillations and initiate a transition.

Moreover, once endogenous expectations are introduced, they react to variations in the capital:
collective states of mixed 1-2-3 patterns are difficult to maintain. Highly reactive expectations
favour pattern 3: expected returns magnify capital accumulation at the expense of other patterns.
Mildly reactive expectations favour patterns 1 and 2: their oscillations, which are actually induced
by uncertainties, dampen. Type-3 sectors on the contrary experience strong fluctuations in capital
: attracting capital is less effective with fading expectations. The threshold in capital accumulation
shifts upwards and the least-profitable firms are ousted from the sector. The recent evolution in
performances between value and growth investment strategies exemplifies these shifts in investors’
sentiment between expected growth and real returns. In periods of uncertainties, fluctuations affect
capital accumulation in growth sectors and today’s tech companies, and strengthen more dividend-
driven investments. Note however that the most profitable and best-capitalized firms, that remain
above the threshold, maintain relatively high levels of capital. Here our versatile notion of firms56

proves convenient: any firm that accumulates enough capital to be able to buy back, in periods
of volatility, its own stocks is actually acting as an autonomous investor. When volatility is high,
the most likely investors for the best-capitalized firms are, first and foremost, the best-capitalized
companies themselves. They react, so to speak, as pools of closely held investors. In other words,
provided firms have high enough capital, they can always cushion the impact of price fluctuations
and adverse shocks through buybacks. Similarly, they also could choose to acquire companies in
their sector or in neighbouring sectors.

Fluctuations in financial expectations impose their pace on the real economy. Expected returns
are both exogenous and endogenous. Being exogenous, they may change quickly. Expected returns
theoretically reflect long-term perspectives, but actually rely on short-term sentiments: any in-
coming information, change in the global economic outlook or adverse shock will modify long-term

56We modeled a single company as a set of independent firms. Similarly, the notion of sector merely refers to a
group of entities with similar activities.
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expectations and shift capital from sector to sector. But expected returns are also endogenous.
Being expectations, they react to changes within the system. When high levels of capital seek to
maximize returns, expectations react strongly to capital changes. Expectations both highly sensi-
tive to exogenous conditions and highly reactive to variations in capital induce large fluctuations
of capital in the system. Creating or inflating expectations may attract capital, at times unduly.
When expectations can no longer be worked on, the sole remaining tool to reduce capital outflows is
a high dividend policy, which may be done at the expense of the labour force, capital expenditures
and future growth.

At the level of individual dynamics, macro fluctuations condition agents transitions. In fact, the
field formalism encompasses both macro and microeconomic elements: the macro scale keeps track
of the entire set of agents and, in turn, influences the microeconomic scale, allowing for two-level
interpretations. We showed that individual dynamics heavily rely on underlying macroeconomic
parameters such as average capital and the number of firms per sector. Consequently, our model
also describes the microeconomic impact of the present macroeconomic states.

In the face of macroeconomic fluctuations, investors may experience capital losses. However
they can always shield their capital by reallocating it to more profitable or stable sectors. In doing
so, they may amplify global capital fluctuations for firms, which are unable to react at the same
pace. Financial risk is therefore limited in our model. Investors can always reposition themselves
and, as a result, do not bear the same risk as firms that move to attract investors. The primary
burden of risk falls on the firms themselves, not the financial sector. Our model demonstrates that
investors do not experience the eviction phenomenon that firms do. However, investors may face
eviction from certain investment sectors if their capital no longer allows them to invest in sectors
perceived as the most promising, based on returns and share prices.

We posit that firms have a natural inclination to switch sectors. Indeed, firms tend to change due
to the continuous evolution and transformation of sectors and the changing economic environment.
In our model, the historical development of a sector is not depicted by a specific variable, but
rather by firms shifts between closely related sectors. In the shift, the initial sector is the past
state of the sector, and the final sector its present state. Thus, firms transitions captures both firm
reorientations and their adaptation to an evolving environment.

Attracting investors is crucial to firms and can be achieved through continuous expansion.
However, firms face higher uncertainty and risk than investors. Specifically, firms face two distinct
risks:

First, the individual risk associated with seeking higher returns. Switching to more attrac-
tive sectors may expose firms to higher competition and faltering investors sentiment. For exam-
ple, a firm shifting to a high-capitalized sector will experience a stronger competition and weaker
prospects, potentially deterring any present or additional investment. When these two phenomena
combine, they may induce a substantial loss of capital, and trap the firm in the sector, evict it
towards less-capitalized and less-attractive ones, and impact its ability to position itself for future
sectoral changes and transformations.

Second, the global risk, caused by exogenous and macro fluctuations. This risk can alter sectoral
growth prospects and, consequently, affect individual dynamics. Our model captures these potential
instabilities at the individual level. Within a sector, sub-sectors may emerge, some presenting more
promising opportunities than others. However, the entire sector can be impacted. Even though, on
average, the collective state may exhibit some stability, fluctuations among a set of similar firms
can be substantial at the individual dynamics level. Consequently, fluctuations in this context
magnify the uncertainty at the individual level, making it difficult to identify and capitalize on
profitable shifts while also increasing the risk of making detrimental moves. To sum up, both
collective and individual results suggest that firms with high initial capitalization are generally
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less exposed to market fluctuations. Note incidentally that these risks may be amplified by swift
financial reallocation in the face of global uncertainties.

Therefore, firms can undergo sharp changes in dynamics due to variations in the landscape
of expected returns, reactivity of expectations, relative attractiveness compared to neighboring
sectors, or the number of competing firms.

The present paper also advocates that field formalism, in addition to mixing macro and micro
analysis, provides some precise insights about the structures of interactions inside the macroeco-
nomic state. The technique of series expansion of the effective action induces emerging interactions
that are not detected in the classical formalism, such as indirect emerging competition among
agents. More precisely, interactions between firms within a sector reveal phenomena of specializa-
tion and eviction. Competition is at first determined by the firms relative levels of capital. This
is the direct form of competition. The firm with the highest capital is more likely to evict its
competitors. However, field formalism reveals that competition also revolves around attracting
investor capital. This is the indirect form of competition. A firm that successfully differentiates
itself within a sector, through specialization, has the potential to attract capital and mitigate or
reverse a possible eviction. However, specialization makes the firm dependent on its investors. If
investors suffer capital losses, the firm is directly impacted.

Interactions between firms and their investors detail the impact of investment at the individual
level. A firm that attracts more investors will be better positioned in the sector, as it enjoys a
stronger position, whereas its competitors will be compelled to reorient themselves. To attract
investors, a firm needs to demonstrate a high growth potential, which may favor new entrants in a
sector, provided they have the necessary capital to position themselves, or better growth prospects.
Note that from this perspective the concept of comparative advantage is not relevant in our model.
Indeed, given that changes are inevitable within sectors, any comparative advantage is bound to
be swept away, potentially even by relatively distant and unexpected causes. Actually, exogenous
fluctuations, such as the perception of the sector and the firm within it (by investors), as well as
competition among firms to retain their position and attract investors, create inherent instability
within a specific sector. Specializing in a single sector exposes firms to the risk of eventual eviction,
forming a trap.

12 Conclusion

This paper has shown how a statistical field model could be constructed from a simple microeco-
nomic model. Using a simple economic framework involving two types of agents, firms and investors,
we have studied the impact financial capital could have on physical capital allocation. and shown
the complexity of the collective states reached in this very simple case. We have examined how
variations in external parameters could induce transitions in these collective states.

At the individual level, we derived the probabilistic dynamics of agents in this environment. We
identified several types of dynamics for producers, depending on the firms’ landscape, returns, and
the firms’ and sectors’ relative attractiveness. A firm’s dynamics also depends on its initial sector
and level of capital, and may exhibit turning points Modifications of the macroeconomic state may
lead to significant fluctuations in a firm’s growth trajectory.

However, in this work, to examine the impact of financial allocation, we concentrated on inter-
actions between firms and between firms and investors. Investors only interact indirectly, through
firms. For a more comprehensive study, we will include interactions between investors in a subse-
quent work, where they invest in each other.
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Appendix 1 From large number of agents to field formalism

This appendix summarizes the most useful steps of the method developed in Gosselin, Lotz and
Wambst (2017, 2020, 2021), to switch from the probabilistic description of the model to the field
theoretic formalism and summarizes the translation of a generalization of (10) involving different
time variables. By convention and unless otherwise mentioned, the symbol of integration

∫

refers
to all the variables involved.

A1.1 Probabilistic formalism

The probabilistic formalism for a system with N identical economic agents in interaction is based
on the minimization functions described in the text. Classically, the dynamics derives through the
optimization problem of these functions. The probabilistic formalism relies on the contrary on the
fact, that, due to uncertainties, shocks... agents do not optimize fully these functions. Moreover,
given the large number of agents, there may be some discrepancy between agents minimization
functions, and this fact may be translated in an uncertainty of behavior around some average
minimization, or objective function.

We thus assume that each agent chooses for his action a path randomly distributed around
the optimal path. The agent’s behavior can be described as a weight that is an exponential of
the intertemporal utility, that concentrates the probability around the optimal path. This feature
models some internal uncertainty as well as non-measurable shocks. Gathering all agents, it yields
a probabilistic description of the system in terms of a probabilistic weight.

In general, this weight includes utility functions and internalizes forward-looking behaviors,
such as intertemporal budget constraints and interactions among agents. These interactions may
for instance arise through constraints, since income flows depend on other agents demand. The
probabilistic description then allows to compute the transition functions of the system, and in turn
compute the probability for a system to evolve from an initial state to a final state within a given
time span. They have the form of Euclidean path integrals.

In the context of the present paper, we have seen that the minimization functions for the system
considered in this work have the form:

∫

dt







∑

i





dAi (t)

dt
−
∑

j,k,l...

f (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

(134)

+
∑

i





∑

j,k,l...

g (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)









The minimization of this function will yield a dynamic equation for N agents in interaction described
by a set of dynamic variables Ai (t) during a given timespan T .

The probabilistic description is straightforwardly obtained from (134). The probability associ-
ated to a configuration (Ai (t))i=1,...,N

06t6T
is directly given by:

N exp






− 1

σ2

∫

dt







∑

i





dAi (t)

dt
−
∑

j,k,l...

f (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

(135)

+
∑

i





∑

j,k,l...

g (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)












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where N is a normalization factor and σ2 is a variance whose magnitude describes the amplitude
of deviations around the optimal path.

As in the paper, the system is in general modelled by several equations, and thus, several mini-
mization function. The overall system is thus described by several functions, and the minimization
function of the whole system is described by the set of functions:

∫

dt







∑

i





dAi (t)

dt
−
∑

j,k,l...

f (α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

(136)

+
∑

i





∑

j,k,l...

g(α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)









where α runs over the set equations describing the system’s dynamics. The associated weight is
then:

N exp






−







∑

i,α

1

σ2
α

∫

dt





dAi (t)

dt
−
∑

j,k,l...

f (α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

(137)

+
∑

i,α





∑

j,k,l...

g(α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)













The appearance of the sum of minimization functions in the probabilistic weight (137) translates
the hypothesis that the deviations with respect to the optimization of the functions (136) are
assumed to be independent.

For a large number of agents, the system described by (137) involves a large number of variables
Ki (t), Pi (t) and Xi (t) that are difficult to handle. To overcome this difficulty, we consider the space
H of complex functions defined on the space of a single agent’s actions. The space H describes the
collective behavior of the system. Each function Ψ of H encodes a particular state of the system.
We then associate to each function Ψ of H a statistical weight, i.e. a probability describing the
state encoded in Ψ. This probability is written exp (−S (Ψ)), where S (Ψ) is a functional, i.e. the
function of the function Ψ. The form of S (Ψ) is derived directly from the form of (137) as detailed
in the text. As seen from (137), this translation can in fact be directly obtained from the sum of
”classical” minimization functions weighted by the factors 1

σ2
α
:

∑

i,α

1

σ2
α

∫

dt





dAi (t)

dt
−
∑

j,k,l...

f (α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





2

+
∑

i,α





∑

j,k,l...

g(α) (Ai (t) ,Aj (t) ,Ak (t) ,Al (t) ...)





This is this shortcut we used in the text.
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A1.2 Interactions between agents at different times

A straightforward generalization of (10) involve agents interactions at different times. The terms
considered have the form:

∑

i





dAi (t)

dt
−
∑

j,k,l...

∫

f (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt





2

(138)

+
∑

i

∑

j,k,l...

∫

g (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt

where t stands for (ti, tj , tk, tl...) and dt stands for dtidtjdtkdtl...

The translation is straightforward. We introduce a time variable θ on the field side and the

fields write |Ψ(A, θ)|2 and
∣

∣

∣Ψ̂
(

Â, θ̂
)∣

∣

∣

2

. The second term in (138) becomes:

∑

i

∑

j

∑

j,k...

∫

g (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt

→
∫

g
(

A,A′,A′′, Â, Â
′
..., θ, θ̂

)

|Ψ(A, θ)|2 |Ψ(A′, θ′)|2 |Ψ(A′′, θ′′)|2 dAdA′dA′′ (139)

×
∣

∣

∣
Ψ̂
(

Â, θ̂
)∣

∣

∣

2 ∣
∣

∣
Ψ̂
(

Â′, θ̂
′)∣
∣

∣

2

dÂdÂ′dθdθ̂

where θ and θ̂ are the multivariables (θ, θ′, θ′′...) and
(

θ̂, θ̂
′
...
)

respectively and dθdθ̂ stands for

dθdθ′dθ′′... and dθ̂dθ̂
′
...

Similarly, the first term in (138) translates as:

∑

i





dAi (t)

dt
−
∑

j,k,l...

∫

f (Ai (ti) ,Aj (tj) ,Ak (tk) ,Al (tl) ..., t)dt





2

(140)

→
∫

Ψ† (A, θ)

(

−∇
A(α)

(

σ2
A(α)

2
∇

A(α) − Λ(A, θ)

))

Ψ(A, θ) dAdθ (141)

by:

Λ(A, θ) =

∫

f (α)
(

A,A′,A′′, Â, Â
′
..., θ, θ̂

)

|Ψ(A′, θ′)|2 |Ψ(A′′, θ′′)|2 dA′dA′′ (142)

×
∣

∣

∣Ψ̂
(

Â, θ
)∣

∣

∣

2 ∣
∣

∣Ψ̂
(

Â′, θ′′
)∣

∣

∣

2

dÂdÂ′dθ̄dθ̂

with dθ̄ = dθ′dθ′′.
Ultimately, as in the text, additional terms (445):

Ψ† (A, θ)

(

−∇θ

(

σ2
θ

2
∇θ − 1

))

Ψ(A, θ) (143)

+Ψ̂†
(

Â, θ
)

(

−∇θ

(

σ2
θ

2
∇θ − 1

))

Ψ̂
(

Â, θ
)

+ α |Ψ(A)|2 + α
∣

∣

∣Ψ̂
(

Â
)∣

∣

∣

2

are included to the action functional to take into account for the time variable.
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A1.3 Translation of the minimization functions

Real economy

Translation of the minimization function: Physical capital allocation Let us start by
translating in terms of fields the expression (49):

∑

i





(

dXi

dt
−∇XR (Ki, Xi)H (Ki)

)2

+ τ
KXi

Ki

∑

j

δ (Xi −Xj)



 (144)

To do so, we first consider the last term τ
KXi
Ki

∑

i

∑

j δ (Xi −Xj). This term contains no derivative.
The form of the translation is given by formula (11). Since the expression contains two indices,
both of them are summed.

The first step of the translation is to replace Xi and Xj by two variables X et X ′, and substitute:

τ
KXi

Ki
δ (Xi −Xj) → τ

KX

K
δ (X −X ′)

where KX is the average capital per firm in sector X. The sum over i and the sum over j are then
replaced directly by the integrals

∫

|Ψ(K,X)|2 d (K,X),
∫

|Ψ(K ′, X ′)|2 d (K ′, X ′), which leads to the
following translation:

τ
KXi

Ki

∑

i

∑

j

δ (Xi −Xj) →
∫

|Ψ(K,X)|2 d (K,X)

∫

|Ψ(K ′, X ′)|2 d (K ′, X ′) τ
KX

K
δ (X −X ′)

=

∫

τ
KX

K
|Ψ(K,X)|2 |Ψ(K ′, X)|2 d (K,X)dK ′ (145)

To translate the first term in formula (144):

∑

i

(

dXi

dt
−∇XR (Ki, Xi)H (Ki)

)2

(146)

We use the translation (17) of a type-(16) expression. The gradient term appearing in equation
(17) is ∇X . We thus obtain the translation:

∑

i

(

dXi

dt
−∇XR (Ki, Xi)H (Ki)

)2

(147)

→
∫

Ψ† (K,X)

(

−∇X

(

σ2
X

2
∇X + Λ(X,K)

))

Ψ(K,X)dKdX

Note that the variance σ2
X reflects the probabilistic nature of the model hidden behind the field

formalism. This σ2
X represents the characteristic level of uncertainty of the sectors space dynamics.

It is a parameter of the model. The term Λ(X,K) is the translation of the term −∇XR (Ki, Xi)H (Ki)

in the parenthesis of (146). This term is a function of one sole index ”i”. In that case, the term Λ

is simply obtained by replacing (Ki, Xi) by (K,X). We use the translation (15) of (13)-type term,
so that Λ writes:

Λ(X,K) = −∇XR (K,X)H (K)

and the translation of expression (146) is:

∑

i

(

dXi

dt
−∇XR (Ki, Xi)H (Ki)

)2

(148)

→
∫

Ψ† (K,X)

(

−∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

))

Ψ(K,X)dKdX
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Using equations (145) and (148), the translation of (144) is thus:

S1 = −
∫

Ψ† (K,X)∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

Ψ(K,X)dKdX (149)

+τ
KX

K

∫

|Ψ(K ′, X)|2 |Ψ(K,X)|2 dK ′dKdX

Translation of the minimization function: Physical capital We can now turn to the trans-
lation of the second equation (50):

∑

i





d

dt
Ki +

1

ε



Ki (t)−
F2 (R (Ki (t) , Xi (t)))G

(

Xi (t)− X̂j (t)
)

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j (t)
)K̂j (t)









2

(150)

To detail the computations, we have kept the expanded formula (41) for F2

(

R (Ki (t) , Xi (t)) , X̂j (t)
)

Once again, we use the translation (15) of (13)-type term, and start by building the field functional
associated to the term inside the square:

Ki (t)−
∑

j

F2 (R (Ki (t) , Xi (t)))G
(

Xi (t)− X̂j (t)
)

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j (t)
)K̂j (t)

We replace:

(Ki (t) , Xi (t)) → (K,X)

(Kl (t) , Xl (t)) → (K ′, X ′)
(

K̂j (t) , X̂j (t)
)

→
(

K̂, X̂
)

and:

Ki (t)−
∑

j

F2 (R (Ki (t) , Xi (t)))G
(

Xi (t)− X̂j

)

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j

)K̂j (t) → K −
∑

j

F2 (R (K,X))G
(

X − X̂
)

∑

l F2 (R (K ′, X ′))G
(

X ′ − X̂
)K̂

(151)
The sum over l is then replaced by an integral

∫

|Ψ(K ′, X ′)|2 d (K ′, X ′):

Ki (t)−
∑

j

F2 (R (Ki (t) , Xi (t)))G
(

Xi (t)− X̂j

)

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j

)K̂j (t) (152)

→ K −
∑

j

F2 (R (K,X))G
(

X − X̂
)

∫

|Ψ(K ′, X ′)|2 d (K ′, X ′)F2 (R (K ′, X ′))G
(

X ′ − X̂j

)K̂

Recall that investors’ variables are denoted with an upper script ˆ.

Finally, the sum over j and the second field are replaced by
∫

∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

d
(

K̂, X̂
)

. After intro-

ducing the characteristic factor 1
ε of the capital accumulation time scale (see (46)), the translation
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becomes:

1

ε



Ki (t)−
∑

j

F2 (R (Ki (t) , Xi (t)))G
(

Xi (t)− X̂j

)

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j

)K̂j (t)





→ 1

ε



K −
∫

∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

d
(

K̂, X̂
) F2 (R (K,X))G

(

X − X̂
)

K̂

∫

|Ψ(K ′, X ′)|2 d (K ′, X ′)F2 (R (K ′, X ′))G
(

X ′ − X̂
)





≡ Λ (K,X) (153)

Using the translation (17) of (16)-type term, we are led to the translation of (150). Since the square
(150) includes a derivative d

dtKi, the expression starts with a gradient with respect to K, and we
have:

∑

i





d

dt
Ki +

1

ε



Ki −
∑

j

F2 (R (Ki (t) , Xi (t)))G
(

Xi (t)− X̂j

)

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j

)K̂j (t)









2

(154)

→
∫

Ψ† (K,X)

(

−∇K

(

σ2
K

2
∇K + Λ (K,X)

))

Ψ(K,X)dKdX

where, here again, the variance σ2
K reflects the probabilistic nature of the model that is hidden

behind the field formalism. Recall that it represents the characteristic level of uncertainty in the
dynamics of capital.

Inserting result (153) in equation (154), the translation of (??) becomes:

S2 = −
∫

Ψ† (K,X)∇K

(

σ2
K

2
∇K +

1

ε

(

K −
∫

F̂2

(

R (K,X) , X̂
)

K̂
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

dK̂dX̂

))

Ψ(K,X)

(155)
with:

F̂2

(

R (K,X) , X̂
)

=
F2 (R (K,X))G

(

X − X̂
)

∫

F2 (R (K,X))G
(

X − X̂
)

|Ψ(K,X)|2

as quoted in the text.

Financial markets

The functions to be translated are those of the financial capital dynamics (51) and of the financial
capital allocation (52). Both expressions include a time derivative and are thus of type (12). As for
the real economy, the application of the translation rules is straightforward.

Translation of the minimization function: Financial capital dynamics We consider the
function (51):

∑

j





d

dt
K̂j −

1

ε





∑

i

(

ri + F1

(

R (Ki, Xi)
∑

l δ (Xl −Xi)R (Kl, Xl)
,
K̇i (t)

Ki (t)

))

F2 (R (Ki, Xi))G
(

Xi − X̂j

)

∑

l F2 (R (Kl, Xl))G
(

Xl − X̂j

)K̂j









2

(156)
which translates, using the general translation formula of expression (16) in (17), into:

∫

Ψ̂†
(

K̂, X̂
)

(

−∇K̂

(

σ2
K̂

2
∇K̂ + Λ

(

K̂, X̂
)

))

Ψ̂
(

K̂, X̂
)

dK̂dX̂

64



The function Λ
(

K̂, X̂
)

is obtained, as before, by translating the term following the derivative in

the function (156):

1

ε

∑

i

(

ri + F1

(

R (Ki, Xi)
∑

l δ (Xl −Xi)R (Kl, Xl)
,
K̇i (t)

Ki (t)

))

F2 (R (Ki, Xi))G
(

Xi − X̂j

)

∑

l F2 (R (Kl, Xl))G
(

Xl − X̂j

)K̂j → Λ
(

K̂, X̂
)

(157)
First, we use the price dynamics equation (35) at the zero-th order in fluctuations to translate the

capital dynamics K̇i(t)
Ki(t)

:

K̇i (t)

Ki (t)
=

∑

j

F2 (R (Ki (t) , Xi (t)))G
(

Xi (t)− X̂j

)

Ki

∑

l F2 (R (Kl (t) , Xl (t)))G
(

Xl (t)− X̂j

)K̂j (t)−Ki (t)

→ Γ (K,X)

where:

Γ (K,X) =

∫ F2(R(K,X))G(X−X̂)
∫

F2(R(K,X))G(X−X̂)‖Ψ(K,X)‖2 K̂
∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2

d
(

K̂, X̂
)

−K

K
(158)

=

∫ F2 (R (K,X))G
(

X − X̂
)

K
∫

F2 (R (K,X))G
(

X − X̂
)

‖Ψ(K,X)‖2
K̂
∥

∥

∥
Ψ̂
(

K̂, X̂
)∥

∥

∥

2

d
(

K̂, X̂
)

− 1

Then, using the translation (15) of (13), we translate expression (157) by replacing:

(Ki, Xi) → (K,X)

(Kl, Xl) → (K ′, X ′)
(

K̂j, X̂j

)

→
(

K̂, X̂
)

We also replace the sums by integrals times the appropriate square of field, which yields:

Λ
(

K̂, X̂
)

= −K̂

ε

∫

(

r (K,X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K

+ F1

(

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

×
F2 (R (K,X))G

(

X − X̂
)

∫

F2 (R (K ′, X ′))G
(

X ′ − X̂
)

‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
‖Ψ(K,X)‖2 d (K,X)

Ultimately, the translation of (51) is:

S3 = −
∫

Ψ̂†
(

K̂, X̂
)

∇K̂

(

σ2
K̂

2
∇K̂ − K̂

ε

∫

(

r (K,X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K

+F1

(

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

×
F2 (R (K,X))G

(

X − X̂
)

∫

F2 (R (K ′, X ′))G
(

X ′ − X̂
)

‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
‖Ψ(K,X)‖2 d (K,X)



 Ψ̂
(

K̂, X̂
)

Using expressions (56) and (58) yields the expression of the text.
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Translation of the minimization function: Financial capital allocation The translation
of the function for financial capital allocation (52) follows the previous pattern. We obtain:

S4 = −
∫

Ψ̂†
(

K̂, X̂
)

∇X̂

(

σ2
X̂
∇X̂ −

∫



∇X̂F0

(

R
(

K, X̂
))

+ ν∇X̂F1





R
(

K, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)









×

∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

dK

∫

∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′






Ψ̂
(

K̂, X̂
)

and (58) yields the formula quoted in the text.

Appendix 2 expression of Ψ(K,X) as function of financial variables

A2.1 Finding Ψ (K,X): principle

In this paragraph, we give the principle of resolution for Ψ(K,X) for an arbitrary function H. The
full resolution for some particular cases is given below. Given a particular state Ψ̂, we aim at
minimizing the action functional S1 + S2 + S3 + S4. However, given our assumptions, the action
functional S3+S4 depends on Ψ(K,X), through average quantities, and moreover, we have assumed
that physical capital dynamics depends on financial accumulation. Consequently, we can neglect,
in first approximation, the impact of Ψ(K,X) on S3 + S4 and consider rather the minimization of
S1 + S2 which is given by:

S1 + S2 = −
∫

Ψ† (K,X)

(

∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

− τ
KX

K

(
∫

|Ψ(K ′, X)|2 dK ′
)

(159)

+ ∇K

(

σ2
K

2
∇K + u

(

K,X,Ψ, Ψ̂
)

))

Ψ(K,X) dKdX

with:

u
(

K,X,Ψ, Ψ̂
)

=
1

ε



K −
∫ F2 (R (K,X))G

(

X − X̂
)

∫

F2 (R (K,X))G
(

X − X̂
)

‖Ψ(K,X)‖2
K̂
∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂



 (160)

and:

Γ (K,X) =

∫ F2 (R (K,X))G
(

X − X̂
)

K
∫

F2 (R (K,X))G
(

X − X̂
)

‖Ψ(K,X)‖2
K̂
∥

∥

∥
Ψ̂
(

K̂, X̂
)∥

∥

∥

2

d
(

K̂, X̂
)

− 1

This is done in two steps. First, we find Ψ(X), the background field for X when K determined by
X. We then find the corrections to the particular cases considered and compute Ψ(K,X).

A2.1.1 Particular case: K determined by X

A simplification arises, assuming K adapting to X. We assume that in first approximation K is a
function of X, written KX :

K = KX =

∫ F2 (R (KX , X))G
(

X − X̂
)

∫

F2

(

R
(

K ′
X′ , X ′

))

G
(

X ′ − X̂
)

‖Ψ(X ′)‖2 dX ′
K̂
∥

∥

∥
Ψ̂
(

K̂, X̂
)∥

∥

∥

2

d
(

K̂, X̂
)

(161)
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This means that for any sector X, the capital of all agents in this sector are equal. At the individual
level, this corresponds to set d

dtKi (t) = 0. The level of capital adapts faster than the motion in
sector space and reaches quickly its equilibrium value. Incindently, (161) implies that Γ (K,X) = 0.
Actually, using (161):

Γ (K,X) =

∫ F2 (R (K,X))G
(

X − X̂
)

K
∫

F2 (R (K,X))G
(

X − X̂
)

‖Ψ(K,X)‖2
K̂
∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2

d
(

K̂, X̂
)

− 1

=

∫ F2 (R (K,X))G
(

X − X̂
)

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

∫

F2 (R (KX , X))G
(

X − X̂
)

K̂
∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2

d
(

K̂, X̂
)

− 1

= 0

A2.1.1.1 Justification of approximation (161) Approximation (161) justifies in the following
way. When F2 is slowly varying with K, we perform the following change of variable in (159):

Ψ → Ψexp



−
∫

u
(

K,X,Ψ, Ψ̂
)

dK

σ2
K



 ≃ Ψexp

(

− 1

2σ2
K

εu2
(

K,X,Ψ, Ψ̂
)

)

Ψ† → Ψ† exp

(

1

σ2
K

∫

u
(

K,X,Ψ, Ψ̂
)

dK

)

≃ Ψ† exp

(

− 1

2σ2
K

εu2
(

K,X,Ψ, Ψ̂
)

)

and this replaces S2 in (159) by:

−
∫

Ψ† (K,X)

(

σ2
K

2
∇2

K − u2

2σ2
K

(

K,X,Ψ, Ψ̂
)

+
1

2
∇Ku

(

K,X,Ψ, Ψ̂
)

)

Ψ(K,X)dKdX (162)

The change of variable modifies S1 in (159). Actually, the derivative∇X acts on exp
(

− 1
2σ2

K

u2
(

K,X,Ψ, Ψ̂
))

and the term:

−
∫

Ψ† (K,X)∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

Ψ(K,X)dKdX

becomes:

−
∫

Ψ† (X)∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

Ψ(X)dKdX (163)

+ε

∫

Ψ† (K,X)

(

σ2
X

2σ2
K

u∇Xu

)

∇XΨ(K,X)dKdX + ε

∫

Ψ† (K,X)

(

σ2
X

2σ2
K

(

(∇Xu)
2
+ u∇2

Xu
)

)

Ψ(K,X)dKdX

−
∫

Ψ† (K,X)

(

ε
u∇Xu

σ2
K

∇XR (K,X)H (K) + ε2
σ2
X

2σ4
K

(u∇Xu)
2

)

Ψ(K,X)dKdX

Using that u is of order 1
ε (see(160)), the minimum of S1 + S2 is obtained when the potential:

∫

Ψ† (K,X)

(

u2

2σ2
K

− 1

2
∇Ku

)

Ψ(K,X)dKdX (164)

+ε

∫

Ψ† (K,X)

(

σ2
X

2σ2
K

(

(∇Xu)
2
+ u∇2

Xu
)

)

Ψ(K,X)dKdX

−
∫

Ψ† (K,X)

(

ε
u∇Xu

σ2
K

∇XR (K,X)H (K) + ε2
σ2
X

2σ4
K

(u∇Xu)
2

)

Ψ(K,X)dKdX

67



is nul. The dominant term in (164) for ε << 1 is:

∫

Ψ† (K,X)

(

u2

2σ2
K

− ε2
σ2
X

2σ4
K

(u∇Xu)2
)

Ψ(K,X) dKdX (165)

For σ2
X << σ2

K it implies that the minimum for S1 + S2 is obtained for:

u
(

K,X,Ψ, Ψ̂
)

≃ 0

with solution (161).

