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Abstract

Over the past years, pseudo-healthy reconstruction for unsupervised anomaly detection
has gained in popularity. This approach has the great advantage of not requiring tedious
pixel-wise data annotation and offers possibility to generalize to any kind of anomalies,
including that corresponding to rare diseases. By training a deep generative model with
only images from healthy subjects, the model will learn to reconstruct pseudo-healthy
images. This pseudo-healthy reconstruction is then compared to the input to detect and
localize anomalies. The evaluation of such methods often relies on a ground truth lesion
mask that is available for test data, which may not exist depending on the application.

We propose an evaluation procedure based on the simulation of realistic abnormal im-
ages to validate pseudo-healthy reconstruction methods when no ground truth is available.
This allows us to extensively test generative models on different kinds of anomalies and
measuring their performance using the pair of normal and abnormal images corresponding
to the same subject. It can be used as a preliminary automatic step to validate the capac-
ity of a generative model to reconstruct pseudo-healthy images, before a more advanced
validation step that would require clinician’s expertise. We apply this framework to the
reconstruction of 3D brain FDG PET using a convolutional variational autoencoder with
the aim to detect as early as possible the neurodegeneration markers that are specific to
dementia such as Alzheimer’s disease.

Keywords: Deep learning, Pseudo-healthy reconstruction, Unsupervised anomaly detec-
tion, Variational autoencoder, 3D PET, Alzheimer’s disease
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1. Introduction

During the last decade, breakthroughs in deep learning and computer vision combined with
the increasing quality and number of medical data available have offered many new possi-
bilities in medical image processing and analysis (Litjens et al., 2017; Esteva et al., 2017).
Deep learning aims to become a new standard for analyzing medical images and algorithms
are trained to accomplish tasks that require a high level of expertise, such as anomaly de-
tection for diagnostic support (Litjens et al., 2017; Burgos et al., 2021a; Suganyadevi et al.,
2022). A strategy for anomaly detection with deep learning consists in using a supervised
algorithm that learns from annotated data. This has the advantage of having remarkable
performance on the specific task learned, which can be classification between normal and
abnormal images (Esteva et al., 2017; Wen et al., 2020) or anomaly segmentation (Zhou
et al., 2018; Isensee et al., 2021). However, this strategy has several drawbacks: the first one
is that it requires a large amount of annotated data that are time consuming and costly to
acquire. The second one is that the model’s results will be affected by potential annotation
errors. The last disadvantage is that the models will be specific to the data, diseases and
anomalies they have been trained on. This might be an issue especially for rare diseases for
which few data samples are available.

Another strategy is to use self-supervised, weakly supervised or unsupervised learning
for anomaly detection (Chen and Konukoglu, 2022; Zhang et al., 2023). The underlying
idea of these methods is to learn the distribution of healthy data. One can then use it to
detect out-of-distribution samples, and thus identify abnormal cases. Another way is to use
generative models to reconstruct pseudo-healthy images from the healthy data distribution:
since the model is trained to reconstruct only normal data, we assume that the reconstruc-
tion of abnormal images will be imperfect, and by comparing the input real image to the
reconstruction, we should be able to detect anomalies. The first advantage of this strategy
is that it does not require voxel-level annotation. Another benefit is that it should be able
to detect any type of anomaly, potentially linked to different diseases. Deep generative
models such as variational autoencoders (VAEs) (Kingma and Welling, 2013), generative
adversarial networks (GANs) (Goodfellow et al., 2014) and more recently denoising diffu-
sion probabilistic models (DDPMs) (Ho et al., 2020) have shown great results for image
generation tasks and unsupervised anomaly detection (UAD) in medical imaging (Esmaeili
et al., 2023), including neuroimaging (Wang et al., 2023; Gong et al., 2023).

Our work focuses on dementia, and more precisely on Alzheimer’s disease (AD), its
most common form. Therapies are increasingly becoming available. Very recently, several
phase 3 trials of β-amyloid depleting therapies have demonstrated their effectiveness to slow
down the progression of cognitive decline. This has led to approval of several treatments
by the FDA either through the accelerated approval 1 or traditional pathway 2 and another
treatment has been submitted for approval. In each of these cases, it is essential to detect
the disease as early as possible, and if possible before the appearance of the first symptoms,
to ensure effectiveness of the medication. Medical imaging plays a key role to observe the
physiological changes that appear in the brain several years before the symptoms, such as

1. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-
alzheimers-drug

2. https://www.fda.gov/news-events/press-announcements/fda-converts-novel-alzheimers-
disease-treatment-traditional-approval
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neurodegeneration, β-amyloid aggregation or accumulation of tau protein (Jack et al., 2016).
Positron emission tomography (PET) is a relevant imaging modality for Alzheimer’s disease
and dementia (Herholz, 1995; Herholz et al., 2007; Quigley et al., 2011) as it allows imaging
these three phenomena. PET images are 3D images that highlight the concentration of a
radioactive tracer administered intravenously to the patient. Several tracers are commonly
used for the diagnosis of Alzheimer’s disease (Nordberg et al., 2010). Here we focus on
18F-fluorodeoxyglucose (FDG), which is a glucose analogue that is used to localize brain
areas with altered glucose metabolism, hypometabolism in the case of neurodegeneration
(Herholz, 1995).

In clinical practice, PET scans are mostly analyzed visually by a nuclear physician and
reading interpretation highly depends on the physician expertise. We would like to automa-
tize the detection of anomalies using pseudo-healthy reconstruction to provide the clinician
a robust computer-aided diagnosis tool. UAD has been widely applied to neuroimaging data
to detect anomalies that are sharp and with distinct outlines, such as tumors or white mat-
ter hyper-intensities on structural magnetic resonance images (MRI) (Baur et al., 2021a).
However, applying UAD to dementia is less common (Choi et al., 2019; Baydargil et al.,
2021) because the anomalies, e.g., metabolic changes on FDG PET, are more diffuse and
less intense, making the task more challenging. Moreover, when applying UAD in the
context of dementia, we do not have access to ground truth masks of the anomalies to
evaluate the models, contrary to applications that aim to detect tumors or white matter
hyper-intensities.

In this paper, we introduce a framework for the evaluation of pseudo-healthy recon-
struction approaches in the absence of ground truth. This framework consists in simulating
anomalies on images of healthy subjects to generate pairs of pathology-free and patho-
logical (e.g., mimicking dementia-like lesions) images. We complement the framework by
defining new healthiness and anomaly metrics. The healthiness metric measures whether
the reconstructed image is of healthy appearance to evaluate the model capacity to re-
construct pseudo-healthy images, whereas the anomaly metric measures whether the input
image contains anomalies using both the pseudo-healthy reconstruction and the input im-
age. A preliminary version of this work was published as a conference paper Hassanaly
et al. (2023a). The present article extends the previous work mainly with: (i) a more com-
prehensive motivation and methodological description of our evaluation strategy; (ii) the
introduction of new metrics to complete the evaluation framework; (iii) numerous experi-
ments to evaluate a 3D VAE trained on full resolution PET using the framework, including
analyses of the VAE latent space.

2. Related Work

Unsupervised methods having many benefits, their use for anomaly and outlier detection
in medical imaging has increased over the last years, especially methods based on image
synthesis.

A family of methods do not rely on the image reconstruction but rather consist of
out-of-distribution detection algorithms. For instance, Alaverdyan et al. (2020) used a
siamese autoencoder on 3D patches to detect epilepsy lesions. The model learns a latent
representation of the normal healthy data and a one-class SVM classifies abnormalities
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as outliers in the latent space. This method had further been improved and applied to
Parkinson’s disease (Pinon et al., 2023a) and the detection of white matter hyper-intensities
(Pinon et al., 2023b).

Concerning pseudo-healthy reconstruction, the underlying idea is to create new images
from existing data using a generative model such a VAE (Kingma and Welling, 2013),
GAN (Goodfellow et al., 2014) or DDPM (Ho et al., 2020). By training only with images
from healthy subjects, the model learns the distribution of normal or healthy data. The
reconstruction of an image with this model will look like a healthy version of the original
image, whether the image is that of a healthy subject or a patient with a disease, thus
the name pseudo-healthy reconstruction. The synthesized pseudo-healthy image is finally
compared to the real one to detect anomalies and possibly compute an anomaly score.

Pseudo-healthy reconstruction has been used in numerous fields of medical imaging (Fer-
nando et al., 2022), for instance to detect various lung anomalies such a pneumonia on chest
x-ray (Nakao et al., 2021; Kim et al., 2023), retinal anomalies on optical coherence tomog-
raphy (Schlegl et al., 2017, 2019; Zhou et al., 2023), breast cancer on mammogram (Park
et al., 2023), skin cancer on dermatoscopic images (Lu and Xu, 2018), tumors detection on
PET, computed tomography (CT) and PET-CT (Astaraki et al., 2023), or malignant tis-
sues on colonoscopy (Tian et al., 2021). In the following, we will focus on methods applied
to neuroimaging.

Several methods based on autoencoders have been developed, starting by Zimmerer et al.
(2018) who used a context-encoding VAE for the detection of brain glioma and multiple
sclerosis lesions on anatomical MRI. The localization of the anomalies was improved in a
subsequent work using a pixel-wise KL distance (Zimmerer et al., 2019). Another work by
Chen and Konukoglu (2018) introduced constrained adversarial autoencoders. Marimont
and Tarroni (2021) used both prior-based anomaly score and reconstruction-based anomaly
score with a vector quantized VAE (VQ-VAE). Pinaya et al. (2022b) also used a VQ-
VAE together with an autoregressive transformer in the latent space to better learn the
probability density function of healthy data. To show the efficiency of autoencoders, Baur
et al. (2021b) implemented an autoencoder with a spatial latent space and skip-connections
and compared the result to a UNet trained for supervised anomaly segmentation. Bercea
et al. (2023b) tried to generalize UAD to non hyper-intense anomalies in order to detect
various pathological features using a reverse autoencoder. Lüth et al. (2023) reused the
general principle of pseudo-healthy reconstruction with autoencoders but in their case, the
encoder is improved thanks to contrastive learning in order to use high level features of the
image to learn a better latent representation.

