
HAL Id: hal-04315684
https://hal.science/hal-04315684

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Argumentation Framework for Concept Learning
Leila Amgoud, Mathieu Serrurier

To cite this version:
Leila Amgoud, Mathieu Serrurier. An Argumentation Framework for Concept Learning. International
Workshop on Non-Monotonic Reasoning (NMR 2006 @ KR 2006), Clausthal University of Technology,
May 2006, Lake District, United Kingdom. �hal-04315684�

https://hal.science/hal-04315684
https://hal.archives-ouvertes.fr

An Argumentation Framework for Concept Learning

Leila Amgoud and Mathieu Serrurier
IRIT - CNRS

118, route de Narbonne, 31062 Toulouse, France
{amgoud, serrurier}@irit.fr

Abstract

Concept learningis an important problem in AI that consists
of, given a set of training examples and counter-examples on
a particular concept, identifying a model that is coherent with
the training examples, i.e that classifies them correctly. The
obtained model is intended to be reused for the purpose of
classifying new examples. Version space is one of theformal
frameworks developed for that purpose. It takes as input a
consistent set of training examples on the concept to learn, a
set of possible models, calledhypothesisordered by general-
ity, and returns the hypothesis that are coherent with the train-
ing examples. The returned set of hypothesis is calledversion
spaceand is described by its lower and upper bounds.
This paper provides an argumentation-based framework that
captures the results of the version space approach. The basic
idea is to construct arguments in favor of/against each hy-
pothesis and training example, to evaluate those arguments
and to determine among the conflicting arguments the ac-
ceptable ones. We will show that the acceptable arguments
characterize the version space as well as its lower and up-
per bounds. Moreover, we will show that an argumentation-
based approach for learning offers an additional advantage by
allowing the handling of common problems in classical con-
cept learning. Indeed, it is possible to reason directly with
sets of hypothesis rather than one, and to deal with inconsis-
tent sets of training examples. Lastly, the framework trans-
lates the problem of classifying examples into a decision one.

Introduction
Machine learning aims at buildingmodelsthat describe a
conceptfrom a set oftraining examples. The models are
intended to be sufficiently general in order to be reused on
new examples. When teexhe concept to learn is binary, i.e.
examples of that concept can be either true or false, the
problem is calledconcept learning. In (Mitchell 1982),
Mitchel has proposed the famous general and abstract
framework, calledversion space learning, for concept
learning. That framework takes as input a consistent set of
training exampleson the concept to learn, a set of possible
models, calledhypothesisordered bygenerality, and returns
the hypothesis that are coherent with the training examples.
The returned set of hypothesis is calledversion spaceand is
described by its lower and upper bounds.
Besides, argumentation has become an Artificial In-
telligence keyword for the last fifteen years, es-

pecially in sub-fields such as non monotonic rea-
soning, inconsistency-tolerant reasoning, multiple-
source information systems (Amgoud & Cayrol 2002;
Prakken & Sartor 1997; Simari & Loui 1992;
Gómez & Ches̃nevar 2003). Argumentartion follows
three steps: i) to construct arguments and counter-
arguments for a statement, ii) to select the “acceptable”
ones and, finally, iii) to determine whether the statement
can be accepted or not.

This paper claims that argumentation can also be
used as an alternative approach for concept learning, which
not only retrieves in an elegant way the results of the
version space learning framework, but also offers several
other advantages. In this argumentation-based approach,
the concept learning problem is reformulated as follows:
given a set of examples (the training ones, and/or additional
examples) and a set of hypothesis, what should be the class
of a given example? To answer this question, arguments
are constructed in favor of all the possible classifications
of the examples. A classification can come either from
an hypothesis or from a training example. The obtained
arguments may be conflicting since it may be the case that
the same example is affected to different classes. We will
show that the acceptability semantics defined in (Dung
1995) allow us to identify and characterize the version
space as well as its lower and upper bounds.
The framework presents also the following features that
make it original and flexible:

1. it handles i) the case of a consistent set of training exam-
ples; ii) the case of an inconsistent set of training exam-
ples; and iii) the case of an empty set of training examples;

2. it allows one to reason directly on the set of hypothesis;

3. examples are classified on the basis of the whole set of hy-
pothesis rather than only one hypothesis as it is the case
in standard concept learning. Indeed, in the standard ap-
proach, a unique hypothesis is chosen, and all the exam-
ples are classified on the basis of that hypothesis.

4. it presents different original and intuitive decision criteria
for choosing the class of an example.

The paper is organized as follows. We first present the ver-
sion space learning framework, then we introduce the basic

argumentation framework of Dung (Dung 1995). The third
section introduces our argumentation-based framework for
learning.

Vesion Space Learning
The aim of this section is to introduce the version space
framework developed by Mitchel in (Mitchell 1982). Let
X denote afeature spaceused for describing examples. El-
ements ofX may then be pairs (attribute, value), first order
facts, . . . This setX is supposed to be equipped with an
equivalence relation≡. Let U = {0, 1} be aconcept space,
where1 means that the example of the concept is positive,
and0 means that the example is negative.
The version space framework takes as input ahypothesis
spaceH, and a setS of m training examples.