A2.1.1.2 Rewriting the action S1 + S2 With our choice G
(

X − X̂
)

= δ
(

X − X̂
)

we find:

KX =

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2
(166)

and Ψ(K,X) becomes a function Ψ(X):

Ψ(K,X) → Ψ(X)

To find the action for Ψ(X) we evaluate (164) using u
(

KX , X,Ψ, Ψ̂
)

= 0, and compute the first

term in (165) for Ψ(X) = Ψ (KX , X) δ (u) by replacing:

δ (u) → exp
(

−εu2
)

√
2πε

We obtain:

−
∫

Ψ† (K,X)

(

σ2
K

2
∇2

K

)

Ψ(K,X)dKdX =
σ2
K

2

∫

|Ψ(X)|2 dX
∫

exp
(

−εu2
)

√
2πε

∇2
K

exp
(

−εu2
)

√
2πε

dK

≃ σ2
K

2ε

∫

|Ψ(X)|2 dX

and the action S1 restricted to the variable X is given by:

S1 =

∫

Ψ† (X)

(

−∇X

(

σ2
X

2
∇X − (∇XR (X)H (KX))

)

+ τ
KX

K
|Ψ(X)|2

)

Ψ(X)

+

∫

Ψ† (K,X)

(

σ2
X

4σ2
K

(

∇Xu
(

KX , X,Ψ, Ψ̂
))2

)

Ψ(K,X) dKdX

+

∫
(

σ2
K

2ε
− 1

2
∇Ku

(

KX , X,Ψ, Ψ̂
)

)

|Ψ(X)|2 dX

In our order of approximation ∇Ku
(

KX , X,Ψ, Ψ̂
)

≃ ε. Ultimately, for σ2
X << σ2

K , action S1 reduces
to:

S1 =

∫

Ψ† (X)

(

−∇X

(

σ2
X

2
∇X − (∇XR (X)H (KX))

)

+ τ
KX

K
|Ψ(X)|2 + σ2

K − 1

2ε

)

Ψ(X) (167)

and we look for Ψ(X) minimizing (167). As explained in the text, we will consider at the collective
level that we can replace:

τ
KX

K
→ τ

68



A2.1.1.3 Minimization of (167) To minimize (167), we assume for the sake of simplicity, that
for i 6= j:

∣

∣

∣∇Xi
∇Xj

R (X)
∣

∣

∣ <<
∣

∣∇2
Xi

R (X)
∣

∣

which is the case for example if R (X) is a function with separated variables : R (X) =
∑

Ri (Xi).
This can be also realized if locally, one chooses the variables Xi to diagonalize ∇Xi

∇Xj
R (X) at

some points in the sector space.
We then perform the change of variables:

exp

(

∫ X ∇XR (X)

σ2
X ‖∇XR (X)‖H (KX)

)

Ψ(X) → Ψ(X)

and:

exp

(

−
∫ X

∇XR (X)H (KX)

)

Ψ† (X) → Ψ† (X)

so that (167) becomes:

∫

Ψ† (X)

(

−σ2
X

2
∇2

X +
1

2σ2
X

(∇XR (X)H (KX))2 +
∇2

XR (KX , X)

2
H (KX) + τ |Ψ(X)|2 + σ2

K − 1

2ε

)

Ψ(X)

(168)
which is of second order in derivatives with a potential:

τ ‖Ψ(X)‖4 + 1

2σ2
X

∫

(∇XR (X)H (KX))2 ‖Ψ(X)‖2

We assume the number of agents fixed equal to N . We must minimize (168) with the constraint
‖Ψ(X)‖2 > 0 and

∫

‖Ψ(X)‖2 = N . We thus replace (168) by:

∫

Ψ† (X)

(

−σ2
X∇2

X

2
+

(∇XR (X)H (KX))
2

2σ2
X

+
∇2

XR (KX , X)

2
H (KX) + τ |Ψ(X)|2 + σ2

K − 1

2ε

)

Ψ(X)

+D
(

‖Ψ‖2
)

(∫

‖Ψ(X)‖2 −N

)

+

∫

µ (X) ‖Ψ(X)‖2 (169)

we have written D
(

‖Ψ‖2
)

the Lagrange multiplier for
∫

‖Ψ(X)‖2, to keep track of its dependency

multiplier in ‖Ψ‖2. By a redefinition D
(

‖Ψ‖2
)

− σ2
K−1

2ε → D
(

‖Ψ‖2
)

,
D(‖Ψ‖2)

D(‖Ψ‖2)−
σ2
K
2ε

N → N we can write

(169) as:

∫

Ψ† (X)

(

−σ2
X

2
∇2

X +
1

2σ2
X

(∇XR (X)H (KX))
2
+

H (KX)∇2
XR (KX , X)

2
+ τ |Ψ(X)|2

)

Ψ(X)(170)

+D
(

‖Ψ‖2
)

(∫

‖Ψ(X)‖2 −N

)

+

∫

µ (X) ‖Ψ(X)‖2

Introducing the change of variable for ∇XR (X) for the sake of simplicity:

(∇XR (X))
2
+ σ2

X

∇2
XR (KX , X)

H (KX)
→ (∇XR (X))

2 (171)
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the minimization of the potential yields, for σ2
X << 1:

iD
(

‖Ψ‖2
)

+ µ (X) (172)

= 2τ ‖Ψ(X)‖2 −
H ′
(

∫

K̂‖Ψ̂(K̂,X)‖2dK̂
‖Ψ(X)‖2

)

2σ2
XH

(

∫

K̂‖Ψ̂(K̂,X)‖2
dK̂

‖Ψ(X)‖2

)

×






∇XR (X)H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













2
∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖4
‖Ψ(X)‖2

+
1

2σ2
X






∇XR (X)H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













2

Moreover, multiplying (172) by ‖Ψ(X)‖2 and integrating yields:

D
(

‖Ψ‖2
)

N = 2τ

∫

|Ψ(X)|4 (173)

−
∫ H ′

(

∫

K̂‖Ψ̂(K̂,X)‖2
dK̂

‖Ψ(X)‖2

)

2σ2
XH

(

∫

K̂‖Ψ̂(K̂,X)‖2dK̂
‖Ψ(X)‖2

)






∇XR (X)H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













2
∫

K̂
∥

∥

∥
Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

+
1

2σ2
X

∫






∇XR (X)H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













2

‖Ψ(X)‖2

≃ 2τ

∫

|Ψ(X)|4 + 1

2σ2
X

∫






∇XR (X)H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













2

‖Ψ(X)‖2

Note that in first approximation, for H ′ << 1, (172) and (173) become:

D
(

‖Ψ‖2
)

+ µ (X) = 2τ ‖Ψ(X)‖2 + 1

2σ2
X

(∇XR (X))
2
H2







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2






(174)

and:

ND
(

‖Ψ‖2
)

= 2τ

∫

|Ψ(X)|4 + 1

2σ2
X

∫






∇XR (X)H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













2

‖Ψ(X)‖2 (175)

A2.1.1.4 Resolution of (174) and (175) Two cases arise in the resolution:

Case 1: ‖Ψ(X)‖2 > 0 For ‖Ψ(X)‖2 > 0, (172) writes:

D
(

‖Ψ‖2
)

= 2τ ‖Ψ(X)‖2 + 1

2σ2
X

(∇XR (X))2 H2

(

K̂X

‖Ψ(X)‖2

)



1−
H ′
(

K̂X

)

H
(

K̂X

)

K̂X

‖Ψ(X)‖2



 (176a)
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with:

K̂X =

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂ = KX ‖Ψ(X)‖2 (177)

Note that restoring the initial variable:

(∇XR (X))
2 → (∇XR (X))

2
+ σ2

X

∇2
XR (KX , X)

H (KX)
(178)

yields (81) in the text.
Given the setup, we can assume that

H2

(

K̂X

‖Ψ(X)‖2

)



1−
H ′
(

K̂X

)

H
(

K̂X

)

K̂X

‖Ψ(X)‖2





is a decreasing function of ‖Ψ(X)‖2. Assume a minimum Ψ0 (X) for the right hand side of (176a).

It leads to a condition for D
(

‖Ψ‖2
)

:

D
(

‖Ψ‖2
)

> 2τ ‖Ψ0 (X)‖2 + 1

2σ2
X

(∇XR (X))
2
H2

(

K̂X

‖Ψ0 (X)‖2

)



1−
H ′
(

K̂X

)

H
(

K̂X

)

K̂X

‖Ψ0 (X)‖2



 (179)

and the solution of (176a) writes:

∥

∥

∥

∥

∥

Ψ

(

X, (∇XR (X))
2
,
K̂X

K̂X,0

)∥

∥

∥

∥

∥

2

(180)

where K̂X,0 is a constant representing some average to normalize K̂X

K̂X,0
as a dimensionless number.

Case 2 ‖Ψ(X)‖2 = 0 On the other hand, if:

D
(

‖Ψ‖2
)

< 2τ ‖Ψ0 (X)‖2 + 1

2σ2
X

(∇XR (X))
2
H2

(

K̂X

‖Ψ0 (X)‖2

)



1−
H ′
(

K̂X

)

H
(

K̂X

)

K̂X

‖Ψ0 (X)‖2



 (181)

the solution of (176a) is ‖Ψ(X)‖2 = 0

Gathering both cases The value of ‖Ψ‖2 thus depends on the conditions (179) and (181).

To compute the value of D
(

‖Ψ‖2
)

we integrate (176a) over V/V0 with V0 locus where ‖Ψ(X)‖2 = 0.

V0 will be then defined by (181) once D
(

‖Ψ‖2
)

found. For H slowly varying, we can replace K̂X

‖Ψ(X)‖2

by:
∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂dX
∫

‖Ψ(X)‖2 dX
=

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂dX

N

so that the integration of (181) over X yields:
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D
(

‖Ψ‖2
)

(V − V0) ≃ 2τN +
1

2σ2
X

∫

(∇XR (X))2 H2







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂dX

N







×









1−
H ′
(

∫

K̂‖Ψ̂(K̂,X)‖2
dK̂dX

N

)

H

(

∫

K̂‖Ψ̂(K̂,X)‖2
dK̂dX

N

)

∫

K̂
∥

∥

∥
Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂dX

N









= 2τN +
1

2σ2
X

(∇XR (X))
2
H2





〈

K̂
〉

N













1−
H ′
(

〈K̂〉
N

)

H

(

〈K̂〉
N

)

〈

K̂
〉

N









Consequently:

D
(

‖Ψ‖2
)

≃ 2τ
N

V − V0
+

1

2σ2
X

〈

(∇XR (X))
2
〉

V/V0

H2





〈

K̂
〉

N













1−
H ′
(

〈K̂〉
N

)

H

(

〈K̂〉
N

)

〈

K̂
〉

N









and V0 is defined by (181):

2τ
N

V − V0
+

1

2σ2
X

〈

(∇XR (X))
2
〉

V/V0

H2





〈

K̂
〉

N













1−
H ′
(

〈K̂〉
N

)

H

(

〈K̂〉
N

)

〈

K̂
〉

N









(182)

< 2τ ‖Ψ0 (X)‖2 + 1

2σ2
X

(∇XR (X))
2
H2

(

K̂X

‖Ψ0 (X)‖2

)



1−
H ′
(

K̂X

)

H
(

K̂X

)

K̂X

‖Ψ0 (X)‖2





On V/V0, ‖Ψ‖2 is given by (180) and on V0, ‖Ψ‖2 = 0.
Below, we give explicitaly the form of Ψ(X) form two different form of the function H.

A2.1.2 Introducing the K dependency

A2.1.2.1 First order condition To go beyond approximation (161) and solve for the field
Ψ(K,X) that minimizes (159), we come back to the full system for K and X:

∫

Ψ† (K,X)

((

−∇X

(

σ2
X

2
∇X −

( ∇XR (K,X)

‖∇XR (K,X)‖

)

H (K) + τ |Ψ(K,X)|2
))

(183)

−∇K

(

σ2
K

2
∇K + u

(

K,X,Ψ, Ψ̂
)

)

− 1

2
∇Ku

(

K,X,Ψ, Ψ̂
)

)

Ψ(K,X)

with u
(

K,X,Ψ, Ψ̂
)

given by (160). We then look for a minimum of (183) of the form:

Ψ(K,X) = Ψ (X)Ψ1 (K −KX) (184)

with KX given in (166):

KX =

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2
(185)
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and Ψ1 peaked around 0 and of norm 1. When H (K) is slowly varying around KX , the minimization
of (183) for Ψ1 (K −KX) writes:

∇K

(

σ2
K

2
∇K + u

(

K,X,Ψ, Ψ̂
)

+
1

2
∇Ku

(

K,X,Ψ, Ψ̂
)

)

Ψ1 (K −KX) = 0 (186)

Then, using that, in first approximation:
∫

F2 (R (K ′, X)) ‖Ψ(K ′, X)‖2 dK ′ ≃ F2 (R (KX , X)) ‖Ψ(X)‖2

Equation (186) becomes:

∇K

(

σ2
K

2
∇K +K − F2 (R (K,X))KX

F2 (R (KX , X))

)

Ψ1 (K −KX) = 0 (187)

A2.1.2.2 Solving (187) To solve the first order condition (187) we perform the change of vari-
able:

Ψ1 (K −KX) → exp

(

1

σ2
K

∫ [

K − F2 (R (K,X))KX

F2 (R (KX , X))

]

dK

)

Ψ1 (K −KX)

and (187) is transformed into

−σ2
K

2
∇2

KΨ1 (K −KX) +
1

2σ2
K

(

K − F2 (R (K,X))KX

F2 (R (KX , X))

)2

Ψ1 (K −KX) = 0 (188)

This equation can be solved by implementing the constraint:
∫

‖Ψ1 (K −KX)‖2 = 1

and we find:

Ψ1 (K −KX) ≃ N exp

(

− 1

σ2
K

(

K − F2 (R (K,X))KX

F2 (R (KX , X))

)2
)

≃ N exp

(

− 1

σ2
K

(

K −KX − (K −KX)
∂KR (KX , X)F ′

2 (R (KX , X))

F2 (R (KX , X))
KX

)2
)

= N exp

(

− 1

σ2
K

(

1− ∂KR (KX , X)F ′
2 (R (K,X))

F2 (R (KX , X))
KX

)2

(K −KX)
2

)

with the normalization factor N given by:

N =

√

√

√

√

c

σ2
K

(

1− ∂KR(KX ,X)F ′
2(R(K,X))

F2(R(KX ,X)) KX

)2

A2.1.2.3 Expression for the density of firms ‖Ψ(K,X)‖2 Having found Ψ1, and using (180)
and (184) we obtain the expression for ‖Ψ(K,X)‖2:

‖Ψ(K,X)‖2 = N ‖Ψ‖2
(

X, (∇XR (X))
2
,
K̂X

K̂X,0

)

(189)

× exp



− 1

σ2
K

(

K − F2 (R (K,X))

F2 (R (KX , X)) ‖Ψ(X)‖2
∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

)2




= ‖Ψ‖2
(

X, (∇XR (X))2 ,
K̂X

K̂X,0

) c exp

(

− 1
σ2
K

(

1− ∂KR(KX ,X)F ′
2(R(K,X))

F2(R(KX ,X)) KX

)2

(K −KX)
2

)

1
σ2
K

(

1− ∂KR(KX ,X)F ′
2(R(K,X))

F2(R(KX ,X)) KX

)2
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for X ∈ V/V0 and ‖Ψ(K,X)‖2 = 0 otherwise.
As stated in the text, note that the form of the exponential in (189) implies that:

∫

K ‖Ψ(K,X)‖2 dK̂ =

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

A2.2 Examples

We solve the minimization for Ψ(K,X) for two particular forms of the function H (K).

A2.2.1 Example 1

We compute Ψ(K,X) for the specific function:

H (y) =

(

y

1 + y

)ς

, H ′ (y) = ς

(

y
y+1

)ς

y (y + 1)

We use the simplified equations (174) and (175) that yield:

D
(

‖Ψ‖2
)

+µ (X) = τ ‖Ψ(X)‖2+

1
σ2
X

(∇XR (X))
2

((

∫

K̂‖Ψ̂(K̂,X)‖2dK̂
‖Ψ(X)‖2

)ς)2









1− ς 1




∫

K̂‖Ψ̂(K̂,X)‖2
dK̂

‖Ψ(X)‖2
+〈K̂〉













(

〈

K̂
〉

+
∫

K̂‖Ψ̂(K̂,X)‖2dK̂
‖Ψ(X)‖2

)2ς

or equivalently:

D
(

‖Ψ‖2
)

+ µ (X) = τ ‖Ψ(X)‖2

+

1
σ2
X

(∇XR (X))
2

(

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

)2ς

(

〈

K̂
〉

‖Ψ(X)‖2 +
∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

)2ς+1

×
(∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂ + (1− ς)
〈

K̂
〉

‖Ψ(X)‖2
)

For ς ≃ 1
2 , this reduces to:

D
(

‖Ψ‖2
)

+ µ (X) = τ ‖Ψ(X)‖2 +
1

σ2
X

(∇XR (X))
2
K̂X

(

K̂X + 1
2

〈

K̂
〉

‖Ψ(X)‖2
)

(〈

K̂
〉

‖Ψ(X)‖2 + K̂X

)2

and for
〈

K̂
〉

‖Ψ(X)‖2 << K̂X this becomes:

D
(

‖Ψ‖2
)

+ µ (X) ≃ τ ‖Ψ(X)‖2 +
1

σ2
X

(∇XR (X))
2
K̂X

(〈

K̂
〉

‖Ψ(X)‖2 + K̂X

) (190)

Two cases arise.
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When 1
σ2
X

(∇XR (X))2 << τ :

‖Ψ(X)‖2 =

(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)

+

√

(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)2

− 4τ K̂X

〈K̂〉
(

(∇XR(X))2

σ2
X

−D
(

‖Ψ‖2
))

2τ
(191)

=
4τ K̂X

〈K̂〉
(

1
σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
))

2τ





(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)

−
√

(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)2

− 4τ K̂X

〈K̂〉
(

(∇XR(X))2

σ2
X

−D
(

‖Ψ‖2
))





This is positive on the set:








D
(

‖Ψ‖2
)

− τ
K̂X
〈

K̂
〉



 > 0







∪
{

1

σ2
X

(∇XR (X))2 −D
(

‖Ψ‖2
)

< 0

}

(192)

To detail these two conditions, we write (190) for ‖Ψ(X)‖2 > 0:

D
(

‖Ψ‖2
)

≃ τ ‖Ψ(X)‖2 +
1

σ2
X

(∇XR (X))2 K̂X

〈K̂〉
(

‖Ψ(X)‖2 + K̂X

〈K̂〉

)

which is equivalent to:

1
σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
)

(

‖Ψ(X)‖2 + K̂X

〈K̂〉

)

K̂X
〈

K̂
〉 =

−τ ‖Ψ(X)‖2 +D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉
(

‖Ψ(X)‖2 + K̂X

〈K̂〉

) ‖Ψ(X)‖2

Then, we have the implication:

1

σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
)

> 0 ⇒ D
(

‖Ψ‖2
)

− τ
K̂X
〈

K̂
〉 > 0 (193)

This implies that (192) is always satisfied, and formula (191) is valid for all X.
The second case arises when 1

σ2
X

(∇XR (X))
2
<< τ . In this case, the solution is:

‖Ψ(X)‖2 =

(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)

−
√

(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)2

− 4τ K̂X

〈K̂〉
(

(∇XR(X))2

σ2
X

−D
(

‖Ψ‖2
))

2τ

This solution is valid, i.e. ‖Ψ(X)‖2 > 0, under the conditions:






D
(

‖Ψ‖2
)

− τ
K̂X
〈

K̂
〉 > 0







∩
{

1

σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
)

> 0

}

(194)

and ‖Ψ‖2 = 0 for:






D
(

‖Ψ‖2
)

− τ
K̂X
〈

K̂
〉 < 0







∪
{

1

σ2
X

(∇XR (X))2 −D
(

‖Ψ‖2
)

< 0

}
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To detail these two conditions, we use the implication (193) that is equivalent to:

D
(

‖Ψ‖2
)

− τ
K̂X
〈

K̂
〉 < 0 ⇒ 1

σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
)

< 0

Consequently, ‖Ψ(X)‖2 = 0 only if:

1

σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
)

< 0 (195)

We find D
(

‖Ψ‖2
)

by integration of:

D
(

‖Ψ‖2
)

+ µ (X) ≃ τ ‖Ψ(X)‖2 +
1

σ2
X

(∇XR (X))2 K̂X

(〈

K̂
〉

‖Ψ(X)‖2 + K̂X

) (196)

and this leads to:

∫

V/V0

D
(

‖Ψ‖2
)

≃ τN +

∫

V/V0

1
σ2
X

(∇XR (X))2 K̂X

〈K̂〉
(

‖Ψ(X)‖2 + K̂X

〈K̂〉

)

≃ τN +
1

2

∫

V/V0

1

σ2
X

(∇XR (X))
2
= τN +

1

2
(V − V0)

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

we thus have:

D
(

‖Ψ‖2
)

≃ τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

(197)

and V0 is defined using (195). It is the set of points X such that:

τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

− 1

σ2
X

(∇XR (X))
2
> 0 (198)

Similarly, the set V/V0 is defined by:

τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))2
〉

V/V0

− 1

σ2
X

(∇XR (X))2 < 0 (199)

To each function R (X) and any d > 0, we associate two functions that depend on the form of
1

σ2
X

(∇XR (X))
2 over the whole space. First, v (V − V0) is a decreasing function of V −V0, defined by:

V

(

1

σ2
X

(∇XR (X))
2
> v (V − V0)

)

= V − V0 (200)

Second, for every d > 0, the function h (d) is given by:

h (d) =
1

∫

∇XR(X)>d dX

∫

∇XR(X)>d

1

σ2
X

(∇XR (X))
2
dX (201)

This is an increasing function of d.
Thus, we can rewrite (199) as:

τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

= v (V − V0) (202)

76



and moreover, by integration of (199) over V/V0:

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

= h

(

τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

)

(203)

Equations (202) and (203) combine as:

2

(

v (V − V0)−
τN

V − V0

)

= h (v (V − V0)) (204)

which is an equation depending on the form of R (X). If it has a solution, the set on which
‖Ψ(X)‖2 = 0 is defined by:

1

σ2
X

(∇XR (X))
2
< v (V − V0)

and D
(

‖Ψ‖2
)

is given by

D
(

‖Ψ‖2
)

≃ v (V − V0)

Once the solution of (204) is known, the constant D
(

‖Ψ‖2
)

is given by (197) and:

‖Ψ(X)‖2 =
2 K̂X

〈K̂〉
(

1
σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
))

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉 +
√

(

D
(

‖Ψ‖2
)

− τ K̂X

〈K̂〉

)2

− 4τ K̂X

〈K̂〉
(

1
σ2
X

(∇XR (X))
2 −D

(

‖Ψ‖2
))

(205)
for X ∈ V/V0.

A2.2.2 Example 2

We choose H (y) = y and equations (174) and (175) yield:

D
(

‖Ψ‖2
)

≃ τ ‖Ψ(X)‖2 + 1

σ2
X

(∇XR (X))2
K̂X

‖Ψ(X)‖2

If:

D
(

‖Ψ‖2
)

> 2

√

τ
1

σ2
X

(∇XR (X))
2
K̂X (206)

then:

‖Ψ(X)‖2 =
1

2τ

(

D
(

‖Ψ‖2
)

−
√

(

D
(

‖Ψ‖2
))2

− 4K̂X
1

σ2
X

(∇XR (X))
2
τ

)

> 0

To solve (197) and to find V0, we compute D
(

‖Ψ‖2
)

by integrating (196) and (197) is still valid:

D
(

‖Ψ‖2
)

≃ τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))2
〉

V/V0

(207)

We proceed as in the previous paragraph to find D
(

‖Ψ‖2
)

and V0. Using (207), (206) becomes:

1

4τK̂X

(

τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

)2

>
1

σ2
X

(∇XR (X))
2 (208)
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Definitions (200) and (201) allow to rewrite (207) and (208):

1

4τK̂X

(

τN

V − V0
+

1

2

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

)2

= v (V − V0)

〈

1

σ2
X

(∇XR (X))
2

〉

V/V0

= h (v (V − V0))

that reduce to an equation for V − V0:

2

(

2

√

τv (V − V0) K̂X − τN

V − V0

)

= h (v (V − V0))

If it has a solution, the set on which ‖Ψ(X)‖2 = 0 is defined by:

1

σ2
X

(∇XR (X))
2
< v (V − V0)

and D
(

‖Ψ‖2
)

is given by

D
(

‖Ψ‖2
)

≃ 2

√

τv (V − V0) K̂X

Appendix 3. Computation of the background field Ψ̂
(

K̂, X̂

)

and

average capital K̂X

A3.1 System for Ψ̂
(

K̂, X̂

)

A3.1.1 Replacing quantities depending on (K,X)

Having found Ψ(K,X), we can rewrite an action functional for Ψ̂
(

K̂, X̂
)

. To do so, we first replace

the quantities depending on Ψ(K,X) in the action (62). Given the form of this function we can use
the approximation K ≃ KX : at the collective level, the relevant quantity, from the point of view of
investors are the sectors.

Using that:

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
≃ R (K,X)
∫

R
(

K ′
X′ , X ′) ‖Ψ(X ′)‖2 dX ′

we first start by rewriting F1 and we have:

F1

(

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

)

≃ F1

(

R (KX , X)
∫

R
(

K ′
X′ , X ′) ‖Ψ(X ′)‖2 dX ′

,Γ (K,X)

)

As explained in appendix 1, when K ≃ KX , we also have:

Γ (K,X) =

∫

F2 (R (K,X))

KXF2 (R (KX , X)) ‖Ψ(KX , X)‖K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂ − 1 = 0

78



Then, we rewrite the expression involving F2 in (62):

F2

(

R
(

K, X̂
))

∫

F2

(

R
(

K ′, X̂
))∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′

∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

≃
F2

(

R
(

K, X̂
))

F2

(

R
(

KX̂ , X̂
)) ∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

=
F2

(

R
(

K, X̂
))

∥

∥Ψ0

(

K −KX̂

)∥

∥

2

F2

(

R
(

KX̂ , X̂
))

and the Ψ̂
(

K̂, X̂
)

part of the action functional (62) writes:

S3 + S4 = −
∫

Ψ̂†
(

K̂, X̂
)

(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

K,X,Ψ, Ψ̂
)

)

(209)

+∇X̂

(

σ2
X̂

2
∇X̂ − g

(

K,X,Ψ, Ψ̂
)

))

Ψ̂
(

K̂, X̂
)

where:

f
(

X̂,Ψ, Ψ̂
)

=
1

ε

∫

(

∇KR (K,X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K

+ F1

(

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)

))

×
F2

(

R
(

K, X̂
))

∥

∥Ψ0

(

K −KX̂

)∥

∥

2

F2

(

R
(

KX̂ , X̂
)) dK (210)

g
(

X̂,Ψ, Ψ̂
)

=

∫





∇X̂F0

(

R
(

K, X̂
))

∥

∥

∥∇X̂R
(

K, X̂
)∥

∥

∥

+ ν∇X̂F1





R
(

K, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)









×

∥

∥

∥
Ψ
(

K, X̂
)∥

∥

∥

2

dK

∫

∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′
(211)

Another simplification arises for the function F2

(

R
(

K, X̂
))

. Actually:

F2

(

R
(

K, X̂
))

∫

F2

(

R
(

K ′, X̂
)) ∥

∥

∥
Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′

∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

≃
F2

(

R
(

K, X̂
))

∫

F2

(

R
(

KX̂ , X̂
)) ∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥
Ψ
(

K, X̂
)∥

∥

∥

2

≃
F2

(

R
(

K, X̂
))

F2

(

R
(

KX̂ , X̂
))

∥

∥Ψ
(

K −KX̂

)∥

∥

2

and by integration in (210) and (211), we have:

f
(

X̂,Ψ, Ψ̂
)

=
1

ε



r
(

KX̂ , X̂
)

− γ
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′

)

‖Ψ(X ′)‖2 dX ′







 (212)

g
(

X̂,Ψ, Ψ̂
)

=
∇X̂F0

(

R
(

KX̂ , X̂
))

∥

∥

∥∇X̂R
(

KX̂ , X̂
)∥

∥

∥

+ ν∇X̂F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′) ‖Ψ(X ′)‖2 dX ′




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In the sequel, for the sake of simplicity, we will write f
(

X̂
)

and g
(

X̂
)

for f
(

X̂,KX̂

)

and g
(

X̂,KX̂

)

respectively. We then perform the following change of variable in (209):

Ψ̂ → exp

(

1

σ2
X̂

∫

g
(

X̂
)

dX̂

)

Ψ̂

Ψ̂† → exp

(

1

σ2
X̂

∫

g
(

X̂
)

dX̂

)

Ψ̂†

so that (209) becomes:

S3 + S4 = −
∫

Ψ̂†
(

σ2
X̂

2
∇2

X̂
− 1

2σ2
X̂

(

g
(

X̂,KX̂

))2

− 1

2
∇X̂g

(

X̂,KX̂

)

)

Ψ̂ (213)

−
∫

Ψ̂†
(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂,KX̂

)

))

Ψ̂

This action functional for Ψ̂ will be minimized in the next paragraph. Note that we should also
include to (213), the action functional S1 + S2 evaluated at the background field Ψ, since this one

depends on Ψ̂. However, we have seen that at the background field Ψ, for K ≃ KX , u
(

K,X,Ψ, Ψ̂
)

≃ 0

and the action functional S1 + S2 defined in (159) reduces to:

S1 + S2 ≃
∫

Ψ† (X)

(

−∇X

(

σ2
X

2
∇X − (∇XR (X)H (KX))

)

+ τ |Ψ(X)|2 + σ2
K − 1

2ε

)

Ψ(X) (214)

and this depends on through KX . Then, due to the first order condition for Ψ(X), one has:

δ

δΨ̂
(S1 + S2) =

δKX

δΨ̂

∂

∂KX
(S1 + S2)

We have assumed previously that H (KX) is slowly varying. Moreover, due to is definition:

δKX

δΨ̂
(

K̂,X
) =

K̂

‖Ψ(X)‖2

In most of the cases, this reduces to:

δKX

δΨ̂
(

K̂,X
) ≃ K̂

D
(

‖Ψ‖2
) << K̂

Consequently, we can assume that δ
δΨ̂

(S1 + S2) will be negligible with respect to the other quantities

in the minimization with respect to Ψ̂
(

K̂,X
)

. The rationale for this approximation is the following.

The field action S1+S2 for Ψ(X) depends on the global quantity
∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂ that represents

the total investment in sector X. While minimizing the field action S1+S2 with respect to Ψ̂
(

K̂,X
)

,

we compute the change in this action with respect to an individual variation Ψ̂
(

K̂,X
)

, and the

impact of this variation is, consequently, negligible.
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A3.1.2 Minimization for Ψ̂
(

K̂, X̂
)

Adding the Lagrange multiplier λ̂ implementing the constraint
∫

∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2

= N̂ , the minimiza-

tion of (417) with the functions given by (212) leads to the first order conditions:

0 =







σ2
X̂
∇2

X̂

2
−

(

g
(

X̂,KX̂

))2

2σ2
X̂

−
∇X̂g

(

X̂,KX̂

)

2






Ψ̂ +∇K̂

(

σ2
K̂
∇K̂

2
− K̂f

(

X̂,KX̂

)

− λ̂

)

Ψ̂ (215)

−
(

∫

Ψ̂† δ

δΨ̂†

(

1

2σ2
X̂

(

g
(

X̂,KX̂

))2

+
1

2
∇X̂g

(

X̂,KX̂

)

)

Ψ̂

)

−
(∫

Ψ̂†∇K̂

δ

δΨ̂†

(

K̂f
(

X̂,KX̂

))

Ψ̂

)

Using that:
δ

δΨ̂†
KX̂ =

K̂
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 Ψ̂

equation (215) becomes:

0 =

(

σ2
X̂

2
∇2

X̂
− 1

2σ2
X̂

(

g
(

X̂,KX̂

))2

− 1

2
∇X̂g

(

X̂,KX̂

)

)

Ψ̂ (216)

+

(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂,KX̂

)

)

− λ̂

)

Ψ̂− F
(

X̂,KX̂

)

K̂Ψ̂

with:

F
(

X̂,KX̂

)

=

〈

∇K
X̂

(

(g(X̂,K
X̂))

2

2σ2
X̂

+ 1
2∇X̂g

(

X̂,KX̂

)

)〉

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 +

〈

∇K̂

(

K̂∇K
X̂
f
(

X̂,KX̂

))〉

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 (217)

The brackets in (217) are given by:

〈

∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)







〉

=

∫

Ψ̂†
(

X̂, K̂
)

∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)






Ψ̂
(

X̂, K̂
)

dK̂

≡ ∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

〈

∇K̂

(

K̂∇K
X̂
f
(

X̂,KX̂

))〉

=

∫

Ψ̂†
(

X̂,KX̂

)

∇K̂

(

K̂∇K
X̂
f
(

X̂,KX̂

))

Ψ̂
(

X̂,KX̂

)

dK̂

= −∇K
X̂
f
(

X̂,KX̂

)

∫

(

K̂∇K̂

∥

∥

∥Ψ̂
(

X̂,KX̂

)∥

∥

∥

2

− 2K̂2

σ2
K̂

f
(

X̂
) ∥

∥

∥Ψ̂
(

X̂,KX̂

)∥

∥

∥

2
)

dK̂

= ∇K
X̂
f
(

X̂,KX̂

)∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

+
∇K

X̂
f2
(

X̂,KX̂

)

σ2
K̂

〈

K̂2
〉

X̂
(218)
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Where the average
〈

K̂2
〉

X̂
is defined by:

〈

K̂2
〉

X̂
=

∫

∥

∥

∥Ψ̂
(

X̂, K̂
)∥

∥

∥

2

dK̂

The previous expression (218) for F
(

X̂,KX̂

)

can also be rewritten as:

F
(

X̂,KX̂

)

=

〈

∇K
X̂

(

(g(X̂,K
X̂))

2

2σ2
X̂

+ 1
2∇X̂g

(

X̂,KX̂

)

)〉

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 +

〈

∇K̂

(

K̂∇K
X̂
f
(

X̂,KX̂

))〉

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 (219)

= ∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+
∇K

X̂
f2
(

X̂,KX̂

)

σ2
K̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

〈

K̂2
〉

X̂

It will be useful to rewrite the last term as:

∇K
X̂
f2
(

X̂,KX̂

)

σ2
K̂

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

〈

K̂2
〉

X̂
≃

∇K
X̂
f2
(

X̂,KX̂

)

σ2
K̂

〈

K̂
〉2

X̂
=

∇K
X̂
f2
(

X̂,KX̂

)

σ2
K̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥
Ψ̂
(

X̂
)∥

∥

∥

2 (220)

Consequently:

F
(

X̂,KX̂

)

= ∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 (221)

+
∇K

X̂
f2
(

X̂,KX̂

)

σ2
K̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

We also have an equation for Ψ̂† similar to (216):

0 =

(

σ2
X̂

2
∇2

X̂
− 1

2σ2
X̂

(

g
(

X̂,KX̂

))2

− 1

2
∇X̂g

(

X̂,KX̂

)

)

Ψ̂† (222)

+

((

σ2
K̂

2
∇K̂ + K̂f

(

X̂,KX̂

)

)

∇K̂ − λ̂

)

Ψ̂− F
(

X̂,KX̂

)

K̂Ψ̂†

A3.1.3 Resolution of (216)

A3.1.3.1 zeroth order in σ2
X We consider σ2

X << 1 (which means that fluctuation in X <<

fluctuation in K). Thus (216) writes at the lowest order:






∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂,KX̂

)

)

−

(

g
(

X̂
))2

2σ2
X̂

−
∇X̂g

(

X̂,KX̂

)

2
− F

(

X̂,KX̂

)

K̂ − λ̂






Ψ̂ = 0 (223)
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Performing the change of variable:

Ψ̂ → exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

Ψ̂

leads to the equation for K̂:

σ2
K̂

2
∇2

K̂
Ψ̂−







K̂2

2σ2
K̂

f2
(

X̂
)

+ F
(

X̂,KX̂

)

K̂ +
1

2
f
(

X̂,KX̂

)

+

(

g
(

X̂
))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ λ̂






Ψ̂ ≃ 0

(224)

This equation can be normalized by dividing by f2
(

X̂
)

:

σ2
K̂
∇2

K̂
Ψ̂

2f2
(

X̂
) −









K̂2

2σ2
K̂

+
F
(

X̂,KX̂

)

K̂

f2
(

X̂
) +

f(X̂,K
X̂)

2 +
(g(X̂))

2

2σ2
X̂

+ 1
2∇X̂g

(

X̂,KX̂

)

+ λ̂

f2
(

X̂
)









Ψ̂ ≃ 0

We then define:

y =
K̂ +

σ2
K̂

F(X̂,K
X̂)

f2(X̂)
√

σ2
K̂

(

f2
(

X̂
))

1
4

and (216) is transformed into:

∇2
yΨ̂−









y2

4
+

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
+ λ̂

)

σ2
X̂

√

f2
(

X̂
)









Ψ ≃ 0 (225)

Solutions of (225) are obtained by rewriting (225):

Ψ̂′′ +

(

p
(

X̂, λ̂
)

+
1

2
− 1

4
y2
)

Ψ̂

where:

p
(

X̂, λ̂
)

= −

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
+ λ̂

)

σ2
X̂

√

f2
(

X̂
)

− 1

2
(226)

The solution of (225) is thus:

Ψ̂
(0)

λ̂,C

(

X̂, K̂
)

=
√
CDp(X̂,λ̂)









(∣

∣

∣f
(

X̂
)∣

∣

∣

)
1
2

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

σK̂









(227)

whereDp denotes the parabolic cylinder function with parameter p and C is a normalization constant

that will be computed as a function of λ using the constraint
∫

∥

∥

∥
Ψ̂
(

K̂, X̂
)∥

∥

∥

2

= N̂ .
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A similar equation to (223) can be obtained for Ψ̂†. The equivalent of (215) is (222):

0 =

(

σ2
X̂

2
∇2

X̂
− 1

2σ2
X̂

(

g
(

X̂,KX̂

))2

− 1

2
∇X̂g

(

X̂,KX̂

)

)

Ψ̂ (228)

+

((

σ2
K̂

2
∇K̂ + K̂f

(

X̂,KX̂

)

)

∇K̂ − λ̂

)

Ψ̂− F
(

X̂,KX̂

)

K̂Ψ̂

The change of variable:

Ψ̂† → exp

(

−K̂2

σ2
K̂

f
(

X̂
)

)