Based on the fundamental work of Schlegl et al. (2017) who introduced AnoGAN and
its improved version, the f-AnoGAN (Schlegl et al., 2019), several frameworks using GANs
have been developed, for instance VAE-GAN (Baur et al., 2019), ANT-GAN (Sun et al.,
2020), or cycleGAN (Xia et al., 2019, 2020). More recently, Shi et al. (2023) introduced
GANCMLAE, a GAN-based approach combined with an autoencoder and constrained by
multiple losses for the early detection of brain atrophy. Another novel and interesting
approach has been proposed by Siddiquee et al. (2023), who train a GAN-based model with
both healthy and abnormal images to have a fully unsupervised method. Finally, Bercea
et al. (2023c) combined both a latent generative model and high quality reconstruction
networks based on GAN to detect stroke lesions on T1-weighted MRI. Baur et al. (2021a)
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summed up and compared many of the VAE and GAN approaches that had been used for
unsupervised brain tumor and multiple sclerosis lesion segmentation on MRI data.

More recently, following the success of diffusion models for image generation, DDPMs
have also been used for anomaly detection tasks in medical imaging (Wolleb et al., 2022;
Pinaya et al., 2022a; Bercea et al., 2023a).

Most methods for UAD have been applied to brain structural MRI, often targeting sharp
and visible anomalies such as tumors or multiple sclerosis lesions. Only a few studies have
focused on other modalities such as computed tomography or PET, probably because less
data is available. Choi et al. (2019) implemented a simple VAE for anomaly detection on
brain FDG PET. Baydargil et al. (2021) used a GAN with an autoencoder architecture for
the generator (with a parallel model for the encoder) to detect anomalies on FDG PET in
the context of Alzheimer’s disease.

In most cases, the proposed methods work with 2D images that are extracted from
3D volumes. But recently, numerous articles working directly with 3D images or trying to
reconstruct 3D volumes have been published. Pinaya et al. (2022b) validated their model on
both 2D and 3D images. Chatterjee et al. (2022) proposed a compact version of the context
encoding VAE of Zimmerer et al. (2018) that is trained on 2D slices that are stacked to
obtain a 3D volume. Han et al. (2021) presented a similar strategy, which consists of using
three successive slices to reconstruct the following three slices to take into account the 3D
structure of the image. Luo et al. (2023) directly trained a 3D encoder to detect brain
abnormalities on T2-weighted volumes. Bengs et al. (2021) compared 3D and 2D VAEs for
anomaly detection on brain MRI. Bengs et al. (2022) trained a VAE on 3D T1-weighted
MRI by additionally considering the age information. Simarro Viana et al. (2020) proposed
a 3D extension of the 2D f-AnoGAN and refined the training steps to detect traumatic
brain injuries.

Many studies have used the BraTS (glioma) (Menze et al., 2014), ISLES (multiple
sclerosis lesions) (Maier et al., 2017) or ATLAS (stroke lesions) (Liew et al., 2017) datasets,
which directly provide ground truth anomaly masks (Zimmerer et al., 2018, 2019; Chen and
Konukoglu, 2018; Baur et al., 2021a; Bercea et al., 2023b,c; Lüth et al., 2023; Wargnier-
Dauchelle et al., 2023; Pinaya et al., 2022b; Chatterjee et al., 2022; Luo et al., 2023; Bengs
et al., 2022; Xia et al., 2019, 2020; Sun et al., 2020). Other studies have used in-house data
that may include ground truth anomaly masks (Baur et al., 2019, 2021b; Siddiquee et al.,
2023; Alaverdyan et al., 2020; Luo et al., 2023; Han et al., 2021). In that case the evaluation
of the model is straightforward: one only has to compute a metric such as the dice score
between the predicted anomaly and the ground truth, as we would do for the evaluation
of supervised anomaly segmentation. Some works have gone further by introducing new
original metrics: Xia et al. (2020) defined a ”healthiness” metric, using a segmentation
network to estimate the size of a potential lesion in the pseudo-healthy reconstruction; and
an “identity” metric, based on a multi-scale structural similarity index on non pathological
tissues. In most of the other cases, when the ground truth anomaly mask is not available,
the evaluation consists in applying a classifier to the reconstructed images that was trained
to distinguish pathological and healthy images, or using the reconstruction error itself from
which an anomaly score is derived. One way to improve the evaluation is to use synthetic
data by corrupting real healthy data with sprites (Bercea et al., 2023b; Pinaya et al., 2022b).
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Strategies developed for pseudo-healthy reconstruction and, more generally, unsuper-
vised anomaly detection, often lack rigorous evaluation. Furthermore, the majority of
studies utilize 2D images, with very few focusing on PET images. This is why, in this
paper, we introduce an evaluation framework particularly adapted for experiments where
ground truth data is unavailable. Subsequently, we apply this framework to conduct a rig-
orous evaluation of a 3D model for pseudo-healthy reconstruction. We apply this model
to the detection of anomalies associated with dementia, a task that has received limited
exploration and presents significant challenges.

3. Methods

3.1 Variational autoencoder for pseudo-healthy image reconstruction

We opt for a 3D convolutional VAE as VAEs have already shown their efficacy for UAD in
medical imaging (Baur et al., 2021a; Chen and Konukoglu, 2022): they are easy to train,
easily scalable, are able to handle small datasets, and with good interpretation capacity
thanks to their regularized latent space. Moreover the VAE framework allows us to really
learn the training data distribution which is an import point specifically for our study as we
will see later. We implement a 3D VAE to fully exploit the 3D context of high resolution
PET images.

A VAE is a deep learning model (Kingma and Welling, 2013) combining two param-
eterized models: the encoder (or recognition model) that will map the dataset unknown
distribution to a known prior distribution, and the decoder (or generative model) that will
generate data from latent samples that are likely to be in the dataset distribution.

Let’s consider D a set of medical images x. Our goal is to approximate the unknown
true distribution of the data p(x) with a parameterized model pθ(x), by learning a set of
parameters θ. To do so, we use a deep latent variable model that will allow us to map
the complex unknown true distribution p(x) to a latent distribution p(z) that is selected.
Let z be a random vector jointly-distributed with x. We assume that z is involved in the
generation process of x

pθ(x) =

∫
z

pθ(z)pθ(x | z)dz ,

where pθ(z) is the known prior distribution and pθ(x | z) is the generative model, also
called decoder.

To compute the appropriate latent representation z for each image x of our dataset, we
need the posterior distribution pθ(z | x). However, as the posterior pθ(z | x) is intractable,
it is necessary to introduce a parametric inference model qΦ(z | x) to approximate the
posterior distribution: qΦ(z | x) ≈ pθ(z | x) with Φ parameterizing q. The model qΦ(z | x)
is called the recognition model or encoder.

Finally we have two models qΦ(z | x) and pθ(x | z) (the encoder and the decoder) with
two sets of parameters Φ and θ (the weights of the neural networks) to optimize.

In order to train the model and find optimums for Φ and θ, we will use the observations
x of our dataset D to maximize the log-likelihood of our model. (Kingma and Welling,
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2013) showed that this is equivalent to maximizing the evidence lower bound, which defines
our loss function Lθ,Φ

log (pθ(x)) ≥ Lθ,Φ(x) = EqΦ(z|x)

[
log
(
pθ(x | z)

)]
−DKL

(
qΦ(z | x)∥pθ(z)

)
, (1)

with DKL the Kullback-Leibler divergence. The idea is to jointly optimize the set of param-
eters θ to improve the generated data quality, which means minimizing the reconstruction
error, and the set of parameters Φ such that qΦ(z | x) is the closest to posterior pθ(z | x).

We approximate all the distributions by Gaussian distributions: we have the prior
pθ(z) = N (0, I), and the posterior qΦ(z | x) = N (µ(x), σ(x)) with µ(x) and σ(x) being
respectively the mean and the standard deviation of the probability distribution of a true
sample x in the latent space. This gives us the following expression:

DKL(qΦ(z | x)∥pθ(z)) =
1

2

[
1 + log(σ(x)2)− σ(x)2 − µ(x)2

]
.

Finally, we approximate pθ(x | z) with a normal distribution such that pθ(x | z) =
N (f(z), cI), with f(z) being the decoder output of a latent vector z, and cI being a covari-

ance matrix with c ∈ R. The reconstruction term EqΦ(z|x)

[
log
(
pθ(x | z)

)]
is proportional

to the mean squared error (MSE) between the input of the VAE x and the reconstruction

x̂ = f(z): EqΦ(z|x)

[
log
(
pθ(x | z)

)]
∝ MSE(x, f(z)) . This gives us the final loss that we

will use

Lθ,Φ(x) = MSE(x, x̂)− 1

2

[
σ(x)2 + µ(x)2 − log(σ(x)2)− 1

]
. (2)

In our pseudo-healthy image synthesis use case, D is a dataset containing images from
healthy subjects and patients, and can be divided into respectively two complementary
subsets Dh and Dp. As we want to learn the distribution of healthy images Dh, the model is
trained using only images fromDh. Then, when reconstructing an image during testing from
x ∈ D, the reconstruction x̂ should be in Dh. Indeed, if xh ∈ Dh, then the reconstruction
should be almost equal to the input: xh ≈ x̂h. However, if the input image is pathological
(i.e., with anomalies) xp ∈ Dp, then we want the reconstruction to be pseudo-healthy,
which means that we want x̂p ∈ Dh. Since the decoder has been trained to generate
healthy images, for each latent representation z, the reconstruction pθ(x | z) is likely to be
in the distribution of Dh, whether z is a latent representation of a healthy image xh ∈ Dh

or a pathological one xp ∈ Dp. We also have to make sure that the reconstruction is
subject-specific, which translates into the fact that the encoder can predict a unique latent
representation z for a subject independently of its diagnosis. In mathematical terms, we can
write it as qΦ(z | xh) ≈ qΦ(z | xp) with xh and xp being two images of the same subject.
This hypothesis will be verified in the Section 3.3.