S = {(xi, ui)i=1,...,m s.txi ∈ X andui ∈ U}
Note that the setS contains both positive examples (i.e. the
value ofx− i is equal to 1), and negative ones (i.e. the value
of x − i is equal to 0). Otherwise, the learning problem be-
comes trivial and not genuine. An important notion in con-
cept learning is that of consistency. In fact, a set of examples
is said to be consistent if it does not contain two logically
equivalent examples with two different values. Formally:

Definition 1 (Consistency) The setS of training examples
is consistentiff @ (x1, u1), (x2, u2) ∈ S such thatx1 ≡ x2

andu1 6= u2. Otherwise,S is saidinconsistent.

Regarding thehypothesis spaceH, it may be, for instance,
decision trees, propositional sets of rules, neural nets. . . An
hypothesish is a mapping fromX toU (i.e. h: X 7→ U). The
setH is supposed to be equipped with apartial preorder�
that reflects the idea that some hypothesis are more general
than others in the sense that they classify positively more
examples. This preorder defines a lattice on the hypothesis
space. Formally:

Definition 2 (Generality order on hypothesis) Let h1, h2

∈ H. h1 is more generalthan h2, denoted byh1 � h2, iff
{x ∈ X |h1(x) = 1} ⊇ {x ∈ X |h2(x) = 1}.
Before defining the output of the framework, let us first in-
troduce a key notion, that ofsoundness.

Definition 3 (Soundness)Let h ∈ H. An hypothesish is
soundwith respect to a training example(x, u) ∈ S iff
h(x) = u. If ∀(xi, ui) ∈ S, h is sound w.r.t(xi, ui), thenh
is said to besoundwith S.

The framework identifies theversion space, which is the set
V of all the hypothesis ofH that are sound withS. The
idea is that a “good” hypothesis should at least classify the
training examples correctly.

Definition 4 (Version space)

V = {h ∈ H| h is sound withS}
Version space learning aims at identifying theupperand the
lower bounds of this version spaceV. The upper bound will
contain the most general hypothesis, i.e the ones that clas-
sify more examples, whereas the lower bound will contain
the most specific ones, i.e the hypothesis that classify less
examples.

Definition 5 (General hypothesis)The set ofgeneral hy-
pothesisis VG = {h ∈ H | h is sound withS and@ h′ ∈ H
with h′ sound withS, andh′ � h}.
Definition 6 (Specific hypothesis)The set ofspecific hy-
pothesisis VS = {h ∈ H | h is sound withS and @ h′ ∈
H with h′ sound withS, andh � h′}.
From the above definition, we have the following simple
property characterizing the elements ofV.

Property 1 (Mitchell 1982)

V = {h ∈ H|∃h1 ∈ VS ,∃h2 ∈ VG, h2 � h � h1}

In (Mitchell 1982), an algorithm that computes the version
spaceV by identifying its upper and lower boundsVS and
VG has been proposed.

The above framework has some limits. First, finding the
version space is not sufficient for classifying examples out
of the training set. This is due to possible conflicts between
hypothesis. Second, it has been shown that the complexity
of the algorithm that identifiesVS andVG is very high. In
order to palliate that limit, learning algorithms try in general
to reach only one hypothesis in the version space by using
heuristical exploration ofH (from general to specific explo-
ration, for instance FOIL (Quinlan 1990), or from specific
to general exploration, for instance PROGOL (Muggleton
1995)). That hypothesis is then used for classifying new ob-
jects. Moreover, it is obvious that this framework does not
support inconsistent set of examples:

Property 2 (Mitchell 1982) If the setS is inconsistent, then
the version spaceV = ∅.
A consequence of the above result is that no concept can
be learned. This problem may appear in the case of noisy
training data set.

Let us illustrate the above definitions through the fol-
lowing example in which we try to learn the concept “a
sunny day”.

Example 1 (Learning the concept sunny day)In this
example, the feature space is a pair (attribute, value).
Three attributes are considered: pressure, temperature,
and humidity. Four training examples are given, and are
summarized in Table below. For instance (pressure, low),
(temperature, medium), and (humidity, high) is a negative
example for the concept a sunny day, whereas the (pressure,
medium), (temperature, medium), and (humidity, low) is a
positive one.

pressure temperature humidity sunny
low medium high 0

medium medium low 1
low medium medium 0

medium high medium 1

Let us suppose that the hypothesis spaceH is the space of
constrainson the values of each attribute. Indeed, the con-
straints are conjunctions of accepted values of attributes.