Ψ̂†

and the approximation σ2
X̂

<< 1 lead ultimately to:

σ2
K̂

2
∇2

K̂
Ψ̂†−

(

K̂2

2σ2
K̂

f2
(

X̂
)

+
1

2
∇X̂f

(

X̂,KX̂

)

+
1

2σ2
X̂

(

g
(

X̂
))2

+
1

2
∇X̂g

(

X̂,KX̂

)

+ F
(

X̂,KX̂

)

+ λ̂

)

Ψ̂† ≃ 0

(229)
which is the same equation as (224). Consequently, the solutions of (229) write:

Ψ̂
(0)†
λ,C

(

X̂, K̂
)

= Ψ̂
(0)
λ,C

(

X̂, K̂
)

=
√
CDp(X̂,λ̂)









(∣

∣

∣f
(

X̂
)∣

∣

∣

)
1
2

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

σK̂









(230)

To conclude this section, we detail the expressions for
σ2
K̂

F(X̂,K
X̂)

f2(X̂)
and

σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
. Given the

expression for F
(

X̂,KX̂

)

in (221), the term
σ2
K̂

F(X̂,K
X̂)

f2(X̂)
arising in (227) and (230)

σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂,KX̂

) =
σ2
K̂

f2
(

X̂
)∇K

X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+
∇K

X̂
f2
(

X̂,KX̂

)

f2
(

X̂,KX̂

)

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

≃
∇K

X̂
f
(

X̂,KX̂

)

f
(

X̂,KX̂

)

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2 (231)

σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
arising in the definition (226) of p

(

X̂, λ̂
)

is equal to:

σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
) =

σ2
K̂

2













∇K
X̂

(

g
(

X̂,KX̂

))2

+ σ2
X̂

(

∇2
X̂
g
(

X̂,KX̂

)

+∇K
X̂
f
(

X̂,KX̂

))

2σ2
X̂
f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+2∇K
X̂
f
(

X̂,KX̂

)

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥
Ψ̂
(

X̂
)∥

∥

∥

2







2

(232)
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and this simplifies as:

σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
) ≃ 2σ2

K̂






∇K

X̂
f
(

X̂,KX̂

)

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2







2

(233)

since:

∇K
X̂

(

g
(

X̂,KX̂

))2

+ σ2
X̂

(

∇2
X̂
g
(

X̂,KX̂

)

+∇K
X̂
f
(

X̂,KX̂

))

2σ2
X̂
f
(

X̂,KX̂

)

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∼

(

g
(

X̂,KX̂

))2

+ σ2
X̂

(

∇2
X̂
g
(

X̂,KX̂

)

+∇K
X̂
f
(

X̂,KX̂

))

2σ2
X̂
f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2






<< 1

A3.1.3.2 Corrections in σ2
X: To introduce the corrections in σ2

X in (216) we factor the solution
as:

Ψ̂λ,C

(

K̂, X̂
)

=
√
C exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

Dp(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













Ψ̂(1)
(

K̂, X̂
)

≡ Ψ̂
(0)
λ,C

(

K̂, X̂
)

Ψ̂(1)
(

K̂, X̂
)

and we look for Ψ̂(1) of the form:
Ψ̂(1) = exp

(

σ2
Xh (K,X)

)

(234)

Introducing the postulated form in (216) we are led to:

σ2
X

2
∇2

X̂

(

Ψ̂(1)Ψ̂
(0)
λ,C

)

+

(

σ2
K̂

2
∇2

K̂
Ψ̂(1)

)

Ψ̂
(0)
λ,C +

(

∇K̂Ψ̂(1)
)(

σ2
K̂
∇K̂Ψ̂

(0)
λ,C − K̂f

(

X̂
)

Ψ̂
(0)
λ,C

)

= 0

Written in terms of h
(

K̂, X̂
)

, this equation becomes at the first order in σ2
X :

∇2
X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,C

+ σ2
K̂
∇2

K̂
h
(

K̂, X̂
)

+ 2
(

∇K̂h
(

K̂, X̂
))

(

σ2
K̂

∇K̂Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

− K̂f
(

X̂
)

)

= 0 (235)

The solution of (235) is of the type:

∇K̂ (h (K,X)) = C
(

K̂,X
)

exp



−2

∫





∇K̂Ψ̂
(0)
λ,C

Ψ̂
(0)
λ,C

−
K̂f

(

X̂
)

σ2
K̂



 dK̂



 = C
(

K̂,X
)

exp

(

−
(

2 ln Ψ̂
(0)
λ,C − K̂2

σ2
K̂

f
(

X̂
)

))

where C (X) satisfies:

C′
(

K̂,X
)

= −
∇2

X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,Cσ

2
K̂

exp



2 ln Ψ̂
(0)
λ,C −

K̂2f
(

X̂
)

σ2
K̂



 = −
∇2

X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,C

(

Ψ̂
(0)
λ,C

)2

exp



−
K̂2f

(

X̂
)

σ2
K̂




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and the solution of (235) is:

∇K̂ (h (K,X)) = exp

(

−
(

2 ln Ψ̂
(0)
λ,C − K̂2

σ2
K̂

f
(

X̂
)

))(

C −
∫ ∇2

X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,Cσ

2
K̂

(

Ψ̂
(0)
λ,C

)2

exp

(

−K̂2

σ2
K̂

f
(

X̂
)

)

dK̂

)

letting C = 0, we obtain:

∇K̂ (h (K,X)) = − 1

σ2
K̂

(

Ψ̂
(0)
λ,C

)2 exp

(

K̂2

σ2
K̂

f
(

X̂
)

)(

∫ ∇2
X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,C

(

Ψ̂
(0)
λ,C

)2

exp

(

−K̂2

σ2
K̂

f
(

X̂
)

)

dK̂

)

(236)

To compute h (K,X), we must estimate
∇2

X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,C

in (236). To do so, we write, for ε << 1, i.e.
∣

∣

∣f
(

X̂
)∣

∣

∣ >> 1:

exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

Dp(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













≃ exp











K̂2

σ2
K̂

f
(

X̂
)

−

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣

4σ2
K̂























∣

∣

∣
f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













p(X̂,λ̂)

= exp











K̂2

σ2
K̂

f
(

X̂
)

−

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣

4σ2
K̂











× exp









(

p
(

X̂, λ̂
))

ln













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)




















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which allows to compute the successives derivatives of Ψ̂. We find, for f > 0:

∇2
X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,C

≃









−f ′σ2
X̂
λ̂− g2f ′ + 2fgg′

σ2
X̂
f2

ln











K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)









f
(

X̂
)

σ2
K̂





1
2









(237)

+
1

2









(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
+ λ̂

)

σ2
X̂

√

f2
(

X̂
)

+
1

2









f ′

f

+

K̂2 −







K̂+
σ2
K̂

F(X̂,K
X̂
)

f2(X̂)
2







2

σ2
K̂

f ′























2

≃













(

4K̂2 −
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

4σ2
K̂













2

The same approximation is valid for f < 0 and we find for this case:

∇2
X̂
Ψ̂

(0)
λ,C

Ψ̂
(0)
λ,C

≃













(

4K̂2 +

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

4σ2
K̂













2
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Then, introducing ∓ to account for the sign of −f , (236) becomes:

∇K̂ (h (K,X)) = − 1

σ2
K̂

(

Ψ̂
(0)
λ,C

)2 exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

∫













(

4K̂2 ∓
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

4σ2
K̂













2

(238)

×
(

Ψ̂
(0)
λ,C

)2

exp

(

−K̂2

σ2
K̂

f
(

X̂
)

)

dK̂

≃ − 1

σ2
K̂

(

Ψ̂
(0)
λ,C

)2 exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

∫













(

4K̂2 ∓
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

4σ2
K̂













2

× exp











K̂2f
(

X̂
)

− 1
2

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂











dK̂ (239)

≃ − 1

σ2
K̂

(

Ψ̂
(0)
λ,C

)2 exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

∫













σ2
K̂

(

K̂2 ∓ 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

(

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣
f
(

X̂
)∣

∣

∣

)2













2

×∂4
K̂
exp











K̂2f
(

X̂
)

− 1
2

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂











dK̂ (240)
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Assuming
σ2
K̂

F(X̂,K
X̂)

f2(X̂)
<< 1, we have ultimately:

∇K̂ (h (K,X)) ≃ − 1

σ2
K̂

(

Ψ̂
(0)
λ,C

)2 exp

(

K̂2

σ2
K̂

f
(

X̂
)

)













σ2
K̂

(

K̂2 ∓ 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣













2

×∂3
K̂
exp











K̂2f
(

X̂
)

− 1
2

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂











= −











K̂2− 1
4

(

K̂+
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2


f ′(X)

σ2
K̂









2

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

= −

((

K̂2 ∓ 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)

Replacing in first approximation K̂ by
‖Ψ(X̂)‖2K̂X̂

‖Ψ̂(X̂)‖2 in (237), and using (236) and (234) leads to:

Ψ̂(1)
(

X̂
)

=
√
C exp















−
∫

((

K̂2 ∓ 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)dK̂















with C a constant to be computed using the normalization condition.
To find Ψ†, we need also Ψ̂(1)†. Writing:

Ψ̂(1)† = exp
(

σ2
Xg (K,X)

)

with a function g (K,X) that satisfies:

∇2
X̂
Ψ̂

(0)†
λ,C

Ψ̂
(0)
λ,C

+ σ2
K̂
∇2

K̂
g
(

K̂, X̂
)

+ 2
(

∇K̂g
(

K̂, X̂
))

(

σ2
K̂

∇K̂Ψ̂
(0)†
λ,C

Ψ̂
(0)
λ,C

+ K̂f
(

X̂
)

)

= 0

with:

Ψ̂
(0)†
λ,C = exp

(

−K̂2

σ2
K̂

f
(

X̂
)

)

Dp(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













we find:

∇K̂ (g (K,X)) = −
∇2

X̂
Ψ̂

(0)†
λ,C

Ψ̂
(0)
λ,C

exp

(

−K̂2

σ2
K̂

f
(

X̂
)

)(

∫ ∇2
X̂
Ψ̂

(0)†
λ,C

Ψ̂
(0)†
λ,C

(

Ψ̂
(0)†
λ,C

)2

exp

(

K̂2

σ2
K̂

f
(

X̂
)

)

dK̂

)
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and:

Ψ̂(1)†
(

X̂
)

=
√
C exp















∫

((

K̂2 ± 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

σ2
K̂

(

2K̂f
(

X̂
)

+

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)dK̂















where ± accounts for the sign of f .

Ultimately, coming back to the initial definition of the fields we obtain for Ψ̂λ,C

(

K̂, X̂
)

and

Ψ̂†
λ,C

(

K̂, X̂
)

:

Ψ̂λ,C

(

K̂, X̂
)

=
√
C exp















−σ2
X

∫

((

K̂2 ∓ 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)dK̂















× exp

(

1

σ2
X̂

∫

g
(

X̂
)

dX̂ +
K̂2

σ2
K̂

f
(

X̂
)

)

Dp(X̂,λ̂)









K̂





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2









Ψ̂†
λ,C

(

K̂, X̂
)

=
√
C exp















σ2
X

∫

((

K̂2 ± 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂f
(

X̂
)

+

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣
f
(

X̂
)∣

∣

∣

)dK̂















× exp

(

−
(

1

σ2
X̂

∫

g
(

X̂
)

dX̂ +
K̂2

σ2
K̂

f
(

X̂
)

))

Dp(X̂,λ̂)









K̂





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2








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A3.1.3.3 Computation of
∥

∥

∥
Ψ̂
(

K̂, X̂
)∥

∥

∥

2

As a consequence of the previsous result, we can com-

pute
∥

∥

∥Ψ̂λ,C

(

K̂, X̂
)∥

∥

∥

2

. We start with Ψ̂(1)†Ψ̂(1). We have:

Ψ̂(1)†Ψ̂(1) = C exp















−σ2
X

∫















((

K̂2 ∓ 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂f
(

X̂
)

−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)

−

((

K̂2 ± 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂f
(

X̂
)

+

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)dK̂





























= C exp















−σ2
X

∫















((

K̂2 − 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

σ2
K̂

(

2K̂
∣

∣

∣f
(

X̂
)∣

∣

∣−
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)

− −

((

K̂2 + 1
4

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2
)

f ′ (X)

)2

(

σ2
K̂

)2
(

2K̂
∣

∣

∣f
(

X̂
)∣

∣

∣+

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

)dK̂





























And for
σ2
K̂

F(X̂,K
X̂)

f2(X̂)
<< 1:

Ψ̂(1)†Ψ̂(1) ≃ C exp






−σ2

X

∫







(

3
4K̂

2f ′ (X)
)2

(

σ2
K̂

)2

K̂
∣

∣

∣f
(

X̂
)∣

∣

∣

−

(

5
4K̂

2f ′ (X)
)2

3
(

σ2
K̂

)2

K̂f
(

X̂
)






dK̂







= C exp






− σ2

XK̂4 (f ′ (X))2

96
(

σ2
K̂

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣







Gathering the previous results, we obtain the norm of
∥

∥

∥Ψ̂λ,C

(

K̂, X̂
)∥

∥

∥

2

:

∥

∥

∥
Ψ̂λ,C

(

K̂, X̂
)∥

∥

∥

2

≃ C exp






− σ2

XK̂4 (f ′ (X))
2

96
(

σ2
K̂

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣






D2

p(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













(241)
with:

f
(

X̂,KX̂

)

=



r
(

KX̂ , X̂
)

− γ
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′

)

‖Ψ(X ′)‖2 dX ′







 (242)

g
(

X̂,KX̂

)

=





∇X̂F0

(

R
(

KX̂ , X̂
))

∥

∥

∥∇X̂R
(

KX̂ , X̂
)∥

∥

∥

+ ν∇X̂F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′) ‖Ψ(X ′)‖2 dX ′







 (243)
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The solutions are parametrized by C and λ̂ and K̂X̂ . Using the constraint
∥

∥

∥
Ψ̂
(

K̂, X̂
)∥

∥

∥

2

= N̂ will

reduce the solutions to a one-parameter set of solutions. The computation of the average capital
over this set will lead to the defining equation for K̂X̂ .

Replacing in first approximation K̂ by its average
‖Ψ(X̂)‖2

K̂
X̂

‖Ψ̂(X̂)‖2 in the first term yields:

∥

∥

∥Ψ̂λ,C

(

K̂, X̂
)∥

∥

∥

2

≃ C exp











−
σ2
X

(

‖Ψ(X̂)‖2K̂X̂

‖Ψ̂(X̂)‖2
)4

(f ′ (X))
2

96
(

σ2
K̂

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣











D2
p(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













(244)

A3.1.4 Estimation of S3

(

Ψ̂λ̂

(

K̂, X̂
))

+ S4

(

Ψ̂λ̂

(

K̂, X̂
))

For later purposes, we compute an estimation of S3

(

Ψ̂λ̂

(

K̂, X̂
))

+ S4

(

Ψ̂λ̂

(

K̂, X̂
))

for any back-

ground field Ψ̂λ̂

(

K̂, X̂
)

. We multiply (88)by Ψ̂†
λ̂

(

K̂, X̂
)

on the left and integrate the equation over

K̂ and X̂. It yields:

0 = S3

(

Ψ̂λ̂

(

K̂, X̂
))

+S4

(

Ψ̂λ̂

(

K̂, X̂
))

−λ̂

∫

∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂−
∫

F
(

X̂,KX̂

)

K̂
∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂

Using the constraint about the number of investors:

∫

∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

dK̂ = N̂

we find:

S3

(

Ψ̂λ̂

(

K̂, X̂
))

+ S4

(

Ψ̂λ̂

(

K̂, X̂
))

= λ̂N̂ +

∫

F
(

X̂,KX̂

)

K̂
∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂

Moreover, equation (90) implies57:

∫

F
(

X̂,KX̂

)

K̂
∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂ (245)

=

∫

KX̂∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

dX̂

+

∫

KX̂

∇K
X̂
f2
(

X̂,KX̂

)

σ2
K̂

〈

K̂2
〉

X̂
dX̂

In our applications the involved functions are roughly power functions in KX̂ , and consequently,

the integral
∫

F
(

X̂,KX̂

)

K̂
∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂ is of order:

∫







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

dX̂+

∫ f2
(

X̂,KX̂

)

σ2
K̂

〈

K̂2
〉

X̂
dX̂ (246)

57All averages in the next formula are computed in state Ψ̂λ̂

(

K̂, X̂
)

.
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Since
〈

K̂2
〉

X̂
≃ K2

X̂

‖Ψ(X̂)‖2
‖Ψ̂(X̂)‖2 , the second term in (??) is negligible if we assume

‖Ψ(X̂)‖2
‖Ψ̂(X̂)‖2 << 1, i.e.

the number of firms is smaller than the number of investors. Consequently, (??) reduces to:

∫







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

dX̂ .

∫

M
∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

dX̂

= MN̂

where M is the lowest bound for
∣

∣

∣
λ̂
∣

∣

∣
, computed below in (267) and (268). Our previous estimation

relies on
σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
<< 1,which is true for f2

(

X̂
)

>> 1. As a consequence:

S3

(

Ψ̂λ̂

(

K̂, X̂
))

+ S4

(

Ψ̂λ̂

(

K̂, X̂
))

=
(

λ̂+M
)

N̂ = −
(∣

∣

∣
λ̂
∣

∣

∣
−M

)

N̂ (247)

A3.1.4 Identification of KX̂ and
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

:

A3.1.4.1 Formula depending on λ̂ and C In this paragraph, we compute the average capital

KX̂ and the density of investors
∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

at X̂ that are defined by using (177):

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

=

∫ ∞

0

K̂C exp






−
σ2
Xu
(

X̂, K̂X̂

)

(

σ2
K̂

)2






(248)

×D2
p(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













dK̂

and:

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

= C

∫ ∞

0

exp






−
σ2
Xu
(

X̂, K̂X̂

)

(

σ2
K̂

)2







×D2
p(X̂,λ̂)













∣

∣

∣
f
(

X̂
)∣

∣

∣

σ2
K̂





1
2


K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)













dK̂

with:

u
(

X̂, K̂X̂

)

=

(

‖Ψ(X̂)‖2K̂X̂

‖Ψ̂(X̂)‖2
)4

(f ′ (X))
2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

(249)

Note that in these formulas, KX̂ and
∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

depend implicitely of λ̂ since they have been

computed in the state defined by the background field Ψ̂λ,C

(

K̂, X̂
)

. In the sequel, for the sake of

simplicity, Ψ̂λ,C

(

K̂, X̂
)

, the indices λ and C may be omitted.
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We will also need
K

X̂‖Ψ(X̂)‖2
‖Ψ̂(X̂)‖2 that arises in (249):

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2 =

∫∞
0

K̂D2
p(X̂,λ̂)

(

(

|f(X̂)|
σ2
K̂

)
1
2
(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)

)

dK̂

∫∞
σ2
K̂

F(X̂,K
X̂
)

f2(X̂)

K̂D2
p(X̂,λ̂)

(

(

|f(X̂)|
σ2
K̂

)
1
2

K̂

)

dK̂

By a change of variable K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)
→ K̂ we can also write:

KX̂

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂





∫ ∞

σ2
K̂

F(X̂,K
X̂)

f2(X̂)

K̂D2
p(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2

K̂









dK̂

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

16σ2
K̂





∫ ∞

σ2
K̂

F(X̂,K
X̂)

f2(X̂)

D2
p(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2

K̂









dK̂

and by a zeroth order expansion around 0 of K̂D2
p(X̂,λ̂)

and D2
p(X̂,λ̂)

we have:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

16σ2
K̂





∫ ∞

0

K̂D2
p(X̂,λ̂)













∣

∣

∣
f
(

X̂
)∣

∣

∣

σ2
K̂





1
2

K̂









dK̂ (250)

∥

∥

∥
Ψ̂
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

16σ2
K̂















∫ ∞

0

D2
p(X̂,λ̂)













∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2

K̂









dK̂ −

(

|f(X̂)|
σ2
K̂

)− 1
2

2
p(X̂,λ̂)

2
√
π

Γ

(

1−p(X̂,λ̂)
2

)

σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)











(251)

To compute
∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

we use that the function D satisfies:

∫

D2
p =

√
π

2
3
2

Psi
(

1
2 − p

2

)

− Psi
(

− p
2

)

Γ (−p)

The computation of the norm implies a second change of variable K̂ → K̂

(

|f(X̂)|
σ2
K̂

)
1
2

and we obtain
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for (251):

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

=

∫

∥

∥

∥Ψ̂λ,C

(

K̂, X̂
)∥

∥

∥

2

dK̂ (252)

= C exp



−
σ2
Xu
(

X̂, K̂X̂

)

16σ2
K̂















∫

D2
p(X̂,λ̂)

(

K̂
(

f2
(

X̂
))

1
4

)

dK −

(

|f(X̂)|
σ2
K̂

)− 1
2

2
p(X̂,λ̂)

2
√
π

Γ

(

1−p(X̂,λ̂)
2

)

σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)











= C exp



−
σ2
Xu
(

X̂, K̂X̂

)

16σ2
K̂









∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2

×









√
π

2
3
2

Psi

(

1−p(X̂,λ̂)
2

)

− Psi

(

− p(X̂,λ̂)
2

)

Γ
(

−p
(

X̂, λ̂
)) − 2

p(X̂,λ̂)
2

√
π

Γ

(

1−p(X̂,λ̂)
2

)

σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)









Expression (250) is computed using that:
∫ ∞

0

zD2
p (z)dz =

∫ ∞

0

Dp+1 (z)Dp (z) dz + p

∫ ∞

0

Dp−1 (z)Dp (z) dz

∫ ∞

0

zD2
p (z) dz =

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(

− p
2

)

2p+2Γ (−p− 1)Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

and:
∫

K̂D2
p(X̂,λ̂)

(

K̂
(

f2
(

X̂
))

1
4

)

=
(

f
(

X̂
))−1

∫

uD2
p(X̂,λ̂) (u)

We obtain:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

≃ exp






−
σ2
Xu
(

X̂, K̂X̂

)

16
(

σ2
K̂

)2











∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





−1

C (253)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1)Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

where:
p = p

(

X̂, λ̂
)

(254)

Ultimately we can compute
K

X̂‖Ψ(X̂)‖2

‖Ψ̂(X̂)‖2 :

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2 ≃





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2 Γ(− p+1

2 )Γ( 1−p
2 )−Γ(− p

2 )Γ(
−p
2 )

2p+2Γ(−p−1)Γ(−p)
+ p

Γ(−p
2 )Γ(

2−p
2 )−Γ(− p−1

2 )Γ(− p−1
2 )

2p+1Γ(−p)Γ(−p+1)
√
π

2
3
2

Psi( 1−p
2 )−Psi(− p

2 )
Γ(−p)

≡





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2

h (p)

≃





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2
√

p+
1

2
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so that:

exp






−
σ2
Xu
(

X̂, K̂X̂

)

(

σ2
K̂

)2






≃ exp






−σ2

X

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






(255)

We end this section by finding asymptotic form for
∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

and KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

For ε << 1 an asymptotic form yields that:

Dp(X̂,λ̂)

(

K̂
(

f2
(

X̂
))

1
4

)

≃ exp



−
K̂2
∣

∣

∣f
(

X̂
)∣

∣

∣

4σ2
K̂













K̂





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2









p(X̂,λ̂)

(256)

and we obtain:

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

= C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂





×
∫ ∞

0

exp











−

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2 ∣
∣

∣f
(

X̂
)∣

∣

∣

2σ2
K̂





















K̂ +
σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)









∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2









2p(X̂,λ̂)

dK̂

A change of variable w =

(

K̂+
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2

|f(X̂)|
2σ2

K̂

leads to:

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂









∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2









2p(X̂,λ̂)− 1
2Γ

(

p
(

X̂, λ̂
)

+
1

2

)

− 2
p(X̂,λ̂)

2
√
π

Γ

(

1−p(X̂,λ̂)
2

)

σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)









(257)
By the same token we can use the asymptotic form (256) to find KX̂ :

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂





∫

K̂ exp



−
K̂2
∣

∣

∣f
(

X̂
)∣

∣

∣

2σ2
K̂













K̂





∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





1
2









2p(X̂,λ̂)

dK̂

=

σ2
K̂
C exp

(

−σ2
Xu(X̂,K̂

X̂)
σ2
K̂

)

∣

∣

∣f
(

X̂
)∣

∣

∣

∫

y exp

(

−y2

2

)

y2p(X̂,λ̂)

We set y =
√
2w and we obtain:

KX̂

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

≃ C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂



 2p(X̂,λ̂) σ2
K̂

∣

∣

∣f
(

X̂
)∣

∣

∣

∫

exp (−w)wp(X̂,λ̂)dw

= C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂



 2p(X̂,λ̂) σ2
K̂

∣

∣

∣f
(

X̂
)∣

∣

∣

Γ
(

p
(

X̂, λ̂
)

+ 1
)
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A3.1.4.2 Computation of C as a function of λ̂: Ultimately, we need to determine the value
of the Lagrange multiplier λ̂ and of the associated value of C. We do so by integrating (241) and
the result is constrained to be N̂ , the total number of agents:

N̂ =

∫

∥

∥

∥Ψ̂λ,C

(

K̂, X̂
)∥

∥

∥

2

dK̂dX̂ =

∫

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

dX̂

Using (252) and (255), we have:

N̂ =

∫

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

≃
∫

C exp



−
σ2
Xu
(

X̂, K̂X̂

)

σ2
K̂









∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2

(258)

×









√
π

2
3
2

Psi

(

1−p(X̂,λ̂)
2

)

− Psi

(

− p(X̂,λ̂)
2

)

Γ
(

−p
(

X̂, λ̂
)) − 2

p(X̂,λ̂)
2

√
π

Γ

(

1−p(X̂,λ̂)
2

)

σ2
K̂
F
(

X̂,KX̂

)

f2
(

X̂
)









dX̂

≃
∫

C exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2
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∣

∣

∣f
(

X̂
)∣

∣

∣

3











∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
K̂





− 1
2 √

π

2
3
2

Psi

(

1−p(X̂,λ̂)
2

)

− Psi

(

− p(X̂,λ̂)
2

)

Γ
(

−p
(

X̂, λ̂
)) dX̂

with f and g given by (242) and (243). We thus obtain C as a function of λ̂. For f
(

X̂
)

slowly

varying around its average we can replace
∣

∣

∣f
(

X̂
)∣

∣

∣ and f ′ (X) by
〈∣

∣

∣f
(

X̂
)∣

∣

∣

〉

and 〈f ′ (X)〉, where the

bracket
〈

A
(

X̂
)〉

represents the average of the quantity A
(

X̂
)

over the sectors space. Given that

the integrated function is of order Γ (p), we can replace the integral by the maximal values of the
integrand. Consequently, we have:

C
(

p̄
(

λ̂
))

≃

exp






−

σ2
Xσ2

K̂

(

(p̄(λ̂)+1
2)f

′(X0)

f(X̂0)

)2

96|f(X̂0)|






N̂Γ

(

−p̄
(

λ̂
))

(

〈|f(X̂)|〉
σ2
K̂

)− 1
2

Vr

(

Psi

(

− p̄(λ̂)−1

2

)

− Psi

(

− p̄(λ̂)
2

))

(259)

where:

p̄
(

λ̂
)

=













−

(g(X̂0))
2

σ2
X̂

+

(

f
(

X̂0

)

+ 1
2

∣

∣

∣f
(

X̂0

)∣

∣

∣+∇X̂g
(

X̂0,KX̂0

)

−
σ2
K̂

F2
(

X̂0,KX̂0

)

2f2(X̂0)
+ λ̂

)

∣

∣

∣f
(

X̂0

)∣

∣

∣













(260)

and:

X̂0 = argmin
X̂











σ2
Xσ2

K̂

(

(p(λ̂)+ 1
2 )f

′(X)

f(X̂)

)2

96
∣

∣

∣f
(

X̂
)∣

∣

∣











(261)

and Vr is the volume of the reduced space where the maximum is reached defined by:

Vr =
∑

X̂/p(X̂,λ̂)=p̄(λ̂)

1
∣

∣

∣

∣

∣

(

‖Ψ̂(X̂)‖2
)′′

C

∣

∣

∣

∣

∣
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We thus can replace C by C
(

λ̂
)

and we are left with an infinite number of solutions of (223)

parametrized by λ̂ and given by (241). We write
∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

the solution for λ̂.

A3.1.4.2 Identification equation for KX̂ To each state
∥

∥

∥Ψ̂λ̂

(

K̂, X̂
)∥

∥

∥

2

, we can associate an

average level of KX̂,λ̂ satisfying (253) rewritten as a function of λ̂. Using (255) we find:

KX̂,λ̂

∥

∥

∥Ψ̂λ̂

(

X̂
)∥

∥

∥

2

= K̂X̂,λ̂ (262)

= exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3











∣

∣

∣
f
(

X̂
)∣

∣

∣

σ2
K̂





−1

×C
(

p̄
(

λ̂
))

(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

where:

p
(

X̂, λ̂
)

= −

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
+ λ̂

)

σ2
X̂

√

f2
(

X̂
)

− 1

2
(263)

As explained in the core of the paper, to compute KX̂ we must average (262) over λ̂ with the
weight exp (− (S3 + S4)). Given equation (216), a solution (241) for a given λ̂ and taking into account

the constraint
∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2

= N̂ , has the associated normalized weight (see (247)):

w
(∣

∣

∣λ̂
∣

∣

∣

)

=
exp

(

−
(∣

∣

∣λ̂
∣

∣

∣−M
)

N̂
)

∫

|λ̂|>M
exp

(

−
(∣

∣

∣λ̂
∣

∣

∣−M
)

N̂
)

d
∣

∣

∣λ̂
∣

∣

∣

with M is the lower bound for
∣

∣

∣λ̂
∣

∣

∣.

This lower bound is found by considering (224) and adding the term proportional to
σ2
X̂
2 :

σ2
X̂

2
∇2

X̂
Ψ̂ +∇2

yΨ̂−







√

f2
(

X̂
)y2

4
+

(

g
(

X̂
))2

σ2
X̂

+



f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
) + λ̂










Ψ

(264)
multiplying (264) by Ψ̂† and integrating. It yields:

0 = −
σ2
X̂

2

∫

(

∇X̂Ψ̂†
)(

∇X̂Ψ̂
)

(265)

−1

2

∫

√

f2
(

X̂
)

(

(

∇yΨ̂
†
)(

∇yΨ̂
)

+ Ψ̂† y
2

4
Ψ̂

)

+

∫

Ψ̂†
y=0

(

∇yΨ̂
)

y=0

−
∫

Ψ̂†







√

f2
(

X̂
)y2

4
+

(

g
(

X̂
))2

σ2
X̂

+



f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
) + λ̂










Ψ

The first part of the right hand side in (265):

−
σ2
X̂

2

∫

(

∇X̂Ψ̂†
)(

∇X̂Ψ̂
)

−
∫

√

f2
(

X̂
)

(

1

2

(

∇yΨ̂
†
)(

∇yΨ̂
)

+ Ψ̂† y
2

4
Ψ̂

)

(266)
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includes the hamiltonian of a sum of harmonic oscillators, and thus (266) is lower than −
∫

Ψ̂†
√

f2(X̂)Ψ̂
2 .

Consequently, we have the inequality for all X̂:

Ψ̂†
y=0

(

∇yΨ̂
)

y=0
+

∫

Ψ̂†







∣

∣

∣λ̂
∣

∣

∣−

(

g
(

X̂
))2

σ2
X̂

−



f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
)










ΨdK̂

>

∫

Ψ̂†
√

f2
(

X̂
)

Ψ̂dK̂

2

Since:
∣

∣

∣λ̂
∣

∣

∣

∫

|Ψ|2 dK̂ =
∣

∣

∣λ̂
∣

∣

∣

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

and Ψ̂†
y=0

(

∇yΨ̂
)

y=0
is of order 1 <<

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

since it is integrated over X̂ only. Consequently, the

condition reduces to:

∣

∣

∣λ̂
∣

∣

∣

∥

∥

∥Ψ̂
(

X̂
)∥

∥

∥

2

>

∫

Ψ̂†







(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
)






ΨdK̂

that is:
∣

∣

∣λ̂
∣

∣

∣ >

(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
)

for each X̂, and we have:

M = max
X̂







(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
)






(267)

Note that in general, for ε << 1, f
(

X̂
)

>> 1 and:

σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
) <<

(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

so that:

M ≃ max
X̂







(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂,KX̂

)






(268)

Having found M , this yields:

w
(∣

∣

∣λ̂
∣

∣

∣

)

= N̂ exp
(

−
(∣

∣

∣λ̂
∣

∣

∣−M
)

N̂
)

(269)

Consequently, averaging equation (262) yields:

KX̂ =

∫

KX̂,λ̂N̂ exp
(

−
(∣

∣

∣λ̂
∣

∣

∣ −M
)

N̂
)

dλ̂
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KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

=

∫

C
(

λ̂
)

w
(∣

∣

∣λ̂
∣

∣

∣

)

exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3











∣

∣

∣
f
(

X̂
)∣

∣

∣

σ2
K̂





−1

(270)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

dλ̂

with C
(

p̄
(

λ̂
))

given by (259). Given (269), the average value of
∣

∣

∣
λ̂
∣

∣

∣
is M + 1

N̂
and have:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C

(

p̄

(

−
(

M − 1

N̂

)))

σ2
K̂

(271)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

with:

p = −

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
−
(

M − 1
N̂

)

)

σ2
X̂

√

f2
(

X̂
)

− 1

2

We can consider that 1
N̂

<< 1 so that C
(

p̄
(

−
(

M − 1
N̂

)))

≃ C (p̄ (−M)). It amounts to consider
∣

∣

∣
λ̂
∣

∣

∣
= M . We will also write p̄ (−M) = p̄ and given (??) we have:

p̄ =













M − (g(X̂0))
2

σ2
X̂

+

(

f
(

X̂0

)

+ 1
2

∣

∣

∣f
(

X̂0

)∣

∣

∣+∇X̂g
(

X̂0,KX̂0

)

−
σ2
K̂

F2
(

X̂0,KX̂0

)

2f2(X̂0)

)

∣

∣

∣f
(

X̂0

)∣

∣

∣













(272)

and:

p =

M −
(

(g(X̂))
2

σ2
X̂

+

(

f
(

X̂
)

+

√

f2(X̂)
2 +∇X̂g

(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

))

√

f2
(

X̂
)

(273)

Equation (259) rewrites:

C (p̄) ≃

exp






−

σ2
Xσ2

K̂

(

(p̄(λ̂)+1
2)f

′(X0)

f(X̂0)

)2

96|f(X̂0)|






N̂Γ (−p̄)

(

〈|f(X̂)|〉
σ2
K̂

)− 1
2

Vr

(

Psi
(

− p̄−1
2

)

− Psi
(

− p̄
2

))

(274)

and (271) reduces to:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂
Γ̂

(

p+
1

2

)

(275)

with:

Γ̂

(

p+
1

2

)

= exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣
f
(

X̂
)∣

∣

∣

3






(276)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)
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We note that, asymptotically:

Γ̂

(

p+
1

2

)

∼∞ exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






Γ

(

p+
3

2

)

(277)

A3.1.4.3 Replacing ‖Ψ(X)‖2 in the KX̂equation We can isolate KX̂ in (271) by using (191)

and (205) to rewrite
∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

:

Using (176a):

D
(

‖Ψ‖2
)

= 2τ ‖Ψ(X)‖2 + 1

2σ2
X

(∇XR (X))
2
H2

(

K̂X

‖Ψ(X)‖2

)



1−
H ′
(

K̂X

)

H
(

K̂X

)

K̂X

‖Ψ(X)‖2





= 2τ ‖Ψ(X)‖2 + 1

2σ2
X

(∇XR (X))
2
H2 (KX)

(

1− H ′ (KX)

H (KX)
KX

)

We rewrite ‖Ψ(X)‖2 as a function of KX :

‖Ψ(X)‖2 =
D
(

‖Ψ‖2
)

− 1
2σ2

X

(∇XR (X))
2
H2 (KX)

(

1− H′(KX )
H(KX ) KX

)

2τ
≡ D − H̄ (X,KX) (278)

Ultimately, the equation (275) for KX̂ can be rewritten:

KX̂

∣

∣

∣f
(

X̂
)∣

∣

∣ =
C (p̄)σ2

K̂

‖Ψ(X)‖2
Γ̂

(

p+
1

2

)

=
C (p̄)σ2

K̂

D − H̄ (X,KX)
Γ̂

(

p+
1

2

)

(279)

with C (p̄) given by (274), Γ̂
(

p+ 1
2

)

defined in (276) and p given by (273).