3.2 Pseudo-healthy image reconstruction evaluation procedure

Rigorous and in-depth evaluation of machine learning models and of their training procedure
is crucial, especially in the medical field as overestimated or biased results may lead to
dramatic consequences (Varoquaux and Colliot, 2022). As far as we know, there is no
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guidelines nor standard procedure for the evaluation of pseudo-healthy reconstruction for
UAD, especially when a ground truth of the anomalies that should be detected is not
available. We propose here such procedure.

In this context, we can identify two objectives: i) preserve the identity of the subject
in the reconstructed image, ii) reconstruct an image of healthy appearance (Xia et al.,
2020). We have to evaluate the performance of the model for both objectives. For the first
one, we can measure the similarity between images of healthy subjects and their recon-
struction. With regard to the second objective, we can either evaluate whether the images
reconstructed are looking healthy (pseudo-healthy reconstruction task), or measure if the
anomalies detected by this method correspond to the real anomalies present in the image
(anomaly detection task). However, depending on the type of disorder studied, we may not
have ground truth healthy images, nor ground truth anomaly masks, so we cannot use a
metric to quantify how healthy the reconstructed images are nor how well anomalies are
detected. This is why we developed an evaluation framework that consists in simulating an
abnormal image x′ from a healthy image x in order to have a pair with a diseased image
and its healthy version. To evaluate the healthiness of a reconstructed image x̂′ from an
abnormal simulated image x′, we can measure the similarity between the pseudo-healthy
reconstruction x̂′ and the the original healthy image x.

3.2.1 Evaluation metrics for image reconstruction

The first step to validate a pseudo-healthy reconstruction model is to evaluate the quality
of the reconstruction in the case of images of healthy subjects. We use four metrics that are
common in the image synthesis literature (Nečasová et al., 2022): the mean squared error
(MSE), the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM) (Wang
et al., 2004) and the multi-scale structural similarity (MSSSIM) (Wang et al., 2003) (see
details in Appendix A). This also aims validating the fact that the model can reconstruct
images that are as healthy as they originally look.

However, since the reconstruction metrics are computed on the whole 3D image and
not only in the abnormal region, their values do not substantially vary when computed for
healthy or abnormal images, as the major part of the image is normal. This is amplified
when the anomalies are subtle. Thus we cannot rely only on whole image reconstruction
metrics to differentiate healthy subjects from patients.

3.2.2 Simulation-based evaluation framework

In practice, the healthy version of an image with anomalies is rarely available, it is thus
impossible to measure the healthiness of the reconstructed image. In most of the studies
on UAD in medical imaging, the datasets provide lesion masks that can be used as ground
truths. In this case, one can simply compute a metric such as the dice score between the
anomaly map generated (and usually post-processed to binarize it) and the real lesion mask
to evaluate the capacity of the model to detect and localize anomalies. This can be used
as a proxy measure of the healthiness of the reconstructed image: if we perfectly detect
lesions, it means that the reconstruction is healthy compared to the input image. However,
when studying disorders such as dementia, such lesion masks are not available.
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Another way to evaluate the healthiness of the reconstructed images would be to consult
a neuro-radiologist or nuclear physician. However, manually rating images is time consum-
ing, especially if the aim is to compare different models, and possible only for small datasets.
We are thus looking for a strategy to automatically evaluate models, as a preliminary vali-
dation before soliciting clinicians.

The idea is to simulate abnormal images to evaluate our model. In the literature,
anomalies are often under the form of sprites (i.e. non realistic artifacts added to the
images) (Bercea et al., 2023b; Pinaya et al., 2022b). However this is not satisfactory as we
try to detect subtle and less intense anomalies. Realistic anomaly generation has also been
explored, mainly to study the progression of diseases such as cancer or dementia (Manzanera
et al., 2021). When reducing the scope to neuroimaging, most anomaly generation methods
are applied to structural MRI; for instance to simulate the growth of a glioblastoma (Ezhov
et al., 2023), or the progression of atrophy in case of dementia (Khanal et al., 2017; Ravi
et al., 2022). The proposed approaches often rely on complex modeling or the use of deep
learning.

We here propose to simply generate new test sets by simulating hypometabolism on
healthy images to have pairs of healthy (considered as ground truth) and abnormal images.
For this purpose, we designed a mask corresponding to regions associated with AD (parietal
and temporal lobes) (Landau et al., 2012) that were extracted from the third automated
anatomical labelling (AAL3) atlas (Rolls et al., 2020). To obtain a realistic simulated image,
we smoothed the mask with a Gaussian convolution filter with σ = 5. We then reduced the
intensity of the PET signal within the region defined by the mask by different factors to
simulate various degrees of hypometabolism as illustrated in Figure 1. Having such pairs
of images allows us to compare the pseudo-healthy image reconstructed by the model x̂′

from images presenting anomalies x′ with their corresponding healthy images x (Figure 2),
hence better evaluating the model capacity to synthesize pseudo-healthy images.

Figure 1: Hypometabolism simulation pipeline. The intensity of the image from a healthy
subject is reduced by a chosen factor in a region associated with a dementia.

To ensure that the UAD model being evaluated can generalize to dementia other than
AD, we also generated masks corresponding to five other dementia subtypes: behavioral
variant frontotemporal dementia (bvFTD), logopenic variant primary progressive aphasia
(lvPPA), semantic variant PPA (svPPA), nonfluent variant PPA (nfvPPA) and posterior
cortical atrophy (PCA) based on the regions defined by Burgos et al. (2021b). All the details
about the selected regions are available in Appendix B and a pipeline to use the simulation
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Figure 2: Evaluation framework using simulated images. We simulate an abnormal PET
scan x′ from an image of a healthy subject x. If the model works perfectly, the reconstruction
x̂′ should be identical to the original image x.

framework has been integrated into the ClinicaDL open-source software (Thibeau-Sutre
et al., 2022).

This framework will help us to extensively evaluate our model on different kinds of
anomalies (different shapes, locations and intensities) and allow us to define a new metric
to assess the healthiness of reconstructed images.

3.2.3 Measuring the healthiness of reconstructed images

Now that we have pairs of healthy and abnormal images, we want to define a metric that
would help evaluate if the model is able to reconstruct images that are looking healthy. We
call this metric ”healthiness” and denote it as H. We can define H as follows:

H =
µM

µM̄

, (3)

with µM the average uptake in the region of the mask M used to simulate the anomaly and
µM̄ the average uptake of voxels in the brain excluding the mask M .

This metric compares the average uptake in the region in which we simulate the disease
and the other regions of the brain. For an image from a healthy subject x, the average uptake
in M is similar to the one in M̄ , so H will be close to 1. However for a simulated image x′,
as the intensity is decreased within the mask M , H will be lower than one. We then have
to measure if the healthiness of the pseudo-healthy reconstruction x̂′ is similar to the one of
the original image x (close to 1), or at least superior to that of the input x′. This can also
be used to measure healthiness for hyper-intense anomalies: the score of the input image
would then be above 1 and, similarly to hypometabolism detection, the reconstruction’s
score should be around 1 (or at least lower than the input image healthiness).

This simple metric will allow us to evaluate the performance of the model for recon-
structing healthy images, but as it uses the framework described in Section 3.2.2, it cannot
then be used on real images since we do not have the a priori information on the loca-
tion of anomalies. This is why we introduce another method to detect anomalies with the
pseudo-healthy reconstruction.

10
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3.2.4 Anomaly detection and localization

The goal of this other method is to localize and assess the severity of anomalies in real
images of patients by comparing them to their pseudo-healthy reconstruction. The idea
is similar to the healthiness metric but we cannot use an anomaly mask to compute the
metric. Instead, we use a brain atlas to define regions in which we compare the average
uptake between the input image x and the pseudo-healthy reconstruction x̂′. This region-
wise anomaly score allows us to assess if an image contains anomalies and if so, to localize
them.

This method can be validated using the evaluation framework described in Section 3.2.2
as we know where the anomalies are.

We define the regions that we use starting from that of the second automated anatom-
ical labelling (AAL2) atlas (Rolls et al., 2015). To simplify the analysis, we merged the
120 regions into 23 regions: orbitofrontal, dorsolateral prefrontal (DLPFC), ventromedial
prefrontal (VMPFC), motor, opercular, medial temporal, lateral temporal, temporal pole,
sensory, medial occipital, lateral occipital, medial parietal, lateral parietal anterior cingulate
gyrus, middle cingulate gyrus, posterior cingulate gyrus, midbrain, amygdala, thalamus, in-
sula, hippocampus, cerebellum and cerebellar vermis. We refine these regions using the
gray matter mask of the MNI ICBM 2009c Nonlinear Symmetric template (Fonov et al.,
2009, 2011) to keep only the tracer uptake in the gray matter.

3.3 Learning the data distribution

One of the main advantages of the VAE over other generative models is its consistent latent
space that can help to explain and interpret the results obtained. We run several experi-
ments on the latent space to verify that the VAE can learn the healthy image distribution
since there are only images of healthy subjects in the training set.

We first visualize the latent space using a principal component analysis (PCA) to reduce
the latent dimension from 256 to 2. We fit the PCA on the latent representation of healthy
images from the training set. Then we use this PCA to predict the principal components
of images of the test sets (real ones and simulated ones). Even if we plot only the first two
principal components, this already indicates how the encoder behaves. This will help us
to verify whether the learned posterior is the same for healthy and abnormal images, i.e.,
whether qϕ(z | xh) ≈ qϕ(z | xp).