The special constraint∅ (resp. ?) means that no (resp. all)
values of attributes are accepted. If a vector of values of
attributes match all the constraints, then it is considered as
a positiveexample, otherwise it is anegativeone. The hy-
pothesis〈∅, ∅, ∅〉 and〈?, ?, ?〉 are respectively the lower and
the upper bound of the hypothesis spaceH. Using the ver-
sion space learning algorithm, we get:VG = {〈 medium
∨ high, ?, ?〉} andVS = {〈 medium, medium∨ high, low
∨ medium〉}. HereVS and VG contain both only one hy-
pothesis. The hypothesis inVG, for instance, considers as
positive examples of the sunny day concept all features that
havemedium or high values for the pressure attribute.

Abstract Argumentation Framework
Argumentation is a reasoning model that follows the follow-
ing steps:

1. Constructingargumentsand counter-arguments.

2. Defining thestrengthsof those arguments.

3. Evaluating theacceptabilityof the different arguments.

4. Concluding or defining thejustified conclusions.

In (Dung 1995), an argumentation system is defined as fol-
lows:

Definition 7 (Argumentation system) An argumentation
system(AS) is a pair〈A,R〉. A is a set arguments andR⊆
A × A is a defeasibility relation. We say that an argument
A defeats an argumentB iff (A,B) ∈ R (or A R B).

Note that to each argumentation system is associated an ori-
ented graph whose nodes are the different arguments, and
the edges represent the defeasibility relationship between
them. Among all the conflicting arguments, it is important
to know which arguments to keep for inferring conclusions
or for making decisions. In (Dung 1995), different seman-
tics for the notion of acceptability have been proposed. Let’s
recall them here.

Definition 8 (Conflict-free, Defence)LetB ⊆ A.

• B is conflict-freeiff there exist noAi, Aj ∈ B such that
Ai R Aj .

• B defendsan argumentAi iff for each argumentAj ∈ A,
if Aj R Ai, then there existsAk ∈ B such thatAk R Aj .

Definition 9 (Acceptability semantics) LetB be a conflict-
free set of arguments, and letF : 2A 7→ 2A be a function
such thatF(B) = {A | B defendsA}.
• B is acomplete extensioniff B = F(B).
• B is a grounded extensioniff it is the minimal (w.r.t. set-

inclusion) complete extension.

• B is a preferred extensioniff it is a maximal (w.r.t. set-
inclusion) complete extension.

• B is a stable extensioniff it is a preferred extension that
defeats all arguments inA\B.

Let {E1, . . ., En} be the set of all possible extensions under
a given semantics.

Note that there is only one grounded extension which may
be empty. It contains all the arguments which are not de-
feated, and also the arguments which are defended directly
or indirectly by non-defeated arguments.
The last step of an argumentation process consists of de-
termining, among all the conclusions of the different argu-
ments, the “good” ones, calledjustified conclusions.

An Argumentation Framework for Concept
Learning

The aim of this section is to propose an instantiation of
the general and abstract framework of Dung that allows
learning concepts from sets of trainng examples. We will
show that this argumentation-based model captures the
results of the version space learning presented in a previous
section. The sets ofversion space, specificand general
hypothesis are characterized in our model. Since the
classical approach of version space learning considers only
the case where the set of training examples is consistent,
we will present two versions of our model. In the first one,
the setS is supposed to be consistent. This model is then
generalized to the case whereS can be inconsistent. We
will show that even in this latter case, the version spaceV
is not always empty, thus it is still possible to learn concepts.

Throughout this section, we will consider a features
spaceX , a concept spaceU = {0, 1}, a hypothesis space
H, which is equipped with a partial preordering� (see
Definition 2), and a setS of m > 0 training examples.

Consistent Case
In order to instantiate the abstract framework of Dung, one
needs to define the setA or arguments as well as the defea-
sibility relationship between those arguments. In our partic-
ular application, one needs to argue about particular classifi-
cations, thus arguments are constructed in favor of assigning
particular values fromU to an example inX . Indeed, an ar-
gument in favor of the pair(x, u) represents the reason of
assigning the valueu to the examplex. Two reasons can be
distinguished:

1. (x, u) is a training example inS,

2. there exists a hypothesish ∈ H that classifiesx in u.

Definition 10 (Argument) An argumentis a triplet A =
〈h, x, u〉 such that:

1. h ∈ H, x ∈ X , u ∈ U
2. If h 6= ∅, thenu = h(x)
3. If h = ∅, then(x, u) ∈ S
h is called thesupportof the argument, and(x, u) its con-
clusion. LetExample(A) = x, andValue(A) = u.
LetA be the set of arguments built from(H,X ,U).

Note that from the above definition for any trainng example
(xi, ui) ∈ S, ∃〈∅, xi, ui〉 ∈ A. LetAS = {〈∅, x, u〉 ∈ A}
(i.e. the set of arguments coming from the training exam-
ples).

Property 3 Let S be a set of training examples.|S| =
|AS |1.

Proof This follows from the above definition, and from the
fact that a hypothesish cannot be empty.

Since the setS of training examples is not empty, thenAS
is not empty as well.