13 Appendix 4. Approaches to solutions for KX̂

We present the three approaches to the average capital equation (99) and their results in the first
section. The details of the computations are given in section two of this appendix.

A4.1 Solutions for average capital across sectors

We stated in the text that the final form of the capital equation, (99), cannot be solved analytically,
except for some particular cases58 but that several approaches can be used to study the behaviour of
its solutions or approximate its solutions. Combined, these three approaches confirm and complete
with each other.

A.4.1.1 Stability of average capital and dependency on exoenous parameters

One way to better understand equation (99) is to study its differential form.

Assume at point X̂ of the system, a variation δY
(

X̂
)

for any parameter, in which the parameter

Y
(

X̂
)

can be either R (X) , its gradient, or any parameter arising in the definition of f
(

X̂
)

and

58These particular cases will be studied in the following sections.
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g
(

X̂
)

. This variation δY
(

X̂
)

induces in turn a variation δKX̂ in average capital expressed by

differentiating (99):

δKX̂ =






−







∂ ln f
(

X̂,KX̂

)

∂KX̂

+
∂ ln

∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

∂KX̂

+ l
(

X̂,KX̂

)






+ k (p)

∂p

∂KX̂






KX̂δKX̂ (280)

+
∂

∂Y
(

X̂
)







σ2
K̂
C (p̄) 2Γ̂

(

p+ 1
2

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY
(

X̂
)

where the coefficients l
(

X̂,KX̂

)

and k (p) are computed in appendix 4.2.1. The parameter l
(

X̂,KX̂

)

accounts for the variation of the short-term returns across sectors, while k (p) describes the impact
of relative returns variations across sectors.

Equation (280) will be used to compute the dependency of average capital per firm in sector X̂,
i.e. KX̂ , as a function of any parameter Y (X̂), and more fundamentally to investigate the stability
of the solutions of (99) with respect to the variations in parameters.

A.4.1.1.1 Local stability

The differential form given by equation (280), computes the effect of a variation δY
(

X̂
)

in the

parameters on the average capital KX̂ . Moreover, equation (280) can be understood as the fixed-

point equation of a dynamical system of the following mechanism: each variation δY
(

X̂
)

in the

parameters impacts directly the average capital through the second term in the RHS of (280).
In a second step, the variation δKX̂ impacts the various functions implied in (99), and indirectly
modifies KX̂ through the first term in the rhs of (280)59.

What matters here is the condition of stability. We show that the fixed point is stable when:
∣

∣

∣

∣

∣

∣

∣

k (p)
∂p

∂KX̂

−







∂ ln f
(

X̂,KX̂

)

∂KX̂

+
∂ ln

∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

∂KX̂

+ l
(

X̂,KX̂

)







∣

∣

∣

∣

∣

∣

∣

< 1 (281a)

and unstable otherwise.
Thus, two types of solutions emerge for the average capital per firm KX̂ . The stable solutions

KX̂ can be considered as the potential equilibrium averages for sector X̂. However unstable solutions
must rather be considered as thresholds: when KX̂ is driven away from this threshold, it may either
converge toward a stable solution of (99), or diverge towards 0 or infinity.

Remark The variation in average capital induced by a change in parameter reveals a shift

δΨ̂
(

K̂, X̂
)

in the background state Ψ̂
(

K̂, X̂
)

. The new configuration Ψ̂
(

K̂, X̂
)

+δΨ̂
(

K̂, X̂
)

may not

be a minimum of the action functional. We must therefore determine whether the system will settle
on a background state, slightly modified with a different KX̂ , or be driven towards an altogether
different equilibrium. To this end, we will study the dynamics equation for KX̂ in appendix 5.

A.4.1.1.2 Dependency of average capital in system’s parameters

Once the notion of stability understood, we can use equation (280) to compute the impact of the
variation of any parameter Y (X̂) on δKX̂ . Two applications are of particular interest to us.

59The computations and formula for the dynamics’ fixed points are given in appendix 3.2.1.
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A.4.1.1.2.1 Dependency in relative expected returns The main application of equation
(280) is to consider the dependency of the average capital KX̂ in the parameter p(X̂) defined in
(95). This parameter encompasses sector X̂ relative expected returns vis-à-vis its neighbours.

Using (280), we show (see appendix 4.2.1) that the variation of KX̂ with respect to p(X̂) depends
on the notion of equilibrium stability defined in (281a).

For a stable equilibrium where the expected return f
(

X̂
)

is positive60, we find that:

δKX̂

δp
(

X̂
) > 0 (282)

so that p(X̂) writes as:

p(X̂) =

M −
(

(g(X̂))
2

σ2
X̂

+∇X̂g
(

X̂
)

− σ2
K̂

F2(X̂)
2f2(X̂)

)

f
(

X̂
) − 3

2
(283)

The definitions (85) and (86) show that g
(

X̂
)

and ∇X̂g
(

X̂
)

are proportional to ∇X̂R
(

X̂
)

and

∇2
X̂
R
(

X̂
)

respectively. Thus, when the expected long-term return R
(

X̂
)

is a maximum, p(X̂) is

maximal too61: under a stable equilibrium, capital accumulation is maximal in sectors where the

expected long-term return R
(

X̂
)

is maximal.

On the other hand, when the equilibrium is unstable we have:

δKX̂

δp
(

X̂
) < 0 (284)

Actually, the capital KX̂ is minimal for R
(

X̂
)

maximal. Actually, as seen above, in the instability

range, the average capital KX̂ acts as a threshold. When, due to variations in the system’s pa-
rameters, the average capital per firm is shifted above the threshold KX̂ , capital will either move
to the next stable equilibrium, possibly zero, or tend to infinity. Our results show that when the
expected long-term return of a sector increases, the threshold KX̂ decreases, which favours capital
accumulation.

A.4.1.1.2.2 Dependency in short term returns A second use of equation (280) is to consider

Y (X̂) as any parameter-function involved in the definition of f
(

X̂,KX̂

)

that may condition either

real short-term returns or the price-dividend ratio. We show in appendix 4.2.1 that again the result
depends on the stability of the solution.

Around a stable equilibrium, in most cases:

δKX̂

δf
(

X̂
) > 0

A higher short-term return, decomposed as a sum of dividend and price variation, induces a
higher average capital. This effect is magnified for larger levels of capital: the third approach will

confirm that, in most cases, the return f
(

X̂
)

is asymptotically a constant c << 1 when capital is

high: KX̂ >> 1.

60which is the case of interest for us (see section 11.3.3)
61See also section 14.1 for more details.
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Turning now to the case of an unstable equilibrium, we find:

δKX̂

δf
(

X̂
) < 0

In the instability range, and due to this very instability, an increase in returns f
(

X̂
)

reduces the

threshold of capital accumulation for low levels of capital. When short-term returns f
(

X̂
)

increase,

a lower average capital will trigger capital accumulation towards an equilibrium. Otherwise, when
average capital KX̂ is below this threshold, it will converge toward 0.

A.4.1.2 Accumulation points of capital

The second approach to equation (99) is to find the average capital at some particular points X̂,
and then by first order expansion, the solutions in the neighbourhood of these particular points.

We choose as particular points X̂ those such that A
(

X̂
)

defined in (93) is maximal. At these points
(

X̂M ,KX̂M

)

, we have62:

A
(

X̂M

)

= M = max
X̂

A
(

X̂
)

(285)

and p = 0, given (98). These sectors are characterized by expected returns that exhibit a local
maximum when compared to their neighboring sectors. As a result, these sectors serve as points of
capital accumulation.

A.4.1.2.1 Particular solutions for capital when p = 0

For p = 0 equation (99) at points
(

X̂M ,KX̂M

)

reduces to:

KX̂,M

∣

∣

∣f
(

X̂,KX̂,M

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂,M

)∥

∥

∥

2

≃ σ2
K̂
C (p̄) exp






−
σ2
Xσ2

K̂

(

f ′
(

XM ,KX̂,M

))2

384
∣

∣

∣f
(

X̂M ,KX̂,M

)∣

∣

∣

3






(286)

Given that
∥

∥

∥Ψ
(

X̂M ,KX̂,M

)∥

∥

∥

2

is decreasing in KX̂ (see (278)), and assuming f
(

X̂
)

is decreasing

too, as is usual for marginal decreasing returns, equation (99) has two solutions.
For some particular values of the parameters, an approximate form can be found for these

solutions. Here, we will merely consider a power law for f
(

X̂
)

:

f
(

X̂
)

≃ B (X)Kα
X̂

(287)

The parameter B (X) is the productivity in sector X, and equation (287) shows that the return

f
(

X̂
)

is increasing in B (X).

The stable case corresponds to an intermediate level of capital, Kα
X̂

<< D. In such a case, given

the density of producers (81), we can assume that this density satisfies
∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2

≃ D. The

solution to equation (99) is then:

Kα
X̂

=

(

DB (X)

C (p̄) σ2
K̂

)− α
α+1

exp



W0



−
σ2
Xσ2

K̂
(B′ (X))2 α

384 (B (X))
3
(α+ 1)

(

DB (X)

C (p̄)σ2
K̂

)
α

α+1







 (288)

62See equation (92).
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where W0 is the Lambert W function.
For B (X) << 1, we can check that Kα

X̂
is increasing with B (X), i.e. with short-term returns

f
(

X̂
)

63, which confirms the results found in the first approach: in the stable case, capital equilib-

rium increases with short-term returns f
(

X̂
)

.

The unstable case corresponds to a higher level of capital. Given the density of producers (81),
this case amounts to consider, in first approximation, that capital KX is concentrated among a

small group of agents, that is
∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

<< 1. Considering a power law for H2 (KX):

H2 (KX) = Kα
X

the solution (286) can be written as:

Kα
X̂

≃ 2D

(∇XR (X))2 + σ2
X

∇2
X
R(X)

H(KX )

(289)

−





(∇XR (X))
2
+ σ2

X
∇2

XR(X)

H(KX )

2D





1
α

σ2
K̂
C (p̄)

DB (X)

× exp

(

−
σ2
Xσ2

K̂
(B′ (X))

2

768D (B (X))3

(

(∇XR (X))
2
+ σ2

X

∇2
XR (X)

H (KX)

)

)

at the first order in D, plus corrections of order 1
D , with:

f
(

X̂
)

≃ B (X)Kα
X̂

The (in)stability analysis of the previous approach applies. In the range B (X) << 1, when f
(

X̂
)

increases, or which is equivalent, B (X) increases, average capital must reduce to preserve the pos-
sibility of unstable equilibria. Likewise, equilibrium capital is higher when expected returns R (X)

are minimal. When expected returns increase, the threshold defined by the unstable equilibrium
decreases.

A.4.1.2.2 Expansion around particular solutions for p = 0

To better understand the behaviour of the solutions of the average capital equation (99), we expand

this equation around the points
(

X̂,KX̂,M

)

that solve equation (99). Appendix 4.2.2 computes this

expansion at the second order around X̂M and KX̂,M . This yields the form of the solutions of (99)

in the vincinity of the points
(

X̂,KX̂,M

)

. We find:

63See equation (287).
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(

KX̂ −KX̂,M

)

=
1

D






σ2
Xσ2

K̂

3
(

f ′
(

X̂
))3

− 2f ′ (X) f ′′
(

X̂
) ∣

∣

∣
f
(

X̂
)∣

∣

∣

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4 (290)

−
∂f(X̂,K

X̂)
∂X̂

f
(

X̂,KX̂

) −
∂‖Ψ(X̂,K

X̂)‖2
∂X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

X̂ − X̂M

)

+
1

D

b

2

(

X̂ − X̂M

)

∇2
X̂





M −A
(

X̂
)

f
(

X̂
)





K
X̂,M

(

X̂ − X̂M

)

with
A(X̂)
f(X̂)

given in formula (??), and b and D are coefficients given in the appendix 4.2.2. In fact

we recover the analysis of the first approach in terms of stability. the case D > 0 corresponds
to a stable equilibrium, and D < 0 to an unstable one. The expansion (290) describes the local
variations of KX̂ in the neighbourhood of the points KX̂,M . This approximation (290) suffices to
understand the role of the parameters of the system. The whole analysis is performed in appendix
4.2.2 and confirms and refines our previous results.

A.4.1.3 Solutions to the capital equation in some particular cases

A third approach computes the approximate solutions of (99) for the average capital per firm per
sector X. To do so, we choose some general forms for the three parameter-functions arising in the
definition of the action functional: f that defines short-term returns, that include dividend and
expected long-term price variations, and is given by equation (84); g that describes investors’ mo-
bility in the sector space, given by (85), and the function H (KX) involved in the firms’ background
field, that describes firms’ moves in the sectors space and is given by equation (81).

Once these parameter-functions chosen, the approximate solutions of (99) for average capital
per firm per sector can be found. We have already seen in the second approach that this equation
has in general several solutions. To find them, we must consider several relevant ranges for average
capital, namely a very large level of capital, KX >> 1, a very low one, KX << 1, and an intermediate
range ∞ > KX > 1. We will derive the solutions for KX within these various ranges. Details of the
computations are given in appendix 4.2.3.

A.4.1.3.1 Choice of parameter functions

Our choices for the parameter functions f , g and H2 (KX) are the following.

Firms’ intersectoral moves H2 (KX) We can choose for H2 (KX) a power function of KX ,
so that equation (81) rewrites:

‖Ψ(X)‖2 = D − L (X) (∇XR (X))
2
Kη

X (291)

with L (X) given in the appendix.
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Short-term returns f To determine the function f , we must first assume a form for r (K,X),
the physical capital marginal returns, and for F1, the function that measures the impact of expected
long-term return on investment choices.

We assume Cobb-Douglas production functions, i.e. B (X)Kα with B (X) a productivity factor.
We also choose the expected long-term return F1 to be an increasing function of the arctan type,
so that investments increase linearly with expected returns and capital for small-capitalized firms,
but is bounded for large values of capital.

Under these assumption, the short-term return can be written in a compact form as:

f
(

X̂,Ψ, Ψ̂
)

= B1

(

X̂
)

Kα−1

X̂
+B2

(

X̂
)

Kα
X̂
− C

(

X̂
)

(292)

The coefficients B1

(

X̂
)

, B2

(

X̂
)

and C
(

X̂
)

are given in the appendix 4.2.3.

investors’ mobility in the sector space g To determine the form of the investors’ mobility
in the sector space g, given by (85), we must first choose a form for F0, the investors’ mobility
towards higher long-term returns64.

Here again, we choose an arctan type function of the expected long-term return, so that the
velocity in the sectors’ space g increases with capital, and is bounded and maximal when Kα

X̂
→ ∞.

Appendix 3.2.2 shows that g
(

X̂,Ψ, Ψ̂
)

can be written:

g
(

X̂,Ψ, Ψ̂
)

∇X̂R
(

X̂
)

A
(

X̂
)

Kα
X̂

(293)

where the function A
(

X̂
)

is given in appendix 4.2.2.

A.4.1.3.2 Solutions for the average capital

Now that the particular functions have been chosen, we can find approximate solutions to (99) in
several ranges of sector X’s average capital: Very large and stable capitalization, very large and
unstable, i.e. bubble-like, capitalization, large capitalization stable or unstable, the intermediate
case of mid-capitalization and ultimately small capitalization. Besides, we only consider positive
short-term returns65, f > 0.

We consider the several type of solutions separately.

Case 1 Very large and stable capitalization, KX̂ >>> 1

When returns are either slowing or increasing in X̂, i.e.
(

∇X̂R
(

X̂
))2

6= 0, a solution the capital

equation (99) may exist with KX̂ >>> 1. In this case, only a small number of firms are present in

the sector. Indeed, in such a case, the competition-deterent factor L
(

X̂
)

in (291) is very large, and

we can assume, in first approximation, that:

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

<< 1 (294)

A sector in which average capital is very large implies a very high competition, that act as a barrier

to the entry of other firms. In this case, we can show that f
(

X̂
)

≃ c, for some constant c. Appendix

64See section 4.4.
65Solutions for negative returns, f < 0, are discussed below.
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4.2.3.2 solves equation (99) given these assumptions. The average capital is given by:

Kα
X̂

≃ D
(

∇X̂R
(

X̂
))2 −

C (p̄) σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))2(1− 1

α )
D

1
α c

(295)

− d

R
(

X̂
)

(

∇X̂R
(

X̂
))

2
α
C (p̄)σ2

K̂

(

√

M−c
c +

M
c +∇2

X̂
R(X̂) f

d

2
√

M−c
c

)

c2D1+ 1
α

(

1− (∇X̂
R(X̂))

2
α C(p̄)σ2

K̂

cD1+ 1
α

√

M−c
c

)

which shows that Kα
X̂

is increasing in f
(

X̂
)

and R
(

X̂
)

for Kα
X̂

large, f
(

X̂
)

≃ c << 1 and D >> 1.

Using (281a) shows that this corresponds to a stable local equilibrium.

Case 2 Very large and unstable, i.e. bubble-like, capitalization, KX̂ >>> 1

This case arises when the expected long term returns is a local maximum, i.e. when
(

∇X̂R
(

X̂
))2

→
0 and ∇2

XR (KX , X) < 066. This describes a sector with a large number of firms and very high level
of capital. Actually, the number of firms given in (291) shows that:

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

> D >> 1 (296)

and appendix 4.2.3.2 shows that the average capital is given by:

KX̂ =





C (p̄)σ2
K̂

|∇2
XR (X)| cΓ





M −∇X̂g
(

X̂
)

c









2
3α

(297)

where f
(

X̂
)

≃ c << 1 for some constant c and D >> 1.

The case (297) is unstable. Actually, in this case KX is decreasing in f
(

X̂
)

. When returns

increase, an equilibrium arises only for a relatively low average capital. Otherwise, capital tends to
accumulate infinitely. When the sector’s expected returns are at a local maximum, the pattern of
accumulation becomes unstable. Note that an equilibrium with KX̂ >>> 1 is merely possible for
c << 1. Otherwise, there is no equilibrium for R (KX , X) maximum.

Case 3 Large capitalization, KX̂ >> 1

For a very large and stable capitalization, i.e. when average capital KX̂ is large but below a
given threshold, we can assume in first approximation that the density of firms in sector X (291)
becomes:

‖Ψ(X)‖2 ≃ D (298)

Appendix 4.2.3.2 shows that average capital in sector X is :

Kα
X ≃

C (p̄)σ2
K̂
Γ
(

M
c

)

Df (X)
+

d

f (X)R (X)

(

1 +M Psi

(

M

c

)

(

1 +
∇2

X̂
R (X)

M

))

(299)

66The case ∇2
XR (KX , X) > 0 i.e. a minimum for the expected long term return is studied in appendix 3.2.3.2

which shows that this equilibrium is unlikely and can be discarded.
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where Psi (x) = Γ′(x)
Γ(x) , and d and c are some constant parameters. This solution only holds when

f (X) > 0 and
C(p̄)σ2

K̂
Γ(M

c )
Df(X) > 1.

Formula (299) shows that this dependency of Kα
X̂

in R
(

X̂
)

depends in turns on the sign of the

second term in the rhs of (299).
When the condition:

1 +M Psi

(

M

c

)



1 +
∇2

X̂
R
(

X̂
)

M



 > 0

holds, average capital in sector X̂, Kα
X̂
, is a decreasing function of both returns R

(

X̂
)

and the

short-term returns f
(

X̂
)

. The stability analysis (281a) thus implies that the solution (299) is

unstable.
On the contrary, when:

1 +M Psi

(

M

c

)



1 +
∇2

X̂
R
(

X̂
)

M



 < 0

a stable equilibrium is possible. In this case, the average capital in sector X, Kα
X̂
, is increasing with

both returns R
(

X̂
)

and short-term returns f
(

X̂
)

. This case arises when, for already maximum

returns, ∇2
X̂
R
(

X̂
)

<< 0, a further increase in long-term returns R
(

X̂
)

occurs. This increases the

number of firms
∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

in the sector without impairing average capital per firm. Note that

stable equilibrium is an extreme case of the next case, intermediate level of capital.

Case 4 intermediate case, mid-capitalization ∞ >> KX̂ > 1

To solve equation (99) in this general case, we consider that σ2
X << 1 and the following simpli-

fying assumptions:

f
(

X̂
)

≃ B2 (X)Kα
X̂

(300)

and:
∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

≃ D

Eventually, appendix 4.2.3.2 shows that:

Kα
X̂

=

(

8C (p̄)

D

√

3σ2
K̂
|B2 (X)|

σ2
X (B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)

)

2α
1+α

(301)

× exp






−W0






− 48α

1 + α





√

3σ2
K̂

σ2
X

8C (p̄)

D





2α
1+α

|B2 (X)|3+ α
1+α

σ2
Xσ2

K̂
(B′

2 (X))
2+ 2α

1+α

(

ln

(

p̄+
1

2

)

− 1

)2+ α
1+α













where W0 is the Lambert W function and p̄ a constant.
In first approximation, equation (301) implies that Kα

X̂
is an increasing function of B2 (X). Given

our simplifying assumption (300), average capital is higher in high short-term returns sectors.

Moreover, Kα
X̂

is a decreasing function of
(

∇X̂R
(

X̂
))2

and ∇2
X̂
R
(

X̂
)

: capital accumulation is

locally maximal when expected returns R
(

X̂
)

of sector X̂ are at a local maxima, i.e.
(

∇X̂R
(

X̂
))2

=

0 and ∇2
X̂
R
(

X̂
)

< 0.
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Thus, in the intermediate case, the average values KX̂ are stable. In addition, both short-term
and long term returns matter in the intermediate range.

Case 5 Small capitalization KX̂ << 1

When average physical capital per firm in sector X̂ is very low, we can use our assumptions

about g
(

X̂
)

equation (293), and assume that:

f
(

X̂
)

≃ B1

(

X̂
)

Kα−1

X̂
>> 1, g

(

X̂
)

≃ 0 (302)

and:
∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

≃ D

For these conditions, the solution of (99) is locally stable. We show in appendix 4.2.3.2 that the
solution for average capital is at the first order67:

KX̂ =





C (p̄)σ2
K̂
Γ̂ (−1)

DB1

(

X̂
)





1
α

+

C(p̄)σ2
K̂

D Γ̂′ (−1)

(

M −
(

(g(X̂))
2

σ2
X̂

+∇X̂g
(

X̂
)

))

B
1
α
1

(

X̂
)

(

C(p̄)σ2
K̂

Γ̂(−1)

D

)1− 1
α

(303)

Equation (303) shows that average capital KX̂ increases with M −
(

(g(X̂))2

σ2
X̂

+∇X̂g
(

X̂
)

)

: when

expected long-term returns increase, more capital is allocated to the sector. Equation (302) also

shows that average capital KX̂ is maximal when returns R
(

X̂
)

are at a local maximum, i.e. when

(g(X̂))
2

σ2
X̂

= 0 and ∇X̂g
(

X̂,KX̂

)

< 0.

Inversely, the same equations (303) and (302) show that average capital KX̂ is decreasing in

f
(

X̂
)

. The equilibrium is unstable. Recall that in this unstable equilibrium, KX̂ must be seen as

a threshold. The rise in f
(

X̂
)

reduces the threshold KX̂ , which favours capital accumulation and

increases the average capital KX̂ . Actually, when average capital is very low, i.e. KX̂ << 1, which
is the case studied here, marginal returns are high. Any increase in capital above the threshold KX̂ ,
or any shift reducing the threshold, widely increases returns, which drives capital towards the next
stable equilibrium, with higher KX̂ .

This case is thus an exception: the dependency of KX̂ in R
(

X̂
)

is stable, but the dependency

in f
(

X̂
)

is unstable. This saddle path type of instability may lead the sector, either towards a

higher level of capital (case 4 below) or towards 0. where the sector disappears.

Remark: The case of negative short-term returns f < 0

In the four cases described above, we have only considered the case where a sector X̂ short-term

returns are positive f
(

X̂
)

> 0. We can nonetheless extend our analysis to the case f
(

X̂
)

< 0.

In such a case, the equilibria, whether stable or unstable, defined in cases 1, 2 with KX̂ >> 1,
and 4 with KX̂ > 1, are still valid, and capital allocation relies on expectations of high long-term

returns. If we consider that f
(

X̂
)

< 0 is an extreme case, where expectations of large future

profits must offset short-term losses. However, such equilibria become unsustainable when R
(

X̂
)

67Given our hypotheses, D >> 1 , which implies that KX̂ << 1, as needed.
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decreases to such an extent that it does not compensate for the loss f
(

X̂
)

. Case 3, KX̂ < 1 is the

only case that is no longer possible when f
(

X̂
)

< 0, since the returns that matter in this case are

dividends. If they turn negative, the equilibrium is no longer sustainable.

A 4.2 Details of the computations

A 4.2.1 First approach: Differential form of (99)

To understand the behavior of the solutions of (99), we can write its differential version. Assume a

variation δY
(

X̂
)

for any parameter of the system at point X̂. This parameter Y
(

X̂
)

can be either

R (X), its gradient, or any parameter arising in the definition of f and g. This induces a variation
δKX̂ for the average capital. The equation for δKX̂ is obtained by differentiation of (99):

δKX̂ =






−







∂f(X̂,K
X̂)

∂K
X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 + l
(

X̂,KX̂

)






+ k (p)

∂p

∂KX̂






KX̂δKX̂ (304)

+
∂

∂Y
(

X̂
)







σ2
K̂
C (p̄) 2Γ̂

(

p+ 1
2

)

∣

∣

∣
f
(

X̂,KX̂

)∣

∣

∣

∥

∥

∥
Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY
(

X̂
)

where we define:

l
(

X̂,KX̂

)

=

σ2
Xσ2

K̂

(

∇K
X̂

(

f ′
(

X̂
))2 ∣

∣

∣f
(

X̂
)∣

∣

∣− 3
(

∇K
X̂

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

)

(

p+ 1
2

)2

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4

+
∂p

∂KX̂

σ2
Xσ2

K̂

(

p+ 1
2

)

(f ′ (X))
2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

k (p) =

d
dp Γ̂

(

p+ 1
2

)

Γ̂
(

p+ 1
2

) ∼∞

√

p− 1
2

2
−

σ2
Xσ2

K̂

(

p+ 1
2

)

(f ′ (X))
2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3 (305)

and:

∂p

∂KX̂

=
∂

∂KX̂

M −A
(

X̂,KX̂

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

= −
∂K

X̂

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣ p+ ∂K
X̂
A
(

X̂,KX̂

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

with:

A
(

X̂,KX̂

)

=

(

g
(

X̂,KX̂

))2

σ2
X̂

+



f
(

X̂,KX̂

)

+

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

2
+∇X̂g

(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂,KX̂

)





≃

(

g
(

X̂,KX̂

))2

σ2
X̂

+ f
(

X̂,KX̂

)

+

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

2
+∇X̂g

(

X̂,KX̂

)
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A. 4.2.1.1 Expanded form of (304) In an expanded form (304) writes:

δKX̂ =
(

k (p) ∂K
X̂
(p)

−







∂f(X̂,K
X̂)

∂K
X̂

(

p+H
(

f
(

X̂,KX̂

))

+ 1
2

)

k (p)

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 + l
(

X̂,KX̂

)












KX̂δKX̂

+
∂

∂Y







σ2
K̂
C (p̄) 2Γ̂

(

p+ 1
2

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY

with H the heaviside function. Moreover:

∂

∂Y







σ2
K̂
C (p̄) 2Γ̂

(

p+ 1
2

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY

= (k (p) ∂Y p

−







∂f(X̂,K
X̂)

∂Y

(

p+H
(

f
(

X̂,KX̂

))

+ 1
2

)

k (p)

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂Y
∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 +mY

(

X̂,KX̂

)












KX̂δY

with:

mY

(

X̂,KX̂

)

=

σ2
Xσ2

K̂

(

∇Y

(

f ′
(

X̂
))2 ∣

∣

∣f
(

X̂
)∣

∣

∣− 3
(

∇Y

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

)

(

p+ 1
2

)2

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4

+∇Y p
σ2
Xσ2

K̂

(

p+ 1
2

)

(f ′ (X))
2

48
∣

∣

∣
f
(

X̂
)∣

∣

∣

3

so that:

δKX̂

KX̂

= (k (p) ∂Y (p)

−







∂f(X̂,K
X̂)

∂Y

(

p+H
(

f
(

X̂,KX̂

))

+ 1
2

)

k (p)

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂Y
∥

∥

∥
Ψ
(

X̂,KX̂

)∥

∥

∥

2 +mY

(

X̂,KX̂

)













δY

D

with:

D = 1 +













∂f(X̂,K
X̂)

∂K
X̂

(

p+H
(

f
(

X̂,KX̂

))

+ 1
2

)

k (p)

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 + l
(

X̂,KX̂

)






(306)

−k (p) ∂K
X̂
(p)
)

KX̂

A. 4.2.1.2 Local stability As explained in the text, equation (280) can be understood as the
fixed-point equation of a dynamical system through the following mechanism.
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Each variation δY
(

X̂
)

in the parameters impacts the average capital, which must then be

computed with the new parameters. The first change induced is written δK
(1)

X̂
:

δK
(1)

X̂
=

∂

∂Y
(

X̂
)







σ2
K̂
C (p̄) 2Γ̂

(

p+ 1
2

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY
(

X̂
)

(307)

In a second step, the variation δKX̂ impacts the various functions implied in (99), and indirectly
modifies KX̂ through the first term in the rhs of (280):






−







∂f(X̂,K
X̂)

∂K
X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2






+ k (p)

∂p

∂KX̂






KX̂δK

(1)

X̂
(308)

These two effects combined, (307) and (308), yield the total variation δKX̂ .

Importantly, note that if we can interpret δK
(1)

X̂
as a variation at time t, we can also infer from

the indirect effect (308) that δKX̂ is itself a variation at time t + 1. Equation (280) can thus be
seen as the fixed point equation of a dynamical system written:

δKX̂ (t+ 1) =






−







∂f(X̂,K
X̂)

∂K
X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 + l
(

X̂,KX̂

)






+ k (p)

∂p

∂KX̂






KX̂δKX̂ (t)(309)

+
∂

∂Y
(

X̂, t
)







σ2
K̂
C (p̄) 2Γ̂

(

p+ 1
2

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY
(

X̂, t
)

whose fixed point is the solution of (280):

δKX̂ =

∂

∂Y (X̂)

(

σ2
K̂

C(p̄)2Γ̂(p+ 1
2 )

|f(X̂,K
X̂)|‖Ψ(X̂,K

X̂)‖2

)

1 +













∂f(X̂,K
X̂)

∂K
X̂

f(X̂,K
X̂)

+

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

‖Ψ(X̂,K
X̂)‖2 + l

(

X̂,KX̂

)






− k (p) ∂p

∂K
X̂






KX̂

δY
(

X̂
)

(310)

This solution (??) is stable when:

∣

∣

∣

∣

∣

∣

∣

k (p)
∂p

∂KX̂

−







∂f(X̂,K
X̂)

∂K
X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥
Ψ
(

X̂,KX̂

)∥

∥

∥

2 + l
(

X̂,KX̂

)







∣

∣

∣

∣

∣

∣

∣

< 1 (311a)

i.e. when D, defined in (??), is positive, and unstable otherwise. So that the stability of this
average capital depends, in last analysis, on the sign of D.

A 4.2.1.3 Applications of the differential form: dependency in expected returns The
main application of equation (??) is to consider a parameter denoted Y (X̂), that encompasses the
relative expected returns of sector X vis-à-vis its neighbouring sectors, and defined as:

Y (X̂) = p
(

X̂
)

(312)
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Interpretations are given in the text. To compute the dependency of averagecapital in this param-
eter, we use (??), and we have:

δKX̂

KX̂

=

k(p)

f(X̂,K
X̂)

D
δp
(

X̂
)

(313)

Given equation (??), k (p) is positive at the first order in σ2
X . More precisely, using equation (??):

k (p) ∼∞

√

p− 1
2

2
−

σ2
Xσ2

K̂

(

p+ 1
2

)

(f ′ (X))2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

along with equation (??), we can infer that
√

p− 1
2

2 is of order 1
σX

and
σ2
Xσ2

K̂
(p+ 1

2)(f
′(X))2

48|f(X̂)|3 ∼ 1.

Consequently, in a stable equilibrium, i.e. for D > 0, equation (282) implies that the dependency

of KX̂ in the parameter p
(

X̂
)

is positive:

δKX̂

δp
(

X̂
) > 0

We have seen above that p
(

X̂
)

is maximal for a maximum expected long-term return R
(

X̂,KX̂

)

:

when the equilibrium is stable, capital accumulation is maximal for sectors that are themselves a

local maximum for R
(

X̂,KX̂

)

.

On the other hand, when the equilibrium is unstable, i.e. for D < 0, the capital KX̂ is minimal

for R
(

X̂,KX̂

)

maximal.

Actually, as seen above, in the instability range D < 0 ,the average capital KX̂ acts as a threshold.
When, due to variations in the system’s parameters, the average capital per firm is shifted above
the threshold KX̂ , capital will either move to the next stable equilibrium, possibly zero, or tend
to infinity. Our results show that when the expected long-term return of a sector increases, the
threshold KX̂ decreases, which favours capital accumulation.

A 4.2.1.3 Applications of the differential form: dependency in short term returns A
second use of equation (??) is to consider Y (X̂) as any parameter-function involved in the definition

of f
(

X̂,KX̂

)

that may condition either real short-term returns or the price-dividend ratio.