We can also verify that if two images are close in the image space, there are close in the
latent space and vice versa. We compare the distance between images in both latent- and
image-space. More precisely, for each image latent vector zi of the dataset, we compute the
Minkowski distance with the latent vectors zj of all the other images

DMinkowski =

(
n∑

i=1

|zi − zj |p
) 1

p

. (4)

We arbitrarily choose p = 10 in all our applications as we wanted p to be high enough
to compute distance in a space of dimension 256.

When studying dementia, datasets are often longitudinal, which means that several
images are available per subject. This allows us to first evaluate an intra-subject distance
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that is computed between a certain image of a subject and all the other images available
for the same subject. We can also compute an inter-subject distance. For a certain image
of a subject, the closest image from another subject is selected as well as the tenth, the
twentieth, the thirtieth and the fortieth closest images in the latent space (after discarding
images from the same subject). We then compute the Euclidean L2 norm and the SSIM
between our image and the collection of five images selected. Computing these distances in
both the latent space and the image space allows identifying potential correlation between
the two representations. To this end, we fitted a linear mixed effect model (LMM) to
estimate the tendency of the evolution of the distance in the latent space with regards to
the distance in the image space (see Appendix C).

3.4 Materials

FDG PET scans used in this study were obtained from the ADNI database (Jagust et al.,
2010, 2015). The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment and
early AD.

We selected FDG PET images co-registered, averaged and uniformized to a resolution
of 8 mm full width at half maximum to reduce the variability due to the use of differ-
ent scanners. We only used PET images for which a T1-weighted (T1w) MR image was
available at the same session for preprocessing purposes. The images were then processed
using Clinica’s (Routier et al., 2021) pet-linear pipeline: they were registered using a
rigid transformation to the corresponding T1w MRI of the same session, and then affinely
registered to the MNI ICBM 2009c Nonlinear Symmetric template (Fonov et al., 2009,
2011) using the transformation computed with the t1-linear pipeline. They were then
normalized in intensity using the average PET uptake in a region comprising cerebellum
and pons, and cropped. In the end, the dimension of the PET scan is 169× 208× 179 with
1 mm isotropic voxels.

To filter out potential PET images not well registered to the MNI template, we per-
formed quality control. We first controlled the quality of the registration between the T1w
MRI and the MNI template as it is an intermediate step when registering the PET im-
age to the MNI space. The approach relies on a pre-trained neural network called DARQ
(Fonov et al., 2022) that learned to classify images that are adequately registered to the
MNI template. We then assessed the quality of the alignment of the PET image itself with
the MNI template. Here the approach relies on a metric that measures the overlap between
the output of the pet-linear pipeline, i.e. the PET image supposedly aligned with the
MNI template, and a mask corresponding to the outside of the brain obtained from the MNI
template. If the overlap is large, we assume that the PET image is not well-registered. Both
quality control pipelines are available in the ClinicaDL open-source software (Thibeau-Sutre
et al., 2022).

In the ADNI database, there is a total of 3511 FDG PET scans from 1600 participants.
This includes 554 cognitively normal (CN) subjects (1010 images) that we selected since
UAD models are trained only on images from healthy subjects. We know that physiological
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changes can appear several years before the first clinical symptoms, so to ensure that images
really correspond to a healthy brain, we kept only scans from subjects that are CN for at
least three years after the session considered. All the details about data selection and
quality control are in Appendix D. Finally, we have 739 images from 378 CN subjects and
353 images at baseline from 353 AD patients.

3.5 Model training

We split our dataset of 378 CN subjects into training, validation and test sets at the subject’s
level to avoid any form of data leakage (Wen et al., 2020). The split is stratified by sex
and age to reduce biases. We keep only baseline sessions in test and validation sets to
avoid biased results. 60 CN subjects (60 images) compose the test set that is used to assess
whether the healthy images are reconstructed as healthy. We then divide our training set
into six folds to estimate the variance due to data splitting: 53 subjects (53 images) belong
to the validation sets to monitor the training and 265 subjects are used to train our models.
This represents between 510 and 538 images for the training phase depending on the fold. In
addition to CN subjects, we use the images of 353 AD patients acquired at baseline to create
a second test set. Finally, we use the 60 images from CN subjects in the test set to build
new test sets by using our simulation method: we simulate hypometabolism using masks
on the healthy images and keep it as separate test sets. We simulate different intensities of
AD from 5% to 70% and simulate other dementia subtypes at 30% hypometabolism which
results in a total of 12 simulated test sets.

Table 1: Description of the population of our train and test sets from the ADNI database

Diagnosis Train/Test N subjects Age at baseline Sex (%F/%H)

CN
Train 318 73.3 ± 6.1 51%/49%

Test 60 73.5 ± 6.6 63.3%/36.7%

AD Test 353 75.3 ± 7.5 41.1%/58.9%

Regarding the VAE implemented, the encoder is composed of five convolutional blocks
that are the succession of a 3D convolutional layer and a batch normalization with a ReLU
activation. Then the vector is flattened and passes through a dense layer to output the latent
space of size 256 in one dimension. Our decoder is almost symmetrical as it transforms a
single vector sampled from the latent space in a 3D image with a dense layer followed by
four deconvolutional blocks that are composed of an upsampling layer, a 3D convolutional
layer and a batch normalization with a leaky ReLU activation. The output /revblock is
composed of an upsampling layer and a 3D convolutional layer with a sigmoid activation.
Encoder convolutional layers have a kernel size of (4, 4, 4), a stride of (2, 2, 2) and a padding
of (1, 1, 1) while decoder convolutional layers have a kernel size of (3, 3, 3), a stride of (1,
1, 1) and a padding of (1, 1, 1). A detailed schema of the VAE we use can be found in
Figure 3.

Our 3D convolutional VAE implementation relies on the open-source python library
Pythae (Chadebec et al., 2022). The model was trained on 200 epochs, with a learning rate
of 10−5 using the ClinicaDL (Thibeau-Sutre et al., 2022) software that aims to facilitate the
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Figure 3: Architecture of the 3D convolutional VAE.

use of the neuro-images with deep learning and improve reproducibility of the experiments.
We trained the VAE on the Jean Zay high performance computer cluster with Nvidia Tesla
V100 GPUs that have 32GB of memory, which allowed us to use a batch size of 8. It took
approximately 10 hours to train each fold over all the epochs.

4. Results

In this section, we present the results obtained when applying the proposed validation
procedure to the pseudo-healthy reconstruction of 3D FDG PET images with a VAE for
the detection of anomalies characteristic of Alzheimer’s disease and other dementias. As a
reminder, the validation procedure consists of four steps:

• computing reconstruction metrics for images of healthy subjects to evaluate the quality
of the reconstruction;

• measuring the healthiness of the reconstructed pseudo-healthy images using the sim-
ulation framework by comparing the pseudo-healthy reconstruction x̂′ to the original
scan from a healthy subject x, and also by computing the newly introduced healthiness
metric H;

• detecting regions of the brain containing anomalies using an atlas and validating this
approach with the simulation framework;

• detecting anomalies on a real dataset of patients diagnosed with AD.

4.1 Pseudo-healthy reconstruction performance for cognitively normal
subjects

The variational autoencoder is trained on six folds in order to evaluate the variance due
to data splitting (Bouthillier et al., 2021). The results on the test set are summarized in
Table 2. We can first observe that the MSE is almost identical on the six folds with a
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mean-squared reconstruction error around 1.82 × 10−3. The performance measured with
PSNR are also very similar, which is consistent as the PSNR is a function of the MSE. We
also observed that the SSIM varies from 0.874 on average to 0.879 between the folds 4 and
2.

Table 2: Reconstruction metrics obtained on the test set for images from healthy subjects
over the 6 folds.

Dataset Fold MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MSSSIM ↑

CN test set

0 1.834± 0.654 27.527± 1.080 0.875± 0.027 0.944± 0.015

1 1.815± 0.649 27.572± 1.074 0.878± 0.026 0.944± 0.014

2 1.841± 0.746 27.532± 1.113 0.879± 0.025 0.944± 0.015

3 1.826± 0.665 27.547± 1.079 0.876± 0.027 0.943± 0.014

4 1.858± 0.619 27.456± 1.031 0.874± 0.026 0.944± 0.014

5 1.836± 0.727 27.546± 1.134 0.876± 0.028 0.943± 0.015

For the following experiments, as it is difficult to interpret the results across several
folds for a reconstruction task, we select a fold according to the SSIM, which is a perceptual
metric substantially different from the loss being minimized. We show the results obtained
with the fold 1, which presents an average SSIM on the validation set similar to that of the
other folds, but has the highest minimum SSIM (see Appendix E).

The metrics appear consistent with the reconstructions that are displayed in Appendix F.
The reconstructions are acceptable for 3D full resolution images: the shape of the brain and
the main structures, such as the ventricles, are well captured. However, smaller anatomical
features such as cortical folds are not well reconstructed.

4.2 Evaluation of the model using the simulation framework

4.2.1 Results on simulated AD-like FDG PET images

To evaluate the impact of the anomaly severity on the ability of the VAE to reconstruct
pseudo-healthy images, we simulated different degrees of hypometabolism from 5% to 70%
(Figure 4). We first remark that the reconstruction is satisfying until around 20% of sim-
ulated hypometabolism as the MSE between the reconstruction x̂′ and the ground truth x
is almost constant.

Figure 4 also shows that the MSE between the simulated input image x′ and the output
x̂′ is higher for more severe anomalies. This confirms that the model cannot reconstruct
well highly abnormal areas.