Property 4 AS 6= ∅.
Proof This follows directly from the above property, i.e.|S|
= |AS |, and the assumption thatS 6= ∅.
Let us illustrate the notion of argument through example 1.

Example 2 In example 1, there are exactly four arguments
with an empty support, and they correspond to the training
examples:A∅ = {a1 = 〈∅, (pressure, low)∧ (temperature,
medium)∧ (humidity,high), 0〉,
a2 = 〈∅, (pressure, medium)∧ (temperature, medium)∧
(humidity, low), 1〉,
a3 = 〈∅, (pressure, low)∧ (temperature, medium)∧ (hu-
midity, medium), 0〉,
a4 = 〈∅, (pressure, medium)∧ (temperature, high)∧ (hu-
midity, medium), 1〉}. There are also arguments with a non-
empty support such as:
〈a5 = 〈 ? , medium∨ high, ?〉, (pressure, low)∧ (tempera-
ture, high)∧ (humidity, high), 1〉},
a6 = 〈〈 medium∨ high, ?, ?〉, (pressure, low)∧ (tempera-
ture, high)∧ (humidity, high), 0〉,
a7 = 〈〈 medium, medium∨ high, ?〉, (pressure, low)∧ (tem-
perature, high)∧ (humidity, high), 0〉.
In (Amgoud & Cayrol 2002; Prakken & Sartor 1997; Simari
& Loui 1992), it has been argued that arguments may have
different strengths depending on the quality of informa-
tion used to construct them. In (Simari & Loui 1992),
for instance, arguments built from specific information are
stronger than arguments built from more general ones. In
our particular application, it is clear that arguments with
an empty support are stronger than arguments with a non-
empty one. This reflects the fact that classifications given by
training examples take precedence over ones given by hy-
pothesis inH. It is also natural to consider that arguments
using more general hypothesis are stronger than arguments
with less general hypothesis.

Definition 11 (Comparing arguments) Let 〈h, x, u〉,
〈h′, x′, u′〉 be two arguments ofA. 〈h, x, u〉 is preferredto
〈h′, x′, u′〉, denoted by〈h, x, u〉 Pref〈h′, x′, u′〉, iff:

• h = ∅ andh′ 6= ∅, or
• h � h′.

Property 5 The relation Pref is a partial preorder.

Proof This is due to the fact that the relation� is a partial
preorder.

Now that the set of arguments is built, it is possible to define
the defeasibility relationR between arguments inA. Here
again, there are two ways in which an argumentA can attack
another argumentB:

1|| denotes the cardinal of a given set

1. by rebutting its conclusion. This situation occurs when
the two arguments have contradictory conclusions, i.e. the
same example is classified in different ways.

2. by undercuttingits support. This occurs when the sup-
port of B classifies in a different way the example of
the conclusion ofA. However, this relation is only re-
stricted to training examples. Indeed, only arguments
built from training examples are allowed to undercut other
arguments. The idea behind this is that training examples
are the only, in some sense, certain information one has,
and thus cannot be defeated by hypothesis. However, hy-
pothesis have controversial status.

Definition 12 (Rebutting) Let 〈h, x, u〉, 〈h′, x′, u′〉 be two
arguments ofA. 〈h, x, u〉 rebuts〈h′, x′, u′〉 iff x ≡ x′, u 6=
u′.

Example 3 In example 2, we have for instance :
a5 rebutsa6, a5 rebutsa7, a6 rebutsa5, anda7 rebutsa5.

Definition 13 (Undercutting) Let 〈h, x, u〉, 〈h′, x′, u′〉 be
two arguments ofA. 〈h, x, u〉 undercuts〈h′, x′, u′〉 iff h = ∅
andh′(x) 6= u.

Example 4 In example 2, we have for instance :
a1 undercutsa5, a2 undercutsa5, a3 undercutsa5, anda4

undercutsa5.

The rebutting and undercutting relations are used in most
argumentation systems that handle inconsistency in knowl-
edge bases.

Property 6 If S is consistent, then@ A, B ∈ AS such that
A rebutsB, or A undercutsB.

Proof Let A = 〈∅, x, u〉, B = 〈∅, x′, u′〉 ∈ S such thatA
rebutsB. According to Definition 12,x ≡ x′ andu 6= u′.
This contradicts the fact thatS is consistent.

The two above conflict relations are brought together in a
unique relation, called “Defeat”.

Definition 14 (Defeat) Let A = 〈h, x, u〉, B = 〈h′, x′, u′〉
be two arguments ofA. A defeatsB iff:

1. A rebuts (resp. undercuts)B, and
2. (A PrefB), or (not(A PrefB) and not(B PrefA))

Example 5 With the argument defined in ex. 2 we have for
instance :
a1 defeatsa5, a2 defeatsa5, a3 defeatsa5, a4 defeatsa5, a5

defeatsa6, a5 defeatsa7 anda6 defeatsa5.

From the above definition, it is easy to check that an argu-
ment with a empty support cannot be defeated by an argu-
ment with a non-empty support.

