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Abstract

Neural implicit surfaces have become an important tech-
nique for multi-view 3D reconstruction but their accuracy
remains limited. In this paper, we argue that this comes from
the difficulty to learn and render high frequency textures with
neural networks. We thus propose to add to the standard
neural rendering optimization a direct photo-consistency
term across the different views. Intuitively, we optimize the
implicit geometry so that it warps views on each other in
a consistent way. We demonstrate that two elements are
key to the success of such an approach: (i) warping en-
tire patches, using the predicted occupancy and normals
of the 3D points along each ray, and measuring their sim-
ilarity with a robust structural similarity (SSIM), (ii) han-
dling visibility and occlusion in such a way that incorrect
warps are not given too much importance while encour-
aging a reconstruction as complete as possible. We eval-
uate our approach, dubbed NeuralWarp, on the standard
DTU and EPFL benchmarks and show it outperforms state
of the art unsupervised implicit surfaces reconstructions
by over 20% on both datasets. Our code is available at
https://github.com/fdarmon/NeuralWarp

1. Introduction

Multi-view 3D reconstruction is the task of recover-
ing the geometry of objects by looking at their projected
views. Multi-View Stereo (MVS) methods rely on the photo-
consistency of multiple views and typically provide the best
results [29,44]. However, they require a cumbersome multi-
step procedure, first estimating then merging depth maps.
Recent 3D optimization methods [22,24,25,34,41,42] avoid
this issue by representing the surface implicitly and jointly
optimizing neural networks encoding occupancy and color
for all images, but their accuracy remains limited. In this
work, we bridge these two types of approaches by optimizing
multi-view photo-consistency for a geometry represented by
implicit functions. We show that this enables our method to
leverage high-frequency textures present in the input images
that existing implicit methods struggle to represent, resulting

(b) Our method’s image warping (left) and geometric error map (right)

Figure 1. Standard neural implicit surface approaches jointly opti-
mize a geometry and color network, but struggle to represent high
frequency textures and therefore lack accuracy (top). We propose to
additionally warp image patches with the implicit geometry, which
allows to directly optimize photo-consistency between images and
significantly improves the reconstruction accuracy (bottom).

in significant accuracy gains.

The idea behind our approach is visualized on Figure 1.
The top row shows a rendering and the geometric error
map (la) for a state of the art implicit method [41]. The
rendering fails at producing high frequency textures, result-
ing in low 3D accuracy. To overcome this limitation we use
the original images, reprojecting them using the geometry
described by the implicit occupancy function. This is shown
on the bottom row (1b) where our warped patch includes
high frequency texture. Consequently, we can optimize the
geometry much more accurately, resulting in smaller geo-
metric errors in the reconstruction.

Optimizing the implicit geometry for photo-consistency
poses two main challenges. First, since we do not have
perfectly Lambertian materials, directly minimizing the dif-
ference between colors is not meaningful and would lead to
artefacts. We thus compare entire patches using a robust sim-
ilarity (SSIM [36]) which requires performing patch warping
using the implicit geometry. Building on the volumetric neu-
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ral implicit surface framework, we start by sampling 3D
points on the ray associated to each pixel in a reference
image. We then propose to warp for each sampled point a
source image patch to the reference image using a planar
scene approximation, and finally combine all warped patches.
Second, opposite to standard neural rendering methods that
can associate a color to each 3D point, a warping-based ap-
proach must deal with the fact that many 3D points do not
project correctly in the source view, e.g. are not visible or
are occluded; this will typically happen for points sampled
on any ray. We thus define for each reference image pixel
and each source image a soft visibility mask. We then com-
pletely remove from the loss the contribution of pixels in
the reference image that have no valid reprojection in any
of the source views and, for the other pixels, weight the loss
associated to each source view depending on how reliable
the associated projection is. This downweights invalid repro-
jections, while encouraging a reconstruction as complete as
possible.

We evaluate our method on the DTU [14] and EPFL [32]
benchmarks. Our method outperforms current state-of-the-
art unsupervised neural implicit surfaces methods by a
large margin: the 3D reconstruction metrics are on average
improved by 20%. We also show qualitatively that our
image warps are able to capture high frequency details.

To summarize, we present:

* a method to warp patches using implicit geometry;

* aloss function able to handle incorrect reprojections;

* an experimental evaluation demonstrating the very sig-
nificant accuracy gain on two standard benchmarks and
validating each element of our approach.

