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Abstract

Deep multi-view stereo (MVS) methods have been devel-
oped and extensively compared on simple datasets, where
they now outperform classical approaches. In this paper, we
ask whether the conclusions reached in controlled scenarios
are still valid when working with Internet photo collections.
We propose a methodology for evaluation and explore the in-
fluence of three aspects of deep MVS methods: network archi-
tecture, training data, and supervision. We make several key
observations, which we extensively validate quantitatively
and qualitatively, both for depth prediction and complete
3D reconstructions. First, complex unsupervised approaches
cannot train on data in the wild. Our new approach makes
it possible with three key elements: upsampling the output,
softmin based aggregation and a single reconstruction loss.
Second, supervised deep depthmap-based MVS methods are
state-of-the art for reconstruction of few internet images.
Finally, our evaluation provides very different results than
usual ones. This shows that evaluation in uncontrolled sce-
narios is important for new architectures.

1. Introduction
Deep Learning holds promises to improve Multi-View

Stereo (MVS), i.e. the reconstruction of a 3D scene from a
set of images with known camera parameters. However, deep
MVS algorithms have mainly been developed and demon-
strated in controlled settings, e.g. using pictures taken with a
single camera, at a given time, specifically for 3D reconstruc-
tion. In this paper, we point out the challenges in using such
approaches to perform 3D reconstructions “in the wild” and
propose an evaluation procedure for such a task. We analyze
quantitatively and qualitatively the impact of network archi-
tecture and training for 3D reconstructions with a varying
number of images. We give particular attention to unsuper-
vised methods and propose a new approach which performs
on par with state of the art while being much simpler.
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Figure 1: We apply deep multi-view stereo networks to internet
images and study the influence of architecture, supervision and
training data over the quality of the reconstructed 3D models.

The reference dataset for the development of the vast ma-
jority of deep MVS approaches [35, 36, 34, 3, 39, 21] has
been the DTU [12] dataset, consisting of 80 small scenes
in sequences of 49 to 64 images. It was acquired in a lab,
together with a reference 3D model obtained with a struc-
tured light scanner. While the scale of this dataset makes it
suitable to train deep networks, it corresponds to a relatively
simple reconstruction scenario, where many images taken
in similar conditions are available. Recently, deep MVS ap-
proaches have started to evaluate their performance on larger
outdoor datasets, such as Tanks and Temples [18] (T&T) and
ETH3D [25]. For example, VisMVSNet [42] outperformed
all classical methods on the T&T dataset. Yao et al. [37]
have recently proposed a synthetic dataset, BlendedMVS,
specifically designed to train deep MVS approaches to gen-
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eralize to such outdoor scenarios. We aim to go further and
evaluate whether deep MVS networks can generalize to the
more challenging setting of 3D reconstruction from Inter-
net image collections. We are particularly interested in the
challenging case with few images available for the recon-
struction, where classical approaches struggle to reconstruct
dense point clouds, and we propose an evaluation protocol
for such a setup.

Such a generalization to datasets with different properties,
where obtaining ground truth measurements is challenging,
has been a major motivation for unsupervised deep MVS
approaches [4, 17, 11, 31]. We found however that many of
these methods cannot train the network on real data. We thus
propose a simpler alternative providing results on par with
the best competing methods. It relies on minor modifications
of the standard MVSNet [35] architecture and is simply
trained by comparing the images warped using the predicted
depth.

Our experiments give several interesting insights. First,
we show that existing unsupervised method are not suited for
images in the wild but our proposed method is. Second, we
show that depthmap-based MVS methods are state-of-the-art
for reconstruction of few internet images. Third, in the wild
evaluation provides very different results than evaluation
on DTU and T&T. We therefore advocate for its use when
developing new architectures. Our main contributions are:

• We introduce a new experimental setup1 for comparing
different algorithms on images in the wild.
• We use this protocol to compare methods along three

axes: network supervision, network architecture and
training dataset.
• We show that existing unsupervised methods fail on

images in the wild and thus we introduce a new unsu-
pervised method.