Property 7 ∀ A ∈ AS , @ B ∈ A\AS s.tB defeatsA.

Proof LetA ∈ AS andB ∈ A\AS such thatB defeatsA.
This means thatB rebutsA (because according to Definition
13, an argument with a non-empty support cannot undercut
an argument with an empty one. Moreover, according to
Definition 14, we have eitherB Pref A, or (not(B Pref A)
and not(A Pref B)). This is impossible because according
to Definition 11, arguments inAS are always preferred to
arguments with a non-empty support.

The argumentation system for concept learning is then the
following:
Definition 15 (Argumentation system) An argumentation
systemfor concept learning (ASCL) is a pair〈A, defeat〉,
whereA is the set of arguments (see Definition 10) and de-
feat is the relation defined in Definition 14.

Let us now identify the acceptable arguments of the above
ASCL. It is clear that the arguments that are not defeated at
all will be acceptable. LetC denote that set of non-defeated
arguments.
Proposition 1 If S is consistent, thenAS ⊆ C.

Proof Let A ∈ AS . Let us assume that∃B ∈ A such
that B defeatsA. According to Property 7,B /∈ A\AS .
Thus,B ∈ AS . Moreover,B defeatsA means thatB rebuts
A. This means then thatA classifies a training example in
u, andB classifies an equivalent example inu′ 6= u. This
contradicts the fact that the setS is consistent.

From the above proposition and Property 4, it is clear that
the ASCL has a non-empty grounded extension.
Proposition 2 (Grounded extension)If S is consistent,
then the argumentation system〈A, defeat〉 has a non empty
grounded extensionE .

Proof This is due to the fact thatAS 6= ∅ andAS ⊆ C.

Note that the system〈A, defeat〉 is not always finite. By
finite we mean that each argument is defeated by a finite
number of arguments. This is due to the fact thatH andX
are not always finite.
Proposition 3 If H and X are finite, then the system
〈A, defeat〉 is finite.

When an argumentation system is finite, its characteristic
functionF is continuous. Consequently, the least fixed point
of this function can be defined by an iterative application of
F to the empty set.
Proposition 4 If the argumentation system〈A, defeat〉 is
finite, then the grounded extensionE is:

E =
⋃
F i≥0(∅) = C ∪ [

⋃
i≥1

F i(C)].

Let us now analyze the other acceptability semantics,
namely preferred and stable ones. From Proposition 2, one
concludes that the ASCL〈A, defeat〉 has at least one non-
empty preferred extensions.
Proposition 5 If S is consistent, then the ASCL
〈A, defeat〉 has n ≥ 1 non-empty preferred exten-
sions.

Proof In (Dung 1995), it has been shown that the grounded
extension is included in very preferred extension. Since the
grounded extension is not empty (according to Proposition
2, then there exists at least one non-empty preferred exten-
sion).

In general, the preferred extensions of an argumentation sys-
tem are not stable. However, in our ASCL these extensions
coincide. This result is due to the fact that the oriented graph
associated to the above ASCL has no odd length circuits.
However, it may contain circuits of even length.

Proposition 6
• The graph associated with the system〈A, defeat〉 has no

odd length circuits.
• The preferred extensions and stable extensions of the sys-

tem〈A, defeat〉 coincide.

Proof (Sketch of the proof) Part 1: Let A,B, C be three
arguments such thatA defeatsB, B defeatsC, andC de-
featsA.

Case 1: Let us suppose thatA ∈ AS .
Accroding to Property 6,B ∈ A\AS . According to Prop-
erty 7,C should be inA\AS . Contradiction because ac-
cording to Property 7,C cannot defeatA, which is inAS .

Case 2: Let us suppose thatA,B, C ∈ A\AS . This means
that A rebuts B, B rebuts C, and C rebuts A (ac-
cording to Definition 13). Consequently,Example(A)
≡ Example(B) ≡ Example(C), and Value(A) 6=
Value(B), Value(B) 6= Value(C). Due to the fact that
U = {0, 1}, we haveValue(A) = Value(C). This con-
tradicts the assumption thatC rebutsA.

Part 2: This is a consequence of the fact that there is no odd
circuits in the system.

Note, however, that the intersection of all the preferred (sta-
ble) extensions coincides with the grounded extension.

Proposition 7 Let 〈A, defeat〉 be a ASCL. LetE be its
grounded extension, andE1, . . . , En its preferred (stable) ex-
tensions.E =

⋂
i=1,...,n Ei.

Let us now show how the above ASCL can retrieve the
results of the version space learning, namely the version
space and its lower and upper bounds. Before doing that,
we start first by introducing some useful notations.

Let Hyp be a function that returns for a given set of
arguments, their non empty supports. In other words, this
function returns all the hypothesis used to build arguments:

Definition 16 LetT ⊆ A.

Hyp(T) = {h | ∃ 〈h, x, u〉 ∈ T andh 6= ∅}
Now we will show that the argumentation-based model for
concept learning computes in an elegant way the version
spaceV (see Definition 4).

