
HAL Id: hal-04315672
https://hal.science/hal-04315672v1

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General Framework for Reasoning about Inconsistency
Leila Amgoud, Venkatramanan Siva Subrahmanian

To cite this version:
Leila Amgoud, Venkatramanan Siva Subrahmanian. A General Framework for Reasoning about In-
consistency. 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Jan 2007,
Hyderabad, India. pp.599–604. �hal-04315672�

https://hal.science/hal-04315672v1
https://hal.archives-ouvertes.fr

A General Framework for Reasoning about Inconsistency

V. S. Subrahmanian
Computer Science Dept. and UMIACS

University of Maryland
College Park, Maryland 20742

vs@cs.umd.edu

Leila Amgoud
IRIT - CNRS

118, route de Narbonne,
31062 Toulouse Cedex 9, France

amgoud@irit.fr

Abstract
Numerous logics have been developed for reason-
ing about inconsistency which differ in (i) the logic
to which they apply, and (ii) the criteria used to
draw inferences. In this paper, we propose a gen-
eral framework for reasoning about inconsistency
in a wide variety of logics including ones for which
inconsistency resolution methods have not yet been
studied (e.g. various temporal and epistemic log-
ics). We start with Tarski and Scott’s axiomatiza-
tion of logics, but drop their monotonicity require-
ments that we believe are too strong for AI. For
such a logic L, we define the concept of an option.
Options are sets of formulas in L that are closed and
consistent according to the notion of consequence
and consistency in L. We show that by defining an
appropriate preference relation on options, we can
capture several existing works such as Brewka’s
subtheories. We also provide algorithms to com-
pute most preferred options.

1 Introduction
Inconsistency management has been intensely studied in vari-
ous parts of AI, often in slightly disguised form [Poole, 1985;
G. Pinkas, 1992; Rescher and Manor, 1970; Gardenfors,
1988]. For example, default logics [Reiter, 1980] use syn-
tax to distinguish between strict facts and default rules, and
identify different extensions of the default logic as poten-
tial ways of “making sense” of seemingly conflicting infor-
mation. Likewise, inheritance networks [Touretzkey, 1984]

define extensions based on analyzing paths in the network
and using notions of specificity to resolve conflicts. Argu-
mentation frameworks [Dung, 1995] study different ways in
which an argument for or against a proposition can be made,
and then determine which arguments defeat which other ar-
guments in an effort to decide what can be reasonably con-
cluded. All these excellent works provide an a priori con-
flict resolution mechanism. A user who uses a system based
on these papers is more or less committed to the semantics
implemented in the system, and has little say in the matter
(besides which most users querying KBs are unlikely to be
experts in even classical logic, let alone default logics and
argumentation methods).

The aims of the paper are:

1. to propose a unified framework for reasoning about in-
consistency, which captures existing approaches as a
special case and provides an easy basis for comparison.

2. to apply the framework using any logic (monotonic or
nonmonotonic), including ones for which inconsistency
management has not been studied before (e.g. temporal,
probabilistic logics).

3. to allow end-users to bring their domain knowledge to
bear, allowing them to voice an opinion on what works
for them, not what a system manager decided was right
for them., in other words, to take into account the pref-
erences of the end-user.

4. to propose efficient algorithms for computing the pre-
ferred options.

We do this by building upon Dana Scott’s celebrated no-
tions of an abstract logic. We start with a simple example
to illustrate why conflicts can often end up being resolved in
different ways by human beings, and why it is important to al-
low end-users to bring their knowledge to bear when a system
resolves conflicts.

Example 1 (Salary example) Suppose a university payroll
system says that John’s salary is 50K, while the university
personnel database says it is 60K. In addition, there may be
an axiom that says that everyone has exactly one salary. One
simple way to model this is via the theory, denoted salbase,
below.

salary(John, 50K) ← (1)

salary(John, 60K) ← (2)

S = S′ ← salary(X,S) ∧ salary(X,S′).(3)

salbase is obviously inconsistent. Suppose (3) is definitely
known to be true. Then a bank manager considering John for
a loan may choose the 50K number to determine a maximal
loan amount that John qualifies for. But a national tax agency
may use the 60K figure to send John a letter asking him why
he underpaid his taxes.