2. Related Work
The goal of MVS is to reconstruct the 3D geometry of a

scene from a set of images and the corresponding camera
parameters. These parameters are assumed to be known,
e.g., estimated using structure-from-motion [23]. Classical
approaches to MVS can be roughly sorted in three cate-
gories [5]: direct reconstruction [6] that works on point
clouds, volumetric approaches [26, 19] that use a space
discretization, and depth map based methods [7, 24] that
first compute a depth map for every image then fuse all
depth maps into a single reconstruction. The latter approach
decomposes MVS in many depth estimation tasks, and is
typically adopted by deep MVS methods.

Deep Learning based MVS Deep Learning was first
applied to patch matching [41, 40] and disparity estima-

1Our PyTorch code and data are available at https://github.
com/fdarmon/wild_deep_mvs.

tion [16]. Several approaches tackled the MVS problem with
deep learning, using either a volumetric approach [13, 22]
or sparse point cloud densification [28]. MVSNet [35] in-
troduced a network architecture specific to depth map based
MVS and end-to-end trainable. Further works improved the
precision, speed and memory efficiency of MVSNet. [36, 33]
propose a recurrent architecture instead of 3D convolutions.
MVS-CRF [32] uses a CRF model with learned parameters
to infer depth maps. Many approaches introduce a multi-
step framework where a first depth map is produced with an
MVSNet-like architecture, then the results are refined either
with optimization [36, 39], graph neural networks [3, 2] or
multiscale neural networks [9, 34, 42, 38]. Another line of
work aims at improving the per-view aggregation by predict-
ing aggregation weights [21, 42]. All these methods were
evaluated in controlled settings and it is unclear how they
would generalize to internet images.

Unsupervised training is a promising approach for such
a generalization. [17, 4, 11, 31] propose unsupervised ap-
proaches using several photometric consistency and regu-
larization losses. However, to the best of our knowledge,
these methods were never evaluated on Internet-based im-
age datasets. Besides, their loss formulation is composed of
many terms and hyperparameters, making them difficult to
reproduce and likely to fail on new datasets. In this paper
we propose a simpler unsupervised training approach, which
we show to perform on par with these more complex ones
on standard data, and generalizes to Internet images.

Datasets and evaluation There exist many datasets for
3D reconstruction. Most use active sensing [8, 18, 29].
Synthetic ones [1] provide an alternative way to acquire
large-scale data but they cannot be used to predict reliable
performance on real images. Specific datasets were intro-
duced for MVS, such as ETH3D [25], Tanks & Temples
(T&T) [18] or DTU [12] datasets. Most deep MVS methods
train on the DTU dataset [12] and evaluate generalization on
T&T [18]. DTU provides large-scale data but in a laboratory
setting. The limited generalization capability of networks
trained on DTU was highlighted in [37]. In this paper, a
network trained on the synthetic dataset BlendedMVS was
shown to perform better on T&T than its counterpart trained
on MegaDepth [20]. [37] claims that this is due to the lack
of accuracy on MegaDepth depth maps. We also compare
training deep MVS approaches on DTU, BlendedMVS and
MegaDepth but for MVS reconstruction from Internet im-
ages, and additionally compare performances obtained in
supervised and unsupervised settings.

3. MVS Networks in the Wild
In this section, we present standard deep depthmap-based

MVS architectures and training which we compare, and
propose some modifications, including our new unsupervised
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Figure 2: Notations: A pixel p in reference frame is projected on
source frames at a position depending on its depth.

training, to better handle images in the wild.

3.1. Network Architectures

Overview and notations Starting from a set of calibrated
images, deep MVS methods typically try to estimate a depth
map for each image. The depth maps are then fused into
a 3D point cloud using an independent method. The MVS
network will take as input a reference image Ir and a set of
source images Is1 . . . IsN , and try to predict the depth Dr of
the reference image.

Multi-view stereo architectures build on the idea that
depth can be used to establish correspondences between im-
ages. More formally, as visualized in Figure 2, we write
πr→sk(p, d) the 2D position of the projection in the camera
associated to Isk of the 3D point at depth d on the ray associ-
ated to the pixel p ∈ R2 in Ir. If d is the ground truth depth
of the pixel p then the appearance of the reference image
should be consistent with all the appearances of the source
images Isk at pixels πr→sk(p, d).