2. Related Work

Multi-view 3D reconstruction, the task of recovering the
3D geometry of a scene from 2D images, is a long standing
problem in computer vision. We focus on the calibrated
scenario where both camera calibrations are known. In this
section, we first review Multi-View Stereo (MVS) methods,
then neural implicit methods that optimize neural networks
for image rendering and finally methods that use projections
in multiple views with implicit methods.

Multi-view stereo (MVS): Classical MVS approaches
use 3D representations such as 3D point clouds like
PMVS [10], voxel grids [19,30] or depth maps [11,29,46].
A more detailed overview can be found in [9]. Depth map
based methods are arguably the most common, with the
widespread usage of COLMAP [29]. This approach relies
on a graphical model and optimizes depth and normal maps
in a multi-step optimization. It ends with a depth map fu-
sion step that outputs a point cloud, which can be further
processed with a meshing algorithm [17,20]. Deep learn-

ing has also been successfully applied to MVS estimation.
Most methods output depth map estimates [5, 13, 38,39,44],
but some also produce voxels [15,23] or point clouds [31].
These methods achieve impressive results on multiple bench-
marks [ 14, 18] but they are supervised and trained on specific
datasets [14,40]. Unsupervised deep MVS methods have
also been introduced [7, 8, 37] but their performances are
still limited compared to supervised versions. Our method
is fully unsupervised and requires neither training data nor
pretrained networks, but has high performance.

Neural implicit surfaces: Recently, new implicit repre-
sentations of 3D surfaces with neural network were intro-
duced. The surface is represented by a neural network which
will output either an occupancy field [21,27] or a Signed
Distance Function (SDF) [26]. These representations are
used to perform multi-view reconstruction following two
different paradigms [25]: surfacic [24,42,45] and volumet-
ric [22,25,34,41]. Surfacic approaches compute the surface
then backpropagate through this step with implicit differen-
tiation [1]. They are hard to optimize and typically require
additional supervision: silhouette masks in [24,42] or the out-
put of a pretrained depth map estimator [44] in MVSDF [45].
Volumetric approaches were introduced in NeRF [22]. The
latter combines classical volumetric rendering [16] with im-
plicit functions to produce high quality renderings of images.
The main focus of NeRF [22] was the quality of rendering,
therefore the geometry was not evaluated. Further work
adapted the geometric output [25, 34,4 1] to make it better
suited for surface extraction. UNISURF [25] uses an occu-
pancy network [21] whereas VoISDF [41] and NeuS [34]
use an SDF [26]. We build our method on VolSDF [41] but
we believe it could be adapted to fit any volumetric neural
implicit framework.

Image warping and neural implicit surfaces: In this
work we combine the color matching idea of traditional
MVS with neural implicit surfaces. Closest to this idea
is MVSDF [45] that also uses a loss based on correspon-
dences and works on accurate geometry optimization. How-
ever, it optimizes consistency between CNN features and the
optimization requires a network pretrained on multi-view
datasets [40]. Our approach does not require any pretrained
network and we show that it outperforms MVSDFE.

The idea of projecting information from source views
to 3D then using the neural radiance field framework to
render a target view has also been used in learning-based
approaches [3,4,6,33,35,43]. These approaches train on
multiple scenes networks that take as input features from
the source views aggregated at a given 3D point and output
radiance and occupancy for this point. They focus however
on the generalization to new scenes and the quality of ren-
dered views, but the quality of their predicted geometry has
not been evaluated, to the best of our knowledge. On the
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Figure 2. Approach overview. We combine volumetric rendering with a new patch warping technique. Both approaches aggregate color
from points sampled along the camera ray: radiance predicted by the radiance network for volumetric rendering and patch extracted from

source views for our patch warping.

contrary, we focus on the optimization framework, i.e., we
do not train our network on several scenes, and we optimize
the quality of geometry.

3. Method

In this section, we present our technical contributions.
Section 3.1 introduces the volumetric rendering framework
on which we build. Section 3.2 explains how we warp a
patch from a source image to a target image given a 3D
scene represented by a geometry network predicting occu-
pancy for each 3D point. Section 3.3 discusses questions
related to visibility and how we mask invalid points during
the optimization. Finally, Section 3.4 presents our full opti-
mization. An overview of our approach and notations can be
seen in Figure 2.