Neither the bank manager nor the tax officer is making any
attempt to find out the truth (thus far) - however, both of them
are making different decisions based on the same facts.

IJCAI-07
599

The rest of this paper proceeds as follows. In Section 2, we
recall Scott’s notion of what a logic is [Scott, 1982]. Then,
in Section 3, we define our general framework for reasoning
about inconsistency for any Scott logic. Section 4 shows how
to adapt the general framework to the particular case of in-
consistent bases. In section 5, we show how existing works
can be retrieved in our general framework. Section 6 presents
some examples of how the general framework can be applied
in other logics such as temporal and probabilistic logics. In
Section 7, we develop algorithms to compute optimal options
based on various types of monotonicity assumptions about the
objective function. Note that due to lack of space, we only in-
clude a few proofs - the full version of this paper will contain
all proofs.

2 Scott’s Abstract Consequence Operation
Dana Scott [Scott, 1982] defines an abstract logic to consist
of a set L (whose members are called well-formed formulas)
and a consequence operator CN. CN is any function from 2L
(the powerset of L) to 2L (intuitively, CN(X) returns the set
of formulas that are logical consequences of X according to
the logic in question) that satisfies the following axioms:

Expansion X ⊆ CN(X).

Idempotence CN(CN(X)) = CN(X).

Monotonicity X ⊆ Y ⇒ CN(X) ⊆ CN(Y).

Coherence CN(∅) �= L.

It is easy to see that most well known monotonic logics (such
as propositional logic [Shoenfield, 1967], first order logic
[Shoenfield, 1967], modal logic, temporal logic, fuzzy logic,
probabilistic logic [Bacchus, 1990], etc.) can be viewed as a
special case of Scott’s notion of an abstract logic. The non-
monotonic logics introduced in AI do not satisfy the mono-
tonicity axiom, though Marek et. al. [Marek et al., 1990]

have defined the notion of non-monotone rule systems that
extend Scott’s ideas to non-monotonic logics by dropping the
Monotonicity Axiom above. In the remainder of this paper,
we drop monotonicity axiom. Once (L,CN) are fixed, we can
define a notion of consistency as follows:

Definition 1 (Consistency) Let X ⊆ L. X is consistent in
logic (L,CN) iff CN(X) �= L.

This says thatX is consistent iff its set of consequences is not
the set of all well formed formulas. Note that the coherence
requirement characterizing CN forces ∅ to always be consis-
tent - this is reasonable for pretty much any reasonable logic
as saying nothing should intuitively be consistent.

3 A general framework for handling
inconsistency

This section proposes a general framework for handling in-
consistency under any logic. Reasoning with inconsistent
knowledge bases is a process which follows three steps:

1. Constructing consistent subbases,

2. Selecting among all the subbases the preferred ones,
called preferred subbases,

3. Applying classical entailment on a choice of the pre-
ferred subbases.

Throughout the rest of this paper, we assume that we have
an arbitrary, but fixed (monotonic or non-monotonic) logic
(L,CN).

The basic idea behind our framework is to construct what
we call options, and then to define a preference relation on
these options. The preferred options are intended to support
the conclusions to be drawn from the inconsistent knowledge
base. Intuitively, an option is a set of formulas that is both
consistent and closed w.r.t. the consequence in logic (L,CN).
Definition 2 (Options) An option is any setO of elements of
L such that:
• O is consistent.

• O is closed, i.e. O = CN(O).
Let Opt(L) be the set of all options that can be built from
(L,CN).
Les us illustrate the above concept.