Similar to the classic plane sweep stereo methods, the best
performing deep MVS methods explicitly sample candidate
depths and build a cost volume that computes for every pixel
a score based on the correspondences given in every view
by the candidate depths. This score can be seen as the cost
of assigning a given depth to a pixel. The depth map can be
extracted from the cost volume by looking at the minimum in
the depth axis. MVSNet [35] was the first deep architecture
implementing this idea.

MVSNet MVSNet starts by extracting a feature representa-
tion of each input image using a shared convolutional neural
network (CNN). We write Fr the feature map of the refer-
ence image and Fs1 . . .FsN the feature maps of the source
images. The network also takes as input the depth range
[dmin, dmax] to consider. It is usually provided in standard
datasets, and we explain in section 4.1 how we defined them
in the context of reconstruction in the wild. The information
from the feature maps are then aggregated into a 3D cost
volume C for depth d regularly sampled from dmin to dmax.

C[p, d] = φ (Fr[p]; {Fsk [πr→sk(p, d)], k = 1 . . . N}) ,
(1)

where F[·] denotes the interpolation of the feature map F and
φ is an aggregation function. In MVSNet the channel-wise
variance is used for aggregation:

φ(fr; {fs1 , . . . fsN }) = var(fr, fs1 , . . . fsN ). (2)

The cost volume only encodes local information. A fur-
ther step of 3D convolutions is then performed to propagate
this local information. The depth map is finally extracted
from the refined cost volume using a differentiable argmin
operation.

Softmin-based aggregation The variance aggregation of
MVSNet can be problematic when applied to images in
the wild. Indeed, we can expect large viewpoint variations
and many occlusions. Both would lead to large appearance
differences in the pixels corresponding to the actual depth,
and such outlier images would have a strong influence on
the variance. Instead, we propose an alternative aggregation:

φ(fr; {fs1 , . . . fsN }) =∑N
k=1 exp(−λ‖fr − fsk‖2)(fr − fsk)

2∑N
k=1 exp(−λ‖fr − fsk‖2)

, (3)

where λ is a learnable parameter. This score has two main
differences with the variance aggregation. First, it breaks the
symmetry between the reference and source images, each
source feature is compared to the reference instead of the
mean feature. Second, in our aggregation, the contribution
of each source feature is weighted using a softmin weight.
The intuition is that the features most similar to the ones of
the reference image should be given higher weight compared
to features that are completely different, which might be
outliers. We will show in our experiments that such an
aggregation is particularly beneficial in the presence of a
high number of potential source images.

Multi-scale architectures. A known limitation of MVS-
Net is its large memory consumption. The consequence is
that the resolution, both for image and depth is limited by
the available memory. Several methods have been proposed
to increase the resolution without increasing the memory
requirements. Among them are the multiscale approaches
that first scan coarsely the whole depth range using low
resolution feature maps then refine the depth at higher res-
olutions. We used two successful multi-scale approaches:
CVP-MVSNet [34] and Vis-MVSNet [42]. CVP-MVSNet
starts from a downsampled version of the images to predict
a coarse depth map using the same architecture as MVS-
Net. Then, at each scale, this depth map is upsampled and
refined using the same network until full scale prediction is
reached. This architecture is very light and can work with a
variable number of scales. Vis-MVSNet uses a fixed number
of scales with a different network for each scale. Moreover,



contrary to CVP-MVSNet, the lowest scale features are ex-
tracted from the full scale image using strided convolutions.
Finally, Vis-MVSNet leverages a specific multi-view aggre-
gation. It first predicts a confidence for each source image
using a Bayesian framework [15], then uses the confidence
to aggregate the pairwise cost volumes associated with every
source image. While this aggregation is complex, we believe
it is one of the key ingredients that allows Vis-MVSNet to
generalize well to Internet images.