3.1. Volumetric rendering of radiance field

Neural volumetric rendering was introduced in [22] for
novel view rendering. The idea is to represent the char-
acteristics of a 3D scene with two implicit functions that
are approximated with neural networks. The geometry net-
work encodes the geometry of the scene, we use Signed
Distance Field (SDF) encoding [34,41]. The radiance net-
work encodes the color emitted by any region in space in all
directions. The idea is to optimize the two neural networks
together so that rendering the associated scene reconstructs
a set of given views of the scene. Let us consider a reference
image I,.. The two networks are optimized using ¢1 loss be-
tween the colors in reference image I,.[p] and the volumetric
rendering R[p] for a pixel p:

Lo =Y [L[p] — R[p]|. ()

The rendered color R[p] is computed from both networks in
a differentiable way with respect to their parameters using
volumetric rendering [16]. Let x;,7 = 1...n be an ordered
set of points sampled along the ray going through the refer-
ence camera center and the pixel p.' The rendering of the
scene at pixel p is approximated as a weighted sum of the
radiance c; at each point using weights computed from the
geometry network. Intuitively, the color c; will contribute to
the rendering if x; has a high density and if no point on the
ray between x; and the reference camera has a high density
value. Formally, ¢; = c¢(x;, n;, d) is the radiance computed
with the radiance network c in ray direction d, at the points
x; of surface normals n;, computed by differentiation of the
geometry network at the different positions x;. The rendered
color is approximated with an alpha blending of the c;.

N
Rlp] = Zai H(l — aj)c;, (2)

j<i

where we consider for simplicity that the geometry network
« outputs occupancy values «; = a(x;) between 0 and 1. In
practice, our geometry network outputs an SDF, and we refer
to [41] for a detailed explanation of the mapping of SDF to
occupancy values. Eq. (2) is the discrete approximation of
an integral along the camera ray. Therefore, the choice of
sampling points x; is a key element, discussed in [22,25,

,41]. Those methods improve the geometry estimation by
focusing on the sampling, but the reconstructions are still
worse than the traditional MVS techniques. Our hypothesis
is that it comes from the difficulty of the radiance network
to represent high frequency textures (see Figure 1).

IFor simplicity, we drop from the point notations the dependency on the
pixel to render p and the reference image index r.



3.2. Warping images with implicit geometry

Instead of memorizing all the color information present in
the scene with the radiance network, we propose to directly
warp images onto each other relying only on the geometry
network. We consider a reference image I, and a source
image I,. Similar to the above section, we want to obtain
the color of a pixel p or a patch centered around p using
the occupancies «;,7 = 1... N from the geometry network
but this time using colors from projections from the source
image and not the one predicted by the radiance network. In
this section, we assume these projections and their colors are
well defined, and deal with the general case in Section 3.3.
We start by explaining how a source image can be warped
to a target image pixel-by-pixel, which we refer to as pixel
warping. We then extend this idea to warping full patches, a
classical idea in MVS [10, 11,29, 46].

Pixel warping: Instead of using a radiance network to
compute the color of each 3D point x; on the ray associated
to pixel p, we use the color of their projection in source
image. Formally, we define the warped value of p from
source image s as:

N

Ws[p] = Zai H(l - aj)IS[ﬂ'S(Xi)]a 3)

i=1

where I;[m,(x)] denotes the bilinear interpolation of colors
from I, at the point 74 (x) where the 3D point x projects in
I;. In this section, we assume that every 3D points has a
valid projection in source image so that I[ms(x)] is always
defined. Eq. (3) is similar to Eq. (2) but the color comes from
pixel values in source images instead of network predictions.
Intuitively, the warped value is a weighted average of the
source image colors along the epipolar line. Similar to Eq. 1,
one could optimize the geometry using a /1 loss function
¢ =3, IWs[p] — I,[p]|. However, this does not model
changes in intensity related to the camera viewpoint, and
in particular specularities, and can create artifacts in the
reconstruction. One solution to this issue is to use a robust
patch-based photometric loss function.

Patch warping: We now explain how to warp entire
patches instead of single pixels, by locally approximating
the scene at each point x; as a plane in a way similar to
standard techniques used in classical MVS [10]. Let n; be
the surface normal at x;, which can be computed with au-
tomatic differentiation of the geometry network at x;. Let
H, be the homography between I, and I induced by the
plane through x; of normal n;. It can be computed as a 3 x 3
matrix acting on 2D homogeneous coordinates:

tmniTRT 1
H;, = K, (Rrs + W) K., 4

n;

where K, and K are the internal calibration matrices of ref-
erence and source cameras, (R, t,s) is the relative motion
from I to I represented by a 3 x 3 rotation matrix R,
and a 3D translation vector t,.; and (R, t,.) is the pose of
reference frame in world coordinates with the same repre-
sentation. This homography associates any pixel q in I,. to a
pixel H i x q in 1.