Example 2 Let L be a propositional language, and let K ⊆
L be the knowledge base K = {a, a→ b,¬b}. The following
options, for instance, can be built fromK: O1 = CN({a}),O2

= CN({¬b}), O3 = CN({a → b}), O4 = CN({a, a → b}),
O5 = CN({a,¬b}), O6 = CN({a, b}).
The framework for reasoning about inconsistency has three
components: a set of all options that can be built from the
considered logic, a preference relation between the options,
and an entailment mechanism.

Definition 3 (General framework) Let (L,CN) be a fixed
logic. A general framework for reasoning about inconsistency
in the logic (L,CN) is a triple 〈Opt(L),
, |∼ 〉 such that:
• Opt(L) is the set of options built from (L,CN)
•
⊆ Opt(L)×Opt(L).
 is a partial (or total) preorder,

that is, it is reflexive and transitive.

• |∼ : 2Opt(L) → Opt(L) is an entailment mechanism.
The second important concept of the above general frame-
work is the preference relation
 between options. Indeed,
O1
 O2 means that the option O1 is at least as preferred
as O2. This relation captures the idea that some options
are better than others because, for instance, the user has
decided that, or because those preferred options satisfy
the requirements imposed by the developer of a conflict
management system. For instance, in Example 1, the user
chooses certain options (e.g. the options where the salary is
minimal or where the salary is maximal based on his needs).
In most approaches for handling inconsistency, maximal
consistent subsets of the inconsistent knowledge base have
an important role. However, if we consider a KB such as
K = {(a ∧ b); a→ c; b→ ¬c}, there are three maximal con-
sistent subsets. One of these is MCS1 = {a → c; b → ¬c}.
If we represent this KB as the default theory Δ = (W,D)
where W = ∅ and D = { :(a∧ b)

(a∧ b) ; :a→c
a→c ; :b→¬c

b→¬c }, we would

get three extensions corresponding to the three maximal
consistent subsets. However, one could argue that MCS1

(and the extension corresponding to it) are too weak - we

IJCAI-07
600

could have included either a or b by weakening the formula
(a ∧ b) instead of dropping it altogether.

The third component of the framework is a mechanism
for selecting the inferences to be drawn from the knowledge
base. In our framework, the set of inferences is itself an
option. Thus, it should be consistent. This requirement is of
great importance, since it ensures that the framework delivers
safe conclusions.

The set of inferences is generally computed from the dif-
ferent preferred options. Let O� be the set of all preferred
options, i.e. O� = {Oi ∈ Opt(L) | �Oj ∈ Opt(L) with Oj

 Oi}. Different entailment mechanisms can be defined for
selecting the inferences to be drawn. Here are some examples
of such mechanisms.

Definition 4 Let 〈Opt(L),
, |∼ 〉 be a framework, and O�
the set of its preferred options. Let ψ be an element of L.
Universal criterion: L |∼ ψ iff ψ ∈ Oi, ∀Oi ∈ O�. ψ is

called a universal consequence of L.
Argumentative criterion: L |∼ ψ iff ∃Oi ∈ O� such that

ψ ∈ Oi, and �Oj ∈ O� such that ¬ψ ∈ Oj . ψ is called
an argumentative consequence of L.

We can show that the set of inferences made using the uni-
versal criterion is itself an option of the language L, thus it is
an entailment mechanism. Moreover, it is included in every
preferred option.

Proposition 1 Let 〈Opt(L),
, |∼ 〉 be a framework built
from a monotonic logic (L,CN).
• The set {ψ| ψ is a universal consequence of L} is an

option of Opt(L).
• ∀Oi ∈ O�, {ψ| ψ is a universal conseq. of L} ⊆ Oi.

Proof (Sketch) Let C = {ψ| ψ is a universal consequence of
L}. By definition, any element in C belongs to all the options
in O�. Consequently, C ⊆ Oi, ∀Oi ∈ O�.

As each Oi ∈ O� is an option, Oi is consistent. Thus, C
(which is a subset ofOi) is also consistent. Similarly, since C
⊆ Oi, thus CN(C) ⊆ Oi as well, ∀Oi ∈ O�. Consequently,
CN(C) ⊆ C (according to the above definition of universal
consequences). Thus, C is closed, and consequently it is an
option.

