BiRDy: Bullying Role Detection in Multi-Party Chats - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

BiRDy: Bullying Role Detection in Multi-Party Chats

Résumé

Recent studies have highlighted that private instant messaging platforms and channels are major media of cyber aggression, especially among teens. Due to the private nature of the verbal exchanges on these media, few studies have addressed the task of hate speech detection in this context. Moreover, the recent release of resources mimicking online aggression situations that may occur among teens on private instant messaging platforms is encouraging the development of solutions aiming at dealing with diversity in digital harassment. In this study, we present BiRDy: a fully Web-based platform performing participant role detection in multi-party chats. Leveraging the pre-trained language model mBERT (multilingual BERT), we release fine-tuned models relying on various contextual window strategies to classify exchanged messages according to the role of involvement in cyberbullying of the authors. Integrating a role scoring function, the proposed pipeline predicts a unique role for each chat participant. In addition, detailed confidence scoring are displayed. Currently, BiRDy publicly releases models for French and Italian.
Fichier principal
Vignette du fichier
BIRDY___CR___AAAI_23-2.pdf (180.74 Ko) Télécharger le fichier
AAAI_poster2023.pdf (1.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04315527 , version 1 (14-12-2023)

Identifiants

Citer

Anaïs Ollagnier, Elena Cabrio, Serena Villata, Sara Tonelli. BiRDy: Bullying Role Detection in Multi-Party Chats. AAAI-23 - 37th AAAI Conference on Artificial Intelligence, Feb 2023, Washington DC, United States. pp.16464-16466, ⟨10.1609/aaai.v37i13.27080⟩. ⟨hal-04315527⟩
71 Consultations
54 Téléchargements

Altmetric

Partager

More