With a slight abuse we extend this notation to patches:
for a patch P centered around pixel p, we write H;P the
application of the homography to all pixels of the patch
and I;[H,P] the color interpolated at those locations in I.
Intuitively, H;P is the location of a patch in source image
that would correspond to P in reference frame if the true
geometry was a plane of normal n; passing through x;. We
can now average the patches corresponding to each x; in a
manner similar to Eq. (2) to produce a warped patch W [P]:

N
WP =) o [[(1 - oy)L[HP]. (5)
i=1  j<i
In all our experiments we follow COLMAP [29] and use
a patch size of 11 x 11. Note that using a patch size of 1
would provide the same equation as Eq. (3).

3.3. Optimizing geometry from warped patches

We now want to define a loss based on the warped patches
to optimize the geometry. This cannot be done by using
directly (5) to warp patches and maximizing SSIM. Indeed,
we assumed that all 3D points x; on the camera ray have
a valid projection in the source image, but in practice this
is not true for many points, which may project outside of
the source image for example. In that case I,[H;P] is not
defined, and we instead use a constant (gray) padding color
in (5). This will of course affect the quality of the warped
patch W [P]. Intuitively, if all non-valid 3D points on a
ray are far from the implicit surface seen in the reference
image, the padding value will contribute very little to the
final warped patch which can be used in the loss. On the
contrary, if there are invalid points near the implicit surface,
the warped patch becomes invalid and should not be used
in the loss. We formalize this intuition by assigning to a
patch P centered around pixel p in the reference image a
mask value M, [P] € [0, 1] for each source image s. In the
rest of the section, we first explain how we define our loss
for a given reference image based on the validity masks M
associated with each source image; We then explain how we
define the validity masks.

Warping-based loss: We start by selecting for a given
reference image the set V of patches we consider in the loss.
Since we want to discard patches P for which no source
image gives ant reasonable warp, as quantified by M;(P),
we defineitas V = {P : )" M,(P) > e}. In practice, we
use € = 0.001 in all of our experiments. We then define



Scan 24 37 40 55 63 65 69 8 97 105 106 110 114 118 122 | Mean
DR [17] 163 187 063 048 104 079 077 133 1.16 076 067 090 042 051 053] 090
MVSDF [45]* | 0.83 1.76 0.88 044 1.11 090 075 126 1.02 135 087 084 034 047 046 0.88
COLMAP[29] | 045 091 037 037 090 1.00 054 122 1.08 064 048 059 032 045 043 | 0.65
NeRF [27] 190 160 185 058 228 127 147 167 205 107 088 253 1.06 1.15 096| 1.49
UNISURF[25] | 132 136 172 044 135 079 080 149 137 089 059 147 046 059 062| 1.02
Neus$ [34] 137 121 073 040 120 070 0.72 1.01 1.16 0.82 0.66 1.69 0.39 049 0.51| 0.87
VoISDF [41] 114 126 081 049 125 070 072 129 1.18 070 0.66 1.08 042 061 0.55| 0.86
NeuralWarp (ours) | 0.49 0.71 0.38 038 0.79 081 082 120 1.06 0.68 0.66 0.74 041 0.63 0.51| 0.68

Table 1. Quantitative comparison on DTU. All the results are the ones reported in the original papers, except NeRF, IDR and COLMAP

results that come from [

]. Note that MVSDF results (*) are not directly comparable since they use a custom filtering whereas results with

all other methods have been cleaned using the visual hull. The bottom part of the table compares our result with neural implicit surfaces
approaches that do not use additional inputs (masks, supervised depth estimation). Bold results have the best score and underlined the
second best. Our method outperforms existing work by a large margin, more than 20% on the mean metrics.

our warping-based loss such that every valid patch in the
reference image is given the same weight, but also such that
invalid warping are given less weight:

Ewarp _ z ZSES

Pecvy

M, [P]d(L,[P], W,[P])
2 ses Ms[P]

(6)

where I,.[P] is the color patch P in I,. and d is a photometric
distance between image patches. We use for d the SSIM [36],
except for our ablation where we use /1.