Similarly, we can show that the set of argumentative conse-
quences is an option. Thus, it is a valid entailment mecha-
nism.

Proposition 2 Let 〈Opt(L),
, |∼ 〉 be a framework built
from a monotonic logic (L,CN). The set {ψ| ψ is an argu-
mentative consequence of L} is an option of Opt(L).
However, the following criterion is not a valid entailment
mechanism since the set of consequences returned by it may
be inconsistent, thus it is not an option.

Example 3 L |∼ ψ iff ∃Oi ∈ O� such that ψ ∈ Oi.

4 Optimal Options that Handle Inconsistency
In the preceding section, we have developed the concepts of
an option and a preferred option for any logic (L,CN). How-
ever, this has been defined in a way that is independent of a

knowledge base K. This section shows how to associate a set
of preferred options with an inconsistent knowledge base K.

Definition 5 We say an option O handlesK iff there is a sub-
set K′ ⊆ K such that O = CN(K′). Let Base be a function
that returns for any optionO, the subbaseK′. Thus, Base(O)
= K′.

Intuitively, an option handles K iff it is the closure of some
subset of K. Clearly, such a subset K′ must be consistent
because O is consistent (by virtue of being an option) and as
O = CN(K′).

Example 4 (Handling inconsistent default logic theories)
Let us consider default logic as our base logic, and suppose
we consider the default theory Δ = (W,D) where W = {p}
and D = { :p

¬p}. Most researchers in default logic would
consider this theory to be inconsistent as it has no exten-
sion. However, it has two valid options: Δ1 = (∅, ∅) and
Δ2 = ({p}, ∅). A user may specify a preference relation that
prefers Δ2. This shows how our framework can be applied
to default logic.

Definition 6 Suppose (Opt(L),
, |∼) is a general frame-
work for reasoning about inconsistency in logic (L,CN) and
suppose K is an inconsistent knowledge base. An optimal
option for K is any member O ∈ Opt(L) such that:

• O handles K and

• there is no other option O′ ∈ Opt(L) that handles K
such that O′
 O.

What this definition says is that when reasoning about an in-
consistent knowledge base K, we always look at the set of
optimal options that handle K.

Example 5 Let us return to Example 1. Suppose we use
O1 = {(1), (2)},O2 = {(1), (3)},O3 = {(2), (3)}}. Of
course, we assume all of these options are also closed under
usual first order consequence. First, let us say that these three
options are preferred to all other options in the language.

• Suppose the score sc(Oi) of option Oi is the sum of the
multiset {S |sal(John, S) ∈ Oi}. In this case, the score
of O1 is 50K, that of O2 is 110K, and that of O3 =
60K. We could now say that Oi
 Oj if sc(Oi) ≤
sc(Oj). In this case, the only option that handles K is
O1 which corresponds to the bank manager’s viewpoint.

• On the other hand, suppose we say that Oi
 Oj iff
sc(Oi) ≥ sc(Oj). In this case, the only optimal option
that handlesK isO2 — this corresponds to the view that
the rule saying everyone has only one salary is wrong
(perhaps the database has John being paid out of two
projects simultaneously and 50K of his salary is charged
to one project and 60K to another).

• Now consider the case where we change our scoring
method and say that sc(Oi) = min{S | sal(John, S) ∈
Oi}. In this case, sc(O1) = 50K, sc(O2) =
60K, sc(O3) = 50K. Let us suppose that the prefer-
ence relation says that Oi
 Oj iff sc(Oi) ≥ sc(Oj).
Then the only optimal option is O2 which corresponds
exactly to the tax agency’s viewpoint.

IJCAI-07
601

Thus, we see that our general framework for optimally han-
dling inconsistency is very powerful - it can be used to handle
inconsistencies in different ways based upon how the prefer-
ence relation between options is defined.