3.2. Training

3.2.1 Supervised Training.

We first consider the case where a partial ground truth depth
map DGT is available, together with a binary mask MGT en-
coding pixels for which the ground truth is valid. Supervised
training is typically performed using the `1 loss between
the predicted depth map D and the ground truth depth map
DGT , weighted by the mask MGT and normalized by the
scene’s depth range,

l(D,DGT ,MGT ) =
‖MGT (D −DGT )‖

(dmax − dmin)‖MGT ‖
. (4)

3.2.2 Unsupervised Training

Motivated by the difficulty to obtain ground truth depth maps,
unsupervised approaches attempt to rely solely on camera
calibration. Approaches proposed in the literature typically
combine a photometric consistency term with several addi-
tional losses. Instead, we propose to rely exclusively on the
structural similarity between the reference image and the
warped source images.

Similarly to MVS2 [4], we adopt a multi-reference set-
ting where each image in a batch is successively used
as a reference image. Let us consider a batch of im-
ages I = {I1, ..., IN+1} and the associated depth maps
D = {D1, ..., DN+1} predicted by our MVS network. We
write Wb→a(Da) the image resulting from warping Ib on
Ia using the estimated depth map Da:

Wb→a(Da)[p] = Ib[πa→b(p, Da[p])]. (5)

Note that this warped image is not defined everywhere, since
the 3D point defined from the pixel p and the depth Da[p]
in Ia might project outside of Ib. Even when the warped
image is defined, it might not be photoconsistent in case
of occlusion. We thus follow MVS2 [4] and define an oc-
clusion aware mask in Ia, M b→a(Da, Db), based on the
consistency between the estimated depths Da and Db in Ia

and Ib (see [4] for details).
We then define the loss for the batch as:

l(I,D) =
N∑
r=1

∑
s6=r ‖Ms→r(Dr, Ds)SSIM (Ir,W

s→r(Dr))‖∑
s6=r ‖Ms→r(Dr, Ds)‖

(6)

where SSIM is the structural similarity [43], which enables
to compare images acquired in very different conditions. To
avoid the need for further regularization outlined by other
unsupervised approaches, we use the same approach as [27]:
the depth maps, which are predicted at the same resolution
as the CNN feature maps, are upsampled to the resolution of
the original images before computing the loss.

Note that this loss is much simpler than in MVS2 [4],
a combination of `1 color loss, `1 of the image gradients,
SSIM and census transform. However, we show that it leads
to results on par with state of the art and can be successfully
applied to train a network from Internet image collections.

4. Benchmark of Deep MVS Networks in the
Wild

To analyze the performance of different networks, we
define training and evaluation dataset, evaluation metrics, as
well as reference choices for several steps of the reconstruc-
tion pipeline, including reference depth to consider and a
strategy to merge estimated depths into a full 3D model.

4.1. Data

Training datasets We experiment training on the
DTU [12], BlendedMVS [37] and MegaDepth [20] datasets.
Training an MVS network requires images with their associ-
ated calibration and depth maps. It also requires to select the
set of source images for each reference image and the depth
range for building the cost volume. DTU is a dataset cap-
tured in laboratory conditions with structured light scanner
ground truth. It was preprocessed, organized, and annotated
by Yao et al. [35], who generated depth maps by meshing and
rendering the ground truth point cloud. BlendedMVS was
introduced in order to train deep models for outdoor recon-
struction. It is composed of renderings of 3D scenes blended
with real images to increase realism. Depth range and list of
source views are given in the dataset. These datasets have
reliable ground truth but there is a large domain gap between
their images and Internet images. Thus, we also experiment
training on MegaDepth, which is composed of many Internet
images with pseudo ground truth depth and sparse 3D mod-
els obtained with COLMAP [24, 24]. We generate a training
dataset from MegaDepth, excluding the training scenes of
the Image Matching Benchmark [14] which we will use for
evaluation. We selected sets of training images by looking at
the sparse reconstruction. We randomly sample a reference
image and two source images uniformly among all the im-
ages that have more than 100 reconstructed 3D points, with



a triangulation angle above 5 degree, in common with the
reference. Once these sets of three images are sampled, we
select the 3D points observed by at least three images and
use their minimum and maximum depth as dmin and dmax.