Validity masks: We now explain how we define the va-
lidity mask M. We consider two reasons for warps not
being valid, hence two masks: (i) a projection mask M5™
for cases in which the projection is not valid for geometric
reasons, and (ii) an occlusion mask M for cases where the
patch is occluded by the reconstructed scene in the source
image. The final mask is the product of both: M[P] =
M P]MX[P].

To define the projection mask, we introduce a binary
indicator V;* which is O when the projection associated with
x; is not valid and 1 otherwise. The projection can be invalid
for three reasons: first, when the projection of the point in
the source view is outside the source image; second, when
the reference and source views are on two different sides
of the plane defined by x; and the normal n;; third, when a
camera center is too close to the plane defined by x; and the
normal n;, for which we use a threshold of 0.001 in practice.
We obtain ML [P] by averaging the validity indicators for
all 3D points sampled on the ray associated to P weighted
by the o values:

[T =ayvy ()

N
Mgroj [P] — Z o

i=1  j<i
Note that (7) produces a soft mask value between 0 and 1,
which is necessary to make it differentiable with respect to
the « factors. We found such a property to be important in

practice.

To define the occlusion mask M we check whether
there are occupied regions on the ray between the points
x; and the source camera center. We compute how oc-
cluded a 3D point x is with its transmittance in source view:
Ti(x)=1- Hfj:l (1—a3), where the «f, are the occupancy
values predicted by the geometry network on 3D points sam-
pled on the ray from x to the center of view s. Intuitively,
Ts(x) is close to 1 if there is no point with a large density be-
tween the source image and x, otherwise it is close to 0.We
could average the Ts(x;),% = 1... N in the same manner
as Eq. (7) but this would require computing the transmittance
T for every point on the ray. For computational efficiency
we instead choose to compute an intersection point on the
ray corresponding to the patch P in the reference view and
evaluate transmittance in the source views on this point only:

H(]. — Oéj)Xl'

7<i

N
MEP =T, [ > o (8)
=1

This mask is again soft because 75 outputs a continuous
value in range [0, 1], which helps handling thin surfaces
occlusion: if a ray comes close to a surface without being
strictly occluded, it will still have a lesser influence on the
warping loss compared to a ray that is far from any surface.

3.4. Optimization details

We now explain the details of our method. We first
present out full loss and optimization. We then detail the
network architecture. We finally discuss how we selected
the source images for each reference image.

Full optimization: We optimize the geometry and radi-
ance networks to minimize the sum of the volumetric render-
ing loss (Eq. 1) and the patch warping loss (Eq. 6). In order
to encourage the geometry network to output a function sim-
ilar to a signed distance field, we also add the eikonal loss
Leik [12] which is minimum when the gradient of the output
function at each point in space is of norm 1. This results in
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Figure 3. Examples of DTU renderings using VolSDF [41] and our method, both using our implementation. For both methods, volumetric
rendering cannot produce high frequency texture whereas image warping can precisely recover them. (better viewed in electronic version)

the following complete loss:
L= )\volﬁvol + >\warp£warp + )\eikﬁeik (9)

where Ayol, Awarp and Acjx are scalar hyperparameters. We
use Ao = 1 and Aex = 0.1 for all experiments. We first
optimize the networks using Ayarp = 0 in the same setting as
VoISDF. After 100k iterations with a learning rate exponen-
tially decayed from 5e—4 to 5e—>5, we finetune for another
50k iterations using Awap = 1 and a fixed learning rate of
le—5. The networks are initialized with the sphere initializa-
tion of [2]. We start optimizing with volumetric rendering
only because the normals are initially too noisy to compute
meaningful homographies. During the first phase of training,
without patch warping, we train with batches of 1024 pixels,
but we finetune patch warping on batches of 512 patches due
to GPU memory constraints. Also, we do not backpropagate
the loss through the homography parameters in equation (4)
since we noticed it leads to unstable optimization but the
geometry network is still optimized through the « factors of
Eq. (5).

Architecture: We use the same architecture as concurrent
works [25,41]. Both radiance and geometry networks are
Multi-Layer Perceptrons (MLP). The geometry network has
8 layers with 256 hidden units. The radiance network has
4 layers with 256 hidden units. Similar to [25,41,42] we
encode 3D position using positional encoding with 6 fre-
quencies and viewing direction with 4 frequencies.