We can see that in this case, Y (X̂) only impacts f
(

X̂,KX̂

)

, so that equation (??) simplifies and

yields:

δKX̂

KX̂

= −
mY

(

X̂,KX̂

)

D
δY (314)

− 1

D







∂f(X̂,K
X̂)

∂Y

(

1 +
(

p+H
(

f
(

X̂,KX̂

))

+ 1
2

)

k (p)
)

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂Y
∥

∥

∥
Ψ
(

X̂,KX̂

)∥

∥

∥

2






δY
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Incidentally, note that p being proportional to f−1
(

X̂
)

, mY

(

X̂,KX̂

)

rewrites:

−mY

(

X̂,KX̂

)

=

σ2
Xσ2

K̂

(

3
(

∇Y

∣

∣

∣
f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

−∇Y

(

f ′
(

X̂
))2 ∣

∣

∣
f
(

X̂
)∣

∣

∣

)

(

p+ 1
2

)2

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4 (315)

+∇Y

∣

∣

∣f
(

X̂
)∣

∣

∣

σ2
Xσ2

K̂
p
(

p+ 1
2

)

(f ′ (X))2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

4

The first term in the rhs of (314) is the impact of an increase in investors’ short-term returns. The
second is the variation in capital needed to maintain investors’ overall returns.

The sign of
δK

X̂
K

X̂
given by equation (314) can be studied under two cases: the stable and the

unstable equilibrium.
Let us first consider the case of a stable equilibrium, i.e. D > 0.
The first term in the rhs of (314), the variation induced by an increase in short-term returns, is

in general positive for f ′
(

X̂
)

proportional to f
(

X̂
)

, that is for instance when the function f
(

X̂
)

,

that describes short-term returns and prices, depends on the variable KX̂ raised to some arbitrary
power.

Indeed in that case:

3
(

∇Y

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

−∇Y

(

f ′
(

X̂
))2 ∣

∣

∣f
(

X̂
)∣

∣

∣ =
(

∇Y

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

The second term in the rhs of (314) is in general negative. When
∂f(X̂,K

X̂)
∂Y > 0, i.e. when returns

are increasing in Y , a rise in Y increases returns and decreases the capital needed to maintain these

returns. Similarly, when
∂‖Ψ(X̂,K

X̂)‖2
∂Y > 0, i.e. when the number of agents in sector X̂ is increasing

in Y , a rise in Y increases the number of agents that move towards point X̂, and the average capital
per firm diminishes.

The net variation (314) of KX̂ is the sum of these two contributions. Considering an expansion

of (314) in powers of σ2
X , the first contribution −mY

(

X̂,KX̂

)

is of magnitude
(

σ2
X

)−1
, whereas the

second is proportional to k (p) ∼ (σX)−1. The variation
δK

X̂
K

X̂
is thus positive:

δK
X̂

K
X̂

> 0. In most

cases, a higher short-term return, decomposed as a sum of dividend and price variation, induces a
higher average capital. This effect is magnified for larger levels of capital: the third approach will

confirm that, in most cases, the return f
(

X̂
)

is asymptotically a constant c << 1 when capital is

high: KX̂ >> 1.

Turning now to the case of an unstable equilibrium, i.e. D < 0, the variation
δK

X̂
K

X̂
is negative:

δK
X̂

K
X̂

< 0. In the instability range, and due to this very instability, an increase in returns f
(

X̂
)

reduces the threshold of capital accumulation for low levels of capital. When short-term returns

f
(

X̂
)

increase, a lower average capital will trigger capital accumulation towards an equilibrium.

Otherwise, when average capital KX̂ is below this threshold, it will converge toward 0.

A 4.2.2 Second approach: Expansion around particular solutions

As explained in the text, we choose to expand (275), or equivalently (279), around solutions with
p = 0.
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A 4.2.2.1 Equation (99) for p = 0 To find the solution with p = 0, we maximize the function:

A
(

X̂
)

=

(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

−
σ2
K̂
F 2
(

X̂,KX̂

)

2f2
(

X̂
)

We write:
M = max

X̂
A
(

X̂
)

(316)

and denote by
(

X̂M ,KX̂M

)

the solutions X̂M of (316) with KX̂M
their associated value of average

capital per firm.
Given that

Γ̂

(

1

2

)

= exp






−
σ2
Xσ2

K̂

(

f ′
(

X,KX̂,M

))2

384
∣

∣

∣f
(

X̂,KX̂,M

)∣

∣

∣

3






(317)

(275) becomes at points
(

X̂M ,KX̂M

)

and p = 0:

KX̂,M

∣

∣

∣f
(

X̂M ,KX̂M

)∣

∣

∣

∥

∥

∥Ψ
(

X̂M ,KX̂M

)∥

∥

∥

2

≃ σ2
K̂
C (p̄) exp






−
σ2
Xσ2

K̂

(

f ′
(

X̂M ,KX̂M

))2

384
∣

∣

∣
f
(

X̂M ,KX̂M

)∣

∣

∣

3






(318)

This equation has in general several solutions, depending on the assumptions on f
(

X̂M ,KX̂M

)

.

Note that once a solution KX̂ of (279) is found, the value of C (p̄) can be obtained by solving
(272) and using (274). These solutions are discussed in the text.

The next paragraph computes the expansion of (275) around these solutions with p = 0. Remark
that coming back to (275) and (279) for general values of p defined in (273), the value of C (p̄) σ2

K̂

can be replaced by KX̂M

∣

∣

∣f
(

X̂M ,KX̂M

)∣

∣

∣

∥

∥

∥Ψ
(

X̂M ,KX̂M

)∥

∥

∥

2

for any solution
(

X̂M ,KX̂M

)

.

A 4.2.2.2 Expansion around particular solutions To better understand the behavior of

the solutions of equation (99), we expand this equation around the points
(

X̂,KX̂,M

)

that solve

equation (99). We can find approximate solutions to (275):

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂
Γ̂

(

p+
1

2

)

(319)

with:

Γ̂

(

p+
1

2

)

= exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






(320)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

for general form of the functions f
(

X̂
)

and g
(

X̂
)

by expanding (319), for each X̂,around the

closest point X̂M satisfying (319) with p = 0. We use that:
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1)Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

(321)

= 1− p (γ0 + ln 2− 2) + o (p)
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with γ0 the Euler-Mascheroni constant, as well as the following relations:

∇K
X̂






−
σ2
Xσ2

K̂
h (p)

(

f ′
(

X̂
))2

96
∣

∣

∣
f
(

X̂
)∣

∣

∣

3







p=0

≃ −
∇K

X̂

(

f ′
(

X̂
))2 ∣

∣

∣f
(

X̂
)∣

∣

∣− 3
(

∇K
X̂

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

120
∣

∣

∣
f
(

X̂
)∣

∣

∣

4

and:

∇X̂






−
h (p)

(

f ′
(

X̂
))2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3







p=0

≃ −
2f ′ (X) f ′′

(

X̂
) ∣

∣

∣f
(

X̂
)∣

∣

∣ − 3
(

f ′
(

X̂
))3

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4 =

f ′ (X)

(

3
(

f ′
(

X̂
))2

− 2f ′′ (X)
∣

∣

∣f
(

X̂
)∣

∣

∣

)

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4

the expansion of (319) at the lowest order, is:






1 +

∂f(X̂,K
X̂)

∂K
X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

KX̂ −KX̂,M

)

+







∂f(X̂,K
X̂)

∂X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂X̂
∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

X̂ − X̂M

)

≃ −






σ2
Xσ2

K̂

∇K
X̂

(

f ′
(

X̂
))2 ∣

∣

∣f
(

X̂
)∣

∣

∣ − 3
(

∇K
X̂

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4







K
X̂,M

(

KX̂ −KX̂,M

)

−






σ2
Xσ2

K̂

2f ′ (X) f ′′
(

X̂
) ∣

∣

∣f
(

X̂
)∣

∣

∣− 3
(

f ′
(

X̂
))3

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4







K
X̂,M

(

X̂ − X̂M

)

−b

∂K
X̂

(

(g(X̂,K
X̂))

2

σ2
X̂

+

(

f
(

X̂,KX̂

)

+
|f(X̂,K

X̂)|
2 +∇X̂g

(

X̂,KX̂

)

))

(

KX̂ −KX̂,M

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

−b

∂X̂

(

(g(X̂,K
X̂))

2

σ2
X̂

+

(

f
(

X̂,KX̂

)

+
|f(X̂,K

X̂)|
2 +∇X̂g

(

X̂,KX̂

)

))

(

X̂ − X̂M

)

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

Given the maximization (316), the two last terms in the right hand side is equal to 0.

(

KX̂ −KX̂,M

)

=
1

D






σ2
Xσ2

K̂

3
(

f ′
(

X̂
))3

− 2f ′ (X) f ′′
(

X̂
) ∣

∣

∣f
(

X̂
)∣

∣

∣

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4 (322)

−
∂f(X̂,K

X̂)
∂X̂

f
(

X̂,KX̂

) −
∂‖Ψ(X̂,K

X̂)‖2
∂X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

X̂ − X̂M

)

− 1

D

b

2

(

X̂ − X̂M

)

∇2
X̂







(

g
(

X̂,KX̂

))2

σ2
X̂

+
3

2
f
(

X̂,KX̂

)

+∇X̂g
(

X̂,KX̂

)







K
X̂,M

(

X̂ − X̂M

)
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with:

D =









1 +

∂f(X̂,K
X̂)

∂K
X̂

f
(

X̂,KX̂

) +

∂‖Ψ(X̂,K
X̂)‖2

∂K
X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 +

σ2
Xσ2

K̂

(

∇K
X̂

(

f ′
(

X̂
))2 ∣

∣

∣f
(

X̂
)∣

∣

∣− 3
(

∇K
X̂

∣

∣

∣f
(

X̂
)∣

∣

∣

) (

f ′
(

X̂
))2

)

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4









K
X̂M

and KX̂M
solution of:

KX̂,M

∣

∣

∣f
(

X̂,KX̂,M

)∣

∣

∣

∥

∥

∥Ψ
(

X̂,KX̂,M

)∥

∥

∥

2

≃ σ2
K̂
exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






C (p̄) ≃ σ2

K̂
C (p̄)

The maximization condition (316) cancels the contribution due to:

(

g
(

X̂,KX̂

))2

σ2
X̂

+



f
(

X̂,KX̂

)

+

∣

∣

∣f
(

X̂,KX̂

)∣

∣

∣

2
+∇X̂g

(

X̂,KX̂

)





To find a contribution due to this term, we must expand (319) to the second order. The second order

contributions proportional to
(

KX̂ −KX̂,M

)2

modifies slightly (322) and the term
(

KX̂ −KX̂,M

)(

X̂ − X̂M

)

shifts D at the first order. Both modifications do not alter the interpretation for (322). We can
thus consider the sole term:

C (p̄)σ2
K̂
Γ̂
(

p+ 1
2

)

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣

Due to (279), for H
(

KX̂

)

slowly varying, the contribution due to the derivatives of
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

can

be neglected. Moreover the contribution due to the derivative of
∣

∣

∣
f
(

X̂
)∣

∣

∣
are negligible with respect

to the first order terms. We can thus consider only the second order contributions due to Γ̂
(

p+ 1
2

)

.
In the rhs of (320), the second term is dominant. Moreover, we can check that in the second order
expansion of (321), the term in p2 can be neglected compared to −p (γ0 + ln 2− 2). Consequently,
the relevant second order correction to (322) is :

b
(

X̂ − X̂M

)

∇2
X̂
p
(

X̂ − X̂M

)

= b
(

X̂ − X̂M

)

∇2
X̂









M − (g(X̂,K
X̂))

2

σ2
X̂

+ 3
2f
(

X̂,KX̂

)

+∇X̂g
(

X̂,KX̂

)

∣

∣

∣
f
(

X̂
)∣

∣

∣









(

X̂ − X̂M

)

and the relevant contributions to (322) are:
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(

KX̂ −KX̂,M

)

=
1

D






σ2
Xσ2

K̂

3
(

f ′
(

X̂
))3

− 2f ′ (X) f ′′
(

X̂
) ∣

∣

∣
f
(

X̂
)∣

∣

∣

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4 (323)

−
∂f(X̂,K

X̂)
∂X̂

f
(

X̂,KX̂

) −
∂‖Ψ(X̂,K

X̂)‖2
∂X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

X̂ − X̂M

)

+
1

D

b

2

(

X̂ − X̂M

)

∇2
X̂









M − (g(X̂,K
X̂))

2

σ2
X̂

+ 3
2f
(

X̂,KX̂

)

+∇X̂g
(

X̂,KX̂

)

∣

∣

∣f
(

X̂
)∣

∣

∣









K
X̂,M

(

X̂ − X̂M

)

A 4.2.2.3 Interpretation of (323) As in the first approach, D > 0 corresponds to a stable
equilibrium, and D < 0 to an unstable one. The expansion (290) describes the local variations of
KX̂ in the neighbourhood of the points KX̂,M . This approximation (290) suffices to understand the
role of the parameters of the system.

We consider the case of stable equilibria, i.e. D > 0. Note that under unstable equilibria, D < 0,
the interpretations are inverted, since KX̂ is interpreted as a threshold68.

The equation (290), that expands average capital at sector X̂M , is composed of a first order and
a second order contributions.

The first order part in the expansion (290) writes:

1

D






σ2
Xσ2

K̂

3
(

f ′
(

X̂
))3

− 2f ′ (X) f ′′
(

X̂
) ∣

∣

∣f
(

X̂
)∣

∣

∣

120
∣

∣

∣f
(

X̂
)∣

∣

∣

4 −
∂f(X̂,K

X̂)
∂X̂

f
(

X̂,KX̂

) −
∂‖Ψ(X̂,K

X̂)‖2
∂X̂

∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

X̂ − X̂M

)

(324)
It represents the variation of equilibrium capital as a function of its position. It is decomposed in
three contributions:

For f ′
(

X̂
)

> 0, the second contribution in (324):

−
∂f(X̂,K

X̂)
∂X̂

(

X̂ − X̂M

)

f
(

X̂,KX̂

)

is positive. It represents the decrease in capital needed to reach equilibrium. Actually, the return
is higher at point X̂ than at X̂M : a lower capital will yield the same overall return at point X̂. On
the contrary, the first contribution in (324):

σ2
Xσ2

K̂

3(f ′(X̂))3−2f ′(X)f ′′(X̂)|f(X̂)|
120|f(X̂)|4

(

X̂ − X̂M

)

D

describes the ”net” variation of capital due to a variation in f (X). When returns are decreasing,

i.e. when f ′
(

X̂
)

> 0 and f ′′
(

X̂
)

< 0, this first contribution has the sign of f ′
(

X̂
)

. An increase in

returns attracts capital.

68See the first approach.
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The third term in (324):

− 1

D







∂‖Ψ(X̂,K
X̂)‖2

∂X̂
∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2







K
X̂,M

(

X̂ − X̂M

)

represents the number effect. Actually, when:

∂‖Ψ(X̂,K
X̂)‖2

∂X̂
∥

∥

∥Ψ
(

X̂,KX̂

)∥

∥

∥

2 > 0

the number of agents is higher at X̂ than at X̂M : the average capital per agent is reduced.
The second order contribution in (290) represents the effect of the neighbouring sector space on

each sector. Given the first order condition (285):

∇2
X̂





M −A
(

X̂
)

f
(

X̂
)





K
X̂,M

=





∇2
X̂

(

M −A
(

X̂
))

f
(

X̂
)





K
X̂,M

and since A
(

X̂M

)

is a maximum, we have:

(

X̂ − X̂M

)

∇2
X̂





M −A
(

X̂
)

f
(

X̂
)





K
X̂,M

(

X̂ − X̂M

)

> 0

When f
(

X̂
)

is constant, A
(

X̂M

)

is a local maximum, and KX̂M
is a minimum. To put it

differently, KX̂ is a decreasing function of A
(

X̂
)

. This is in line with the definition of A
(

X̂
)

69,

which measures the relative attractiveness of sector X̂’s neighbours: the higher A
(

X̂
)

, the lower

the incentive for capital to stay in sector X̂.

A 4.2.3 Third approach: Resolution for particular form for the functions

As stated in the text, we can find approximate solutions to (279) by choosing some forms for the
parameters functions. The solutions are then studied in some ranges for average capital per firm
KX : KX >> 1, KX >>> 1, KX << 1 and the intermediate range ∞ > KX > 1 In the case KX >>> 1,
the distinction between stable and unstable cases has to be made.

A 4.2.3.1 Function H2 (KX) We can choose for H2 (KX) a power function of KX :

H (KX) = Kη
X (325)

so that equation (81) rewrites:

‖Ψ(X)‖2 ≃
D
(

‖Ψ‖2
)

− F
2σ2

X

(

(∇XR (X))
2
+

2σ2
X∇2

XR(KX ,X)

H(KX )

)

Kη
X

2τ
≡ D − L (X) (∇XR (X))

2
Kη

X (326)

69See discussions after equations (??) and (??).
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A 4.2.3.2 Function f To determine the function f , we must first assume a form for r (K,X), the
physical capital marginal returns, and for F1, the function that measures the impact of expected
long-term return on investment choices.

Assuming the production functions are of Cobb-Douglas type, i.e. B (X)Kα with B (X) a
productivity factor, we have for r (K,X):

r (K,X) =
∂r (K,X)

∂K
= αB (X)Kα−1 (327)

For function F1, the simplest choice would be a linear form:

F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′

)

‖Ψ(X ′)‖2 dX ′



 ≃ F1





R
(

KX̂ , X̂
)

〈

Kα
X̂

〉〈

R
(

X̂
)〉



 = b





Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1





where, for any function u
(

X̂
)

,
〈

u
(

X̂
)〉

denotes its average over the sector space, and b an arbitrary
parameter.

However, when capital Kα
X̂

→ ∞ and is concentrated at X̂, we have 〈Kα
X〉 ≃ Kα

X̂
Nα(X) , so that

Kα

X̂
R(X̂)

〈Kα
X〉〈R(X)〉 → Nα(X)R(X̂)

〈R(X)〉 >> 1. To impose some bound on moves in the sector space we rather

choose:

F1





R
(

KX̂ , X̂
)

〈

Kα
X̂

〉〈

R
(

X̂
)〉



 ≃ b arctan





Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1



 (328)

so that F1

(

R(KX̂
,X̂)

〈

Kα

X̂

〉

〈R(X̂)〉

)

> 0 when
Kα

X̂
R(X̂)

〈Kα
X〉〈R(X)〉 > 1.

Given the above assumptions, the general formula for f given in equation (84) rewrites:

f
(

X̂,Ψ, Ψ̂
)

=
1

ε



r
(

X̂
)

Kα−1

X̂
− γ

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ b arctan





Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1







 (329)

This general formula can be approximated for
Kα

X̂
R(X̂)

〈Kα
X〉〈R(X)〉 ≃ 1, when average capital in sector X̂ is

close to the average capital of the whole space, which is usually the case.

Using our choices (291), (327) and (328) for ‖Ψ(X)‖2 r
(

X̂
)

and F1 respectively, the equation

(84) for f
(

X̂,Ψ, Ψ̂
)

becomes:

f
(

X̂,Ψ, Ψ̂
)

=
1

ε







r
(

X̂
)

+
bR
(

X̂
)

Kα
X̂

〈

Kα
X̂

〉〈

R
(

X̂
)〉



+ γL
(

X̂
)

Kη
X − γD − b





We may assume without impairing the results that η = α. We thus have:

f
(

X̂,Ψ, Ψ̂
)

=
1

ε









r
(

X̂
)

Kα
X̂

+
bR
(

X̂
)

〈

Kα
X̂

〉〈

R
(

X̂
)〉 + γL

(

X̂
)



Kα
X̂
− γD − b



 (330)

≡ B1

(

X̂
)

Kα−1

X̂
+B2

(

X̂
)

Kα
X̂
− C

(

X̂
)
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where:

B1

(

X̂
)

=
αB

(

X̂
)

ε

B2

(

X̂
)

=
bR
(

X̂
)

ε
〈

Kα
X̂

〉〈

R
(

X̂
)〉 +

γ

ε

C
(

X̂
)

= γD + b

A 4.2.3.3 Function g To determine the form of function g, equation (85), we must first choose
a form for the function F0.

We assume that:
F0

(

R
(

X̂,KX̂

))

= a arctan
(

Kα
X̂
R
(

X̂
))

(331)

where is a an arbitrary constant.
Combined to our assumption for F1, (328), the formula (85) for g can be written:

g
(

X̂,Ψ, Ψ̂
)

= a∇X̂ arctan
(

Kα
X̂
R
(

X̂
))

+ b∇X̂ arctan





Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1



 (332)

where the arctan function ensures that the velocity in the sector space g increases with capital and
is maximal when average capital per firm in sector X̂ tends to infinity, i.e. Kα

X̂
→ ∞.

This general formula, equation (??), can be approximated for
Kα

X̂
R(X̂)

〈Kα
X〉〈R(X)〉 ≃ 1, when average

capital in sector X̂ is close to the average capital of the whole space. It then reduces to:

g
(

X̂,Ψ, Ψ̂
)

≃
Kα

X̂
〈

Kα
X̂

〉∇X̂R
(

X̂
)



1 +
b

〈

R
(

X̂
)〉



 ≡ ∇X̂R
(

X̂
)

A
(

X̂
)

Kα
X̂

(333)

which in turn allows to approximate the gradient of g, ∇X̂g
(

X̂,Ψ, Ψ̂
)

, by:

∇X̂g
(

X̂,Ψ, Ψ̂
)

≃
∇2

X̂
R
(

X̂
)

〈

Kα
X̂

〉



1 +
b

〈

Kα
X̂

〉〈

R
(

X̂
)〉



Kα
X̂

≡ ∇2
X̂
R
(

X̂
)

A
(

X̂
)

Kα
X̂

(334)

A 4.2.3.4 Solving (279) Equation (279) can be studied by considering five cases presented in
the text:

Case 1. Very high capital, KX̂ >>> 1, stable case In that case, KX̂ >>> 1, and we

assume in first approximation that (discarding the factor L
(

X̂
)

):

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

≃ D −
(

∇XR
(

X̂
))2

Kα
X̂

<< 1 (335)
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This corresponds to a very high level of capital. Consequently, equation (329) implies that the

function f
(

X̂
)

can be rewritten:

f
(

X̂
)

=
1

ε



r
(

X̂
)

Kα−1

X̂
− γ

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ b arctan





Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1









≃ b





π

2
− 〈Kα

X〉 〈R (X)〉
Kα

X̂
R
(

X̂
)





≡ c− d

Kα
X̂
R
(

X̂
) ≃ c > 0

Consequently, the expressions for f ′
(

X̂
)

g
(

X̂
)

and ∇X̂g
(

X̂
)

(346) and (347) are still valid.

Two different cases arise in the resolution of (275).

First, we assume that
(

∇X̂R
(

X̂
))2

6= 0.

In this case, we will solve (275) by using (335) to replace KX̂ ≃
(

D

(∇XR(X̂))2

)
1
α

. We also change

the variable D

(∇XR(X̂))
2 → D temporarily for the sake of simplicity.

Inequality (335) along with KX̂ >>> 1 and (329) implies that only the case f > 0 has to be
considered.

Note that using our results about stability, it is easy to check that in that case, this solution is
locally unstable. A very high level of capital has the tendency to attract more investments.

Given our assumptions, equation (279) becomes:

(

∇XR
(

X̂
))2

D
1
α
(

D −Kα
X̂

)

= C (p̄)σ2
K̂
exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3







Γ
(

p+ 3
2

)

∣

∣

∣f
(

X̂
)∣

∣

∣

(336)

or equivalently:

Kα
X̂

= D −
C (p̄)σ2

K̂
exp

(

−σ2
Xσ2

K̂
(p+ 1

2)
2(f ′(X))2

96|f(X̂)|3
)

Γ
(

p+ 3
2

)

(

∇XR
(

X̂
))2

D
1
α

∣

∣

∣f
(

X̂
)∣

∣

∣

(337)

Then, defining V = 1
Kα

X̂

as in the first case, we can write (337) as an equation for V << 1 by

replacing all quantities in term of V and then perform a first order expansion.
First, we write (337) as:

V − 1

D −
C(p̄)σ2

K̂
exp



−
σ2
X

σ2
K̂
(p+1

2)
2
(f ′(X))2

96|f(X̂)|3


Γ(p+ 3
2 )

(∇XR(X̂))
2
D

1
α |f(X̂)|

= 0 (338)

As in the previous case, the first order expansion in V of Γ
(

p+ 3
2

)

arising in (338) is given by:

Γ

(

p+
3

2

)

≃ Γ

(

M

c

)

+
MV

c





∇2
X̂
R
(

X̂
)

f

MR
(

X̂
) +

d

cR
(

X̂
)



Γ′
(

M

c

)

(339)
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Moreover, at the first order:

exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






≃ 1

and (338) becomes:

V −

(

∇X̂R
(

X̂
))2

D
1
α

∣

∣

∣f
(

X̂
)∣

∣

∣

(

∇X̂R
(

X̂
))2

D1+ 1
α

∣

∣

∣f
(

X̂
)∣

∣

∣− C (p̄)σ2
K̂
Γ
(

p+ 3
2

)

= 0

that is:

V −

(

∇X̂R
(

X̂
))2

D
1
α

(

c− dV

R(X̂)

)

(

∇X̂R
(

X̂
))2

D1+ 1
α

(

c− dV

R(X̂)

)

− C (p̄)σ2
K̂
Γ
(

p+ 3
2

)

= 0 (340)

Using (339) the first order expansion of the dominator in (340) is:

(

∇X̂R
(

X̂
))2

D1+ 1
α



c− dV

R
(

X̂
)



− C (p̄)σ2
K̂
Γ

(

p+
3

2

)

=
(

∇X̂R
(

X̂
))2

D1+ 1
α c− C (p̄) σ2

K̂
Γ

(

M

c

)

−





(

∇X̂R
(

X̂
))2

D1+ 1
α

d

R
(

X̂
) +

C (p̄) σ2
K̂
M

c





∇2
X̂
R
(

X̂
)

f

MR
(

X̂
) +

d

cR
(

X̂
)



Γ′
(

M

c

)



V

so that (340) writes:

(

∇X̂R
(

X̂
))2

D
1
α c

(

∇X̂R
(

X̂
))2

D1+ 1
α c− C (p̄)σ2

K̂
Γ
(

M
c

)

(341)

=











1−

(

∇X̂R
(

X̂
))2

D
1
α c

(

(

∇X̂R
(

X̂
))2

D1+ 1
α

d

R(X̂)
+

C(p̄)σ2
K̂

M

c

(

∇2
X̂

R(X̂)f
MR(X̂)

+ d

cR(X̂)

)

Γ′ (M
c

)

)

(

(

∇X̂R
(

X̂
))2

D1+ 1
α c− C (p̄)σ2

K̂
Γ
(

M
c

)

)2











V

+

(

∇X̂R
(

X̂
))2

D
1
α

d

R(X̂)
(

∇X̂R
(

X̂
))2

D1+ 1
α c− C (p̄) σ2

K̂
Γ
(

M
c

)

V

Equation (341) can be solved for V with solution:

1

V
= D −

C (p̄)σ2
K̂
Γ
(

M
c

)

(

∇X̂R
(

X̂
))2

D
1
α c

+
d

cR
(

X̂
)













1−

(

1 +
C(p̄)σ2

K̂
MΓ(M

c )

c(∇X̂
R(X̂))

2
D1+ 1

α

(

∇2
X̂
R(X̂)f
Md + 1

c

)

Psi
(

M
c

)

)

(

1− C(p̄)σ2
K̂

Γ(M
c )

(∇X̂
R(X̂))2D1+ 1

α c

)












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Ultimatly, restoring the variable:

D → D
(

∇X̂R
(

X̂
))2

we obtain the solution Kα
X̂

= 1
V :

Kα
X̂

=
D

(

∇X̂R
(

X̂
))2 −

C (p̄)σ2
K̂
Γ
(

M
c

)

(

∇X̂R
(

X̂
))2(1− 1

α )
D

1
α c

(342)

+
d

cR
(

X̂
)













1−

(

1 +
C(p̄)(∇X̂

R(X̂))
2
α σ2

K̂

cD1+ 1
α

(

M
c +

∇2
X̂
R(X̂)f
d

)

Γ′ (M
c

)

)

(

1− (∇X̂
R(X̂))

2
α C(p̄)σ2

K̂

cD1+ 1
α

Γ
(

M
c

)

)













As stated in the text, this is increasing in c, i.e. in f
(

X̂
)

and in R
(

X̂
)

. This corresponds to a

stable level of capital.

Case 2. Very high capital, KX̂ >>> 1, unstable case In this second case, we consider

that
(

∇X̂R
(

X̂
))2

→ 0 and formula (335)and (342) are not valid anymore. Coming back to (171)

leads rather to replace (∇XR (X))
2:

(∇XR (X))
2 → (∇XR (X))

2
+ σ2

X

∇2
XR (KX , X)

H (KX)
= σ2

X

∇2
XR (KX , X)

H (KX)

Thus, if ∇2
XR (KX , X) < 0, (336) is replaced by:

Kα
X̂

(

D + σ2
X

∣

∣∇2
XR (KX , X)

∣

∣K
α
2

X̂

)

= C (p̄)σ2
K̂

Γ
(

p+ 3
2

)

∣

∣

∣f
(

X̂
)∣

∣

∣

with:

p+
3

2
≃

M −∇X̂g
(

X̂,KX̂

)

f
(

X̂
)

and the equation for KX writes:

σ2
X

∣

∣∇2
XR (KX , X)

∣

∣K
3
2α

X̂
=

C (p̄)σ2
K̂
Γ

(

M−∇
X̂

g(X̂,K
X̂)

f(X̂)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

Since, given our assumptions f
(

X̂
)

→ c we find:

KX̂ =





C (p̄)σ2
K̂

|∇2
XR (KX , X)| cΓ





M −∇X̂g
(

X̂,KX̂

)

c









2
3α

(343)

Note that given (343), an equilibrium in the range KX̂ >>> 1 is only possible for c << 1 Otherwise,
there is no equilibrium for a maximum of R (KX , X). This equilibrium value of KX̂ decreases with
c, which corresponds to an unstable equilibrium, as detailed in the text.
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On the other hand, if ∇XR (X) = 0 and ∇2
XR (KX , X) > 0, expression (335) becomes:

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

≃ D − σ2
X

∇2
XR (KX , X)

H (KX)
Kα

X̂
= D − σ2

X∇2
XR (KX , X)K

α
2

X̂

and thus:

Kα
X̂

≃
(

D

σ2
X∇2

XR (KX , X)

)2

(344)

However, this solution with KX >> 1 corresponds to points such that ∇2
XR (KX , X) > 0 and

∇XR (X) = 0. Then, these points are minima of R (X). This equilibrium may exist only if the
level of capital (344) is high enough to compensate the weakness of the purely position dependent
part of expected return and match the condition:

Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1 > 0

This equilibrium is thus unlikely and may be discarded in general.

Case 3. High capital, KX̂ >> 1 In that case, we assume KX̂ relatively large, but bounded,
to ensure that the approximation:

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

≃ D (345)

is still valid.
Equations (329) and (332) imply that the function f

(

X̂
)

is independent of KX̂ and that g
(

X̂
)

is proportional to ∇X̂R
(

X̂
)

. Given (329), the function f
(

X̂
)

can be rewritten:

f
(

X̂
)

=
1

ε



r
(

X̂
)

Kα−1

X̂
− γ

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ b arctan





Kα
X̂
R
(

X̂
)

〈Kα
X〉 〈R (X)〉 − 1









≃ b





π

2
− 〈Kα

X〉 〈R (X)〉
Kα

X̂
R
(

X̂
)



− γD

≡ c− d

Kα
X̂
R
(

X̂
) − γD

Consequently, the expression for f ′
(

X̂
)

is:

f ′
(

X̂
)

≃
d∇X̂R

(

X̂
)

Kα
X̂
R2
(

X̂
) (346)

Similarly,we can approximate (332) as:

g
(

X̂
)

≃ −
∇X̂R

(

X̂
)

f

Kα
X̂
R
(

X̂
) (347)

∇X̂g
(

X̂
)

≃ −
∇2

X̂
R
(

X̂
)

f

Kα
X̂
R
(

X̂
)
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Given (345), and including the constant α in the definition of C (p̄), equation (279) is:

KX̂D
∣

∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂
exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






Γ

(

p+
3

2

)

(348)

with:

p+
1

2
=

M −
(

(g(X̂))
2

σ2
X̂

+

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

))

√

f2
(

X̂
)

Defining V = 1
Kα

X̂

, we can write (348) as an equation for V << 1 by replacing all quantities in term

of V and then perform a first order expansion. To do so, we first, we write (348) as:

V −
D
∣

∣

∣f
(

X̂
)∣

∣

∣

C (p̄)σ2
K̂
exp

(

−σ2
X
σ2
K̂
(p+ 1

2)
2
(f ′(X))2

96|f(X̂)|3
)

Γ
(

p+ 3
2

)

= 0 (349)

and then find an expansion in V for Γ
(

p+ 3
2

)

.
The first order expansion in V of p+ 3

2 is:

p+
3

2
=

M −
(

(g(X̂))2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

f
(

X̂
)

≃
M −

(

(g(X̂))2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

)

c− d

Kα

X̂
R(X̂)

=

M −







(

∇
X̂

R(X̂)

(

− fV

R(X̂)

))2

σ2
X̂

+∇2
X̂
R
(

X̂
)

(

− fV

R(X̂)

)







c− dV

R(X̂)

=
M

c
+

∇2
X̂
R
(

X̂
)

fV

R(X̂)

c
+

M dV

cR(X̂)

c

Consequently, Γ
(

p+ 3
2

)

arising in (338) is given by:

Γ







M

c
+

∇2
X̂
R
(

X̂
)

fV

R(X̂)

c
+

M dV

cR(X̂)

c






= Γ





M

c



1 +∇2
X̂
R
(

X̂
) fV

MR
(

X̂
) +

dV

cR
(

X̂
)









≃ Γ

(

M

c

)

+
MV

c





∇2
X̂
R
(

X̂
)

f

MR
(

X̂
) +

d

cR
(

X̂
)



Γ′
(

M

c

)

= Γ

(

M

c

)



1 +
MV

c





∇2
X̂
R
(

X̂
)

f

MR
(

X̂
) +

d

cR
(

X̂
)



Psi

(

M

c

)




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Ultimately, using that at the first order:

exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






≃ 1

equation (349) for V becomes:

V −
D
∣

∣

∣
f
(

X̂
)∣

∣

∣

C (p̄)σ2
K̂
Γ
(

M
c

)

(

1 + MV
c

(

∇2
X̂
R(X̂)f

MR(X̂)
+ d

cR(X̂)

)

Psi
(

M
c

)

) = 0

that is:

V −
D

(

c− dV

R(X̂)
− γD

)

C (p̄)σ2
K̂
Γ
(

M
c

)

(

1 + MV
c

(

∇2
X̂
R(X̂)f

MR(X̂)
+ d

cR(X̂)

)

Psi
(

M
c

)

) = 0

And a first order expansion yields:

V − D (c− γD)

C (p̄)σ2
K̂
Γ
(

M
c

)



1− dV

(c− γD)R
(

X̂
) −MV





∇2
X̂
R
(

X̂
)

f

MR
(

X̂
) +

d

cR
(

X̂
)



Psi

(

M

c

)



 = 0

with solution:

V =
(

Kα
X̂

)−1
=

D(c−γD)

C(p̄)σ2
K̂

Γ(M
c )

1 + D(c−γD)

C(p̄)σ2
K̂

Γ(M
c )

(

d

(c−γD)R(X̂)
+M

(

∇2
X̂
R(X̂)f

MR(X̂)
+ d

cR(X̂)

)

Psi
(

M
c

)

)

Coming back to Kα
X̂

we have:

Kα
X̂

=
C (p̄)σ2

K̂
Γ
(

M
c

)

D (c− γD)
+

d

(c− γD)R
(

X̂
) +M





∇2
X̂
R
(

X̂
)

f

MR
(

X̂
) +

d

cR
(

X̂
)



Psi

(

M

c

)

(350)

=
C (p̄)σ2

K̂
Γ
(

M
c

)

D (c− γD)
+

d

(c− γD)R
(

X̂
)



1 +M Psi

(

M

c

)



1 +
∇2

X̂
R
(

X̂
)

f

M (c− γD)









This solution satisfies the condition KX̂ >> 1 only if
C(p̄)σ2

K̂

√

M−c
c

Dc >> 1: formula (350) thus shows

that the dependency of Kα
X̂
in the return R

(

X̂
)

depends on the sign of 1+M Psi
(

M
c

)

(

1 +
∇2

X̂
R(X̂)f

M(c−γD)

)

.