5 Link with existing approaches
Two kinds of approaches have been proposed in the literature
for solving the problem of inconsistency. The first one con-
sists of revising the knowledge base and restoring its consis-
tency. The second approach accepts inconsistency and copes
with it. The first approach initiated in [Rescher and Manor,
1970] proposes to give up some formulas of the knowledge
base in order to get one or several consistent subbases of the
original base. Then plausible conclusions may be obtained
by applying classical entailment on these subbases. In what
follows, we consider the case of propositional bases. When
the knowledge base is flat, i.e. its formulas are not weighted,
maximal consistent subbases are built.

LetK be a knowledge base that may be inconsistent, and S
= {S1, . . ., Sn} its set of maximal (for set inclusion) consis-
tent subbases. We can show that these subbases correspond to
the preferred options of the above framework when the pref-
erence relation
 between options is monotonic. Let us first
define that notion of monotonicity.

Definition 7 (Monotonic relation) The relation
 is said
monotonic iff for any X , Y ⊆ L, if X ⊆ Y , then Y
 X .

 is said anti-monotonic iff, if X ⊆ Y , then X
 Y .
Proposition 3 Let 〈Opt(L),
, |∼ 〉 be a framework such
that
 is monotonic. Let K be an inconsistent knowledge
base, and O� be the set of preferred/optimal options for K.
• ∀Si, ∃ O ∈ O�, such that O = CN(Si).
• ∀Oi ∈ O�, ∃ S such that Oi = CN(S).

In the case of prioritized knowledge bases, Brewka has pro-
posed in [Brewka, 1989] a definition of the preferred sub-
bases. The basic idea behind those bases is to take as many
important information into account as possible. In this con-
text, a knowledge base K is supposed to be stratified into K1,
. . .,Kn (K =K1∪. . .∪Kn) such that the formulas in the same
strata are equally preferred, whereas formulas in a strata Ki

are preferred to formulas in Kj with i < j.

Definition 8 Let K = K1 ∪ . . . ∪ Kn be a knowledge base.
S = S1 ∪ . . . ∪ Sn is a preferred subbase of K if and only if
∀j = 1, . . . , n, S1 ∪ . . . ∪ Sj is a maximal (for set-inclusion)
consistent subbase of K1 ∪ . . . ∪ Kj .
INCL(K) denotes the set of preferred subbases of K.
We show that in order to capture the results of the above ap-
proach, one needs to define the appropriate preference rela-
tion between options.

Definition 9 Let K be an inconsistent knowledge base, and
OK be the set of all options that handle K. Let O1, O2 ∈
OK. O1
 O2 iff Base(O1) ∈ INCL(K), and Base(O2) /∈
INCL(K).
Proposition 4 Let 〈Opt(L),
, |∼ 〉 be a framework such
that
 is defined as in Definition 9. Let K be an inconsis-
tent knowledge base, and O� be the set of preferred/optimal
options for K.

• ∀Si ∈ INCL(K), ∃ O ∈ O�, such that O = CN(Si).
• ∀Oi ∈ O�, ∃ S ∈ INCL(K) such that Oi = CN(S).

6 New applications of the framework
In this section we show through the two following examples
that the above abstract framework can be used for reasoning
about inconsistency using temporal logic and even probabilis-
tic logic.

Example 6 Consider the temporal logic theory T . The ©
operator denotes the “next time instant” operator. Thus, the
first rule says that if a is true at time t, b is true at time (t+1).
Under standard temporal logic model theory, T is inconsis-
tent.

a → ©b. (4)

a (5)

©¬b (6)

We may choose to consider just three options: O1 =
CN({ 4, 5}),O2 = CN({ 4, 6}),O3 = CN({ 5, 6}). Sup-
pose now that we can associate a numeric score with each
formula, describing the weight of the source that provided
the formula. Let us say these scores are 3,1,2 respectively,
and the weight of an option Oi is the sum of the scores of the
formulas in T ∩ Oi. Oi
 Oj iff the score of Oi is greater
than or equal to the score of Oj . In this case, the best option
is O2.