Rays sampling: We follow VolSDF [41] in choosing the
points X; ...xX on the camera rays with a small modifi-
cation. We first estimate the opacity function with the al-
gorithm introduced by VolSDF, we then sample N = 64
points on the camera ray with 90% sampled from the opacity
distribution as in VolSDF but the remaining 10% sampled
uniformly along the whole camera ray.

Choice of source images: Our method uses a set of 19
source images S following COLMAP [29] for each refer-
ence image. Those source images must be carefully chosen
since very similar viewpoints will carry little geometric infor-
mation and very different viewpoints will have few common
points. We first build a sparse point cloud with a Structure
from Motion software [28], we then compute for each im-
age pair the total number of sparse points observed by both
(co-visible points) and remove the pairs for which more than
75% of the co-visible points are observed with a triangula-
tion angle below 5° . We finally select the 19 top views in
number of co-visible points.

4. Experiments

In this section, we first show that our method outper-
forms state-of-the-art unsupervised neural implicit surface
approaches on the DTU dataset [14], then on the EPFL
benchmark [32], we present an ablation study to evaluate
each of our technical contributions and finally we discuss
the limitations of our method.

DTU benchmark: The DTU benchmark [14] includes
scenes with 49 to 64 images associated to reference point
clouds acquired with laser sensor. Each scene covers a differ-
ent object: some have challenging specular materials while
others have large textureless regions. The evaluation of
IDR [42] selected 15 scenes and manually annotated object
masks. We compare our method with existing work on the
same scenes, using DTU evaluation code. The metric is the
average of accuracy and completeness: the chamfer distance
of prediction to reference point cloud and inversely. Similar
to existing work [25,34,41,42], we clean the output meshes
with the visibility masks dilated by 12 pixels.

We compare with multiple baselines in Table 1. The re-
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Figure 4. Rendering and geometric error maps of two DTU
scenes [ 14] (blue=low, yellow=high). Compared to VoISDF [41]
on which we build, our method significantly improves accuracy.

sults for each method are taken from their original paper, ex-
cept COLMAP, NeRF and IDR that we took from [25]. Sim-
ilar to [25,34,41], we only compare in the bottom part of the
table deep implicit surface approaches that do not use masks
or other data during training. In particular, MVSDF [45]
uses a supervised depth estimation network. Our method
outperforms existing methods by a large margin. As could
be expected, the improvement is more important on highly
textured scenes but our method performs on par with other
methods on weakly textured scenes. Figure 3 compares orig-
inal images, volume rendering obtained by VoISDF, volume
rendering obtained with our radiance network and our im-
age warping (using the pixel warping approach described in
Section 3.2). Volumetric rendering only renders smoothed
texture, whereas our warping is able to render high-frequency
texture information. As can be qualitatively seen in Figures 1
and 4, this leads to important improvements in accuracy. Re-
constructions and geometric error maps for all scenes are
shown in the supplementary material.

EPFL benchmark: The EPFL benchmark [32] consists
of two outdoor scenes of 7 and 11 high resolution images
with a high resolution ground truth mesh. Since the extent
of the ground truth does not exactly overlap the cameras

Fountain-P11 Herzjesu-P7 Mean

Full Center Full Center| Full Center
647 245 795 231|721 238
26.16 17.72 27.22 13.72 |26.69 15.72
MVSDF [45] 6.87 226 1132 272 |9.10 249
VoISDF [41] 12.89 299 13.61 4.58 [13.25 3.78
NeuralWarp (ours)| 7.77 192 8.88 2.03 | 8.32 1.97

Method

COLMAP [29]
UNISURF [25]

Table 2. Quantitative evaluation on EPFL dataset. We use the
chamfer distance on the Full scene (Full) and on a manually de-
fined bounding box at the center of the scene (Center). Results
of VoISDF [41] come from our implementation, MVSDF recon-
structions were sent by the authors and and we ran MVSDF and
COLMAP public implementations. Although COLMAP is the
best method for the full reconstruction, our method has the best
results for the center metrics. It outperforms existing neural implicit
surfaces by 20% on center metrics.