If:

1 +M Psi

(

M

c

)



1 +
∇2

X̂
R
(

X̂
)

f

M (c− γD)



 > 0

then Kα
X̂

decreases with R
(

X̂
)

. As stated in the text, this corresponds to an unstable equilibrium.

If:

1 +M Psi

(

M

c

)



1 +
∇2

X̂
R
(

X̂
)

f

M (c− γD)



 < 0
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a stable equilibrium is possible and Kα
X̂

is an increasing function of R
(

X̂
)

and f
(

X̂
)

. This cor-

responds to ∇2
X̂
R
(

X̂
)

<< 0, which arises for instance for a maximum of R
(

X̂
)

. In such case, an

increase in R
(

X̂
)

allows for an increased number
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

of firms, without reducing the average

capital per firm.

Case 4. Intermediate capital, ∞ > KX̂ > 1: We start with asymptotic form of (275):

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂
exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






Γ

(

p+
3

2

)

(351)

Up to a constant that can be absorbed in the definition of C (p̄), we have:

Γ

(

p+
3

2

)

∼∞

√

p+
1

2
exp

((

p+
1

2

)(

ln

(

p+
1

2

)

− 1

))

and (351) can be rewritten as:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂

√

p+
1

2
exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣
f
(

X̂
)∣

∣

∣

3 +

(

p+
1

2

)(

ln

(

p+
1

2

)

− 1

)







(352)
Since we are in an intermediate range for the parameters, we can replace, in first approximation,
ln
(

p+ 1
2

)

by its average over this range: ln
(

p̄+ 1
2

)

. The exponential in (352) thus becomes:

exp











−
σ2
Xσ2

K̂

(

p+ 1
2 − 48|f(X̂)|3

σ2
X
σ2
K̂

(f ′(X))2

(

ln
(

p̄+ 1
2

)

− 1
)

)2

(f ′ (X))
2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3 +
24
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))

2

(

ln

(

p̄+
1

2

)

− 1

)2











and equation (352) rewrites:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣









σ2
Xσ2

K̂
(f ′ (X))

2
exp

(

− 96|f(X̂)|3
σ2
X

σ2
K̂

(f ′(X))2

(

ln
(

p̄+ 1
2

)

− 1
)2
)

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3









1
4

(353)

= C (p̄)σ2
K̂
exp











−
σ2
Xσ2

K̂

(

p+ 1
2 − 48|f(X̂)|3

σ2
X
σ2
K̂

(f ′(X))2

(

ln
(

p̄+ 1
2

)

− 1
)

)2

(f ′ (X))
2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3











√

√

√

√

√

√

(

p+
1

2

)

√

√

√

√

√

σ2
Xσ2

K̂
(f ′ (X))2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

To solve (353) for KX̂ , we proceed in two steps.
We first introduce an intermediate variable W and rewrite (353) as an equation for KX̂ and W .

We set:
√

√

√

√

√

σ2
Xσ2

K̂
(f ′ (X))2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






p+

1

2
−

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))

2

(

ln

(

p̄+
1

2

)

− 1

)






= W (354)
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and rewrite equation (353) partly in terms of W :

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2









σ2
X (f ′ (X))

2
∣

∣

∣f
(

X̂
)∣

∣

∣ exp

(

− 96|f(X̂)|3
σ2
X
σ2
K̂

(f ′(X))2

(

ln
(

p̄+ 1
2

)

− 1
)2
)

96
(

σ2
K̂

)3









1
4

(355)

= C (p̄) exp
(

−W 2
)

√

√

√

√

√

√W + 2

√

√

√

√

√

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))

2

(

ln

(

p̄+
1

2

)

− 1

)

Note that, as seen from (354), W is a function of p and as such can be seen as a parameter
depending on the shape of the sectors space.

Equation (355) both depends on KX̂ and W , and in a second step, we use (354) to write KX̂ as
a function of W . To do so, we use that in the intermediate case ∞ > KX̂ > 1, we can assume that:

f
(

X̂
)

= B1 (X)Kα−1

X̂
+B2 (X)Kα

X̂
− C

(

X̂
)

≃ B2 (X)Kα
X̂

(356)

and that:

M −
(

(

∇
X̂
R(X̂)A(X̂)Kα

X̂

)2

σ2
X̂

+∇2
X̂
R
(

X̂
)

A
(

X̂
)

Kα
X̂

)

B1 (X)Kα−1

X̂
+B2 (X)Kα

X̂
− C

(

X̂
) −3

2
≃

M −
(

(

∇
X̂
R(X̂)A(X̂)Kα

X̂

)2

σ2
X̂

+∇2
X̂
R
(

X̂
)

A
(

X̂
)

Kα
X̂

)

B2 (X)Kα
X̂

−3

2

(357)

Moreover, we can approximate
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

:

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

≃ D (358)

Our assumptions (356), (357) and (358) allow to rewrite the relation (354) between Kα
X̂

and W

as:
√

√

√

√

σ2
Xσ2

K̂
(B′

2 (X))
2

96B3
2 (X)Kα

X̂






p+

1

2
−

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))2

(

ln

(

p̄+
1

2

)

− 1

)






= W

that is:

W =

√

√

√

√

σ2
Xσ2

K̂
(B′

2 (X))
2

96B5
2 (X)K3α

X̂

(359)

×






M −







(

∇X̂R
(

X̂
))2

A
(

X̂
)

σ2
X̂

+
48B4

2 (X)
(

ln
(

p̄+ 1
2

)

− 1
)

σ2
Xσ2

K̂
(B′

2 (X))
2






K2α

X̂
−
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

Kα
X̂







To solve this equation for Kα
X̂
, we consider M as the dominant parameter and find an approxi-

mate solution of (359). At the lowest order, we write:

√

√

√

√

σ2
Xσ2

K̂
(B′

2 (X))
2

96B5
2 (X)K3α

X̂

M = W
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with solution:

Kα
X̂

=

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
1
3

Considering corrections to this result, the solution to (359) is decomposed as:

Kα
X̂

=

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
1
3

+ χ (360)

and using the following intermediate results:

K2α
X̂

=

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
2
3


1 + 2χ

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)− 1
3




K3α
X̂

=

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)



1 + 3χ

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)− 1
3




we are led to rewrite (359) as an equation for χ at first order:

χ





3

2

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)− 1
3

W

+2
W

M







(

∇X̂R
(

X̂
))2

A
(

X̂
)

σ2
X̂

+
48B4

2 (X)
(

ln
(

p̄+ 1
2

)

− 1
)

σ2
Xσ2

K̂
(B′

2 (X))
2







(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
1
3

+
W

M

(

∇2
X̂
R
(

X̂
)

+B2 (X)
)







= −W

M







(

∇X̂R
(

X̂
))2

A
(

X̂
)

σ2
X̂

+
48B4

2 (X)
(

ln
(

p̄+ 1
2

)

− 1
)

σ2
Xσ2

K̂
(B′

2 (X))
2







(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
2
3

−W

M

(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
1
3

whose solution is:

χ = −

(

(∇X̂
R(X̂))

2
A(X̂)

σ2
X̂

+
48B4

2(X)(ln(p̄+ 1
2 )−1)

σ2
X
σ2
K̂
(B′

2(X))2

)

(

σ2
Xσ2

K̂
(B′

2(X))2M2

96B5
2(X)W2

)

+
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
Xσ2

K̂
(B′

2(X))2M2

96B5
2(X)W2

)

2
3

3
2M + 2

(

(∇X̂
R(X̂))

2
A(X̂)

σ2
X̂

+
48B4

2(X)(ln(p̄+ 1
2 )−1)

σ2
X

σ2
K̂
(B′

2(X))
2

)(

σ2
X
σ2
K̂
(B′

2(X))
2
M2

96B5
2(X)W2

)
2
3

+
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
X
σ2
K̂
(B′

2(X))
2
M2

96B5
2(X)W2

)
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so that (360) yields Kα
X̂
:

Kα
X̂
−
(

σ2
Xσ2

K̂
(B′

2 (X))
2
M2

96B5
2 (X)W 2

)
1
3

(361)

= −

(

(∇X̂
R(X̂))

2
A(X̂)

σ2
X̂

+
48B4

2(X)(ln(p̄+ 1
2)−1)

σ2
X
σ2
K̂
(B′

2(X))2

)

(

σ2
Xσ2

K̂
(B′

2(X))2M2

96B5
2(X)W2

)

+
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
Xσ2

K̂
(B′

2(X))2M2

96B5
2(X)W2

)

2
3

3
2M + 2

(

(∇X̂
R(X̂))

2
A(X̂)

σ2
X̂

+
48B4

2(X)(ln(p̄+ 1
2 )−1)

σ2
X

σ2
K̂
(B′

2(X))
2

)(

σ2
X

σ2
K̂
(B′

2(X))
2
M2

96B5
2(X)W2

)
2
3

+
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
X
σ2
K̂
(B′

2(X))
2
M

96B5
2(X)W2

(

(∇X̂
R(X̂))

2
A(X̂)

σ2
X̂

+
48B4

2(X)(ln(p̄+ 1
2)−1)

σ2
X

σ2
K̂
(B′

2(X))2

)

(

σ2
Xσ2

K̂
(B′

2(X))2M2

96B5
2(X)W2

)

+
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
Xσ2

K̂
(B′

2(X))2M2

96B5
2(X)W2

)

2
3

3
2M + 2

(

(∇X̂
R(X̂))

2
A(X̂)

σ2
X̂

+
48B4

2(X)(ln(p̄+ 1
2)−1)

σ2
X
σ2
K̂
(B′

2(X))
2

)(

σ2
X
σ2
K̂
(B′

2(X))2M2

96B5
2(X)W2

)
2
3

+
(

∇2
X̂
R
(

X̂
)

+B2 (X)
)

(

σ2
X

σ2
K̂
(B′

2(X))2M2

96B5
2(X)W2

)

In a third step, we can use equation (361) to rewrite (355) in an approximate form. Actually,
expression (361) implies that in the intermediate case, where Kα

X̂
is of finite magnitude, we have

W 2 ∼ σ2
Xσ2

K̂
M2 and:

exp

(

−W 2 +
24 |B2 (X)|3 Kα

X̂

σ2
Xσ2

K̂
(B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)2
)

≃ exp

(

24 |B2 (X)|3 Kα
X̂

σ2
Xσ2

K̂
(B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)2
)

Moreover using that:

W + 2

√

√

√

√

√

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))2

(

ln

(

p̄+
1

2

)

− 1

)

≃ 2

√

√

√

√

√

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))2

(

ln

(

p̄+
1

2

)

− 1

)

and that ultimately the left hand side of equation (355) writes at the first order:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2









σ2
X (f ′ (X))

2
∣

∣

∣f
(

X̂
)∣

∣

∣ exp

(

− 96|f(X̂)|3
σ2
X
σ2
K̂

(f ′(X))2

(

ln
(

p̄+ 1
2

)

− 1
)2
)

96
(

σ2
K̂

)3









1
4

=







σ2
X (B′

2 (X))
2 |B2 (X)|

96
(

σ2
K̂

)3







1
4

K
1+ 3α

4

X̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

exp






−

24
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
Xσ2

K̂
(f ′ (X))

2

(

ln

(

p̄+
1

2

)

− 1

)2







≃ D







σ2
X (B′

2 (X))
2 |B2 (X)|

96
(

σ2
K̂

)3







1
4

K
1+ 3α

4

X̂
exp

(

−
24 |B2 (X)|3 Kα

X̂

σ2
Xσ2

K̂
(B′

2 (X))2

(

ln

(

p̄+
1

2

)

− 1

)2
)
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equation (355) writes:

D







σ2
X (B′

2 (X))
2 |B2 (X)|

96
(

σ2
K̂

)3







1
4

K
1+3α

4

X̂
exp

(

−
24 |B2 (X)|3 Kα

X̂

σ2
Xσ2

K̂
(B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)2
)

= C (p̄)

√

√

√

√

√2

√

√

√

√

96 |B2 (X)|3 Kα
X̂

σ2
Xσ2

K̂
(B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)

that is:

K
1+α

2

X̂
exp

(

−
24 |B2 (X)|3 Kα

X̂

σ2
Xσ2

K̂
(B′

2 (X))2

(

ln

(

p̄+
1

2

)

− 1

)2
)

=
8C (p̄)

D

√

3σ2
K̂
|B2 (X)|

σ2
X (B′

2 (X))2

(

ln

(

p̄+
1

2

)

− 1

)

(362)

Equation (362) has the form:
xd exp (−ax) = c

with solution:
x = c

1
d exp

(

−W0

(

−a

d
c
1
d

))

where W0 is the Lambert W function with parameter 0. Applying this result to our case with:

d =
1+ α

2α
x = Kα

X̂

a =
24 |B2 (X)|3

σ2
Xσ2

K̂
(B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)2

c =
8C (p̄)

D

√

3σ2
K̂
|B2 (X)|

σ2
X (B′

2 (X))
2

(

ln

(

p̄+
1

2

)

− 1

)

we obtain:

Kα
X̂

=

(

8C (p̄)

D

√

3σ2
K̂
|B2 (X)|

σ2
X (B′

2 (X))2

(

ln

(

p̄+
1

2

)

− 1

)

)

2α
1+α

× exp






−W0






− 48α

1 + α





√

3σ2
K̂

σ2
X

8C (p̄)

D





2α
1+α

|B2 (X)|3+ α
1+α

σ2
Xσ2

K̂
(B′

2 (X))2+
2α
1+α

(

ln

(

p̄+
1

2

)

− 1

)2+ α
1+α













As stated in the text, this is an increasing function of B2 (X). Moreover, the corrections to this

formula, given in (361) show that Kα
X̂

is a decreasing function of
(

∇X̂R
(

X̂
))2

and ∇2
X̂
R
(

X̂
)

.

Case 5. Low capital, KX̂ << 1: When average physical capital per firm in sector X̂ is very

low, we can use our assumptions about g
(

X̂,Ψ, Ψ̂
)

and ∇X̂g
(

X̂,Ψ, Ψ̂
)

, equations (293) and (??),

and assume that:
f
(

X̂
)

≃ B1

(

X̂
)

Kα−1

X̂
>> 1 (363)

and:
g
(

X̂
)

≃ 0
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and moreover that:
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

= D − L (X) (∇XR (X))
2
Kα

X̂
≃ D

For these conditions, the solution of (??) is locally stable.
Moreover, the conditions KX̂ << 1 and the defining equation (330) for f imply that f > 0, and

that for α < 1:
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣
f
(

X̂
)∣

∣

∣

3 << 1

Under these assumptions, equation (??) reduces to:

KX̂D
∣

∣

∣f
(

X̂
)∣

∣

∣ ≃ C (p̄)σ2
K̂
Γ̂

(

p+
1

2

)

(364)

This equation (364) can be approximated. Actually, using formula (??) for p yields:

p+
1

2
=

M −
(

(g(X̂))
2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

)

√

f2
(

X̂
)

− 1 ≃ −1

and an expansion of Γ̂
(

p+ 1
2

)

around the value p+ 1
2 = −1 writes:

Γ̂

(

p+
1

2

)

≃ Γ̂ (−1) + Γ̂′ (−1)

M −
(

(g(X̂))2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

)

√

f2
(

X̂
)

Consequently, when returns are large, i.e. f
(

X̂
)

>> 1, equation (??) writes:

KX̂

(

B1

(

X̂
)

Kα−1

X̂

)

≃
C (p̄)σ2

K̂

D









Γ̂ (−1) + Γ̂′ (−1)

M −
(

(g(X̂))2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

)

B1

(

X̂
)

Kα−1

X̂









with first order solution70:

KX̂ =





C (p̄)σ2
K̂
Γ̂ (−1)

DB1

(

X̂
)





1
α

+

C(p̄)σ2
K̂

D Γ̂′ (−1)

(

M −
(

(g(X̂))
2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

))

B
1
α
1

(

X̂
)

(

C(p̄)σ2
K̂

Γ̂(−1)

D

)1− 1
α

(365)

Equation (365) shows that average capital KX̂ increases with M −
(

(g(X̂))
2

σ2
X̂

+∇X̂g
(

X̂,KX̂

)

)

:

when expected long-term returns increase, more capital is allocated to the sector. Equation (302)

also shows that average capital KX̂ is maximal when returns R
(

X̂
)

are at a local maximum, i.e.

when
(g(X̂))2

σ2
X̂

= 0 and ∇X̂g
(

X̂,KX̂

)

< 0.

Inversely, the same equations (365) and (302) show that average capital KX̂ is decreasing in

f
(

X̂
)

. The equilibrium is unstable. When average capital is very low, i.e. KX̂ << 1, which is the

70Given our hypotheses, D >> 1 , which implies that KX̂ << 1, as needed.
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case studied here, marginal returns are high. Any increase in capital above the threshold widely
increases returns, which drives capital towards the next stable equilibrium, with higher KX̂ . Recall

that in this unstable equilibrium, KX̂ must be seen as a threshold. The rise in f
(

X̂
)

reduces the

threshold KX̂ , which favours capital accumulation and increases the average capital KX̂ .

This case is thus an exception: the dependency of KX̂ in R
(

X̂
)

is stable, but the dependency

in f
(

X̂
)

is unstable. This saddle path type of instability may lead the sector, either towards a

higher level of capital (case 4 below) or towards 0. where the sector disappears.

A 4.3 Instability and modification of sectors’ space

A 4.3.1 Disappearance of Low average capital sectors

Average capital is unstable when B
(

X̂
)

< −1. A shock on average capital can either drive the

equilibrium to some stable value, or worsen the sector’s capital landscape.
In the latter case, investors tend to desert the sector, so that both the average capital and the

density of investors tend to 0: KX̂ → 0 and
∣

∣

∣Ψ̂
(

X̂, K̂
)∣

∣

∣

2

→ 0. Producers remain in the sector but with

a very low capital on average. The very lack of capital prevents these firms to shift towards more
attractive sectors in the long run. Assuming physical capital returns are Cobb-Douglas, marginal
productivity is mathematically high for a very low capital. Thus, short-term returns are very large:

f
(

X̂
)

→ ∞.

Note that this type of instability only applies to very low level of average capital, so that the
total capital involved is negligible, and this instability does not impact the system globally.

A 4.3.2 Very high level of average capital and modification of space

Average capital is also unstable when B
(

X̂
)

> 1. However, in this case investors are lured in the

sector, so that average capital in the sector increases quickly KX̂ → ∞, and short-term returns tend

to be small: f
(

X̂
)

→ c for some constant c << 1. Consequently, for KX̂ → ∞,
∂f(X̂,K

X̂)
∂K

X̂
→ 0, which

translates decreasing marginal returns. Similarly, the expected long-term returns will be caped, and
∂p

∂K
X̂

→ 0, and l
(

X̂,KX̂

)

→ 0.

The instability condition (107) turns out to be a lower bound for the sensitivity of firms density
relative to average capital:

∂ ln
∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

∂KX̂

> 1 (366)

This lower bound creates a herd effect: the number of firms in sector X̂ could grow indefinitely

with capital:
∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

→ ∞.

However, the fixed number of firms implies that this shift towards sector X̂ will necessarily

reach a maximum
∣

∣

∣Ψ̂
(

X̂, K̂
)∣

∣

∣

2

max
>> 1. For this maximum density, the corresponding level of

average capital at sector X̂ will be approximatively:

KX̂ ≃ Kmax =

ln

(

∣

∣

∣Ψ̂
(

X̂, K̂
)∣

∣

∣

2

max

)

r

This concentration of capital in some sectors directly impacts the amount of disposable capital
along with the instability condition (107) for the rest of the system. This occurs in several steps.
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First, the disposable average capital for the rest of the system reduces to 〈K〉 − Kmax
V , with V ,

the volume of the sector space and 〈K〉, the average physical capital in the whole space.

Second, this reduction of average capital negatively impacts the growth prospects R
(

X̂
)

, the

stock prices F1 (X), and consequently the short term returns f
(

X̂
)

.

In turn, this modifies the stability condition
∣

∣

∣B
(

X̂
)∣

∣

∣ over the whole space. Consequently, some

sectors will move over the instability threshold B
(

X̂
)

> 1, while others will move below B
(

X̂
)

< −1.

Some sectors will experience a capital increase, others will disappear.
If a stable situation finally emerges, the resulting sectors’ space will be reduced: some sectors

will have disappeared, and only sectors with positive capital will have remained.

A.4.4 Global instability

This appendix completes the analysis of the solutions of (99) for average capital. We have studied
the local instability of solutions previously. However, a second source of instability of the system
arises outside of the equations for average capital per firm per sector, (99), and its differential
version, (280). It stems from the sectors’ space expected long-term returns. It is induced by the
minimization equations (88) and (89), and is a source of global instability for the background field.

A 4.4.1 Mechanism of global instability:

In these equations, the Lagrange multiplier λ̂ is the eigenvalue of a second-order differential equa-
tion. Because there exist an infinite number of eigenvalues λ̂, there are an infinite number of local

minimum background fields Ψ
(

X̂,KX̂

)

. But the most likely minimum, given in (??), is obtained

for λ̂ = M (see appendix 2).
Yet λ̂ is also the Lagrange multiplier that implements the constraint of a fixed number N of

agents.
Since the number of investors is computed by:

∫

∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

d
(

X̂,KX̂

)

the constraint implemented by λ̂ is:

N̂ =

∫

∣

∣

∣Ψ
(

X̂,KX̂

)∣

∣

∣

2

d
(

X̂,KX̂

)

(367)

since this constraint runs over the whole space, it is a global property of the system.

Yet equations (88) and (89), the minimization equations defining Ψ
(

X̂,KX̂

)

, may also be viewed

as a set of local minimization equations at each point X̂ of the sector space. Considered individually,
each provide a lower minimum that could be reached separately for each X̂. In other words,
provided each sector’s number of agents is fixed independently from the rest of the system, a stable
background field could be reached at every point.

However, our global constraint rules out this set of local minimizations. The solutions of (88)
and (89) are thus a local minimum for the sole points X̂ such that the lowest value of λ̂ is reached
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at X̂, i.e. points such that71:

A
(

X̂
)

≡

(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂
)

−
σ2
K̂
F 2
(

X̂
)

2f2
(

X̂
) = M (368)

For points X̂ that do not satisfy (368), the solutions Ψ
(

X̂,KX̂

)

and Ψ†
(

X̂,KX̂

)

of (88) and (89),

with λ̂ = −M are not global minima, but merely a local one. Any perturbation δΨ
(

X̂,KX̂

)

due to

a change of parameters destabilizes the whole system: the equilibrium is unstable.
The stability of both the background field and the potential equilibria are thus determined by

A
(

X̂
)

, the sector space’s overall shape of returns and expectations. An homogeneous shape, a

space such that A
(

X̂
)

, presents small deviations around M and is more background-stable than

an heterogeneous space.
More importantly, the background fields and associated average capital must be understood

as potential, not actual long-run equilibria: the whole system is better described as a dynamical
system, which is defined in section 5 of the text, between potential backgrounds where time enters
as a macro-variable. We consider the results of the background field’s dynamical behavior in section
7.

Removing global instability As mentioned above, an homogeneous shape is a space such that

the parameter A
(

X̂
)

presents small deviations around M . In an heterogeneous shape, the space

presents large differences in A
(

X̂
)

. We find that homogeneous shapes are more background-stable

than heterogeneous ones. This partly results from the global constraint (367) imposed on the
number of agents in the model, which ensures that the number of financial agents in the system is
fixed over the whole sector space.

Relaxing this constraint fully would render the number of agents in sectors independent. The
associated background field of each sector could, at each point, adjust to be minimum and stabilize
the system.

To do so, we replace equation (88), the minimization equation, by a set of independent equations
with independent Lagrange multipliers λ̂X̂ for each sector X̂, so that for each X̂, the minimum
configuration is reached by setting:

λ̂X̂ =

(

g
(

X̂
))2

σ2
X̂

+ f
(

X̂
)

+
1

2

√

f2
(

X̂
)

+∇X̂g
(

X̂
)

−
σ2
K̂
F 2
(

X̂
)

2f2
(

X̂
)

This is similar to the Lagrange multiplier of the minimization equation for the background field,
stripped of the maximum condition λ̂ = −M72. This X̂ dependency of the Lagrange multiplier
implies that the average capital equation (99) is replaced by73:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣ = C (p̄)σ2
K̂
Γ̂

(

1

2

)

= C (p̄)σ2
K̂
exp






−
σ2
Xσ2

K̂
(f ′ (X))

2

384
∣

∣

∣f
(

X̂
)∣

∣

∣

3






(369)

71See definition (285) and section 8.2. for a study of such points.

72see discussion following equation (93).
73Expression (317) is used to compute Γ̂

(

1
2

)

.
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This equation is identical to (286) and has thus at least one locally stable solution. The solutions
are computed in (288) and (289).

Solutions to (369) do no longer directly depend on the relative characteristics of a particular

sector, but rather on the returns at point f
(

X̂
)

and on the number of firms in the sector,
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

.

Yet this dependency is only indirect, through the firms’ density at sector X̂,
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

, and this

quantity does not vary much in the sector space.
An intermediate situation between (99) and (369) could also be considered: it would be to

assume a constant number of agents in some regions of the sector space.
Alternatively, limiting the number of investors per sector can be achieved through some public

regulation to maintain a constant flow of investment in the sector.

Appendix 5. Dynamics for KX̂

A 5.1 Variation of the defining equation for K
X̂

A 5.1.1 Compact formulation

As claimed in the text, we consider the dynamics for KX̂ generated by modification of the parame-
ters. To do so, we compute the variation of equation (279). We need the variations of the functions
involved in (279) with respect to two dynamical variables KX̂ and R (X). Starting with (279):

KX̂

(

D − L
(

X̂
)

Kη

X̂

)

=
C (p̄)σ2

K̂
∣

∣

∣f
(

X̂
)∣

∣

∣

Γ̂

(

p+
1

2

)

(370)

where:

Γ̂

(

p+
1

2

)

= exp






−
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






(371)

×
(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

)

We first compute the variations of the right hand side and use that, in first approximation:

d

dp

(

ln

(

Γ
(

− p+1
2

)

Γ
(

1−p
2

)

− Γ
(

− p
2

)

Γ
(−p

2

)

2p+2Γ (−p− 1) Γ (−p)
+ p

Γ
(

− p
2

)

Γ
(

2−p
2

)

− Γ
(

− p−1
2

)

Γ
(

− p−1
2

)

2p+1Γ (−p) Γ (−p+ 1)

))

≃ ln

(

p+
1

2

)

(372)
and:

d

dp






−σ2

X

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3






= −σ2

X

(

p+ 1
2

)

(f ′ (X))
2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

so that:
d
dp Γ̂

(

p+ 1
2

)

Γ̂
(

p+ 1
2

) ≃ ln

(

p+
1

2

)

−
σ2
Xσ2

K̂

(

p+ 1
2

)

(f ′ (X))
2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3 (373)
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Assuming that C (p̄) is constant, (373) allows to rewrite the variation of of equation (370):

∇θ

(

KX̂

(

D − L
(

X̂
)

Kη

X̂

))

= KX̂

(

D − L
(

X̂
)

Kη

X̂

)

×






−
∇θ

∣

∣

∣f
(

X̂
)∣

∣

∣

∣

∣

∣f
(

X̂
)∣

∣

∣

+






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(
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2

)

−
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Xσ2

K̂

(

p+ 1
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)

(f ′ (X))
2

48
∣

∣

∣f
(
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)∣

∣

∣

3






∇θp







+
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Xσ2
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(
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2

)2
(f ′ (X))

2
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∣
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∣
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








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∣

∣
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)∣

∣

∣

∣

∣
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(
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∣
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−
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(

f ′(X)

f(X̂)

)2

(

f ′(X)

f(X̂)

)2











and we deduce from this equation, that the dynamic version of equation (370) is:

∇θKX̂

KX̂

−
∇θ

(

L
(

X̂
)

Kη

X̂

)

D − L
(

X̂
)

Kη
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=






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Xσ2
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(f ′ (X))
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∣
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(374)

+
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A5.1.2 Expanded form of (374)

To find the dynamic equation for KX̂ we expand each side of (374).
The left hand side of (374) can be developed as:



1− η
L
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X̂
)

Kη

X̂

D − L
(

X̂
)

Kη
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
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and (374) becomes:
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∥
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
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To compute the right hand side of (375). We use that:

p = −
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X̂

(

∇X̂g
(

X̂,KX̂

))

σ2
X̂
f
(

X̂
) − 3

2

so that, the variation ∇θp is given by:
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To compute ∇θp we must use the form of the functions defined in Appendix 2. We thus obtain:
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Ultimately, the right hand side of (375) is given by:
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so that the variational equation for KX̂ (375) writes:
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f(X̂)

)2

−C2

(

p, X̂
)









2
g2
(

X̂
)

σ2
X̂

∣

∣

∣f
(

X̂
)∣

∣

∣

∇θ∇X̂R
(

X̂
)

∇X̂R
(

X̂
) +

∇X̂g
(

X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

∇θ∇2
X̂
R
(

X̂
)

∇2
X̂
R
(

X̂
) +

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

∇θKX̂

KX̂









with:

C1

(

p, X̂
)

=
σ2
Xσ2

K̂

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3 (377)

C2

(

p, X̂
)

= ln

(

p+
1

2

)

−
2C1

(

p, X̂
)

p+ 1
2

C3

(

p, X̂
)

= 1− C1

(

p, X̂
)

+

(

p+
3

2

)

C2

(

p, X̂
)
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These term can be reordered and the general dynamic equation for KX̂ is ultimately written as:









1− η
D −

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 +

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

∣

∣

∣f
(

X̂
)∣

∣

∣

C2

(

p, X̂
)









∇θKX̂

KX̂

(378)

+2







g2
(

X̂
)

C2

(

p, X̂
)

σ2
X̂

∣

∣

∣f
(

X̂
)∣

∣

∣

−
D −

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2







∇θ∇X̂R
(

X̂
)

∇X̂R
(

X̂
) +

∇X̂g
(

X̂
)

C2

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

∇θ∇2
X̂
R
(

X̂
)

∇2
X̂
R
(

X̂
)

= −C3

(

p, X̂
) ∇θ

∣

∣

∣
f
(

X̂
)∣

∣

∣

∣

∣

∣f
(

X̂
)∣

∣

∣

− C1

(

p, X̂
)

∇θ

(

f ′(X)

f(X̂)

)2

(

f ′(X)

f(X̂)

)2

A5.1.3 Dynamic equation for particular forms of f
(

X̂,KX̂

)

and
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

We can put equation (378) in a specific form, by using the explicit formula for f
(

X̂,KX̂

)

and
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

given in appendix 2. We have:

∇θf
(

X̂,KX̂

)

f
(

X̂,KX̂

) ≃
r
(

KX̂ , X̂
)

(

∇θr(KX̂
,X̂)

r(KX̂
,X̂)

+ (α− 1)
∇θKX̂
K

X̂

)

f
(

X̂
)

+
γ
(

ηL
(

X̂
)

Kη

X̂

∇θKX̂
K

X̂
+ 2L

(

X̂
)

Kη

X̂

∇θ(∇XR(X))
∇XR(X)

)

+ F ′
1

(

R
(

KX̂ , X̂
)) ∇θR(KX̂

,X̂)
R(KX̂

,X̂)

f
(

X̂
)

≃
r
(

KX̂ , X̂
)

(

∇θr(X̂)
r(KX̂

,X̂)
+ (α− 1)

∇θKX̂
K

X̂

)

f
(

X̂
)

+
γ
(

ηL
(

X̂
)

Kη

X̂

∇θKX̂
K

X̂
+ 2L

(

X̂
)

Kη

X̂

∇θ(∇XR(X))
∇XR(X)

)

+ ςF1

(

R
(

KX̂ , X̂
)) ∇θR(KX̂

,X̂)
R(KX̂

,X̂)

f
(

X̂
)

=
r
(

KX̂ , X̂
) ∇θr(X̂)

r(KX̂
,X̂)

f
(

X̂
)

+

(

γηL
(

X̂
)

Kη

X̂
+ (α− 1)

) ∇θKX̂
K

X̂
+ ςF1

(

R
(

KX̂ , X̂
)) ∇θR(KX̂

,X̂)
R(KX̂

,X̂)
+ 2γL

(

X̂
)

Kη

X̂

∇θ(∇XR(X))
∇XR(X)

f
(

X̂
)

To compute ∇θ ln

(

f ′(X)

f(X̂)

)2

arising in (378), we use that in first approximation, for relatively large

KX̂ :




f ′ (X)

f
(

X̂
)





2

≃





F ′
1

(

R
(

KX̂ , X̂
))

∇X̂R
(

KX̂ , X̂
)

F1

(

R
(

KX̂ , X̂
))





2

≃
(

ς∇X̂R
(

KX̂ , X̂
))2
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that can be considered int the sequel negligible at the first order.
Consequently, for the chosen forms of the parameter functions, the dynamics equation (378)

becomes ultimately:

k
∇θKX̂

KX̂

+ l
∇θR

(

X̂
)

R
(

X̂
) − 2m

∇X̂∇θR
(

X̂
)

∇X̂R
(

X̂
) + n

∇2
X̂
∇θR

(

X̂
)

∇2
X̂
R
(

X̂
) = −C3

(

p, X̂
) ∇θr

(

X̂
)

f
(

X̂
) (379)

with:

k = 1− η



1−
γC3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣





D −
∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 (380)

+

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

C2

(

p, X̂
)

− (1− α)C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

l =
ςF1

(

R
(

KX̂ , X̂
))

C3

(

p, X̂
)

f
(

X̂
)

m =



1−
γC3

(

p, X̂
)

f
(

X̂
)





D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 −
g2
(

X̂
)

C2

(

p, X̂
)

σ2
X̂

n =
∇X̂g

(

X̂
)

C2

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

A5.2 Full dynamical system

To make the system self-consistent, we introduce also a dynamics for R.