Example 7 Consider the probabilistic logic [Bacchus, 1990]
theory T consisting of three formulas p : [0.3, 0.4], p :
[0.44, 0.6], p : [0.41, 0.43]. Suppose we only consider op-
tions that assign a single non-empty probability interval to
p. For two atoms A1 = p : [L,U] and A2 = p : [L′, U ′],
let diff(A1, A2) = abs(L1 − L2) + abs(U1 − U2). Let
us say that the score of an option O = {A} is given by
KA′∈T diff(A,A′). Suppose we say that option Oi
 Oj iff
score(Oi) ≤ score(Oj). Intuitively, this means that we are
preferring options that change the lower and upper bounds
in T as little as possible. In this case, [0.3, 0.6] is a preferred
option.

The reader may be tempted to think that given a K that
is inconsistent, an optimal option may always exist because
in the worst case, CN(∅) seems to be an option. However,
this is not correct because we do not require that CN(∅) be in
Opt(L).

7 Algorithms to Compute Optimal Options
that Handle Inconsistency

In this section, we develop procedures to find optimal options
for any logic (L,CN) under a varying set of assumptions. We
first define what it means for a formula to be compatible with
a given set of formulas.

Definition 10 Given a consistent set X ⊆ L and a formula
F ∈ L, we say that F is compatible with X iff X ∪ {F} is
consistent. We use the notation Comp(X) to denote the set
of all formulas that are compatible with X .

IJCAI-07
602

We now develop an iterative fixpoint computational proce-
dure to find an optimal option.

Definition 11 Suppose (L,CN) is a logic, K is a subset of
L, and
 is a preference relation on options. We define an
operator ΓK associated with K that maps sets of options to
sets of options as follows.

ΓK(X) = X ∪ {CN(Y ∪ {F}) | F ∈ Comp(Y) ∩ K ∧
Y ∈ X}.

In other words, ΓK(X) works as follows:

• First, it picks a set Y in X to expand.

• It then finds an F ∈ Comp(Y) ∩ K.

• It then closes Y ∪ {F} and adds this to the answer, i.e.
into ΓK(X).

Clearly, the operator ΓK is monotone under inclusion —
moreover, the repeated application of ΓK yields a fixpoint.
This is defined as follows.

Γ0
K = {∅}.

Γi+1
K = Γi

K ∪ ΓK(Γi
K).

Γω
K =

⋃

i

Γi
K.

Proposition 5 Suppose (L,CN) is a logic and K is a subset
of L. Then:

1. ΓK is monotonic.

2. Γω
K is a fixpoint of γK.

3. Every set in Γω
K is consistent.

Note that the least fixpoint of Γk is the empty set and not
Γω
K because the latter starts its iteration not with the empty

set, but with the set containing the empty set! Fortunately, we
can make some concrete statements about Γω

K.

Proposition 6 Suppose (L,CN) is a logic, (Opt(L),
, |∼)
is a general framework for handling inconsistency, and K is
a set of wffs. O is an optimal option that handles K iff:

1. O ∈ Opt(L) ∩ Γω
K and

2. there is no O′ ∈ Opt(L) ∩ Γω
K such that O′
 O.

The above result suggests an immediate algorithm to find an
optimal option for S regardless of whether the preference re-
lation is monotonic or not.

procedure COO-Naive(L, CN,F ,K, Opt(L),�)
1. X = Γω

K;
2. X = X ∩ Opt(L);
3. Return any O ∈ X such that there is no O′ ∈ X
such that O′ � O.