We then compared the reconstruction error that was obtained for the simulated data
(i.e., MSE(x′, x̂′), in orange in Figure 4) with the error that exists between the real healthy
images from the CN test set and the reconstructions obtained from the simulated data (i.e.,
MSE(x, x̂′), in blue in Figure 4). We remark that MSE(x′, x̂′) does not increase as much
as MSE(x, x̂′) with the hypometabolism severity. This means that the reconstruction x̂′ is
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more similar to the ground truth x than the abnormal simulated image x′. However, the
error still increases between the reconstruction x̂′ and the ground truth x, meaning that a
healthy image cannot be totally recovered when the anomalies are too intense. We also ob-
serve that for low degree hypometabolism (<20%), both MSEs are similar. This means that
the residual error due to the model imperfect reconstruction dissimulates the reconstruction
error due to low degree anomalies. To confirm our observations, we computed a t-test assess-
ing whether there was a significant difference in MSE between the reconstruction from the
simulated input x̂′ and the ground truth x using images with various degrees of anomalies.
The p-values were corrected for multiple comparisons using the Bonferroni method with 10
comparisons. The difference in MSE becomes significant (p-value<0.005) for anomalies of
degree 20% and above. This shows that we can detect hypometabolism around 25% using
the residual error, which corresponds to the average difference in metabolism between CN
subjects and AD patients in a region of interest relevant to AD in ADNI (Landau et al.,
2012), knowing that this dataset includes patients at a very early stage of the disease.

Figure 4: Evolution of the MSE with increasing degrees of hypometabolism simulating
AD-like anomalies. We plot the distribution of the MSE between the pseudo-healthy recon-
struction and the original imageMSE(x, x̂′) blue, and the MSE between the pseudo-healthy
reconstruction and the simulated data MSE(x′, x̂′) orange. Each MSE is normalized by
the average MSE obtained when reconstructing from the original healthy images.

Figure 5 displays the real image of a CN subject x and its pseudo-healthy reconstruction
x̂, as well as the simulated AD version x′ (with a hypometabolism degree of 30%) and its
reconstruction x̂′ obtained from the same CN subject, together with the residual images.
We observe that the input and output images of the CN subject are quite similar, both the
shape of the brain and the uptake distribution look alike. The differences are due to the
model imperfect reconstruction and correspond to the minimal error that it can achieve.

When feeding the simulated hypometabolic image x′ to the model, we observe that the
reconstructed image x̂′ looks healthier than the input image. The areas highlighted in blue
in the residual map correspond to the regions where hypometabolism was simulated.

Another interesting point is that both images reconstructed from the same CN subject
x̂ and x̂′ are almost identical with a SSIM of 0.987. This shows that the model reconstructs
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almost the same image for the same subject whether the input image is healthy or presents
anomalies.

Figure 5: Example of results obtained from a real image of a CN subject (top row) and an
image simulating AD hypometabolism based on the same CN subject (bottom row). For
each plane, the first image is the input, the second one the model’s reconstruction and the
third one the difference (input - reconstruction).

4.2.2 Results when simulating various types of dementia

In this section, the degree of hypometabolism is set to 30% but the brain region where
it is simulated changes to reflect various types of dementia. We report in Table 3 the
different reconstruction metrics computed between the original images from CN subjects in
the test set x and the images reconstructed from the hypometabolic scans simulating the
different types of dementia x̂′. We observe that the metrics are similar for all the simulated
dementias, which means that the model can generalize to anomalies with different locations
and shapes, as well as different severity degrees as we showed previously.

Table 3: Reconstruction metrics computed between the original healthy PET scans from
CN subjects in the test set and the images reconstructed with the 3D VAE from the hy-
pometabolic scans simulating different types of dementia.

Simulated Dementia MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MSSSIM ↑

AD 2.230± 0.655 26.646± 0.996 0.848± 0.050 0.938± 0.015

bvFTD 2.268± 0.686 26.584± 1.042 0.849± 0.051 0.940± 0.015

PCA 2.090± 0.698 26.962± 1.119 0.851± 0.051 0.942± 0.015

lvPPA 2.073± 0.680 26.992± 1.104 0.850± 0.051 0.941± 0.015

nfvPPA 2.093± 0.692 26.953± 1.107 0.851± 0.051 0.941± 0.015

svPPA 2.029± 0.703 27.101± 1.150 0.852± 0.051 0.942± 0.016
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We also computed the metrics between the images reconstructed from the original
healthy scans x̂ and the images reconstructed from the simulated hypometabolic scans
x̂′ in Table 4. Both reconstructions are almost identical with an SSIM on average superior
to 0.99. We can conclude from this experiment that the model is able to reconstruct the
healthy version of an image independently of the nature of the dementia that causes the
anomaly.

Table 4: Structural similarity between the pseudo-healthy reconstruction x̂′ and the recon-
struction from the healthy image x̂ for the different dementias simulated.

Simulated Dementia SSIM ↑

AD 0.9878± 0.0014

bvFTD 0.9921± 0.0013

PCA 0.9974± 0.0003

lvPPA 0.9937± 0.0008

nfvPPA 0.9964± 0.0005

svPPA 0.9995± 0.0002

4.2.3 Measuring healthiness of a pseudo-healthy reconstruction

We computed the proposed healthiness metric for the different simulation experiments: on
the test sets simulating AD with various intensity degrees and on the test sets simulating
the different dementia subtypes.

We can see in Figure 6 that the healthiness score for the original PET scans from CN
subjects x ranges between 0.99 and 1.08, which can define a baseline of what we can consider
as healthy with this metric. As expected, we observe that the healthiness of simulated
images x′ is lower than that of the original image x. At 5% of simulated hypometabolism,
the score is still between 0.97 and 1.06, so it can be considered as healthy, which is coherent
for very low anomaly severity. From 15% of simulated hypometabolism, we can clearly see
that the healthiness score drops and become much lower than that of the healthy images:
it is inferior to 1.0 for 15% of simulated hypometabolism and it is between 0.82 and 0.91
for 30% of simulated hypometabolism. The important point is that the healthiness score of
the reconstruction x̂′ is always superior to the one of the simulated image x′. We can see
that it is even really close to the healthiness of the original image x: for 30% of simulated
hypometabolism the healthiness of reconstructed images is between 0.95 and 1.03.

We observe the same behavior for all the other simulated dementias in Figure 7. How-
ever, we note that the healthiness of the ground truth, i.e. that obtained for images of CN
subjects, varies depending on the dementia simulated because the mask used to compute it
differs. For example, in the case of svPPA, the healthiness of the ground truth is lower than
that of AD (between 0.67 and 0.92). This can be explained by the fact that the mask used
for svPPA is located in the temporal pole, where FDG uptake is lower compared to other
regions, even on healthy images, as we can see in Figure 8. However, we can still observe
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Figure 6: Evolution of the distribution of the healthiness metric computed for the ground
truth healthy images, their corresponding simulated images and their pseudo-healthy re-
constructions when increasing the percentage of AD-like simulated hypometabolism.

that the healthiness is lower on the simulated image compared to the healthy image and
almost equal on the reconstruction.

Figure 7: Evolution of the distribution of the healthiness metric computed for the ground
truth healthy images, their corresponding the simulated images and their pseudo-healthy
reconstructions for different dementias simulated at 30%.

This method relies on the simulation framework and can only be used to evaluate the
model performance. However we would like a method or metric that allows clinicians to
know if an image presents anomalies, and possibly localize them.

4.2.4 Anomaly detection applied to simulated data

To detect anomalies in real images of patients, i.e., without having to rely on the simulation
framework, we proposed to compute the mean uptake in regions of an atlas and compared
the values between input and output. If the value in the reconstructed image x̂ is close to
the input image x, then the region is not likely to be abnormal, otherwise, if the regional
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uptake in the reconstructed image x̂ is significantly different from the one in the original
image x, then there may be an anomaly. We validated this assumption using the simulation
framework.

In Figure 8, we plotted the average uptake in the regions of the atlas we used and
compared these values between the original image x, the simulated one x′ and the recon-
struction x̂′ using a Wilcoxon-Mann-Whitney test corrected with Bonferroni for multiple
comparisons using the statannotations package (https://statannotations.readthedocs.
io/en/latest/index.html). First, we remark that the average uptake is not consistent
between all the regions of the brain, so we cannot really compute a shift from an average
value for the whole brain, but we have to analyze the average uptake for every region. We
can then observe that the average uptake is not significantly different between the original
image x and the simulated one x′, the original image x and the reconstruction x̂′, and the
simulation x′ and its reconstruction x̂′ for most of the regions, except the hippocampus, the
amygdala, the parietal lobe and the temporal lobe. These regions correspond to the regions
used to simulate anomalies corresponding to AD. We can see that the average uptake is
lower on the simulated image x′ compared to the original image x. This is expected as the
hypometabolism simulation consists in lowering the intensity in those regions. We can also
see that the average uptake is significantly higher in these regions compared to the average
uptake on the simulated images. Without a priori knowledge on the nature of the anomaly
we want to detect, we can see that on this test set, it is likely to be abnormal in these
regions. This corroborates with the regions we actually used to simulate hypometabolism.

Figure 8: Distribution of the mean FDG PET uptake in different regions of the brain:
comparison between the CN subjects from the test set, their AD-like hypometabolic simu-
lation, and their pseudo-healthy reconstruction.

Now that we extensively used the simulation framework to validate our model on differ-
ent aspects: pseudo-healthy reconstruction, anomaly detection, generalization to anomalies
of different intensities, locations and shapes, we will examine the results on the images of
AD patients from the ADNI database.

4.3 Results on AD patients from the ADNI dataset

The results of the anomaly detection method applied to real AD patients are reported in
Figure 9. We can observe that in general the average uptake is higher in the pseudo-healthy
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reconstruction. We cannot really detect abnormal areas even though we can see that regions
such as the posterior cingulate, hippocampus, parietal lobe, lateral temporal lobe seem to
be regions with the largest differences between the AD patients and their pseudo-healthy
reconstruction. This global analysis can help us describe the cohort and understand at
the population level the shift from the CN population. However it is not really an image-
level anomaly detection tool. For that, we need to observe individually each image. Some
examples of reconstructions from AD patients are displayed in Appendix G.

Figure 9: Distribution of the mean FDG PET uptake in different regions of the brain:
comparison between the original image from AD patients, their pseudo-healthy reconstruc-
tion and the CN population.