We assume that R depends on KX̂ , X̂ and ∇θKX̂ , that leads to write: R
(

KX̂ , X̂,∇θKX̂

)

. The

variation is assumed to follow a diffusion process:

∇θR
(

θ, X̂
)

=

∫

θ′<θ

G1

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇θ′R
(

θ′, X̂ ′
)

d
(

θ′, X̂ ′
)

+

∫

θ′<θ

G2

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇θ′KX̂′d
(

θ′, X̂ ′
)

The first orders expansion of the right hand side leads to the following form for ∇θR
(

θ, X̂
)

:

∇θR
(

θ, X̂
)

=

∫

(

X̂ − X̂ ′
)(

G1

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇X̂∇θR
(

θ, X̂
)

+G2

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇X̂∇θKX̂

)

(381)

+
1

2

∫

(

X̂ − X̂ ′
)2 (

G1

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇2
X̂
∇θR

(

θ, X̂
)

+G2

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇2
X̂
∇θKX̂

)

+

∫

(θ − θ′)
(

G1

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇θ∇θR
(

θ, X̂
)

+G2

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇θ∇θKX̂

)

+
1

2

∫

(θ − θ′)
2
(

G1

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇2
θ∇θR

(

θ, X̂
)

+G2

((

θ, X̂
)

,
(

θ′, X̂ ′
))

∇2
θ∇θKX̂

)

+...
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where the crossed derivatives have been discarded for the sake of simplicity. We assume G1

((

θ, X̂
)

,
(

θ, X̂
))

=

0 to avoid auto-interaction.
Performing the integrals yields:

∇θR
(

θ, X̂
)

= a0

(

X̂
)

∇θKX̂ + a
(

X̂
)

∇X̂∇θKX̂ + b
(

X̂
)

∇2
X̂
∇θKX̂ (382)

+c
(

X̂
)

∇θ

(

∇θKX̂

)

+ d
(

X̂
)

∇2
θ

(

∇θKX̂

)

+e
(

X̂
)

∇X̂

(

∇θR
(

θ, X̂
))

+ f
(

X̂
)

∇2
X̂

(

∇θR
(

θ, X̂
))

+g
(

X̂
)

∇θ

(

∇θR
(

θ, X̂
))

+ h
(

X̂
)

∇2
θ

(

∇θR
(

θ, X̂
))

+u
(

X̂
)

∇X̂∇θ

(

∇θKX̂

)

+ v
(

X̂
)

∇X̂∇θ

(

∇θR
(

θ, X̂
))

We ssume that the coefficients are slowly varying, since their are obtained by averages.

Gathering the dynamics (379) and (382) for ∇θKX̂ and ∇θR
(

θ, X̂
)

leads to a matricial system:

0 =





k
K

X̂

l

R(X̂)

−a0

(

X̂
)

1





(

∇θKX̂

∇θR

)

(383)

−





0 2m

∇
X̂
R(X̂)

∇X̂

a
(

X̂
)

∇X̂ + c
(

X̂
)

∇θ e
(

X̂
)

∇X̂ + g
(

X̂
)

∇θ





(

∇θKX̂

∇θR

)

−





0 − n

∇2
X̂
R(X̂)

∇2
X̂

d
(

X̂
)

∇2
θ + b

(

X̂
)

∇2
X̂
+ u

(

X̂
)

∇X̂∇θ e
(

X̂
)

∇2
θ + f

(

X̂
)

∇2
X̂
+ v∇X̂∇θ





(

∇θKX̂

∇θR

)

A5.3 Oscillatory solutions

We look for a solution of (384) of the form:

(

∇θKX̂

∇θR
(

X̂
)

)

= exp
(

iΩ
(

X̂
)

θ + iG
(

X̂
)

X̂
)

(

∇θK0

∇θR0

)

with G
(

X̂
)

and Ω
(

X̂
)

slowly varying. Consequently, the system (383) writes:









k
K

X̂

l

R(X̂)
− i 2m

∇
X̂
R(X̂)

G− n

∇2
X̂
R(X̂)

G2

−a0

(

X̂
)

− ia
(

X̂
)

G− ic
(

X̂
)

Ω

+dΩ2 + bG2 + uΩG

1− ie
(

X̂
)

G− ig
(

X̂
)

Ω + eΩ2

+fG2 + uΩG









(

∇θKX̂

∇θR

)

= 0 (384)

By canceling the determinant of the system, we are led to the following relation between Ω
(

X̂
)

and G
(

X̂
)

:

0 =
k

KX̂

(1− ieG− igΩ) +





l

R
(

X̂
) − i

2m

∇X̂R
(

X̂
)G



 (a0 + iaG+ icΩ)

− l

R
(

X̂
)

(

dΩ2 + bG2 + uΩG
)

+
k

KX̂

(

eΩ2 + fG2 + vΩG
)
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In the sequel, we restrict to the first order terms, which yields the expression for Ω:

Ω =
i

(

lc

R(X̂)
− i 2mc

∇
X̂
R(X̂)

G

)

− kg
K

X̂





k

KX̂

(1− ieG) +





l

R
(

X̂
) − i

2m

∇X̂R
(

X̂
)G



 (a0 + iaG)





=

(

lc

R(X̂)
− kg

K
X̂

)

+ i 2mc

∇
X̂
R(X̂)

G

(

lc

R(X̂)
− kg

K
X̂

)2

+

(

2mc

∇
X̂
R(X̂)

G

)2

×









ke

KX̂

+





2ma0

∇X̂R
(

X̂
) − la

R
(

X̂
)







G+ i





k

KX̂

+
a0l

R
(

X̂
) +

2ma

∇X̂R
(

X̂
)G2









Or equivalently:

Ω =

(

lc

R(X̂)
− kg

K
X̂

)(

ke
K

X̂
+

(

2ma0
∇

X̂
R(X̂)

− la

R(X̂)

))

G− 2mc

∇
X̂
R(X̂)

G

(

k
K

X̂
+ a0l

R(X̂)
+ 2ma

∇
X̂

R(X̂)
G2

)

(

lc

R(X̂)
− kg

K
X̂

)2

+

(

2mc

∇
X̂

R(X̂)
G

)2

+i

(

lc

R(X̂)
− kg

K
X̂

)(

k
K

X̂
+ a0l

R(X̂)
+ 2ma

∇
X̂

R(X̂)
G2

)

+ 2mc

∇
X̂

R(X̂)

(

ke
K

X̂
+

(

2ma0
∇

X̂
R(X̂)

− la

R(X̂)

))

G2

(

lc

R(X̂)
− kg

K
X̂

)2

+

(

2mc

∇
X̂
R(X̂)

G

)2

We focus on the influence of time variations of ∇θKX̂ on ∇θR, and we can assume g ≃ 0 so that
there is no self influence of ∇θR on itself: ∇θR depends on the variations of ∇θKX̂ as well as the
neighboorhood sectors variations of ∇θR. Moreover, the coefficients e and a, being obtained by
integration or first order expansion, can be considered as nul.

Consequently, the equation for Ω reduces to:

Ω =

lc

R(X̂)

(

2ma0
∇

X̂
R(X̂)

)

G− 2mc

∇
X̂
R(X̂)

G

(

k
K

X̂
+ a0l

R(X̂)

)

(

lc

R(X̂)

)2

+

(

2mc

∇
X̂

R(X̂)
G

)2 + i

lc

R(X̂)

(

k
K

X̂
+ a0l

R(X̂)

)

+ 2mc

∇
X̂

R(X̂)

(

2ma0
∇

X̂
R(X̂)

)

G2

(

lc

R(X̂)

)2

+

(

2mc

∇
X̂

R(X̂)
G

)2

A5.4 Stability

The system is stable and the dynamics is dampening if:

lc

R
(

X̂
)





k

KX̂

+
a0l

R
(

X̂
)



+
4m2ca0

(

∇X̂R
(

X̂
))2G

2 > 0 (385)

To study the sign of (385) we need to estimate the coefficient k.

A5.4.1 Estimation of the coefficients k, l and m

We can estimate k and l by computing the factors Ci

(

p, X̂
)

, for i = 1, 2, 3.

This is done by estimating p+ 1
2 . We start with the asymptotic form of Γ̂

(

p+ 1
2

)

:
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Γ̂

(

p+
1

2

)

≃
√

p+
1

2
exp






−σ2

X

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3







and rewriting the equation for KX̂ as:

KX̂

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣
f
(

X̂
)∣

∣

∣







σ2
X (f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3







1
4

= C (p̄)σ2
K̂
exp






−σ2

X

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3







√

√

√

√

√

√

(

p+
1

2

)

√

√

√

√

√

σ2
X (f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

(386)
Then, using (377), we set:

(

p+
1

2

)

√

√

√

√

√

σ2
X (f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3 =

√

C1

(

p, X̂
)

(387)

Equation (386) writes:

KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣

(

σ2
X(f ′(X))

2

96|f(X̂)|3
)

1
4

C (p̄)σ2
K̂

= exp
(

−C1

(

p, X̂
))(

C1

(

p, X̂
))

1
4

(388)

and the solution to (388) is:

C1

(

p, X̂
)

=
σ2
X

(

p+ 1
2

)2
(f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3 (389)

= C0

(

X̂,KX̂

)

exp
(

−W
(

k,−4C0

(

X̂,KX̂

)))

with:

C0

(

X̂,KX̂

)

=







KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣

C (p̄)σ2
K̂







4

σ2
X (f ′ (X))

2

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

and where W (k, x) is the Lambert W function. The parameter k = 0 for the stable case with low
KX̂ and k = −1 for the unstable case with KX̂ large.

We can deduce p+ 1
2 from (389):

p+
1

2
=

√

C1

(

p, X̂
)

√

σ2
X
(f ′(X))2

96|f(X̂)|3
(390)

and 2
C1(p,X̂)

p+ 1
2

:

2
C1

(

p, X̂
)

p+ 1
2

=

√

C1

(

p, X̂
)σ2

X (f ′ (X))
2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3
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From (390) and (??) we deduce:

C2

(

p, X̂
)

= ln

(

p+
1

2

)

−
2C1

(

p, X̂
)

p+ 1
2

(391)

=
1

2
ln

C1

(

p, X̂
)

σ2
X
(f ′(X))2

96|f(X̂)|3
−
√

C1

(

p, X̂
)σ2

X (f ′ (X))
2

48
∣

∣

∣f
(

X̂
)∣

∣

∣

3 ≃ 1

2
ln

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2

We can also compute:

(

p+
3

2

)

ln

(

p+
1

2

)

≃
48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

C1

(

p, X̂
)

σ2
X (f ′ (X))

2 ln
96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2

=
1

2







KX̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣f
(

X̂
)∣

∣

∣

C (p̄)σ2
K̂







4

ln
96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2

× exp
(

−W
(

k,−4C0

(

X̂,KX̂

)))

so that:

C3

(

p, X̂
)

= 1− C1

(

p, X̂
)

+

(

p+
3

2

)

C2

(

p, X̂
)

(392)

= 1− C1

(

p, X̂
)

+

(

p+
3

2

)



ln

(

p+
1

2

)

−
2C1

(

p, X̂
)

p+ 1
2





≃ 1 +







48
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))2

ln
96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))2

− 1






C1

(

p, X̂
)

≃ 1 +
1

2







KX̂

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2 ∣
∣

∣
f
(

X̂
)∣

∣

∣

C (p̄)σ2
K̂







4

exp
(

−W
(

k,−4C0

(

X̂,KX̂

)))

ln
96
∣

∣

∣
f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2

Given that our assumptions σ2
X < 1 and in most cases

96|f(X̂)|3
σ2
X
(f ′(X))2

>> 1, then
96|f(X̂)|3
σ2
X

(f ′(X))2
>> 1 and

C3

(

p, X̂
)

>> 1.

These computations allow to estimate k and l. We start with k. Given that (see (380)):

k = 1− η



1−
γC3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣





D −
∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

C2

(

p, X̂
)

− (1− α)C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

l =
ςF1

(

R
(

KX̂ , X̂
))

C3

(

p, X̂
)

f
(

X̂
)

m =



1−
γC3

(

p, X̂
)

f
(

X̂
)





D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
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the sign of k and l depend on the magnitude of KX̂ .

A5.4.1.1 KX̂ >> 1 For KX̂ >> 1, using (??) and:

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

= D −
(

∇XR
(

X̂
))2

Kα
X̂

we have:

Kα
X̂

≃ D
(

∇X̂R
(

X̂
))2 −

C (p̄)σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))2(1− 1

α )
D

1
α c

and:

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ≃ D1+ 1
α c

C (p̄)σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))

2
α

The constant c has been defined in appendix 3, and satisfies c << 1. As a consequence:

k ≃ η
γC3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 − (1− α)
C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

≃









ηγD1+ 1
α c

C (p̄) σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))

2
α

− (1− α)









C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

This may be negative or positive depending on the relative magnitude of ηγD1+ 1
α c

C(p̄)σ2
K̂

√

M−c
c (∇X̂

R(X̂))
2
α

and (1− α). The first case correspond to the stable equilibrium with large KX̂ and the second case
to the stable case with large KX̂ studied in appendix 2.

Unstable case This case corresponds to:

D1+ 1
α c

C (p̄)σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))

2
α

>> 1

Moreover, using (392) and the following estimation, we have:

k ≃ η
γC3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

ηγD1+ 1
α c

C (p̄)σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))

2
α

>> 1 (393)

We can also estimate
∣

∣

∣

k
K

X̂

∣

∣

∣. In this case:

k

KX̂

≃ η
γC3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

ηγD
1
α c

C (p̄) σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))

2
α

>> 1 (394)
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We can estimate l by the same token:

l =
ςF1

(

R
(

KX̂ , X̂
))

C3

(

p, X̂
)

f
(

X̂
) >> 1

and using (394) we have:
∣

∣

∣

∣

k

KX̂

∣

∣

∣

∣

>> l

The coefficient m is obtained by using that in this case:

m ≃



1−
γC3

(

p, X̂
)

f
(

X̂
)





D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 ≃ −1

η
k

Stable case For the stable case we have:

ηγD1+ 1
α c

C (p̄)σ2
K̂

√

M−c
c

(

∇X̂R
(

X̂
))

2
α

− (1− α) < 0

and we write:

k ≃ − (1− α)
C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

< 0

We have:
|k| >> 1

and moreover:
∣

∣

∣

∣

k

KX̂

∣

∣

∣

∣

≃ (1− α)
C3

(

p, X̂
)

KX̂

∣

∣

∣f
(

X̂
)∣

∣

∣

=
1− α

ςF1

(

R
(

KX̂ , X̂
))

KX̂

l << l (395)

The coefficient m is obtained by using that in the stable case:

m ≃ − γ

ςF1

(

R
(

KX̂ , X̂
)) l

A5.4.1.2 KX̂ << 1 On the other hand, for KX̂ 6 1, we have:

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2 << 1 (396)

so that:

k ≃ 1 +

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

C2

(

p, X̂
)

− (1− α)C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

Given (391) and (392), this yields:

k ≃ −
(1− α)C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

< 0 (397)

149



and, as in the previous case:

|k| > > 1

l > > 1

Moreover, given that KX̂ << 1:
∣

∣

∣

∣

k

KX̂

∣

∣

∣

∣

>> 1 (398)

and:
∣

∣

∣

∣

k

KX̂

∣

∣

∣

∣

>> l (399)

Moreover, given (396):

|m| =

∣

∣

∣

∣

∣

∣

1−
γC3

(

p, X̂
)

f
(

X̂
)

∣

∣

∣

∣

∣

∣

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2 <<

∣

∣

∣

∣

∣

∣

γC3

(

p, X̂
)

f
(

X̂
)

∣

∣

∣

∣

∣

∣

and:
|m| << l

A5.4.1.3 Intermediate case In this case, we can consider that
D−‖Ψ(X̂)‖2
‖Ψ(X̂)‖2 is of order 1:

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 = O (1) (400)

Assuming that γ << 1 we have:

k ≃ 1 +

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

C2

(

p, X̂
)

− (1− α)C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

≃ 1 +

α
2

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

− 1−α
2

(

K
X̂‖Ψ(X̂)‖2|f(X̂)|

C(p̄)σ2
K̂

)4

exp
(

−W
(

k,−4C0

(

X̂,KX̂

)))

∣

∣

∣f
(

X̂
)∣

∣

∣

ln
96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2

Given that the intermediate case is stable (see appendix 2), the relation between KX̂ and R
(

X̂
)

is

positive, we can assume that k < 0 and:

k ≃ 1 +

α

(

2
g2(X̂)
σ2
X̂

+∇X̂g
(

X̂
)

)

C2

(

p, X̂
)

− (1− α)C3

(

p, X̂
)

∣

∣

∣f
(

X̂
)∣

∣

∣

≃ −
1−α
2

(

K
X̂‖Ψ(X̂)‖2|f(X̂)|

C(p̄)σ2
K̂

)4

exp
(

−W
(

0,−4C0

(

X̂,KX̂

)))

∣

∣

∣f
(

X̂
)∣

∣

∣

ln
96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2
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and:

l =
ςF1

(

R
(

KX̂ , X̂
))

C3

(

p, X̂
)

f
(

X̂
) ≃ l

=

ςF1

(

R
(

KX̂ , X̂
))

(

K
X̂‖Ψ(X̂)‖2|f(X̂)|

C(p̄)σ2
K̂

)4

exp
(

−W
(

0,−4C0

(

X̂,KX̂

)))

f
(

X̂
) ln

96
∣

∣

∣f
(

X̂
)∣

∣

∣

3

σ2
X (f ′ (X))

2

Note that in this case:
k ≃ − 1− α

ςF1

(

R
(

KX̂ , X̂
)) l

and, given (400):

m ≃ −γ
D −

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

ςF1

(

R
(

KX̂ , X̂
))

l

A5.4.2 Stability conditions

This appendix presents the computations leading to the stability conditions for the three ranges of
capital considered. Apart from the intermediate case, interpretations are detailed in the text.

A5.4.2.1 Case KX̂ >> 1

Stable case As shown above, k < 0, |k| >> 1, l >> 1 and
∣

∣

∣

k
K

X̂

∣

∣

∣
<< l. Coefficients l and m are

of the same order. Thus (385) becomes:

l2a0c
(

R
(

X̂
))2 +

4m2ca0
(

∇X̂R
(

X̂
))2G

2 > 0

That is, for c > 0 the oscillations are stable, whereas for c < 0 they are unstable.

Unstable case In this case, k > 0, |k| >> 1, l >> 1 and
∣

∣

∣

k
K

X̂

∣

∣

∣
>> l. We have also m ≃ − 1

ηk

and (385) writes:
cl

R
(

X̂
)

k

KX̂

+
4k2ca0

η2
(

∇X̂R
(

X̂
))2G

2 > 0 (401)

That is, for c > 0 the oscillations are stable, whereas for c < 0 they are unstable.

A5.4.2.1.2 Case KX̂ << 1 Equations (397) and (398) show that k < 0, |k| >> 1, l >> 1, |m| << l

and
∣

∣

∣

k
K

X̂

∣

∣

∣ >> l. Equation (385) thus writes:

cl

R
(

X̂
)

k

KX̂

> 0 (402)

That is, for c > 0 the oscillations are unstable, whereas for c < 0 they are stable.
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A5.4.2.3 Intermediate case In this case, we have seen above that k < 0:

k ≃ − 1− α

ςF1

(

R
(

KX̂ , X̂
)) l

and:

m ≃ −γ
D −

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

ςF1

(

R
(

KX̂ , X̂
))

Consequently, equation (385) particularizes as:

l2c

R
(

X̂
)





a0

R
(

X̂
) − 1− α

ςKX̂F1

(

R
(

KX̂ , X̂
))



+ 4ca0









γ

(

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
)

ς∇X̂R
(

X̂
)

F1

(

R
(

KX̂ , X̂
)) ∥

∥

∥
Ψ
(

X̂
)∥

∥

∥

2









2

G2 > 0

Given the definition of a0 and the stability of the intermediate case, we assume a0 > 0. Thus, 2
possibilities arise.

Coefficient c > 0 In this case, the oscillations are stable if:

a0

R
(

X̂
) − 1− α

ςKX̂F1

(

R
(

KX̂ , X̂
)) > 0

or if:
a0

R
(

X̂
) − 1− α

ςKX̂F1

(

R
(

KX̂ , X̂
)) < 0

and:

G2 >
l2
(

∇X̂R
(

X̂
))2

4a0R
(

X̂
)









ς

(

∇X̂R
(

X̂
)

F1

(

R
(

KX̂ , X̂
))∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
)

γ

(

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
)









2
∣

∣

∣

∣

∣

∣

a0

R
(

X̂
) − 1− α

ςF1

(

R
(

KX̂ , X̂
))

∣

∣

∣

∣

∣

∣

Otherwise, the oscillations are unstable.
The constant ς is irrelevant here, although it arises in appendix 3 to estimate short-term returns.

The function F1, defined in (35), determines the stock’s prices evolution. The coefficient α is the
Cobb-Douglas power arising in the dividend part of short-term returns. The constant D, defined
in (81), determines the relation between number of firms and average capital at sector X̂.

We recover the large average capital case. A relatively high reactivity of expectations to fluctu-
ations in capital allows to maintain the capital at its equilibrium value. This stability is favoured
for sectors with large average capital when G is relatively large, i.e. when this sectors present large
discrepancies in capital with their neighbours.

Coefficient c < 0 The oscillations are stable if:

a0

R
(

X̂
) − 1− α

ςKX̂F1

(

R
(

KX̂ , X̂
)) < 0 (403)
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and:

G2 <
l2
(

∇X̂R
(

X̂
))2

4a0R
(

X̂
)









ς

(

∇X̂R
(

X̂
)

F1

(

R
(

KX̂ , X̂
))∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
)

γ

(

D −
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2
)









2
∣

∣

∣

∣

∣

∣

a0

R
(

X̂
) − 1− α

ςF1

(

R
(

KX̂ , X̂
))

∣

∣

∣

∣

∣

∣

(404)
Conditions (403) and (404) correspond to the case of relatively low capital for which a stability

in the oscillations may be reached when expectations are moderately reactive to variation in capital.
The condition (404) shows that the stability in oscillations is reached for moderate values of G, i.e.
relatively small discrepancy between neighbouring sectors.

We recover the large average capital case. A relatively high reactivity of expectations to fluctu-
ations in capital allows to maintain the capital at its equilibrium value. This stability is favoured
for sectors with large average capital when G is relatively large, i.e. when this sectors present large
discrepancies in capital with their neighbours.

Appendix 6 Computation of effective action at the second order

We compute the second-order derivatives for the real and the financial economy respectively.

A6.1 Real economy

In first approximation:

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
(405)

≃ −
∫

δΨ† (K,X)

(

∇X

(

σ2
X

2
∇X −∇XR (K,X)H (K)

)

− 4τ
(

|Ψ0 (X)|2
)

+ ∇K

(

σ2
K

2
∇K + u

(

K,X,Ψ0, Ψ̂0

)

))

δΨ(K,X)dKdX

where:

|Ψ0 (X)|2 =

∫

|Ψ0 (K
′, X)|2 dK ′

and:

u
(

K,X,Ψ0, Ψ̂0

)

→ 1

ε

(

K −
∫

F̂2 (s,R (K,X)) K̂
∥

∥

∥
Ψ̂0

(

K̂,X
)∥

∥

∥

2

dK̂

)

=
1

ε

(

K − F̂2 (s,R (K,X))KXdK̂
)

(406)
In equation (406), we used the notation:

∫

F̂2 (s,R (K,X)) K̂
∥

∥

∥Ψ̂0

(

K̂,X
)∥

∥

∥

2

dK̂ = F̂2 (s,R (K,X)) K̂X

153



We perform a change of variables in (405):

∆Ψ(K,X) = exp







∫ X ∇XR (X)

σ2
X

H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2












(407)

× exp

(∫ (

K − F2 (R (K,X))KX

F2 (R (KX , X))

)

dK

)

δΨ(K,X)

∆Ψ† (K,X) = exp






−
∫ X ∇XR (X)

σ2
X

H







∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2













× exp

(

−
∫ (

K − F2 (R (K,X))KX

F2 (R (KX , X))

)

dK

)

δΨ† (K,X)

where KX , the average invested capital per firm in sector X:

KX =

∫

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

‖Ψ(X)‖2
(408)

so that the effective action (405) for the real economy becomes:

∆Ψ† (Z, θ)

(

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)

)

Ψ(Z,θ)=Ψ0(Z,θ)

∆Ψ(Z, θ) (409)

=

∫

∆Ψ† (Z, θ)

(

−σ2
X

2
∇2

X +
(∇XR (K,X)H (KX))

2

2σ2
X

+
∇2

XR (K,X)

2
H (K) + 4τ |Ψ(X)|2

)

∆Ψ(Z, θ)

+

∫

∆Ψ† (Z, θ)

(

−σ2
K

2
∇2

K +
1

2σ2
K

(

K − F̂2 (s,R (K,X))KX

)2

+
1−∇K F̂2 (s,R (K,X))KX

2

)

∆Ψ(Z, θ)

As explained in section 10.1.2, the effects of competition can be refined by considering repulsive
forces that are capital dependent. It amounts to replace in (409), the term:

∫

∆Ψ† (Z, θ)
(

2τ |Ψ(X)|2
)

∆Ψ(Z, θ)

by the term:

∫

∆Ψ† (K,X)

(

2τ

∫

K ′ |Ψ(K ′, X)|2 dK ′

K

)

∆Ψ(K, θ) (410)

=

∫

∆Ψ† (K,X)

(

2τ
|Ψ(X)|2 KX

K

)

∆Ψ(K, θ)

with:

|Ψ(X)|2 =

∫

|Ψ(K ′, X)|2 dK ′

KX =

∫

K ′ |Ψ(K ′, X)|2 dK ′

|Ψ(X)|2
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This models repulsive forces that are inversely proportional to capital and mainly affect low-capital
firms. Note that this change in the interaction does not modify the collective state, since by setting
K = KX , we recover the previous repulsive term. Ultimately, using:

‖Ψ(X)‖2 = (2τ)
−1



D
(

‖Ψ‖2
)

− 1

2σ2
X

(

(∇XR (X))
2
+

σ2
X∇2

XR (KX , X)

H (KX)

)

H2 (KX)



1−
H ′
(

K̂X

)

KX

H
(

K̂X

)









(411)
the interaction term (410) becomes:

∫

∆Ψ† (K,X)
1

2

(

(∇XR (X))2 +
σ2
X∇2

XR (KX , X)

H (KX)

)

×H2 (KX)



1−
H ′
(

K̂X

)

KX

H
(

K̂X

)



 + 2τ
|Ψ(X)|2 KX

K
∆Ψ(K, θ)

=

∫

∆Ψ† (K,X)

(

D
(

‖Ψ‖2
)

+ 2τ
|Ψ(X)|2 (KX −K)

K

)

∆Ψ(K, θ)

When the above expression is used to rewrite (409), it yields the formula:

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
= −σ2

X

2
∇2

X − σ2
K

2
∇2

K +

(

D
(

‖Ψ‖2
)

+ 2τ
|Ψ(X)|2 (KX −K)

K

)

(412)

+
1

2σ2
K

(

K − F̂2 (s,R (K,X))KX

)2

+
1−∇K F̂2 (s,R (K,X))KX

2

as stated in the text.

A6.2 Financial economy

For the financial sector, we consider the field-action for Ψ̂†
(

K̂, X̂
)

:

S3 + S4 = −
∫

Ψ̂†
(

K̂, X̂
)

(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂,KX̂

)

)

+∇X̂

(

σ2
X̂

2
∇X̂ − g

(

X̂,KX̂

)

))

Ψ̂
(

K̂, X̂
)

(413)
with:

f
(

X̂,KX̂

)

=
1

ε



r
(

KX̂ , X̂
)

− γ
∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+ F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′) ‖Ψ(X ′)‖2 dX ′







 (414)

g
(

X̂,KX̂

)

=





∇X̂F0

(

R
(

KX̂ , X̂
))

∥

∥

∥∇X̂R
(

KX̂ , X̂
)∥

∥

∥

+ ν∇X̂F1





R
(

KX̂ , X̂
)

∫

R
(

K ′
X′ , X ′

)

‖Ψ(X ′)‖2 dX ′







 (415)

Using a change of variable (see appendix 3.1):

Ψ̂ → exp

(

1

σ2
X̂

∫

g
(

X̂
)

dX̂ +
K̂2

σ2
K̂

f
(

X̂
)

)

Ψ̂ (416)

Ψ̂† → exp

(

1

σ2
X̂

∫

g
(

X̂
)

dX̂ +
K̂2

σ2
K̂

f
(

X̂
)

)

Ψ̂†
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the action (413) becomes:

S3 + S4 = −
∫

Ψ̂†
(

σ2
X̂

2
∇2

X̂
− 1

2σ2
X̂

(

g
(

X̂,KX̂

))2

− 1

2
∇X̂g

(

X̂,KX̂

)

)

Ψ̂ (417)

−
∫

Ψ̂†
(

∇K̂

(

σ2
K̂

2
∇K̂ − K̂f

(

X̂,KX̂

)

))

Ψ̂

To obtain the second-order expansion of the field’s action, we start by the first derivative of
(417) arising in the minimization equation in (Gosselin Lotz Wambst 2022):

δ (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ)
= −

σ2
X̂

2
∇2

X̂
Ψ̂−

σ2
K̂

2
∇2

K̂
Ψ̂ +

1

2σ2
X̂

(

g
(

X̂,KX̂

))2

+
1

2
∇X̂g

(

X̂,KX̂

)

Ψ̂ (418)

+
K̂2

2σ2
K̂

f2
(

X̂
)

+
1

2
f
(

X̂,KX̂

)

Ψ̂ + F
(

X̂,KX̂

)

K̂Ψ̂

with:

F
(

X̂,KX̂

)

= ∇K
X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







∥

∥

∥
Ψ̂
(

X̂
)∥

∥

∥

2

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 (419)

+
∇K

X̂
f2
(

X̂,KX̂

)

σ2
K̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

〈

K̂2
〉

X̂

so that :

δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)
= −

σ2
X̂

2
∇2

X̂
−

σ2
K̂

2
∇2

K̂
+

1

2σ2
X̂

(

g
(

X̂,KX̂

))2

+
1

2
∇X̂g

(

X̂,KX̂

)

+
K̂2

2σ2
K̂

f2
(

X̂
)

+
1

2
f
(

X̂,KX̂

)

+ F
(

X̂,KX̂

)

K̂ − Ψ̂†
δF
(

X̂,KX̂

)

δ
∥

∥

∥Ψ̂
(

K̂, X̂
)∥

∥

∥

2 K̂Ψ̂

where the last term is given by:

δF
(

X̂,KX̂

)

δΨ̂ (Z, θ)
≃ ∇K

X̂







(

g
(

X̂,KX̂

))2

2σ2
X̂

+
1

2
∇X̂g

(

X̂,KX̂

)

+ f
(

X̂,KX̂

)







Ψ̂†
(

K̂, X̂
)

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2

+
∇K

X̂
f2
(

X̂,KX̂

)

σ2
K̂

∥

∥

∥Ψ
(

X̂
)∥

∥

∥

2 K̂2Ψ̂†
(

K̂, X̂
)

Following (Gosselin Lotz Wambst 2022) we neglect in first approximation the derivatives with
respect to KX̂ , and define the new variable:

y =
K̂ +

σ2
K̂

F(X̂,K
X̂)

f2(X̂)
√

σ2
K̂

(

f2
(

X̂
))

1
4

(420)
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δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)
= −

σ2
X̂

2
∇2

X̂
−∇2

y+









y2

4
+

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

σ2
X̂

√

f2
(

X̂
)









(421)
This leads to:

∆Ψ̂† (Z, θ)
δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)
∆Ψ̂ (Z, θ)

= ∆Ψ̂† (Z, θ)









−
σ2
X̂

2
∇2

X̂
+

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

σ2
X̂

√

f2
(

X̂
)

−
σ2
K̂

2

√

f2
(

X̂
)

∇2
K̂
+











√

f2
(

X̂
)

(

K̂ +
σ2
K̂

F(X̂,K
X̂)

f2(X̂)

)2

4σ2
K̂





















∆Ψ̂ (Z, θ)

Appendix 7 Higher order corrections to the effective action

The higher-order corrections are obtained by expanding at higher-orders in ∆Ψ(Z, θ) and ∆Ψ̂ (Z, θ).
These variations around the background fields can be considered to be orthogonals to Ψ0 (Z, θ) and
Ψ̂0 (Z, θ).

A7.1 Third order terms

The orthogonality condition implies that the third-order terms in the expansion can be neglected.
Actually, in first approximation the third-order terms arising in the expansion of S have the form:

2τ

∫

∆Ψ(K ′, X)Ψ†
0 (K

′, X ′) dK ′ |∆Ψ(K,X)|2 dKdX (422)

−
∫

∆Ψ† (K,X)Ψ†
0 (K

′, X ′)∇K

δu
(

K,X,Ψ, Ψ̂
)

δ |Ψ(K ′, X)|2
∆Ψ(K ′, X ′)∆Ψ (K,X)

−
∫

∆Ψ† (K, θ) Ψ̂†
0

(

K̂, θ
)

∇K

δu
(

K,X,Ψ, Ψ̂
)

δ
∣

∣

∣
Ψ̂
(

K̂, X̂
)∣

∣

∣

2 ∆Ψ̂
(

K̂, θ
)

∆Ψ(K, θ)

−
∫

∆Ψ̂†
(

K̂, X̂
)

Ψ†
0 (K

′, θ)







∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δ |Ψ(K ′, X)|2
+∇X̂

δg
(

X̂,Ψ, Ψ̂
)

δ |Ψ(K ′, X)|2







∆Ψ(K ′, X ′)∆Ψ̂
(

K̂, X̂
)

+H.C.

where the notation H.C. stands for the hermitian conjugate of the expression. Replacing the terms:

∇K

δu
(

K,X,Ψ, Ψ̂
)

δ |Ψ(K ′, X)|2
, ∇K

δu
(

K,X,Ψ, Ψ̂
)

δ
∣

∣

∣Ψ̂
(

K̂, X̂
)∣

∣

∣

2

and:

∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δ |Ψ(K ′, X)|2
+∇X̂

δg
(

X̂,Ψ, Ψ̂
)

δ |Ψ(K ′, X)|2
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by their averages in (422), and using the orthogonality conditions:

∫

Ψ̂†
0

(

K̂, θ
)

∆Ψ̂
(

K̂, θ
)

=

∫

Ψ†
0 (K

′, X ′)∆Ψ (K ′, X ′) = 0

leads to neglect the third-order terms in first approximation.