One reason for the inefficiency of COO-Naive is that
it makes no assumptions about the preference relation.
However, if the preference relation is known, for example,
to be monotone or anti-monotone, then we can do better.
COO-Anti below shows that when
 is assumed to be
anti-monotone, we can do better than COO-Naive.

procedure COO-Anti(L, CN, Opt(call),�,K)
1. TODO = {CN(∅)}
2. SOL = {};
3. while TODO �= ∅ do
4. Pick X ∈ TODO s.t. � ∃Y ∈ TODO s.t.
CN(Y) � CN(X).
5. TODO = TODO − {X}
6. if X ∈ Opt(L) then
7. SOL = (SOL − {Y ∈ SOL | X �
Y }) ∪ {X};
8. else TODO = TODO ∪ {
9. CN(X ∪ {F}) | F ∈

Comp(X) ∩ K)};
10. end-while
11. return any �-preferred member of SOL.

Intuitively procedure COO-Anti generates ⊆-inclusion
minimal closed and consistent subsets that are in Opt(L) us-
ing a bottom up procedure and then chooses the best ones.
It starts by checking if CN(∅) is in Opt(L) - if so, it can be
returned because of the anti-monotonicity of
. Otherwise,
it finds all formulas compatible with it and for each such for-
mula, it finds the logical consequences. Whenever it finds
an option that handles K, it adds it to SOL and deletes any
option in SOL that is worse than it (according to
). This
procedure is continued.

Pruning occurs in step (8) of the algorithm where the anti-
monotonicity of
 is exploited. Moreover, the algorithm pro-
ceeds in a greedy fashion, always choosing the best (or one
of the best) sets from TODO to expand in step (4).

The reader may think that the first solution found by this
bottom up procedure is optimal. Unfortunately, this may
not be the case because anti-monotonicity merely states that
O1 ⊆ O2 → O1
 O2. It is possible for O1
 O2 to hold
even if O1 �⊆ O2 and hence, in the anti-monotonic case, one
has to generate all ⊆-minimal options before deciding which
one is the best.

Proposition 7 Suppose (L,CN) is a logic, (Opt(L),
, |∼)
is a general framework for reasoning about inconsistency,
and K is a set of wffs. Further, suppose
 is anti-monotonic.

1. If there is an optimal option to handle K, then COO-
Anti(L,CN, Opt(L),
,K) will return one.

2. If COO-Anti(L,CN, Opt(L),
,K) returnsO, thenO is
an optimal option that handles K.

Just as in the case of anti-monotonic
 preference rela-
tions, we can also improve on the COO-Naive algorithm
when
 is monotonic. The COO-Mon algorithm assumes
monotonicity of
 and works in a similar manner as for
COO-Anti but starts top down and eliminates members of
CN(K) instead of starting the iteration from the empty set.
The Coo-Mon algorithm uses the notion of a deletion candi-
date.

Definition 12 Suppose (L,CN) is a logic and K is a set of
wffs. A set Y ⊆ K is a deletion candidate for K iff

1. CN(K − Y) ⊂ K and

2. CN(K − Y) is consistent

IJCAI-07
603

3. and there is no set Y ′ ⊂ Y that satisfies the previous two
conditions.

In other words, a deletion candidate for S is a wff F whose
removal from S causes at least one formula to no longer
be inferrable from S. We use the notation DelCand(X) to
denote the set of all deletion candidates of a set X .

procedure COO-Mon(L, CN, Opt(L),�,S, χ)
1. TODO = {CN(K)};
2. SOL = {∅};
3. while TODO �= ∅ do
4. Pick X ∈ TODO s.t. � ∃Y ∈ TODO Y �
X;
5. TODO = TODO − {X};
6. If CN(X) ∈ Opt(L) ∧ CN(X) �= L then
7. SOL = (SOL − ({ Y ∈
SOL | CN(X) � Y })) ∪ {CN(X)};
8. else
9. TODO = TODO ∪ DelCand(X);
10. end while
11. return �-preferred members of SOL.

The COO-Mon algorithm works as follows. It starts with
CN(K) and checks if it is consistent. If so, it adds it to SOL
and halts. Otherwise, it deletes every possible deletion can-
didate (minimal set of elements from K that restore consis-
tency). If any of the resulting options are valid options, then
the best one according to
 is returned. Otherwise, a set from
TODO is selected and further deletion candidates are found.
This is repeated until we either find an optimal option that
handles K or there is none.