Depth map evaluation To evaluate depth map prediction,
we used the synthetic BlendedMVS scenes, as well as the
images from YFCC-100M [30, 10] used in the image match-
ing benchmark of [14]. Indeed, [14] provides 14 sets of few
thousands of images with filtered ground truth depth maps
obtained with COLMAP [23, 24].

3D reconstruction evaluation Because our ultimate goal
is not to obtain depth maps but complete 3D reconstructions,
we also select data to evaluate it. We used the standard DTU
test set, but also constructed an evaluation setting for im-
ages in the wild. We start from the verified depth maps of
the Image Matching Workshop [14]. We fuse them into a
point cloud with COLMAP fusion using very conservative
parameters: reprojection error below half a pixel and depth
error below 1%. The points that satisfy such conditions in 20
views are used as reference 3D models. We manually check
that the reconstructions were of high enough quality. The
scenes Westminster Abbey and Hagia Sophia interior were
removed since their reconstruction was not satisfactory. We
then randomly selected sets of 5, 10, 20, and 50 images as
test image sets and compare the reconstructions using only
the images in these sets to the reference reconstruction ob-
tained from the reference depth maps of a very large number
of images. While the reference reconstructions are of course
biased toward COLMAP reconstructions, we argue that the
quality and extension of the reconstructions obtained from
the small image sets is much lower than the reference one,
and thus evaluating them with respect to the reference makes
sense. Moreover, we never observed any case where part of
the scene was reconstructed using deep MVS approaches on
the test image sets and not in the reference reconstruction.

4.2. Metrics

Depth estimation We follow the same evaluation proto-
col as BlendedMVS [37]. The predicted and ground truth
depth maps are first normalized by (dmax−dmin)/128 which
makes the evaluation comparable for images seeing different
depth ranges. We use the following three metrics: end point
error (EPE), the mean absolute error between the inferred
and the ground truth depth maps; e1, the proportion in % of
pixels with an error larger than 1 in the scaled depth maps;
e3, the proportion in % of pixels with an error larger than 3.

3D reconstruction On DTU [12] we follow the standard
evaluation protocol and use as metrics: Accuracy, the mean
distance from the reconstruction to ground truth, complete-
ness from ground truth to reconstruction, and the overall
metric defined as the average of the previous two.

For our evaluation in the wild, we use the same metrics as
T&T [18] : precision, recall and F-score at a given threshold.
The reference reconstruction is known only up to a scale
factor therefore the choice of such threshold is not straight-
forward. Let Dk be the ground truth depth map of image Ik,
we define the threshold as:

t = median
k

(
median
‖p−p′‖=2

‖Dk[p]p−Dk[p
′]p′‖

)
. (7)

4.3. Common Reconstruction Framework

To fairly compare different deep MVS approaches for 3D
reconstruction, we need to fuse the predicted depth maps
in a consistent way. Several fusion methods exist, each
with variations in the point filtering and the parameters used.
For DTU reconstructions, we use fusibile [7] with the same
parameters for all compared methods. Since fusibile is only
implemented for fixed resolution images, we use a different
method for Internet images. We use the fusion procedure
of COLMAP [24] with a classic pre-filtering step similar to
the one used in MVSNet: we only keep depths consistent
in three views. The consistency criterion is based on three
thresholds: the reprojected depth must be closer than 1% to
original depth, the reprojection distance must be less than 1
pixel, and the triangulation angle must be above 1◦.

5. Experiments
We first provide an ablation study of our unsupervised

approach and compare it with state of the art unsupervised
methods (Section 5.1). Then, we compare the different net-
work architecture and supervisions for depth map estimation
(Section 5.2) and full 3D reconstruction (Section 5.3).

5.1. Unsupervised Approach Analysis

We validate and ablate our unsupervised approach on both
DTU 3D reconstruction and YFCC depth map estimation
in Table 1. We test the importance of upsampling the depth
map as a way to regularize the network, compare variance
and softmin aggregation functions as well as results with
and without occlusion aware masking. We also compare our
approach with existing work.2 The main observation is that
upsampling is the key factor to obtain meaningful results.
Softmin aggregation is consistently better than variance for
both datasets and evaluations. Occlusion masking also con-
sistently improves the results, by a stronger margin on YFCC
where occlusions are expected to be more common. Using
upsampling and occlusion masking, our simple training loss
is on par with state of the art unsupervised methods on DTU
but is is much better for YFCC trainings where competing
method have poor results.