To be consistent with the literature, we also compared the reconstruction metrics com-
puted on images of AD patients with the metrics computed on images of CN subjects. We
report the results in Table 5. We can see that the reconstruction performance is slightly
better on the images from CN subjects, which is a positive point because, as the model
should correct anomalies on images from AD patients, the reconstruction error is expected
to be higher. However the difference is not large enough to separate healthy controls from
AD patients.

Table 5: Comparison of reconstruction metrics computed on test set with healthy subjects
and test set with patients with AD.

Simulated Dementia MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MSSSIM ↑

CN 1.815± 0.649 27.572± 1.074 0.878± 0.026 0.944± 0.014

AD 2.554± 1.391 26.272± 1.560 0.853± 0.045 0.928± 0.025

4.4 Latent space analyses

Now that we extensively tested the model under various conditions, we would like to better
understand its behavior and interpret the results. Indeed, for instance, we would like to
understand why the reconstruction x̂′ obtained from a simulated abnormal image x′ looks
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similar to the reconstruction x̂ obtained from the original input image x. Actually, there is
no reason that would a priori explain why the reconstruction of an abnormal image would be
realistic and correspond to a healthier version of the input image. We could imagine that,
like for out-of-distribution detection methods, the model would not reconstruct the input
image at all. This is why will use the latent space representation to study our model and
understand what the VAE learns. In the latent space, all the input images are projected into
a one dimension vector space of size 256 through the encoder. The advantage of the VAE is
that the latent space is consistent, that is to say that, in theory, the latent representation
of the images are organized with respect to the image distribution. We will verify whether
this is actually the case.

We first used a PCA to reduce the dimension of the latent space and extract the principal
components so we can observe the latent distribution into a 2D plot. We fitted the PCA
on the train set as we can see in Figure 10a.

We then predict the principal components of the latent representation of images from
the CN test set with the same PCA, as well as their hypometabolic version simulating AD.
A remarkable point is that the projection is almost the same for images that have been
simulated from this test set as shown with the paired points in Figure 10b. This explains
why their reconstruction are almost identical as we noticed in section 4.2.1. Indeed, the
decoder will reconstruct two similar images from two similar latent vectors.

We also project latent vectors of images from the AD test set, and we can see that the
points are in the same area of the latent space (Figure 10a). This validates our hypothesis
that images presenting anomalies (real or simulated) are projected into the healthy images’
latent distribution that was learned on the training set. We can observe that in practice
qΦ(z | xh) ≈ qΦ(z | xp) and that the latent representation z is a small sphere in the latent
space.

Another interesting point is that the latent space seems to capture the simulated progres-
sion of AD. We observe in Figure 10d that the principal component vectors of AD simulated
images are aligned in the latent space, near the original image latent representation and
ordered by severity.

We then used the Minkowski distance to compute intra-subject and inter-subject dis-
tances in the latent space. We first observe that, for a given image of a subject, all the
closest images in the latent space are images of the same subject, acquired during other
visits. Figure 11 displays the box plots of the mean distance between the latent representa-
tion of an image and that of the other images of the same subject, and the mean distance
between an image and the five closest latent representations of images that are not from
the same subject. The difference between intra-subject and inter-subject distances is sta-
tistically significant (p-value ≪ 0.005 according to a Mann-Whitney U test). This clearly
indicates that all the images from a same participant are very close in the latent space
compared to the average distance between two images from different participants.

We also want to ensure that, if two points are close in the latent space, their correspond-
ing images are close in the image space; and similarly, if they are far in the latent space,
their corresponding images are not similar. We plot curves representing the evolution of
the MSE and the SSIM with regard to their Minkowski distance in the latent space (Fig-
ure 12) and fit two linear mixed effects models on both sets of curves to observe the general
tendency: one for the MSE in Figure 12a and one for the SSIM in Figure 12b. We can see
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(a) (b)

(c) (d)

Figure 10: Latent space representation (first two PCA components). The latent distribution
of the train set learned by the VAE (in blue) is compared to the latent distribution inferred
on the test set with CN subjects (a), test set with AD patients (c), and image simulating
AD-like hypometabolism with progression from 5% to 70% (b, d).
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Figure 11: Boxplot showing the distribution of the Minkowski distance computed between
the latent representation of images from the same subject (intra-subject) and between the
closest latent representation of images from other subjects (inter-subject).

(a) Distance in latent space (Minkowski) com-
pared to distance in image space (MSE)

(b) Distance in latent space (Minkowski) com-
pared to similarity in image space (SSIM)

Figure 12: Evolution of the MSE and the SSIM compared with the Minkowski distance in
the latent space. Each curve represents an image i and comprises ten points. Each point of
the curve corresponds to the distance Dij of this image i with the jth closest images in the
latent space, j being in {1, 6, 11, 16...41, 46}. Detailed results of linear mixed effect models
are in Appendix H.

that the distance in the latent space increases when the MSE between two images grows
and when the SSIM between the two images decreases. In other words, similar images have
close latent representations.

5. Discussion

In this study, we proposed an in-depth validation procedure for pseudo-healthy synthesis
with deep generative models in the context of UAD. This evaluation method relies on
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a simulation framework and is suited for applications for which ground truths are not
available to measure the performance of the model. This procedure helps to extensively
test a model on different aspects: the quality of the reconstruction, the healthiness of the
reconstructed images, and the possibility to detect anomalies on both simulated and real
data. We applied this procedure to evaluate the ability of a 3D VAE to detect anomalies
related to Alzheimer’s disease on 3D brain FDG PET data from the ADNI database.

As a first evaluation step using images from healthy subjects and common reconstruction
metrics, we confirmed that the VAE was able to reconstruct subject-specific 3D FDG PET.
However, the quality of the reconstruction can be improved as we observe that the VAE does
not generate the sharp details of the image very well. The reconstruction is quite blurry,
which is expected as the model is rather simple and generating high resolution 3D images
is a difficult task. The results are still satisfactory for FDG PET images at this resolution
since they are smooth by nature, but we can imagine that the VAE will be limited on other
modalities that have a lot of structural details such as anatomical MRI. Even though the
reconstruction quality may be sufficient to detect anomalies, it would be difficult to qualify
the reconstruction as being pseudo-healthy at this stage of the evaluation (Baur et al.,
2021a). Moreover, using only reconstruction error to differentiate between healthy subjects
and patients is not robust enough. The major weakness is that little intense anomalies
might be difficult to detect for several reasons: first the model is able to reconstruct a
meaningful image even though the image is abnormal, the reconstruction error due to
abnormal regions will be drowned in the reconstruction noise due to model imperfection, and
the reconstruction metrics being computed on the whole image may not highlight significant
difference (Meissen et al., 2021). Nevertheless, in the case of AD, the typical variation of
metabolism in relevant regions is around 25% (Landau et al., 2014), which corresponds to the
intensity degree of anomalies that we can detect using the reconstruction error (Figure 4).

To overcome the absence of ground truth anomaly masks for the evaluation of the
model, we introduced a framework to simulate different kinds of dementias from images of
healthy subjects. Having such pairs of diseased and healthy images allowed us to measure
the reconstruction error between the pseudo-healthy reconstruction and the original image
from the healthy subject. We showed that the pseudo-healthy reconstruction is more similar
to the original image from the healthy subject than from the hypometabolic simulated image
(Figure 4).

To push the evaluation further, we also showed that the reconstructed images are look-
ing healthy by introducing a new healthiness metric, which we validated thanks to the
simulation framework. This analysis showed that the relative average uptake in the region
used to simulate hypometabolism compared to the other regions of the brain is higher on
the reconstruction, which means that the VAE can reconstruct a pseudo-healthy image
(Figure 6 and Figure 7). Actually, if the simulated hypometabolism is reasonable (<30%),
the healthiness of the reconstructed pseudo-healthy images is similar to that obtained for
the original image from a healthy subject. We also simulated dementias other than AD and
showed that the VAE was indeed able to generalize to anomalies in different parts of the
brain. This is an important point as many diseases are rare, so it is impossible to detect
them using a traditional supervised machine learning approach due to lack of data.

We do not only rely on the simulated data to estimate the performance of the model, but
we also use the image from AD patients to test the model in a more realistic context. Using
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the anomaly metric, we see that the pseudo-healthy reconstructions of images from real
AD patients seem to have an average uptake similar to the healthy population (Figure 9.
Unfortunately, at this stage, the individual analysis remains only visual and not quantitative
since there is no ground truth healthy image for these patients, nor lesion masks.

In most applications of pseudo-healthy synthesis for UAD, the performance of the model
on real diseased images is measured with a similarity metric using a ground truth anomaly
mask. This has the advantage of giving a quantitative measure for anomaly detection, how-
ever this does not really measure if the reconstructed image is pseudo-healthy. Evaluating
models on anomaly detection only may lead to incomplete and biased evaluation as the
model might not be able to detect every kind of anomalies. In our case, the final validation
step would be to ask a clinician to evaluate the healthiness of the reconstructed images.
However, having a clinician manually rate images is very time consuming and can be ex-
pensive, thus the simulation framework is an interesting solution as a first validation step
to ensure that the model evaluated is worth asking expert advice.

The main advantage of using the proposed simulation framework is the possibility of
quantitatively measuring the performance of the model using metrics (reconstruction and
healthiness). This is crucial for further evaluation when one needs to compare models. To
illustrate this, we trained a Unet model with a similar architecture to the one of the VAE.
The results are reported in Appendix I. They highlight the importance of not only relying
on reconstruction metrics and observations and demonstrate that simulated data can be
useful to identify models that are not suited for pseudo-healthy reconstruction.

It also allows testing the model in many different conditions, with various kind of anoma-
lies, and validate the fact that the model can generalize well. Another benefit is that this
may lead to more robust anomaly detection by the clinician as it may be difficult to be
vigilant on the whole image when manually inspecting a 3D scan.