Proposition 8 Suppose (L,CN) is a logic, (Opt(L),
, |∼)
is a general framework for reasoning about inconsistency,
and K is a set of wffs. Further, suppose
 is monotonic.

1. If there is an optimal option to handle K, then COO-
Anti(L,CN, Opt(call),
,K) will return one.

2. If COO-Anti(L,CN, Opt(call),
,K) returnsO, thenO
is an optimal option that handles K.

8 Conclusion
In the literature, there are several proposals for handling in-
consistency in knowledge bases. These proposals differ in i)
the logic to which they apply, and (ii) the criteria used to draw
inferences.

In this paper, we have proposed a general and unified
framework for reasoning about inconsistency in a wide va-
riety of logics. Indeed, the proposed framework is based on
an abstract logic as suggested by Scott in [Scott, 1982]. The
framework has three basic components: a set of options that
are consistent and closed subsets of well-founded formulas
of the logic, a preference relation between the options and en
entailment mechanism. The preference relation between op-
tions is a general notion. It may capture the requirements used
in the literature, such as the maximality, but also other criteria
maybe provided by the user for choosing among the options.
We have shown that by defining an appropriate preference re-
lation on options, we can capture several existing works such

as the subbases defined in [Rescher and Manor, 1970], de-
fault logic and Brewkas subtheories. The third component
of the framework consists of an entailment mechanism that
allows the selection of the inferences to be drawn from the
knowledge base. Such mechanism should return an option.
This enforces the system to make safe inferences. We have
also shown through examples how this abstract framework
can be used in different logics such as temporal and proba-
bilistic logics. Another important contribution of the paper is
the set of algorithms provided for computing most preferred
options.
Acknowledgments. This work was partly supported by
AFOSR grants FA95500610405 and FA95500510298, ARO
grant DAAD190310202 and by the Joint Institute for Knowl-
edge Discovery.

References
[Bacchus, 1990] F. Bacchus. Representing and reasoning

with probabilistic knowledge. In MIT Press, Cambridge,
pages 268–271, 1990.

[Brewka, 1989] G. Brewka. Preferred subtheories: An ex-
tended logical framework for default reasoning. pages
1043–1048. Morgan-Kaufmann, 1989.

[Dung, 1995] P. M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence,
77:321–357, 1995.

[G. Pinkas, 1992] R. P. Loui G. Pinkas. Reasoning from in-
consistency: a taxonomy of principles for resolving con-
flicts. In 3rd International Conference on Principles of
Knowledge Representation and Reasoning, KR’92, pages
709 –719, 1992.

[Gardenfors, 1988] P. Gardenfors. The dynamics of belief
systems: Foundations vs. coherence. International journal
of Philosophy, 1988.

[Marek et al., 1990] V. Wiktor Marek, A. Nerode, and J. B.
Remmel. A theory of nonmonotonic rule systems. LICS
1990, pages 79–94, 1990.

[Poole, 1985] D. Poole. On the comparison of theories:
preferring the most specific explanation. In 9th Inter-
national Joint Conference on Artificial Intelligence, IJ-
CAI’85, pages 144–147, 1985.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Arti-
ficial Intelligence, 13:81–132, 1980.

[Rescher and Manor, 1970] N. Rescher and R. Manor. On in-
ference from inconsistent premises. Theory and decision,
1:179–219, 1970.

[Scott, 1982] D. S. Scott. Lectures on a mathematical theory
of computation. Theoretical Foundations of Programming
Methodology, . Reidel Publ., pages 145–292, 1982.

[Shoenfield, 1967] J. Shoenfield. Mathematical logic. AK
Peters Ltd, 1967.

[Touretzkey, 1984] D. S. Touretzkey. Implicit ordering of de-
faults in inheritance systems. In National Conference on
Artificial Intelligence, AAAI’84, pages 322 – 325, 1984.

IJCAI-07
604

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