Proposition 8 Let 〈A, defeat〉 be a ASCL. LetE be its
grounded extension, andE1, . . . , En its preferred (stable) ex-
tensions. If the setS is consistent then:

Hyp(E) = Hyp(E1) = . . . = Hyp(En) = V

whereV is the version space.

Proof LetEi be an extension under a given semantics.

Hyp(Ei) ⊆ V: Leth ∈ Hyp(Ei), then∃ 〈h, x, u〉 ∈ Ei.
Let us assume that∃(xi, ui) ∈ S such thath(xi) 6= ui.
This means〈∅, xi, ui〉 undercuts〈h, x, u〉 (according to
Definition 13). Consequently,〈∅, xi, ui〉 defeats〈h, x, u〉.
However, according to Property 3,〈∅, xi, ui〉 ∈ AS , thus
〈∅, xi, ui〉 ∈ Ei. Contradiction becauseEi is an extension,
thus by definition it is conflict-free.

V ⊆ Hyp(Ei): Let h ∈ V, and let us assume thath /∈
Hyp(Ei). Sinceh ∈ V, then∀(xi, ui) ∈ S, h(xi) = ui (1)
Let (x, u) ∈ S, thus h(x) = u and consequently
〈h, x, u〉 ∈ A. Moreover, sinceh /∈ Hyp(E), then
〈h, x, u〉 /∈ E. Thus,∃ 〈h′, x′, u′〉 that defeats〈h, x, u〉.
• Case 1:h′ = ∅. This means that〈∅, x′, u′〉 undercuts
〈h, x, u〉 andh(x′) 6= u′ Contradiction with (1).

• Case 2: h′ 6= ∅. This means that〈h′, x′, u′〉 rebuts
〈h, x, u〉. Consequently,x ≡ x′ andu 6= u′. However,
sinceh ∈ V, thenh is sound withS. Thus,〈∅, x, u〉 de-
feats〈h′, x′, u′〉, then〈∅, x, u〉 defeats〈h, x, u〉. Since
〈∅, x, u〉 ∈ S, then〈h, x, u〉 ∈ F(C) and consequently,
〈h, x, u〉 ∈ Ei. Contradiction.

The above result is of great importance. It shows that to get
the version space, one only needs to compute the grounded
extension.
We can also show that if a given argument is is an exten-
sionEi, then any argument based on an hypothesis from the
version space that supports the same conclusion is in that
extension. Formally:

Proposition 9 Let 〈A, defeat〉 be a ASCL, andE1, . . . , En

its extensions under a given semantics. If< h, x, u >∈ Ei,
then∀h′ ∈ V s.t.h′ 6= h if h′(x) = u then< h′, x, u >∈ Ei.

Proof Let Ei be a given extension, and let〈h, x, u〉 ∈ Ei.
Let h′ ∈ V such thath′(x) = u. Let us assume that
〈h′, x, u〉 /∈ Ei.

Case 1: Ei ∪ {〈h′, x, u〉} is not conflict-free. This means
that ∃ 〈h”, x”, u”〉 ∈ Ei such that〈h”, x”, u”〉 defeats
〈h′, x, u〉. Consequently,〈h”, x”, u”〉 undercuts〈h′, x, u〉
if h” = ∅, or 〈h”, x”, u”〉 rebuts〈h′, x, u〉 if h” 6= ∅.
If h” = ∅, thenh′(x”) 6= u”, this contradicts the fact that
h′ ∈ V.
If h” 6= ∅, thenx” ≡ x andu” 6= u and eitherh” � h′,
or h′, h” are not comparable. Thus,〈h”, x”, u”〉 rebuts
〈h, x, u〉. Since〈h, x, u〉, 〈h”, x”, u”〉 ∈ Ei, thenh andh”
are not comparable. But, this means that〈h, x, u〉 defeats
〈h”, x”, u”〉, and 〈h”, x”, u”〉 defeats〈h, x, u〉. Conse-
quently,Ei is not conflict-free. Contradiction becauseEi

is an extension.

Case 2: Ei does not defend〈h′, x, u〉. This means that∃
〈h”, x”, u”〉 defeats〈h′, x, u〉.
• Case 1:h” = ∅. This means thath′(x”) 6= u”. Con-

tradiction becauseh′ ∈ V.
• Case 2:h” 6= ∅. This means thatx ≡ x”, u 6= u”, and

h” � h′. Thus,〈h”, x”, u”〉 rebuts〈h, x, u〉.
If h � h”, then 〈h, x, u〉 defeats〈h”, x”, u”〉, thus
〈h, x, u〉 defends〈h′, x, u〉.
If h” � h, then〈h”, x”, u”〉 defeats〈h, x, u〉. However,
since〈h, x, u〉 ∈ E , thenE defends〈h, x, u〉 against
〈h”, x”, u”〉. Thus,E defends〈h′, x, u〉. Contradiction

Using the grounded extension, one can characterize the up-
per and the lower bounds of the version space. The upper

bound corresponds to the most preferred w.r.t Pref argu-
ments of the grounded extension, whereas the lower bound
corresponds to the less preferred ones.