One weakness of using simulated data is that they might not be very realistic. However
we can clearly see that the simulated images are abnormal, which still allows evaluating
performance, even though they are not totally realistic. For an even more comprehensive
assessment, we may consider simulating a broader variety of anomaly types. Specifically,
simulating non-symmetric or non-uniform anomalies could better capture the heterogeneity
observed in dementia. Additionally, simulating smaller anomalies, which may challenge the
detection using a VAE, would further enrich the evaluation.

Another potential limitation of the proposed evaluation framework is that the evaluation
only relies on the difference between input and reconstructed images, i.e., the residual. The
use of an anomaly mask that could be compared with the ground truth using a metric such
as the dice score could be a great improvement. A simple solution may be thresholding
the difference maps, or use Z-scores to attenuate the reconstruction noise and accentuate
the anomaly (Solal et al., 2024). In addition, the only parameter for the simulation of
anomalies is the degree of hypometabolism. However, establishing a correlation between
this parameter and the progression or severity of the disease, as measured by cognitive
scores (such as the MMSE or CDR), or the time elapsed before the first symptoms, poses a
challenge. In other words, interpreting the intensity of the simulated anomalies in relation
to the patient’s cognitive status is not straightforward.

Choosing a VAE as generative model allowed us to perform analyses in the latent space.
In particular, we used it to explain how the VAE behaves and interpret some of the results.
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We first observed that the latent representation of a same patient is always very close in
the latent space, and almost identical between the simulated and the original PET scans
(Figure 10). More globally we showed that the VAE encoder is able to map the complex
data distribution to a simple multivariate Gaussian distribution of lower dimension. This
explains why, for small deviations from the healthy image distribution (anomalies that we
simulated), the model is able to reconstruct an image that is plausible (Figure 5), that
corresponds to the patient under investigation, and seems to be pseudo-healthy. This can
be explained by disentangling the functioning of the encoder and the decoder: the encoder
catches the image structural information that is specific to the subject, and the decoder,
given a latent representation z, can only reconstruct healthy looking images because it is
what it has been trained to do. This is not straightforward and the model could have other
behaviors. Indeed, we identify three different scenarios:

• the model reconstructs the identity, meaning that a healthy image has a healthy
reconstruction and an abnormal image is reconstructed with its anomalies,

• the model does not reconstruct abnormal images at all as it has never seen some,
which would be a behavior similar to out-of-distribution detection,

• the model reconstructs pseudo-healthy images since it could learn well the healthy
image distribution, which seems to be the case.

Combining the latent space analysis with our simulation framework shows that the
model has a similar behavior for the different kinds of anomalies (Table 3) and that the
VAE can generalize well.

Our experiments on the latent space show that the encoder is working as we can expect.
To improve the the quality of the reconstructed images, a first simple step would be to
use a more powerful generator (Duquenne et al., 2022). If given a latent representation z
the model can reconstruct perfectly the image x, then we could detect anomalies with a
high accuracy. Numerous research to improve the VAE framework has been performed in
the computer vision literature (Chadebec et al., 2022). In a recent work, we benchmarked
fifteen of them for the pseudo-healthy synthesis of brain FDG PET, without being able to
improve to reconstruction quality compared with that of the vanilla VAE (Hassanaly et al.,
2023b). We can imagine that combining a VAE with a diffusion model as done in Pandey
et al. (2022) might be a good solution to improve the decoder. It showed great result on
2D images and future work could consist in comparing and evaluating such approach on a
3D task on all the different aspects we enunciated.

The proposed validation procedure is applicable outside of the use case presented here.
Most of the code that we used is available in ClinicaDL (Thibeau-Sutre et al., 2022), an
open-source software that is developed for reproducibility of deep learning studies in neu-
roimaging. Pipelines are available to perform the following steps:

• selecting subjects from a neuroimaging dataset,

• rigorously separating data into independent training, validation and testing sets,

• easily training a VAE on neuroimages,
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• constructing new test sets by generating simulated data using the proposed method,

• running tests to evaluate models.

Moreover, all the preprocessing pipelines are also available in Clinica (Routier et al., 2021),
an open-source software for reproducible processing of neuroimaging datasets and multi-
modal neuroscience studies. Clinica has been used to:

• curate and organize the ADNI dataset following a community standard, namely the
brain imaging data structure (BIDS) (Gorgolewski et al., 2016),

• perform linear registration and intensity normalization of the FDG PET scans.

Finally, all the code for training and evaluating the model is available in the following
repository: https://github.com/ravih18/UAD_evaluation_framework.

6. Conclusion

We presented an extensive evaluation procedure of pseudo-healthy reconstruction for unsu-
pervised anomaly detection in the case where ground truths are not available. It consists
in different steps that are: the measurement of the reconstruction error on images from
healthy subjects, the use of a simulation framework to create pairs of healthy and diseased
images; the introduction of a metric to measure the healthiness of images when using the
simulation framework; the use of a brain atlas to detect anomalies by comparing the input
and the reconstructed images using the simulation framework and the real pathological
images from ADNI dataset.

This procedure has been applied to a 3D VAE that is suited to detect anomalies due
to dementia on brain FDG PET. The VAE has been trained to reconstruct healthy-looking
images using images of healthy subjects. We saw that the model can indeed reconstruct
subject-specific pseudo-healthy images and can help to detect anomalies. We also validated
the model ability to detect anomalies of different intensities, shapes and locations. However,
the performance could be increased by improving the quality of the reconstruction.

We also exploited the latent space properties to understand the VAE behavior and
interpret the results. We saw that the model can encode very similar latent representations
for different images of a same subject (different sessions, or simulated images), and more
generally, that the latent distribution represents well the image distribution. This is the
expected behavior for the encoder. That means that if we want to improve the quality of
the reconstruction, we would have to use a better decoder.

Acknowledgments

The research leading to these results has received funding from the French government under
management of Agence Nationale de la Recherche as part of the ”Investissements d’avenir”
program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference ANR-10-
IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6).

This work was granted access to the HPC resources of IDRIS under the allocation
AD011011648 made by GENCI (Grand Equipement National de Calcul Intensif).

28

https://github.com/ravih18/UAD_evaluation_framework


Evaluation of pseudo-healthy image reconstruction for anomaly detection

Data collection and sharing for this project was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and
DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded
by the National Institute on Aging, the National Institute of Biomedical Imaging and Bio-
engineering, and through generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.;
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Phar-
maceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and
its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharma-
ceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health Research is providing funds
to support ADNI clinical sites in Canada. Private sector contributions are facilitated by
the Foundation for the National Institutes of Health (www.fnih.org). The grantee orga-
nization is the Northern California Institute for Research and Education, and the study is
coordinated by the Alzheimer’s Therapeutic Research Institute at the University of South-
ern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the
University of Southern California.

Ethical Standards

The work follows appropriate ethical standards in conducting research and writing the
manuscript, following all applicable laws and regulations regarding treatment of animals or
human subjects.

Conflicts of Interest

We declare we do not have conflicts of interest.

References

Z. Alaverdyan, J. Jung, R. Bouet, and C. Lartizien. Regularized siamese neural network
for unsupervised outlier detection on brain multiparametric magnetic resonance imaging:
application to epilepsy lesion screening. Medical image analysis, 60:101618, 2020.

M. Astaraki, F. De Benetti, Y. Yeganeh, I. Toma-Dasu, Ö. Smedby, C. Wang, N. Navab, and
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Appendix A. Reconstruction metrics

Mean squared error The MSE is the mean of the square of the difference between the
true pixel (Xi) and the reconstructed pixel (X̂i)

MSE =
1

n

n∑
i=1

(
Xi − X̂i

)2
. (5)

A low MSE means that the images are close to each other. They are identical if the MSE
is 0.

Peak signal-to-noise ratio The PNSR is a function of the MSE and allows for comparing
images encoded with different dynamic ranges

PSNR = 10 log10

(
MAX2

MSE

)
, (6)

with MAX the maximum possible value of the image. We can see that if the images are
similar, the MSE is close to 0, and the PSNR tends toward +∞.

Structural similarity The SSIM is a weighted combination of three comparison mea-
surements: the luminance l, the contrast c and the structure s (Wang et al., 2004)

SSIM = l(X, X̂)α · c(X, X̂)β · s(X, X̂)γ ,

with α, β and γ the weights assigned to each measurement. If we set them all to 1, we
obtain the following formula (Wang et al., 2004):

SSIM =
(2µXµ

X̂
+ c1)(2σXX̂

+ c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂
+ c2)

, (7)

where:

• µX and µ
X̂

are the means of the true and reconstructed image respectively,

• σX and σ
X̂

are the standard deviations of the true and reconstructed image respec-
tively,

• c1 and c2 are positive constants to stabilize the division. Typical values are c1 = 0.01
and c2 = 0.03.

The SSIM ranges between 0 and 1.

Multi-scale structural similarity The MSSSIM is similar to the SSIM: it is a weighted
combination of the luminance l, the contrast c and the structure s computed at different
scales of the image (Wang et al., 2003). To do so, we iteratively apply M times a 3D average
pooling, which is a low pass filter, to down-sample the image by a factor of two.

MSSSIM = lM (X, X̂)αM ·
M∏
j=1

cj(X, X̂)βj · sj(X, X̂)γj , (8)

with lj , cj and sj being respectively the luminance, the contrast and the structure between
X and X̂ at the scale j. We choose M = 5, αj = βj = γj and αj , βj , γj taking the following
values (0.0448, 0.2856, 0.3001, 0.2363, 0.1333) for j ∈ [1,M ] based on the values introduced
in the original paper from Wang et al. (2003).
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Appendix B. Details of the simulation framework

We generated masks corresponding to six dementias: Alzheimer’s disease (AD), behavioral
variant frontotemporal dementia (bvFTD), logopenic variant primary progressive aphasia
(lvPPA), semantic variant PPA (svPPA), nonfluent variant PPA (nfvPPA) and posterior
cortical atrophy (PCA) based on the regions defined by Burgos et al. (2021b) (Table 6).