2We use open source implementations of M3VSNet and JDACS pro-
vided by the authors.



Table 1: Ablation study of unsupervised learning. We compare net-
works trained with and without upsampling (Up.) of the predicted
depth map, with and without occlusion masking (Occ.) and using
as aggregation function (φ) either Variance aggregation (V, eq. 2)
or our Softmin aggregation (S, eq. 3).

φ Up. Occ. DTU reconstruction YFCC depth maps
Prec. Comp. Over. EPE e1 e3

V 1.000 0.803 0.901 34.74 91.88 80.99
V X 0.614 0.580 0.597 21.68 67.48 48.44
S X 0.607 0.560 0.584 21.88 66.39 46.61
V X X 0.610 0.545 0.578 18.75 63.07 43.17
S X X 0.608 0.528 0.568 18.22 61.97 41.34
Unsup. MVSNet[17] 0.881 1.073 0.977

MVS2 [4] 0.760 0.515 0.637
M3VSNet [11] 0.636 0.531 0.583 40.57 82.45 69.91

JDACS [31] 0.571 0.515 0.543 34.37 92.36 80.45

5.2. Depth Map Prediction

In Table 2 we compare different approaches for depth
prediction on the YFCC data and BlendedMVS validation
set. We study different architectures, the standard MVS-
Net architecture with either the standard variance aggrega-
tion or our proposed softmin aggregation and two state-of-
the-art multiscale architecture CVP-MVSNet [34] and Vis-
MVSNet [42].3 We compare results for networks trained on
DTU, BlendedMVS (B) and MegaDepth (MD) with either
the supervised `1 loss or our occlusion masked unsuper-
vised loss (except for BlendedMVS which we only use in
the supervised setting since it is a synthetic dataset designed
specifically for this purpose).

MVSNet architecture As expected, the best performing
networks on a given dataset are the ones trained with a su-
pervised loss on the same dataset. Confirming our analysis
in the unsupervised setup, we can also see that MVSNet
modified with our softmin-based aggregation systematically
outperforms the variance-based aggregation. The results for
unsupervised settings are more surprising. First, networks
trained on DTU in the unsupervised setting generalize better
both to blended-MVS and YFCC, hinting that unsupervised
approaches might lead to better generalization even without
changing the training data. Also, the unsupervised network
trained on MegaDepth performs better on YFCC than the su-
pervised networks trained on BlendedMVS, outlining again
the potential of unsupervised approaches.

Multi-scale architectures CVP-MVSNet, which is our
best performing architecture on DTU (see next section) and
achieves the second best results in terms of e1 error on Blend-
edMVS, did not achieve satisfactory results on YFCC images
even when supervised on MegaDepth. This may be because
at the lowest resolution the architecture takes as input a low

3For both CVP-MVSNet and Vis-MVSNet, we adapted the public im-
plementation provided by the authors

Table 2: Direct depth map evaluation: Comparison of architectures
MVSNet [35], our MVSNet with softmin aggregation (MVSNet-S),
CVP-MVSNet [34] and Vis-MVSNet [42], trained on BlendedMVS
(B), DTU or MegaDepth (MD), with or without depth supervision
(Sup.).
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DTU X 4.18 42.07 19.87 27.18 78.25 60.53
DTU 4.05 32.50 16.01 21.07 68.64 50.35
MD X 1.91 32.91 11.93 15.57 60.44 38.18
MD 2.88 33.44 14.14 18.22 61.97 41.34

C
V

P-
M

V
SN

et B X 1.90 19.73 10.24 40.07 85.88 76.25
DTU X 10.99 46.79 35.59 73.69 95.29 90.69
DTU 5.25 29.33 19.77 45.36 89.81 82.17
MD X 3.07 24.33 14.40 34.39 78.49 66.57
MD 3.39 21.67 12.94 32.74 78.92 66.99

V
is

-M
V

SN
et B X 1.47 18.47 7.59 19.60 64.98 46.38

DTU X 3.70 30.37 18.16 27.46 72.89 58.37
DTU 7.22 37.03 20.75 38.32 73.24 56.17
MD X 2.05 22.21 10.14 16.01 56.71 38.20
MD 3.88 31.64 17.50 19.21 66.27 47.34

resolution downsampled version of the image, on which cor-
respondences might be too hard to infer for images taken in
very different conditions.