Proposition 10 Let 〈A, defeat〉 be a ASCL, andE its
grounded extension.

• VG = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h′, x′, u′> Pref<h, x, u>)}.

• VS = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h, x, u> Pref<h′, x′, u′>)}.

Proof
VG = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h′, x′, u′> Pref<h, x, u>)}.
• Let h ∈ VG, thush ∈ V, and∀h′ ∈ V, h � h′. Since

h ∈ V, thus,h ∈ Hyp(E), with E an extension. Then,
∃〈h, x, u〉 ∈ E . Sinceh � h′ for any h′ ∈ V, then
h � h′ for any h′ ∈ Hyp(E). Thus,〈h, x, u〉 Pref
〈h′, x′, u′〉, ∀ 〈h′, x′, u′〉 ∈ E .

• Let 〈h, x, u〉 ∈ E such that∀ 〈h′, x′, u′〉 ∈ E , and
not(〈h′, x′, u′〉Pref〈h, x, u〉). Thus,h ∈ Hyp(E), and
∀ h′ ∈ Hyp(E), not(h′ � h), thush ∈ VG.

VS = {h | ∃ <h, x, u> ∈ E s.t ∀ <h′, x′, u′> ∈ E , not
(<h, x, u> Pref<h′, x′, u′>)}.
• Let h ∈ VS , thus@h′ ∈ V such thath � h′. Since

h ∈ VS , thenh ∈ V and consequently,h ∈ Hyp(E).
This means that∃〈h, x, u〉 ∈ E . Let us assume that
∃〈h′, x′, u′〉 ∈ E such that〈h, x, u〉 Pref 〈h′, x′, u′〉,
thush � h′. Contradiction with the fact thath ∈ VS .

• Let 〈h, x, u〉 ∈ E such that∀ 〈h′, x′, u′〉 ∈ E , and
not(〈h, x, u〉Pref〈h′, x′, u′〉), thus not(h � h′). Since
h ∈ V, and∀h′ ∈ V, not(h � h′), thenh ∈ VS .

As said before, the last step of an argumentation process
consists of defining thestatusof the conclusions, in our case,
the classification of examples. In what follows we present
two decision criteria: The first one, called universal vote,
consists of accepting those classifications that are in any ex-
tension. However, it is clear that this kind of voting may not
classify all the examples. Thus, we propose a second cri-
terion, called majority vote, that allows to associate a class
to each example. The conclusions here are the ones that are
supported by a majority of arguments that appear in the dif-
ferent extensions. Formally:

Definition 17 Let 〈A, defeat〉 be a ASCL, andE1, . . . , En

its extensions under a given semantics. Letx ∈ X andu ∈
U .

Universal vote: x is universally classifiedin u iff ∀Ei, ∃
<h, x, u> ∈ Ei. UV denotes the set of all universally
classified examples.

Majority vote: x is majoritarily classifiedin u iff |{<
h, x, u > |∃Ei, < h, x, u >∈ Ei}| ≥ |{< h, x, u′ >
|u′ 6= u, ∃Ei, < h, x, u′ >∈ Ei}|. MV denotes the set of
all majoritarily conclusions accepted by majority vote.

The universally classified examples are those which are sup-
ported by arguments in all the extensions. From a learning
point of view, these correspond to examples classified by the

most general hypothesis in the version space. Thus, accord-
ing to Proposition 7, we have the following result:

Property 8 Let〈A, defeat〉 be a ASCL, andE its grounded
extension :

UV = {(x, u)|∃ < h, x, u >∈ E}

It is easy to check that the set of universally classified exam-
ples is included in the set of majoritarily classified ones.

Property 9 Let 〈A, defeat〉 be a ASCL, andE1, . . . , En its
extensions under a given semantics :

UV ⊆ MV

Proof This result follows directly from the fact that the ex-
tensions are conflict-free.

Inconsistent Case
Let us now consider the case whereS is inconsistent, with
S can be partionned intoS1, . . . ,Sn, suth that eachSi is
a maximal (for set inclusion) consistent subsets ofS. This
means that some training examples are classified in different
classes. However, all the elements ofS are supposed to be
equally preferred. In this case, two arguments supporting
such conflicting training examples rebut each other, thus can
defeat each other as well.

LetAS1 , . . .,ASn be the sets of arguments with an empty
support and whose conclusions are respectively in the sub-
sets of training examplesS1, . . . ,Sn. It is clear that each set
ASi is conflict-free, however, it is defeated by arguments in
ASj

with i 6= j.
As in the consistent case, arguments with an empty sup-

port are preferred to arguments built from hypothesis. In
what follows,ASCLi will denote the argumentation system
in the inconsistent case. Note that all the above definitions
of an argument, of defeat, do not change. It can be checked
that the corresponding oriented graph ofASCLi does not
contain odd length circuits.