39



Hassanaly, Brianceau, Solal, Colliot and Burgos

Table 6: Regions associated with different dementia as defined in Burgos et al. (2021b) and
the masks used for hypo-metabolism simulation.

Dementias Regions Associated Masks

Alzheimer’s
disease

• temporal lobe, including
the lateral and medial regions
and temporal pole

• parietal lobe, including the
superior and inferior regions

Behavioural
variant fron-
totemporal
dementia

• orbitofrontal region, com-
prising the anterior, poste-
rior, medial, and lateral or-
bital gyri,

• dorsolateral prefrontal re-
gion, comprising the inferior,
middle, and superior frontal
gyri

• ventromedial prefrontal
region, comprising the gyrus
rectus, medial frontal cortex,
subcallosal area, and superior
frontal gyrus medial segment.

Posterior
cortical
atrophy

• occipital region, comprising
the inferior, middle and supe-
rior occipital gyri.

Logopenic
variant
primary

progressive
aphasia

• tempoparietal region,
comprising the inferior pari-
etal lobule, posterior middle
and superior temporal gyri.

Nonfluent
variant
primary

progressive
aphasia

• frontal region, comprising
the inferior frontal gyrus, pre-
central gyrus and anterior in-
sula.

Semantic
variant
primary

progressive
aphasia

• anterior temporal region,
comprising the hippocampus,
amygdala and temporal pole.
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Appendix C. Linear mixed effect model

LMM is a statistical regression method used to analyze data that are dependent. It is
particularly adapted to studies in which several observations are available per subject, such
as in longitudinal studies. Here our different observations are the N closest images in the
latent space (the tenth, the twentieth, the thirtieth and the fortieth closest images). The
equation of the LMM is

Yij = β0 + β1Xij + γ0i + γ1iXij + ϵij ,

where (Xij , Yij) are respectively the distance in the latent space and the image space of
the jth closest subject of subject i, β0 and β1 are the population effect parameters, γ0i and
γ1i are the individual effect parameters and ϵij the residual error. Each subject is modeled
by a linear function of intercept β0 + γ0i and slope β1 + γ1i. β1 is the mean slope of the
population and γ1i is the variance of each individual. We can then estimate the tendency of
the evolution of the distance in the latent space with regards to the distance in the image
space by observing the values of β1 + γ1i.

Appendix D. Data selection

In the ADNI database, there is a total of 3511 FDG PET scans from 1600 participants.
This includes 554 cognitively normal (CN) subjects (1010 images) that we selected since
UAD models are trained only on images from healthy subjects. We know that physiological
changes can appear several years before the first clinical symptoms, so to ensure that images
really correspond to a healthy brain, we kept only scans from subjects that are CN for at
least three years after the session considered. We discarded 78 subjects (129 images) for
whom diagnosis progresses to AD, 72 subjects (72 images) for whom there is a unique
session (which is not enough to assess the reliability of the CN label) and 21 subject (49
images) for whom there are multiple conversions or regressions. We finally keep 383 stable
CN subjects (760 images).

There are also 560 AD patients (791 images). We removed 2 patients (2 images) with
unstable AD diagnosis, 3 patients (3 images) of regressive AD, 189 patients (189 images)
for whom there is a unique session, and 4 subjects that were already in the training set. In
the end we keep the 362 baseline sessions of the remaining AD patients for testing purposes
and discarded all the other images.

In addition, we ran both quality control procedures and discarded in total 30 images: 18
images from CN subjects and 9 images from AD patients after t1-linear quality control,
and 3 images from CN subjects after pet-linear quality control.
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Appendix E. Reconstruction metrics obtained on the validation set

Table 7: Reconstruction metrics on each validation set over the 6 folds.

Dataset Fold MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MSSSIM ↑

Validation set

0 2.043± 0.899 27.140± 1.307 0.862± 0.036 0.937± 0.020

1 1.988± 0.634 27.202± 1.241 0.866± 0.025 0.938± 0.016

2 1.865± 0.766 27.517± 1.275 0.877± 0.031 0.943± 0.019

3 1.891± 0.584 27.376± 1.047 0.872± 0.037 0.942± 0.015

4 1.907± 0.654 27.382± 1.200 0.868± 0.027 0.942± 0.014

5 2.005± 1.098 27.301± 1.467 0.868± 0.035 0.940± 0.019

Table 8: SSIM obtained on the validation set for all the splits.

Split 0 Split 1 Split 2 Split 3 Split 4 Split 5

mean 0.861 0.865 0.876 0.871 0.868 0.867
std 0.035 0.024 0.030 0.037 0.026 0.034
min 0.698 0.801 0.741 0.66 0.795 0.736
25% 0.852 0.852 0.870 0.863 0.854 0.858
50% 0.870 0.872 0.884 0.881 0.870 0.873
75% 0.882 0.882 0.893 0.891 0.887 0.890
max 0.912 0.905 0.923 0.907 0.908 0.907
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Appendix F. Examples of reconstructions obtained for healthy subjects
and simulated hypometablic images

Figure 13: Examples of reconstructions obtained from a real image of CN subjects (even
rows) and the image simulating 30% AD hypometabolism based on the same CN subject
(odd rows). For each plane, the first image is the input, the second one the model’s recon-
struction and the third one the difference (input - reconstruction).
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Appendix G. Examples of reconstructions for AD patients

Figure 14: Examples of reconstruction obtained from a real image of a AD patients. For
each plane, the first image is the input, the second one the model’s reconstruction and the
third one the difference (input - reconstruction).

Appendix H. Detailed results of linear mixed effect models

Table 9: Result of linear mixed effect models corresponding o Figure 12. The top two
rows correspond to the model fitted on the MSE against the Minkowski distance in the
latent space. The bottom two rows correspond to the model fitted on the SSIM against
the Minkowski distance in the latent space. ”intercept” correspond to the intercept of the
model and “latent” to the slope. “Coef.” is the estimation of the value of the intercept or
the latent, “Std. Err.” is the standard error on this value, z is the z-score of this estimation,
P > |z| the p-value associated with this z-score and the last column is the confidence interval
of the value.

Coef. Std.Err. z P > |z| [0.025 0.975]

MSE
(×10−3)

intercept -7.806 0.583 -13.397 0.000 -8.948 -6.664

latent 3.361 0.164 20.459 0.000 3.039 3.683

SSIM
intercept 0.932 0.009 106.935 0.000 0.915 0.949

latent -0.079 0.002 -31.688 0.000 -0.084 -0.074
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Appendix I. Unet results

To demonstrate the value of the evaluation procedure, we trained a Unet with an architec-
ture very similar to the VAE’s one (we added skip connections and removed the probabilistic
part in the latent space). The expected result of this experiment is that the model should
be able to reconstruct good quality images by learning the identity function. Indeed, the
model learning to reconstruct its inputs, it should probably use higher level skip-connections
to minimize the reconstruction error. However, when trying to reconstruct images with
anomalies, the model should also reconstruct an image similar to the input, instead of
a pseudo-healthy version, as it did not learn any data distribution, but just an identity
function.

We can observe in Table 10 that the reconstruction of the Unet is almost identical to the
input image, with a SSIM of 0.99 on average. Compared to the VAE (Table 2), the MSE
is almost 100 times lower with the Unet. This means that the Unet is able to reconstruct
images of high quality. However, we can see that the reconstructions are also similar to the
input when the input is a simulated abnormal image, meaning that the model probably also
reconstructs the anomalies.

Table 10: Comparison of the reconstruction results obtained for Split 1 between the Unet
and VAE.

Model Dataset MSE (×10−3) ↓ PSNR ↑ SSIM ↑ MSSSIM ↑

Unet
Test CN 0.024± 0.005 46.281± 0.878 0.990± 0.001 0.999± 0.000
Test AD 0.028± 0.020 45.864± 1.555 0.990± 0.002 0.999± 0.000
AD 30 0.024± 0.006 46.271± 0.934 0.990± 0.001 0.999± 0.000

VAE
Test CN 1.815± 0.649 27.572± 1.074 0.878± 0.026 0.944± 0.014
Test AD 2.554± 1.391 26.272± 1.560 0.853± 0.045 0.928± 0.025
AD 30 2.345± 0.639 26.403± 0.890 0.869± 0.027 0.934± 0.015

This can be verified by observing directly the images in Figure 15. We can see that the
reconstruction is identical to the input, and the difference is null. We thus cannot detect
anomalies.

This is confirmed when computing the healthiness metric defined in Section 3.2.3. Even
though we can see from the reconstruction metrics that the model is not able to reconstruct
pseudo-healthy FDG PET images, this a limit case. In a more realistic scenario, recon-
struction metrics and visual assessment of the images are not enough to estimate if a model
is able to perform well. In Figure 16a, we can see that the healthiness of the reconstructed
image is equal to the one of the input image, meaning that the model could not reconstruct
pseudo-healthy images.
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Figure 15: Example of results obtained with the Unet from a real image of a CN subject
(top row) and an image simulating AD hypometabolism based on the same CN subject
(bottom row). For each plane, the first image is the input, the second one the model’s
reconstruction and the third one the difference (input - reconstruction).

(a) Unet (b) VAE

Figure 16: Comparison of the distribution of the healthiness metric between the Unet and
VAE for both CN and simulated AD subjects. For both models, the healthiness is constant
(between 0.98 and 1.09) for images from healthy subjects of the test set (in blue), and the
reconstruction is healthy as expected (in orange). For simulated images (AD 30), we can
see that the healthiness is between 0.83 and 0.91 (dark green). However, the healthiness of
the Unet reconstruction (light green) is the same (between 0.84 and 0.92), meaning that the
reconstruction cannot be considered as pseudo-healthy. On the other hand, the healthiness
of the VAE reconstruction, between 0.96 and 1.02, is higher than for the simulated image
given in input. The VAE reconstruction can thus be considered as healthy.
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