A7.2 Fourth order terms

A7.2.1 General formula

Considering the fourth-order in the action expansion yields quartic corrections. Using that in
average:

δ2f
(

X̂,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
) ≃ 0

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
) ≃ 0

the fourth-order terms in the fields’ action become:

2τ

∫

|∆Ψ(K ′, X)|2 dK ′ |∆Ψ(K,X)|2 dKdX (423)

−∆Ψ† (K,X)∆Ψ† (K ′, X ′)∇K

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
∆Ψ (K ′, X ′)∆Ψ (K,X)

−∆Ψ† (K, θ)∆Ψ̂†
(

K̂, θ
)

∇K

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
)∆Ψ̂

(

K̂, θ
)

∆Ψ(K, θ)

−∆Ψ̂†
(

K̂, X̂
)

∆Ψ† (K ′, θ)







∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
+∇X̂

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)







∆Ψ(K ′, X ′)∆Ψ̂
(

K̂, X̂
)

A72.2 Estimation of the various terms

The three last terms in the rhs of (423) can be evaluated. The second term is given by:

∆Ψ† (K,X)∆Ψ† (K ′, X ′)
δ2u

(

K,X,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
∆Ψ (K,X)∆Ψ (K ′, θ)

= ∆Ψ† (K, θ)∆Ψ† (K ′, θ)

{∫

F̂2 (s,R (K,X)) F̂2 (s
′, R (K ′, X ′)) K̂

∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

}

∆Ψ(K, θ)∆Ψ (K ′, θ)

−2∆Ψ† (K, θ)∆Ψ† (K ′, θ)

×
{

∫

Ψ†
0 (K

′, X)
F̂2 (s,R (K,X)) F̂2 (s

′, R (K ′, X ′))
∫

F2 (s′, R (K ′, X)) ‖Ψ(K ′, X)‖2 dK ′
Ψ0

(

K, X̂
)

K̂
∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

}

∆Ψ(K, θ)∆Ψ (K ′, θ)

≃ ∆Ψ† (K, θ)∆Ψ† (K ′, θ)

{∫

F̂2 (s,R (K,X)) F̂2 (s
′, R (K ′, X ′)) K̂

∥

∥

∥Ψ̂
(

K̂,X
)∥

∥

∥

2

dK̂

}

∆Ψ(K, θ)∆Ψ (K ′, θ)
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The second term in the rhs of (423) is equal to:

∆Ψ† (K, θ)∆Ψ̂†
(

K̂, θ
) δ2u

(

K,X,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
)∆Ψ(K, θ)∆Ψ̂

(

K̂, θ
)

= −∆Ψ† (K, θ)∆Ψ̂†
(

K̂, θ
) 1

ε
F̂2 (s,R (K,X)) K̂∆Ψ(K, θ)∆Ψ̂

(

K̂, θ
)

Ultimately, the last term in the rhs of (423):

∆Ψ̂†
(

K̂, X̂
)

∆Ψ† (K ′, θ)







∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
+∇X̂

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)







∆Ψ(K ′, X ′)∆Ψ̂
(

K̂, X̂
)

is obtained by using the expressions of f
(

X̂,Ψ, Ψ̂
)

and g
(

X̂,Ψ, Ψ̂
)

that compute short-term and

long-term returns, respectively:

f
(

X̂,Ψ, Ψ̂
)

=
1

ε

∫

(

r (K,X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K

+ F1

(

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

×F̂2 (s,R (K,X))
∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

dK

g
(

K, X̂,Ψ, Ψ̂
)

=

∫



∇X̂F0

(

R
(

K, X̂
))

+ ν∇X̂F1





R
(

K, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)









×

∥

∥

∥Ψ
(

K, X̂
)∥

∥

∥

2

dK

∫

∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′

We find:

δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
(424)

=
1

ε
∆

(

r (K ′, X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K ′ + F1

(

R (K ′, X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

×
F2

(

s′, R
(

K ′, X̂
))

∫

F2

(

s′R
(

K ′, X̂
)) ∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′

−1

ε

∫






γ
K ′

K
+

R (K ′, X)R
(

KX̂ , X
)

(

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
)2F

′
1

(

R (K,X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

)







×F̂2 (s,R (K,X))
∥

∥

∥
Ψ
(

K, X̂
)∥

∥

∥

2

where we define the deviation ∆Y of a quantity by the difference:

∆Y = Y − 〈Y 〉 (425)

with 〈Y 〉, the average of Y :

〈Y 〉 =
∫

Y (K,X)dKdX
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Thus we write:

∆

(

r (K ′, X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K ′ + F1

(

R (K ′, X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

=

(

r (K ′, X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K ′ + F1

(

R (K ′, X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

−
〈(

r (K ′, X)− γ

∫

K ′ ‖Ψ(K ′, X)‖2
K ′ + F1

(

R (K ′, X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))〉

and in first approximation, (424) reduces to:

δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)

≃ 1

ε

(

∆

(

r (K ′, X)− γ
KX

K ′ + F1

(

R (K ′, X)
∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)
,Γ (K,X)

))

− γ
K ′

KX

)

≃ 1

ε

(

∆f
(

K ′, X̂,Ψ, Ψ̂
)

− γ
K ′

KX

)

where:
∆f

(

K ′, X̂,Ψ, Ψ̂
)

= f
(

K ′, X̂,Ψ, Ψ̂
)

− f
(

KX̂ , X̂,Ψ, Ψ̂
)

is the relative short-term return for firm with capital K ′ at sector X̂.

Similarly, the second derivative for g
(

X̂,Ψ, Ψ̂
)

is:

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)

=
1

∫

∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′
∆



∇X̂F0

(

R
(

K ′, X̂
))

+ ν∇X̂F1





R
(

K ′, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)









=
1

∫

∥

∥

∥Ψ
(

K ′, X̂
)∥

∥

∥

2

dK ′
∆
(

g
(

K ′, X̂,Ψ, Ψ̂
))

with:

∆



∇X̂F0

(

R
(

K ′, X̂
))

+ ν∇X̂F1





R
(

K ′, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)









=



∇X̂F0

(

R
(

K ′, X̂
))

+ ν∇X̂F1





R
(

K ′, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)









−
〈

∇X̂F0

(

R
(

K ′, X̂
))

+ ν∇X̂F1





R
(

K ′, X̂
)

∫

R (K ′, X ′) ‖Ψ(K ′, X ′)‖2 d (K ′, X ′)





〉

in other words:
∆g
(

K ′, X̂,Ψ, Ψ̂
)

= g
(

K ′, X̂,Ψ, Ψ̂
)

− g
(

X̂,Ψ, Ψ̂
)

is the relative long-term return for firm with capital K ′ at sector X̂.
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Appendix 8: ”free” transition functions

Given the second-order operator arising in the expansion for the fields’ action:

O (Ψ0 (Z, θ)) ≃





δ2(S1+S2)

δΨ†(Z,θ)δΨ(Z,θ)
0

0 δ2(S3(Ψ)+S4(Ψ))

δΨ̂†(Z,θ)δΨ̂(Z,θ)





Ψ(Z,θ)=Ψ0(Z,θ)

Ψ̂(Z,θ)=Ψ̂0(Z,θ)

(426)

The transition functions for the individual firms:

G1 ((Kf , Xf ) , (Xi,Ki) , α)

and investors:
G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, α
)

satisfy:
(

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
+ α

)

G1 ((Kf , Xf ) , (Xi,Ki) , α) = δ ((Kf , Xf )− (Xi,Ki))

(

δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)
+ α

)

G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, α
)

= δ
((

K̂f , X̂f

)

−
(

X̂i, K̂i

))

The functions G1 ((Kf , Xf ) , (Xi,Ki) , α) and G2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, α
)

are the Laplace transforms

of the following transition functions:

T1 ((Kf , Xf ) , (Xi,Ki) , t)

T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, t
)

satisfying:

− ∂

∂t
T1 ((Kf , Xf ) , (Xi,Ki) , t) =

(

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)

)

T1 ((Kf , Xf ) , (Xi,Ki) , t) (427)

− ∂

∂t
T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, t
)

=

(

δ2 (S3 (Ψ) + S4 (Ψ))

δΨ̂† (Z, θ) δΨ̂ (Z, θ)

)

T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

)

, t
)

(428)

A8.1 Approximations to and (427) and (428)

We consider some approximations to find the solutions of equations (412) and (421). We first
assume that:

∇K
F2(R(K,X))

〈F2(R(K,X))〉K
KX

2
<< 1

so that:

K − F̂2 (s,R (K,X))KX ≃ K − F̂2 (R (KX , X))KX −∇KX
F̂2 (R (KX , X)) (K −KX)

≃ K − F̂2 (R (KX , X))KX

Equation (412) then simplifies as:

δ2 (S1 + S2)

δΨ† (Z, θ) δΨ(Z, θ)
= −σ2

X

2
∇2

X − σ2
K

2
∇2

K +

(

D
(

‖Ψ‖2
)

+ 2τ
|Ψ(X)|2 (KX −K)

K

)

(429)

+
1

2σ2
K

(

K − F̂2 (s,R (KX , X))KX

)2
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and equation (427) becomes:

− ∂

∂t
T1 ((Kf , Xf) , (Xi,Ki) , t) (430)

=

(

−σ2
X

2
∇2

X +D
(

‖Ψ‖2
)

+ 2τ
KX −K

K
‖Ψ(X)‖2

)

T1 ((Kf , Xf ) , (Xi,Ki) , t)

+

(

−σ2
K

2
∇2

K +
1

2σ2
K

(

K − F̂2 (R (KX , X))KX

)2
)

T1 ((Kf , Xf ) , (Xi,Ki) , t)

Second, we assumed from the beginning that the motion of firms in the sectors space is at slower

pace than capital fluctuations. Moreover, we may assume that in average
∣

∣

∣

KX−K
K

∣

∣

∣ << 1. As a

consequence, along the path from the initial point (Xi,Ki) to the final point (Kf , Xf ), we can
consider that:

KX −K

K
‖Ψ(X)‖2

is slowly varying and can be replaced by its average.
The equation for T1 thus rewrites:

− ∂

∂t
T1 ((Kf , Xf) , (Xi,Ki)) (431)

=



−σ2
X

2
∇2

X +D
(

‖Ψ‖2
)

+ τ





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
+

|Ψ(Xi)|2
(

KXi
−Ki

)

Ki







T1 ((Kf , Xf) , (Xi,Ki))

+

(

−σ2
K

2
∇2

K +
1

2σ2
K

(

K − F̂2 (R (KX , X))KX

)2
)

T1 ((Kf , Xf ) , (Xi,Ki))

On the other hand, the derivation of the equation for T2 yields directly:

− ∂

∂t
T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

(432)

=

(

−
σ2
X̂

2
∇2

X̂
−∇2

y

)

T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

+









y2

4
+

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

σ2
X̂

√

f2
(

X̂
)









T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

A8.2 Computation of T1

13.0.1 A8.2.1 Solution of (431)

We first rewrite the competition term in (431) as:

|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
+

|Ψ(Xi)|2
(

KXi
−Ki

)

Ki

=





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
− |Ψ(Xi)|2

(

KXi
−Ki

)

Ki



+
|Ψ(Xi)|2

(

KXi
−Ki

)

Ki

162



Then, we normalize the transition functions by factoring the solution of (431):

T1 ((Kf , Xf ) , (Xi,Ki)) (433)

= exp



−t



D
(

‖Ψ‖2
)

+ τ





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
+

|Ψ(Xi)|2
(

KXi
−Ki

)

Ki











 T̂1 ((Kf , Xf ) , (Xi,Ki))

so that the transition equation writes:

− ∂

∂t
T̂1 ((Kf , Xf ) , (Xi,Ki)) (434)

=

(

−σ2
X

2
∇2

X − σ2
K

2
∇2

K +
1

2σ2
K

(

K − F̂2 (R (K,X))KX

)2
)

T̂1 ((Kf , Xf ) , (Xi,Ki))

Note that, given the exponential factor, if Ki << KXi
,

|Ψ(Xi)|2(KXi
−Ki)

Ki
< 0 and the probability to

move away from Xi is very low. The same applies for
|Ψ(Xf )|2

(

KXf
−Kf

)

Kf
> 0.

The transition function T̂1 ((Kf , Xf ) , (Xi,Ki)) can be found by using our assumption that shifts
in sectors space are slower than the fluctuations in capital. In (434) we can thus consider in first
approximation that the term:

K − F̂2 (R (K,X))KX

shifts the inital and final values of capital:

Ki → Ki − F̂2

(

s,R
(

KXi
, Xi

))

KXi
= K ′

i

Kf → Kf − F̂2

(

s,R
(

KXf
, Xf

))

KXf
= K ′

f

So that we have:

T̂1 ((Kf , Xf) , (Xi,Ki)) ≃ T̃1

((

Kf − F̂2

(

s,R
(

KXf
, Xf

))

KXf
, Xf

)

,
(

Ki − F̂2

(

R
(

s,KXi
, Xi

))

KXi
,Ki

))

(435)
where T̃1 satisfies:

− ∂

∂t
T̃1 =

(

−σ2
X

2
∇2

X − σ2
K

2
∇2

K +
1

2σ2
K

K2

)

T̃1 (436)

Up to a normalization factor, the solution of (436) is:

T̃1

((

K ′
f , Xf

)

, (Xi,K
′
i)
)

= exp






−







(Xf −Xi)
2

2tσ2
X

+

(

K ′
f −K ′

i

)2

2tσ2
K

− tσ2
K

2
K ′

fK
′
f













Using (435) and (433), we find the solution of (165):

exp



−t



D
(

‖Ψ‖2
)

+ τ





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
+

|Ψ(Xi)|2
(

KXi
−Ki

)

Ki











 (437)

× exp






−







(Xf −Xi)
2

2tσ2
X

+

(

K ′
f −K ′

i

)2

2tσ2
K

− tσ2
K

2
K ′

fK
′
f












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13.0.2 A8.2.2 Full transition function

To obtain the full transition function, recall that (437) has been obtained by a change of variable
(407). To come back to the initial variables we have to introduce an other exponential factor to
account for the trend of the transition, and we find:

T1 ((Kf , Xf ) , (Xi,Ki))

≃ exp





∫ Xf

Xi

∇XR (KX , X)

σ2
X

H (KX)− t



D
(

‖Ψ‖2
)

+ τ





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
+

|Ψ(Xi)|2
(

KXi
−Ki

)

Ki













× exp

(

−
∫ Kf (

K − F̂2 (R (s,K,Xf ))KXf

)

dK +

∫ Ki (

K − F̂2 (s,R (K,Xi))KXi

)

dK

)

× exp






−







(Xf −Xi)
2

2tσ2
X

+

(

K̃f − K̃i

)2

2tσ2
K













× exp

(

− tσ2
K

2

(

Kf − F̂2

(

s,R
(

Kf , X̄
))

KX̄

)(

Ki − F̂2

(

s,R
(

Ki, X̄
))

KX̄

)

)

T1 ((Kf , Xf ) , (Xi,Ki)) (438)

≃ exp





∫ Xf

Xi

∇XR (KX , X)

σ2
X

H (KX)− t



D
(

‖Ψ‖2
)

+ τ





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
+

|Ψ(Xi)|2
(

KXi
−Ki

)

Ki













× exp

(

−
∫ Kf (

K − F̂2 (s,R (K,Xf ))KXf

)

dK +

∫ Ki (

K − F̂2 (s,R (K,Xi))KXi

)

dK

)

× exp






−







(Xf −Xi)
2

2tσ2
X

+

(

K ′
f −K ′

i

)2

2tσ2
K

− tσ2
K

2
K ′

fK
′
f













with:

K ′
i = Ki − F̂2

(

R
(

KXi
, Xi

))

KXi

K ′
f = Kf − F̂2

(

R
(

KXf
, Xf

))

KXf

The Laplace transform of this function is the transition function given in the text.

A8.3 Computation of T2

13.0.3 A8.3.1 Solution ot (432)

Solving (432) is straightforward, and similar to the derivation T1.
We first introduce a change of variable:

T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

= exp









−t

∫ X̂f

X̂i

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

∥

∥

∥X̂f − X̂i

∥

∥

∥σ2
X̂

√

f2
(

X̂
)









T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))
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The term in the exponential is the average of the relative return:

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

σ2
X̂

√

f2
(

X̂
)

along the average path, considered as a straight line, from X̂i to X̂f . We have assumed slow shifts
in the sectors space, so that T̂2 satisfies the following equation in first approximation:

− ∂

∂t
T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

(439)

≃
(

−
σ2
X̂

2
∇2

X̂
−∇2

y

)

T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

+
y2

4
T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

Given (420), we can assume that y is independent from X̂ in first approximation. Thus, solving
(439) yields:

T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

(440)

≃ exp



−





σ2
X̂

2
t



K̂f +
σ2
K̂
F
(

X̂f ,KX̂f

)

f2
(

X̂f

)







K̂i +
σ2
K̂
F
(

X̂i,KX̂i

)

f2
(

X̂i

)













× exp













−

√

f2

(

X̂f+X̂i

2

)

2tσ2
X̂







K̂f +
σ2
K̂
F
(

X̂f ,KX̂f

)

f2
(

X̂f

)



−



K̂i +
σ2
K̂
F
(

X̂i,KX̂i

)

f2
(

X̂i

)









2













13.0.4 A8.3.2 Full transition function

Reintroducing the change of variables (416) amounts to introduce a factor:

exp

(

1

σ2
X̂

∫ X̂f

X̂i

g
(

X̂
)

dX̂ +
K̂2

f

σ2
K̂

f
(

X̂f

)

− K̂2
i

σ2
K̂

f
(

X̂i

)

)

in the formula for T2 and this leads to the full formula for the transition function:

T2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

(441)

≃ exp









−t

∫ X̂f

X̂i

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

∥

∥

∥X̂f − X̂i

∥

∥

∥σ2
X̂

√

f2
(

X̂
)









× exp

(

1

σ2
X̂

∫ X̂f

X̂i

g
(

X̂
)

dX̂ +
K̂2

f

σ2
K̂

f
(

X̂f

)

− K̂2
i

σ2
K̂

f
(

X̂i

)

)

T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

with:
T̂2

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

given by (440).
The Laplace transform of (441) is the formula presented in the text.
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Appendix 9

We write the series expansion in ∆Sfourth order of exp (−S (Ψ)):

exp (−S (Ψ)) = exp

(

−
(

S
(

Ψ0, Ψ̂0

)

+

∫

(

∆Ψ† (Z, θ) ,∆Ψ̂† (Z, θ)
)

(Z, θ)O (Ψ0 (Z, θ))

(

∆Ψ(Z, θ)

∆Ψ̂ (Z, θ)

)))



1 +
∑

n>1

(

−∆Sfourth order

(

Ψ, Ψ̂
))n

n!





where O (Ψ0 (Z, θ)) is defined in (112).

Then, we decompose ∆Sfourth order

(

Ψ, Ψ̂
)

as a sum of two combinations:

∆Sfourth order

(

Ψ, Ψ̂
)

=

∫

∆Ψ† (K,X)∆Ψ† (K ′, X ′)∆S11∆Ψ(K ′, X ′)∆Ψ (K,X)

+∆Ψ† (K ′, X ′)∆Ψ̂†
(

K̂, X̂
)

∆S12∆Ψ(K ′, X ′)∆Ψ̂
(

K̂, X̂
)

with:

∆S11 =



2τ −∇K

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)



 δ (X −X ′)

and:

∆S12 = −



∇K

δ2u
(

K,X,Ψ, Ψ̂
)

δΨ̂
(

K̂, X̂
)

δΨ̂†
(

K̂, X̂
) +







∇K̂

K̂δ2f
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)
+∇X̂

δ2g
(

X̂,Ψ, Ψ̂
)

δΨ(K ′, X) δΨ† (K ′, X)









 δ (X −X ′)

Application of (31) leads to the following form of the transition functions:

Gij

([

(Kf , Xf) , (Kf , Xf )
′]
,
[

(Xi,Ki) , (Xi,Ki)
′]) (442)

= Gi ((Kf , Xf ) , (Xi,Ki))Gj

(

(Kf , Xf )
′
, (Xi,Ki)

′)

+
∑

p>1

(−1)
p

p!

∫

Gi ((Kf , Xf ) , (Xp,Kp))Gj

(

(Kf , Xf)
′
, (Xp,Kp)

′)
∆Sij

(

(Xp,Kp) , (Xp,Kp)
′)

×Gi ((Xp,Kp) , (Xp−1,Kp−1))Gj

(

(Xp,Kp)
′
, (Xp−1,Kp−1)

′)
∆Sij

(

(Xp−1,Kp−1) , (Xp−1,Kp−1)
′)

...×∆Sij

(

(K1, X1) , (K1, X1)
′)
G1 ((K1, X1) , (Xi,Ki))G1

(

(K1, X1)
′
, (Xi,Ki)

′) ∏

k6p

d
(

(Xk,Kk) , (Xk,Kk)
′)

These corrections modify the n agents Green functions and can be computed using graphs
expansion. In the sequel we will focus only on the first order corrections to the four agents Green
functions. This is sufficient to stress the impact of interactions of agents in the background state.

The term ∆S11 measures the interaction between firms, and ∆S12 the firms-investors interac-
tions. There is no term ∆S22 of investors-investors interaction. In our model all interactions depend
on firms.

To estimate the impact of interactions, we can assume the paths from ((Xi,Ki) , (Kf , Xf )) to
(

(Xi,Ki) , (Kf , Xf)
′) cross each other one time at some X and approximate the terms ∆Sij by their

average value estimated on the average paths from Ki,K
′
i to Kf ,K

′
f ,
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In this approximation, we find:

Gij

([

(Kf , Xf ) , (Kf , Xf )
′]
,
[

(Xi,Ki) , (Xi,Ki)
′])

≃ Gi ((Kf , Xf ) , (Xi,Ki))Gj

(

(Kf , Xf )
′
, (Xi,Ki)

′)

−Gi ((Kf , Xf ) , (X,K))Gj

(

(Kf , Xf )
′
, (X,K)

′)

×∆Sij

(

(

X, K̄
)

,
(

X, K̄
)′)

G1 ((X,K) , (Xi,Ki))G1

(

(X,K)′ , (Xi,Ki)
′)

≃ Gi ((Kf , Xf ) , (Xi,Ki))Gj

(

(Kf , Xf )
′
, (Xi,Ki)

′)

−∆Sij

(

(

X̄, K̄
)

,
(

X̄, K̄
)′)

Ĝi ((Kf , Xf) , (X,K)) Ĝj

(

(Kf , Xf )
′ , (X,K)′

)

with:

(

X̄, K̄
)

=
(Kf , Xf) + (Xi,Ki)

2
(

X̄, K̄
)′

=
(Kf , Xf)

′
+ (Xi,Ki)

′

2

and:
Ĝi ((Kf , Xf) , (X,K)) Ĝj

(

(Kf , Xf )
′
, (X,K)

′)

is the transition function computed on path that cross once. Applied to the three transition
functions for two agents yields the results of the text.

Appendix 10

One agent transition functions

A10.1 Firms transition function

We interpret the various term involved in (121) and their influence on firms individual dynamics.

A10.1.1 Drift term

The three contributions The first term in (121):

D ((Kf , Xf ) , (Xi,Ki))

is a drift term between (Xi,Ki) and (Kf , Xf ). It is composed of three contributions (see (340)):
The first term of (340):

∫ Xf

Xi

∇XR (KX , X)

σ2
X

H (KX)

models the shift of producers towards sectors that have the highest long-term returns.
To interpret the second contribution to D ((Kf , Xf ) , (Xi,Ki)):

∫ Kf

Ki

(

K − F̂2

(

s,R
(

K, X̄
))

KX̄

)

dK (443)

, recall that
F2(R(K,X̄))
F2(R(KX̄ ,X̄))

models the relative expectations of returns of the firm along its path from

(Xi,Ki) to (Kf , Xf) based on their returns’ expectation R
(

K, X̄
)

and that
F2(R(K,X̄))KX̄

F2(R(KX̄ ,X̄))
represents
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the capital investors are ready to invest in the firm along this path. Along the path from (Xi,Ki)

to (Kf , Xf ), the capital invested in the firm will increase as long as the investors expect growth and
as long as additional investment is likely to increase the firm’s returns. Once the level of capital
reaches their expectations, that is

KT

(

X̄
)

− F̂2

(

R
(

KT , X̄
))

KX̄ = 0 (444)

i.e., when the firm has reached the capital threshold, investment stops.
However, this condition is not always fulfilled. The shape of F2 is critical. If F2 is above the

line Y = K, then for K < KT , the threshold KT will be reached gradually. In this case, KT is an
equilibrium point. If, on the contrary, F2 is below the line Y = K, then for K < KT , the threshold
KT will never be reached, and K → 0. If K > KT , K can increase indefinitely. This corresponds to
firms whose profitability is perceived as boundless as long as more capital is invested in.

The third term in (340):

∫ Kf

Ki

((

Xf −Xi

2

)

∇X F̂2

(

s,R
(

K, X̄
))

KX̄

)

dK

induces firms to move towards more appropriate sectors, according to investors and given the capital
of the firm. The firm does not solely move according to the new investors it could attract but must
also take into account its current investors. If it moves, it risks losing the investors it has already
attracted.

Trade-off between terms There is a trade-off between the first and the third terms: firms want
to move towards sectors with higher returns, but differences in average capital between sectors
could make a firm unattractive in a new sector. The loss of investors incured during a shift of
sector must be compared with the number of investors possibly attracted in the new sector: the
level of attractiveness may decrease for a given amount of capital.

The second contribution to D is an indicator of the firm’s growth potential in a given sector.
It depends on the firm’s level of capital compared to the threshold capital requirement and its
dynamics in this sector.

A move along sectors due to the terms 1 and 3 modifies the firm’s relative capital, which is
sector-dependant: F2, measuring the firm attractiveness in the sector and indirectly the threshold
of capital KT defined in (444) are modified by the shift from one sector to another. Therefore,
a firm could be below the value of KT in one sector, then above in the next sector, which will
reverse its capital dynamics. The firm’s capital dynamics remains the same as long as its relative
attractiveness in a sector does not change significantly.

A10.1.2 Effective time of transition

The following term depends on the competition in a sector:

αeff (Ψ, (Kf , Xf) , (Xi,Ki)) = α+D
(

‖Ψ‖2
)

+
τ

2





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
− |Ψ(Xi)|2

(

KXi
−Ki

)

Ki



(445)

+
σ2
K

2

(

Kf − F̂2

(

s,R
(

Kf , X̄
))

KX̄

)(

Ki − F̂2

(

s,R
(

Ki, X̄
))

KX̄

)

Recall that the constant α is the inverse of the average lifetime of the agents. The larger it is, the
lower the probability of transition. In the transition functions, α is shifted by two path-dependent
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terms and replaced by αeff . Thus, αeff is the inverse mobility of the firm during its transition from
one point to another.

Therefore, the likelihood of shifts in capital and sectors depends not only on the average lifespan
of the firm, but also on terms that are directly related to the collective state.

The first correction to α is D
(

‖Ψ‖2
)

that is related to competition. We have shown in (Gosselin

Lotz Wambst 2022):

D
(

‖Ψ‖2
)

≃ 2τ
N

V − V0
+

1

2σ2
X

〈

(∇XR (X))
2
〉

V/V0

H2





〈

K̂
〉

N













1−
H ′
(

〈K̂〉
N

)

H

(

〈K̂〉
N

)

〈

K̂
〉

N









where V is the volume of the sectors space and V0 is the locus where ‖Ψ(X)‖2 = 0. As a consequence,

the stronger the competition, i.e., the larger τ , the greater D
(

‖Ψ‖2
)

, and the less possibilities of

shifting from a sector to another.
The third term in (445):

τ

2





|Ψ(Xf )|2
(

KXf
−Kf

)

Kf
− |Ψ(Xi)|2

(

KXi
−Ki

)

Ki



 (446)

is also linked to the competition, but depends on the level of capital of the agent, and the number
of d agents in the sectors crossed. This term measures the strength of agent’s shift from one sector
to another.

It is negative when Kf > KXf
, and when Ki < KXi

. In other words, when a firm has less capital
than the average in its initial sector, and when, it ends up in a sector in which it has more capital
than the average, the probability of transition from Ki to Kf is high. In other words, under-average
capital favors the exit from a sector. Above-average capital promotes entry into the sector. Shifts
from high average capital sectors to lower-average-capital sectors are favoured.

This phenomenon is amplified by the number of agents. The greater the competition in a sector,
i.e., the more firms in the sector, the greater the probability for a lower-than average capitalized
firm to be ousted from the sector by higher-than average capitalized firms that enter the sector.
Thus, the density of producers |Ψ(X)|2 along the movement enhances competition and favours high
capitalized firm to move towards higher capitalized sectors, and drives low capitalized firms toward
low capitalized sectors.

The last term in (445):

σ2
K

2

(

Kf − F̂2

(

s,R
(

Kf , X̄
))

KX̄

)(

Ki − F̂2

(

s,R
(

Ki, X̄
))

KX̄

)

shows that in average, shifts from the initial point to the final point is done respecting K =

F̂2

(

s,R
(

K, X̄
))

KX̄ , the capital investors allocate to the firm. Actually, if Ki−F̂2

(

s,R
(

Ki, X̄
))

KX̄ <

0, there is a higher probability to reach Kf−F̂2

(

s,R
(

Kf , X̄
))

KX̄ > 0. If Ki−F̂2

(

s,R
(

Ki, X̄
))

KX̄ > 0,
there is a higher probability to reach Kf − F̂2

(

s,R
(

Kf , X̄
))

KX̄ < 0.
If a firm starts with a capital lower than F̂2

(

s,R
(

K, X̄
))

KX̄ , it is more likely to end up with
capital above the new F̂2

(

s,R
(

K, X̄
))

KX̄ , in another sector. The movement induces a change in
the F2, but firms tend to fluctuate around the F2 of transition.
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A10.1.3 Fluctuation terms

The term:
√

√

√

√ (Xf −Xi)
2

2σ2
X

+

(

K̃f − K̃i

)2

2σ2
K

describes oscillations around:

Kf − F̂2

(

s,R
(

Kf , X̄
))

KX̄ +Ki − F̂2

(

s,R
(

Ki, X̄
))

KX̄ = 0

On average, during a transition from the initial point to the final point, the firm’s capital is governed
by the equation K = KT = F̂2

(

R
(

Ki, X̄
))

KX̄ . If a firm starts with less capital than the threshold
set by F2, it is more likely to end up with a capital above the new F2, in another sector. The
transition from one sector to another involves oscillations around the sector-dependent threshold
F2. However, these oscillations may affect the final destination of the transition. Starting with a
capital level above KT , i.e. K > KT , the firm may shift towards sectors with higher perspectives,
i.e. with a higher threshold KT . This favors in turn accumulation and faster transition to other

sectors. Finally, if ∇K F̂2

(

s,R
(

Kf+Ki

2 , X̄
))

> 0, F2 is highly responsive to changes in capital, and

larger moves are favored.

A10.2 Investors transition functions

We interpret the different contributions in (127).

A10.2.1 Drift term

The term D′
((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

is composed of two contributions. The first one:

1

σ2
X̂

∫ X̂f

X̂i

g
(

X̂
)

dX̂ +
K̂2

f

σ2
K̂

f
(

X̂f

)

− K̂2
i

σ2
K̂

f
(

X̂i

)

is composed of two elements.

The first element is 1
σ2
X̂

∫ X̂f

X̂i
g
(

X̂
)

dX̂. Since the function g
(

X̂
)

is the anticipation of higher

returns and rising stock prices, investors move towards sectors were they anticipate the highest
returns and stock prices increase.

The second element
K̂2

f

σ2
K̂

f
(

X̂f

)

− K̂2
i

σ2
K̂

f
(

X̂i

)

: this element can be rewritten as two bits:

K̂2
f − K̂2

i

σ2
K̂

f

(

X̂f + X̂i

2

)

+

(

K̂2
f + K̂2

i

)

2σ2
K̂

(

X̂f − X̂i

)

∇Xf

(

X̂f + X̂i

2

)

The first bit,
K̂2

f−K̂2
i

σ2
K̂

f

(

X̂f+X̂i

2

)

shows that the highest the short-term return, the more probable is

the increase in capital. The second bit, which is equal to
(K̂2

f+K̂2
i )

2σ2
K̂

(

X̂f − X̂i

)

∇Xf

(

X̂f+X̂i

2

)

indicates

that investors move towards sectors with highest returns. The more capital they have, the fastest
the shift.

The second term arising in D′
((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

:
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− 1

σ2
X̂

∫ X̂f

X̂i

(

g
(

X̂
))2

+ σ2
X̂

(

f
(

X̂
)

+∇X̂g
(

X̂,KX̂

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)

)

σ2
X̂

√

f2
(

X̂
)

dX̂

is similar to the determinant of capital accumulation in a collective state and has the same in-
terpretation. There is a tradeoff between long-term and short-term returns. It further shows the
importance of relative long-term return. Investors move towards relative long-term returns. Math-
ematically, we can measure the dependence of agents’ capital accumulation in neighboring sectors
using the integrand:

p =

−





(

g

(

X̂,K
X̂M

))2

σ2
X̂

+∇X̂g
(

X̂,KX̂M

)

− σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)





f
(

X̂
) (447)

The function p represents the relative attractivity of a sector vis-a-vis its neighbours and depends on

the gradients of long-term returns R
(

X̂
)

through the function g
(

X̂
)

, the capital mobility at sector

X̂. This function g
(

X̂
)

, which depicts investors’ propensity to seek higher returns across sectors,and

is indeed proportional to ∇X̂R
(

X̂
)

. The gradient of g, ∇X̂g, is proportional to ∇2
X̂
R
(

X̂
)

: it

measures the position of the sector relative to its neighbours. At a local maximum, the second

derivative of R
(

X̂
)

is negative: ∇2
X̂
R
(

X̂
)

< 0. At a minimum, it is positive.

The last term,
σ2
K̂

F2(X̂,K
X̂)

2f2(X̂)
, involved in the definition of Y (X̂) and p is a smoothing factor

between neighbouring sectors. It reduces differences between sectors: it increases when the relative
attractivity with respect to KX̂ decreases. The number of investors and capital will increase in
sectors that are in the neighbourhood of significantly more attractive sectors, i.e. with higher
average capital and number of investors. It slows down the transitions.

A10.2.2 Fluctuation terms

The last term involved in (127):

α′
eff

((

K̂f , X̂f

)

,
(

X̂i, K̂i

))

√

√

√

√

√

∣

∣

∣

∣

f

(

X̂f+X̂i

2

)∣

∣

∣

∣

2σ2
X̂

∣

∣

∣

∣

∣

∣



K̂f +
σ2
K̂
F
(

X̂f ,KX̂f

)

f2
(

X̂f

)



−



K̂i +
σ2
K̂
F
(

X̂i,KX̂i

)

f2
(

X̂i

)





∣

∣

∣

∣

∣

∣

depicts the possible oscillations around averages (that) occur (within)in a definite timespan, so(such)
that the transition probability decrases with K̂f − K̂i and Xf −Xi. However, this probability de-
creases with short-term returns: the higher the returns, the lower the incentive to switch from one
sector to another.
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