Proposition 11
• The graph associated to the systemASCLi has no odd

length circuits.
• In theASCLi 〈A, defeat〉, preferred extensions and sta-

ble ones coincide.

As a consequence of the above result, the systemASCLi

has preferred extensions that are also stable. Moreover, the
grounded extension of this system coincides with the inter-
section of all the preferred extensions. LetE1, . . . , En be
the preferred extensions of that system, andE its grounded
extension.

Proposition 12 If S is inconsistent and non empty, then the
ASCLi 〈A, defeat〉 has still n ≥ 1 non-empty preferred
extensions. Moreover,E =

⋂
i=1,...,n Ei.

However, the grounded extension can be empty in this par-
ticular case of inconsistent training examples. The above re-
sult is of great importance since it shows that even in this
particular case of inconsistent training example, it is still
possible to classify examples.

Note that each preferred/stable extension contains one of
the setsAS1 , . . .,ASn

. Moreover, the same setASi
may be-

long to several extensions at the same time. It can be shown
that all the hypothesis that are used to build arguments in a
given extension are sound with the subset of training exam-
ples of that extension. Indeed, for each consistent subset of
S, we get the extensions of the consistent case previously
studied.

Case of an Empty Set of Training Examples
Another interesting case is when the set of training exam-
ples is empty. In this case, the learning problem consists
of classifying examples only on the basis of a setH of hy-
pothesis. This is, indeed, a particular case of the previous
case whereS is inconsistent. The corresponding argumen-
tation system constructs then arguments only on the basis
of hypothesis, thus there is no argument with an empty sup-
port. This system satisfies exactly the same properties as the
ASCLi. For instance, the corresponding graph has no odd
length circuits. Moreover, it contains at least one non-empty
preferred extension, which is also stable. The grounded ex-
tension of this sytstem is the intersection of all the preferred
extensions.

Conclusion
This paper has proposed, to the best of our knowledge, the
first argumentation-based framework for concept learning.
This framework considers the learning problem as a process
that follows four main steps: it first constructs arguments
in favor of classifications of examples from a set of training
examples, and a set of hypothesis. Conflicts between argu-
ments may appear when two arguments classify the same
example in different classes. Once the arguments identi-
fied, it is possible to compare them on the basis of their
strengths. The idea is that arguments coming from the set
of training examples are stronger than arguments built from
the set of hypothesis. Similarly, arguments based on general
hypothesis are stronger than arguments built from more spe-
cific hypothesis. Indeed, such preference relation between
arguments ensures that during the learning process, only hy-
pothesis that are sound with the training examples are kept,
and general hypothesis are privileged to less specific ones.
We have shown that acceptability semantics of the ASCL re-
trieves and even characterizes the version space and its upper
and lower bounds. Thus, the argumentation-based approach
gives another interpretation of the version space as well as its
two bounds in terms of arguments. We have also shown that
when the set of training examples is inconsistent, it is still
possible to learn concepts, and to classify examples of it. In-
deed, in this particular case, the version space is empty as it
is the case in the version space learning framework. A last
and not least feature of our framework consists of defining
the class of each example on the basis of all the hypothesis
and not only one, and also to suggest four intuitive decision
criteria for that purpose.
A first extension of this framework would be to explore the
proof theories in argumentation that test directly whether a
given argument is in the grounded extension without com-

puting this last. This means that one may know the class of
an example without exploring the whole hypothesis space.

This framework can easily be generalized to the case of
classification problems in which an example can be affected
to a class among a set of possible classes. It could also be
extended in order to handle qualitative uncertainty and pref-
erences on examples. It can also be extended to handle the
regression problem in which the concept takes the form of a
continuous function.

Acknowledgments
This work was supported by the Commission of the Euro-
pean Communities under contract IST-2004-002307, ASPIC
project “Argumentation Service Platform with Integrated
Components”.

References
Amgoud, L., and Cayrol, C. 2002. Inferring from inconsis-
tency in preference-based argumentation frameworks.Int.
Journal of Automated ReasoningVolume 29 (2):125–169.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming andn-person games.Artificial Intelligence
77:321–357.
Gómez, S. A., and Chesñevar, C. I. 2003. Integrating de-
feasible argumentation with fuzzy art neural networks for
pattern classification. InProc. ECML’03.
Mitchell, T. 1982. Generalization as search.Artificial
intelligence18:203–226.
Muggleton, S. 1995. Inverse entailment and Progol.New
Generation Computing13:245–286.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities.Jour-
nal of Applied Non-Classical Logics7:25–75.
Quinlan, J. R. 1990. Learning logical definitions from
relations.Machine Learning5:239–266.
Simari, G. R., and Loui, R. P. 1992. A mathematical treat-
ment of defeasible reasoning and its implementation.Arti-
ficial Intelligence and Law53:125–157.