viewing angle and inversely, it is necessary to remove points
from both predicted and ground truth meshes for evaluation.
MVSDF [45] uses manual masks to remove vertices from
the ground truth mesh, which we argue might be biased.
We instead automatically remove vertices from the ground
truth mesh when they do not project in any input image.
Similar to DTU evaluation, we use silhouette masks to clean
the predicted mesh with the scene visual hull. We generate
silhouette masks by rendering the ground truth mesh on each
input viewpoint and marking pixels which are not covered as
outside of the silhouette. Finally, we also remove from the
predicted mesh any triangle that is not rendered in any image,
which removes in particular faces closing the volume behind
the object. To compute the distance between the filtered
ground truth and predicted mesh, we sample 1 million point
from each and compute their chamfer distance. We call this
metrics the full chamfer distance. It is mainly influenced
by the completeness of the reconstruction, e.g. it compares
how well methods reconstruct the ground plane or rarely
seen points. We therefore introduce another metric referred
to as the center chamfer distance which only evaluates the
chamfer distance in a box at the center of the scene which we
manually defined so that it only includes the central part of
the scene, which is reconstructed by all methods. Thus, this
metric focuses more on the accuracy of the reconstruction.
We compare our method with several baselines with these
two metrics in Table 2. We ran COLMAP followed by
sPSR [17] with trim 5, used the official UNISURF imple-
mentation,” evaluated the MVSDF meshes communicated by
the authors, and ran our own reimplementation of VolSDF.
Qualitative comparisons between the reconstructions and
error maps for each method can be seen in Figure 5. Similar
to the DTU results, our method outperforms other neural im-
plicit surfaces by more than 20%. COLMAP [29] is the best
method for the full metric. This is in large part because it is

Zhttps://github.com/autonomousvision/unisurf
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COLMAP [29]

UNISUREF [25]

MVSDF [45]

VoISDF [41] Ours

Figure 5. Geometric error maps of reconstructed meshes on EPFL benchmark [32] (blue=low, yellow=high). We ran COLMAP and
UNISUREF official implementations, MVSDF results were sent by the authors and we ran VolSDF with our implementation. Our method
produces better results than other neural implicit surface approaches, almost on par with COLMAP [29].

Method | Lvo Lwap M Chamfer dist.
VoISDF [41] N None 0.85
Pixel v Pixel v 0.83
Patch no occ. v Patch 0.74
Patch no vol. Patch v 0.74
NeuralWarp (full) v Patch v 0.68

Table 3. Ablation study on all scenes of DTU: Lo denotes volu-
metric rendering, Lyap Warping consistency for which we try none,
pixel and patch warpings. M denotes whether we detect self
occlusions or not.

the only method able to reconstruct accurately the ground
plane on both scenes. For the center metrics however, our
method outperforms even COLMAP, though this might be
due to some details reconstructed by COLMAP (e.g. rail-
ing) not being included in the ground truth: qualitatively,
COLMAP still seems to recover finer details.

Ablation study: To evaluate the effect of our technical
contributions, we perform an ablation study on the DTU
dataset. Starting from the same models trained without pho-
tometric consistency, we finetune different versions of our
model for 50000 iterations and compare the results. The av-
erage chamfer distance over all 15 scenes is shown in Table 3
and we report the results on each scene in the supplementary
material. We first compare the results without our warping
loss (" VoISDF [41]’ line), with pixel warping (’Pixel’ line)
and with patch warping ('NeuralWarp (full)’ line). Both
pixel and patch warping improve the results, with a clear
advantage for patches. We then evaluate the importance of
masking. Removing the projection mask (not reported in the
table) does not lead to meaningful reconstructions. Without
the occlusion mask ("Patch no occ.” line) our method still
improves over the baseline, but by a smaller margin. Finally,

we tried to completely remove volumetric rendering loss,
that is, use Ay, = 0 ("Patch no vol.” line). Again, this im-
proves over the baseline but is worse than combining the
volumetric and warp losses.

Limitations: Our method has several limitations. First,
compared to COLMAP, it struggles to reconstruct high-
frequency geometry. We believe this is due to the difficulty
of optimizing a geometry network at high resolution. Sec-
ond, computing our loss increases the computational cost
of the optimization, in particular the occlusion mask adds
processing time and processing patches increases memory
footprint. Finally, simply comparing patches does not model
reflections, which can lead to artifacts even using a robust
patch similarity. We show such an example in supplementary
material.

5. Conclusion

We have presented a new method to perform multiview
reconstruction with implicit functions, using image warpings
in combination with volumetric rendering. Unlike existing
neural implicit surface methods, our approach can easily take
advantage of high-frequency texture. We show this leads to
strong performance improvements on the classical DTU and
EPFL datasets.
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