On the contrary, Vis-MVSNet supervised on MegaDepth
data is the best performing approach in terms of e1 error.
However, its performance is worse in the unsupervised set-
ting compared to MVSNet. This is likely explained by the
complexity of the loss function of Vis-MVSNet. In the origi-
nal paper, the loss combines pairwise estimated depth maps
and final depth maps. The pairwise loss is computed in a
Bayesian setting [15] and our direct adaptation of this loss
by replacing `1 with photometric loss might be too naive.

Number of source views Until now, all experiments were
performed using one reference view and four source views as
input to the network at test time. However, in real scenarios,
one might have access to more views, and it is thus impor-
tant for the network to benefit from an increased number of
views at inference time. We thus investigate the use of more
source images at test time, still training with two source
images only, and report the results in Figure 3. The results
for MVSNet architecture with variance-based aggregation
get worse as the number of source views is increased. This
may be because the relevant information in the cost volume
is more likely to be masked by noise when the number of
source images increases. On the contrary, the performances
of our softmin-based aggregation or Vis-MVSNet aggrega-
tion improve when using a higher number of source views.
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Figure 3: EPE on YFCC depth map estimation as a function of the
number of source images N for networks trained on MegaDepth,
supervised (Sup.) or unsupervised (Unsup.). Contrary to the other
architectures MVSNet with variance aggregation does not benefit
from using more images.

5.3. 3D Reconstruction

We now evaluate the quality of the full 3D reconstruc-
tion obtained with the different architectures. The predicted
depth maps are combined with a common fusion algorithm
and the evaluation is performed on the fused point cloud. We
first report the results on DTU in Table 3. Interestingly, our
softmin-based adaptation degrades performance when train-
ing on DTU in a supervised setting, but not in an unsuper-
vised setting. Also note that the performance on DTU, and in
particular the completeness of the reconstruction, is largely
improved when the networks are trained on MegaDepth data.
The best performance is even obtained in an unsupervised
setting with CVP-MVSNet. However, this network performs
poorly on YFCC data.

Finally, we evaluate the quality of the 3D reconstructions
obtained from small sets of YFCC images. For fair com-
parison with COLMAP [24], the depth maps are evaluated
with up to 19 source images for these experiments, except
when using the original MVSNet architecture with variance
aggregation, which does not benefit from using more images
and which we continue to use with four source images. Since
depth estimation on YFCC images completely failed with
CVP-MVSNet as well as with networks trained on DTU, we
did not perform reconstructions in these cases. Quantitative
results are reported in Table 4 and qualitative results are
shown in Figure 4.

Most of the trends observed for depth map prediction can
also be observed in this experiment. In particular, networks
trained on MegaDepth perform better than those trained
on BlendedMVS, our softmin-based aggregation improves
results for the MVSNet architecture, in particular when many
views are available and in the unsupervised setting, and Vis-
MVSNet outperforms MVSNet in the supervised setting.

A new important observation is that the unsupervised
MVSNet performs better than the supervised version, espe-
cially for the recall metric. This can also be seen in Figure 4
where the reconstructions appear more complete in the un-
supervised setting. We argue that this is a strong result that
advocates for the development of unsupervised approaches

Table 3: 3D reconstruction evaluation on DTU. Comparison of
trainings on BlendedMVS, MegaDepth and DTU for various archi-
tectures with or without supervision (‘Sup.’ column).

Archi.
Training

data Sup. DTU reconstructions
Acc. Comp. Overall

MVSNet [35]

Blended X 0.487 0.496 0.491
DTU X 0.453 0.488 0.470
DTU 0.610 0.545 0.578
MD X 0.486 0.547 0.517
MD 0.689 0.645 0.670

MVSNet [35]
softmin

Blended X 0.631 0.738 0.684
DTU X 0.598 0.531 0.564
DTU 0.609 0.528 0.568
MD X 0.625 0.548 0.586
MD 0.690 0.614 0.652

CVP-
MVSNet [34]

Blended X 0.364 0.434 0.399
DTU X 0.396 0.534 0.465
DTU 0.340 0.586 0.463
MD X 0.360 0.376 0.368
MD 0.364 0.370 0.367

Vis-
MVSNet [42]

Blended X 0.504 0.411 0.458
DTU X 0.434 0.478 0.456
DTU 0.456 0.596 0.526
MD X 0.438 0.345 0.392
MD 0.451 0.873 0.662

suitable for the more advanced architectures. Interestingly,
this result was not noticeable in our depth map evaluation.

Another significant observation is that Vis-MVSNet
trained with supervision on MegaDepth quantitatively out-
performs COLMAP when using very small image sets (5 or
10 images) with both higher precision and higher recall. This
is also a very encouraging result, showing that Deep MVS
approaches can provide competitive results in challenging
conditions. However, one should note that this quantitative
result is not obvious when looking at the qualitative results
where either COLMAP or Vis-MVSNet achieves better look-
ing results, depending on the scene.

6. Conclusion
We have presented a study of the performance of deep

MVS methods on Internet images, a setup that, to the best of
our knowledge has never been explored. We discussed the
influence of training data, architecture and supervision. For
this last aspect, we introduced a new unsupervised approach
which outperforms state of the art. Our analysis revealed
several interesting observations, which we hope will encour-
age systematic evaluation of deep MVS approaches with
challenging Internet images and stimulate research on unsu-
pervised approaches, to ultimately have deep learning bring
clear performance boosts in this important scenario.
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Table 4: 3D reconstruction evaluation on our ‘in the wild’ benchmark. We compare several architectures trained with and without supervision
(‘Sup.’ column) on BlendedMVS (Blended) and MegaDepth (MD). We report the best between using four source views (*) and all source
views (up to 19).

Archi.
Training

data Sup. 5 images 10 images 20 images 50 images
Prec. Rec. F-score Prec. Rec. F-score Prec. Rec. F-score Prec. Rec. F-score

MVSNet [35] Blended X 84.68 11.51 0.1916 91.37* 23.27* 0.3583* 91.46* 36.46* 0.5173* 93.40* 51.50* 0.6608*
MD X 84.31 14.84 0.2387 91.05* 27.62* 0.4151* 89.94* 39.55* 0.5460* 92.07* 52.69* 0.6675*
MD 80.44 15.31 0.2439 90.17* 31.05* 0.4546* 88.15* 43.84* 0.5822* 92.22* 57.27* 0.7039*

MVSNet [35]
softmin

Blended X 74.67 2.14 0.0395 83.66 11.68 0.1897 83.43 19.64 0.2974 89.93 37.85 0.5240
MD X 84.60 11.70 0.1936 88.65 30.99 0.4443 85.93 43.16 0.5645 87.69 57.10 0.6870
MD 82.02 14.71 0.2371 83.67 37.63 0.5095 79.09 51.40 0.6144 81.74 63.66 0.7129

Vis-
MVSNet [42]

Blended X 87.43 13.19 0.2158 87.98 35.82 0.4987 85.66 53.65 0.6541 89.26 64.99 0.7503
MD X 91.44 21.72 0.3330 93.23 48.22 0.6305 90.25 64.40 0.7485 90.55 72.88 0.8067
MD 84.25 8.90 0.1491 84.19 32.45 0.4569 81.10 53.27 0.6352 86.13 68.03 0.7579

COLMAP [24] 89.95 17.30 0.2785 93.20 42.76 0.5797 94.88 62.68 0.7511 96.78 73.64 0.8346
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Figure 4: Comparison of reconstructions from ten images using different architectures trained on BlendedMVS (Blended) or MegaDepth
(MD), supervised (Sup.) or unsupervised (Unsup.).
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